JP5229362B2 - Method for producing metallurgical coke - Google Patents

Method for producing metallurgical coke Download PDF

Info

Publication number
JP5229362B2
JP5229362B2 JP2011187111A JP2011187111A JP5229362B2 JP 5229362 B2 JP5229362 B2 JP 5229362B2 JP 2011187111 A JP2011187111 A JP 2011187111A JP 2011187111 A JP2011187111 A JP 2011187111A JP 5229362 B2 JP5229362 B2 JP 5229362B2
Authority
JP
Japan
Prior art keywords
coal
sample
coke
weathering
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011187111A
Other languages
Japanese (ja)
Other versions
JP2012072389A5 (en
JP2012072389A (en
Inventor
勇介 土肥
喜代志 深田
英和 藤本
哲也 山本
広行 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011187111A priority Critical patent/JP5229362B2/en
Publication of JP2012072389A publication Critical patent/JP2012072389A/en
Publication of JP2012072389A5 publication Critical patent/JP2012072389A5/ja
Application granted granted Critical
Publication of JP5229362B2 publication Critical patent/JP5229362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)

Description

この発明は石炭乾留時の軟化溶融特性を精度良く評価する試験方法を用い、コークス強度を維持しながら高品位の石炭の使用量を削減することができる冶金用コークスの製造方法、あるいは、同一配合炭から高強度のコークスを得ることができる冶金用コークスの製造方法に関する。   The present invention uses a test method for accurately evaluating the softening and melting characteristics during coal dry distillation, a method for producing metallurgical coke that can reduce the amount of high-grade coal used while maintaining coke strength, or the same composition. The present invention relates to a method for producing metallurgical coke from which high strength coke can be obtained from charcoal.

製銑法として最も一般的に行われている高炉法において使用されるコークスは、鉄鉱石の還元材、熱源、スペーサーなどの役割を担っている。高炉を安定的に効率良く操業するためには、高炉内の通気性を維持することが重要であることから、強度の高いコークスの製造が求められている。コークスは、粉砕し、粒度を調整した種々のコークス製造用石炭を配合した配合炭を、コークス炉内にて乾留することで製造される。コークス製造用石炭は、乾留中約300℃〜550℃の温度域で軟化溶融し、また同時に揮発分の発生に伴い発泡、膨張することで、各々の粒子が互いに接着しあい、塊状のセミコークスとなる。セミコークスは、その後1000℃付近まで昇温する過程で収縮することで焼きしまり、堅牢なコークスとなる。従って、石炭の軟化溶融時の接着特性が、乾留後のコークス強度や粒径等の性状に大きな影響を及ぼす。   Coke used in the blast furnace method, which is most commonly used as a steelmaking method, plays the role of iron ore reducing material, heat source, spacer, and the like. In order to operate the blast furnace stably and efficiently, it is important to maintain the air permeability in the blast furnace, and therefore production of coke having high strength is required. Coke is produced by dry-distilling blended coal in which various types of coal for coke production, which are pulverized and adjusted in particle size, are blended in a coke oven. Coal-producing coal softens and melts in the temperature range of about 300 ° C to 550 ° C during dry distillation, and at the same time foams and expands with the generation of volatile matter. Become. Semi-coke is burned by shrinkage in the process of raising the temperature to around 1000 ° C., and becomes robust coke. Therefore, the adhesion characteristics during softening and melting of coal greatly affect properties such as coke strength and particle size after dry distillation.

また、コークス製造用石炭(配合炭)の接着を強化する目的で、石炭が軟化溶融する温度域で高い流動性を示す粘結材を配合炭に添加してコークスを製造する方法が一般的に行われている。ここで、粘結材とは、具体的にはタールピッチ、石油系ピッチ、溶剤精製炭、溶剤抽出炭などである。これら粘結材についても石炭と同様に、軟化溶融時の接着特性が、乾留後のコークス性状に大きな影響を及ぼす。   In addition, for the purpose of strengthening the adhesion of coal for coke production (mixed coal), a method of producing coke by adding a caking agent that exhibits high fluidity in the temperature range where coal softens and melts to the blended coal is generally used. Has been done. Here, the binder is specifically tar pitch, petroleum pitch, solvent refined coal, solvent extracted coal, and the like. For these binders, as with coal, the adhesive properties during softening and melting greatly affect the coke properties after dry distillation.

上述のとおり、石炭の軟化溶融特性は、乾留後のコークス性状やコークスケーキ構造を大きく左右するため、極めて重要であり、古くからその測定方法の検討が盛んになされてきた。特に、コークスの重要な品質であるコークス強度は、その原料である石炭性状、とりわけ石炭化度と軟化溶融特性に大きく影響される。軟化溶融特性とは、石炭を加熱したときに軟化溶融する性質であり、通常、軟化溶融物の流動性、粘度、接着性、膨張性などにより測定、評価される。   As described above, the softening and melting characteristics of coal are extremely important because they greatly affect the coke properties and coke cake structure after carbonization, and the investigation of the measurement method has been actively conducted for a long time. In particular, coke strength, which is an important quality of coke, is greatly affected by the properties of coal as the raw material, particularly the degree of coalification and softening and melting characteristics. The softening and melting property is a property of softening and melting when coal is heated, and is usually measured and evaluated by the fluidity, viscosity, adhesiveness, expandability, etc. of the softened melt.

石炭の軟化溶融特性のうち、軟化溶融時の流動性を測定する一般的な方法としては、JIS M 8801に規定されるギーセラープラストメータ法による石炭流動性試験方法が挙げられる。ギーセラープラストメータ法は、425μm以下に粉砕した石炭を所定のるつぼに入れ、規定の昇温速度で加熱し、規定のトルクをかけた撹拌棒の回転速度を目盛板で読み取り、ddpm(dial division per minute)で表示する方法である。   Among the softening and melting characteristics of coal, a general method for measuring the fluidity at the time of softening and melting includes a coal fluidity test method by the Gieseler plastometer method defined in JIS M8801. In the Gieseler plastometer method, coal pulverized to 425 μm or less is put in a predetermined crucible, heated at a specified temperature increase rate, and the rotation speed of a stirring rod to which a specified torque is applied is read with a scale plate, and ddpm (dial division per minute).

ギーセラープラストメータ法がトルク一定での撹拌棒の回転速度を測定しているのに対し、定回転方式でトルクを測定する方法も考案されている。例えば、特許文献1では、回転子を一定の回転速度で回転させながらトルクを測定する方法が記載されている。   In contrast to the Gisela plastometer method, which measures the rotational speed of the stirring rod with a constant torque, a method for measuring the torque by the constant rotation method has also been devised. For example, Patent Document 1 describes a method of measuring torque while rotating a rotor at a constant rotational speed.

また、軟化溶融特性として物理的に意味のある粘性を測定することを目的にした、動的粘弾性測定装置による粘度の測定方法がある(例えば、特許文献2参照。)。動的粘弾性測定とは、粘弾性体に周期的に力を加えたときに見られる粘弾性挙動の測定である。特許文献2に記載の方法では、測定で得られるパラメータ中の複素粘性率により軟化溶融石炭の粘性を評価しており、任意のせん断速度における軟化溶融石炭の粘度を測定可能な点が特徴である。   In addition, there is a viscosity measurement method using a dynamic viscoelasticity measuring device for the purpose of measuring a physically meaningful viscosity as a softening and melting characteristic (see, for example, Patent Document 2). Dynamic viscoelasticity measurement is the measurement of viscoelastic behavior seen when a force is applied periodically to a viscoelastic body. The method described in Patent Document 2 is characterized in that the viscosity of the softened molten coal is evaluated by the complex viscosity in the parameters obtained by the measurement, and the viscosity of the softened molten coal at an arbitrary shear rate can be measured. .

さらに、石炭の軟化溶融特性として、活性炭、またはガラスビーズを用い、それらへの石炭軟化溶融物接着性を測定した例が報告されている。少量の石炭試料を活性炭、ガラスビーズで上下方向から挟んだ状態で加熱し、軟化溶融後に冷却を行い、石炭と活性炭、ガラスビーズとの接着性を外観から観察する方法である。   Furthermore, as an example of the softening and melting characteristics of coal, an example in which activated carbon or glass beads was used and the coal softening melt adhesion to them was measured was reported. In this method, a small amount of coal sample is heated while being sandwiched between activated carbon and glass beads from above and below, cooled after softening and melting, and the adhesion between coal, activated carbon and glass beads is observed from the appearance.

石炭の軟化溶融時の膨張性を測定する一般的な方法としては、JIS M 8801に規定されているジラトメーター法が挙げられる。ジラトメーター法は、250μm以下に粉砕した石炭を規定の方法で成型し、所定のるつぼに入れ、規定の昇温速度で加熱し、石炭の上部に配置した検出棒で、石炭の変位の経時変化を測定する方法である。   A general method for measuring the expansibility of coal during soft melting is the dilatometer method defined in JIS M8801. In the dilatometer method, coal pulverized to 250 μm or less is molded by a specified method, placed in a predetermined crucible, heated at a specified rate of temperature rise, and a detection rod placed on the top of the coal is used to measure changes in coal displacement over time. It is a method to measure.

さらに、コークス炉内での石炭軟化溶融挙動を模擬するため、石炭軟化溶融時に発生するガスの透過挙動を改善した石炭膨張性試験方法も知られている(例えば、特許文献3参照)。これは、石炭層とピストンの間、もしくは石炭層とピストンの間と石炭層の下部に透過性材料を配置し、石炭から発生する揮発分と液状物質の透過経路を増やすことで、測定環境を、よりコークス炉内の膨張挙動に近づけた方法である。同様に、石炭層の上に貫通経路を有する材料を配置し、荷重を負荷しながら石炭をマイクロ波加熱して石炭の膨張性を測定する方法も知られている(特許文献4参照。)。   Furthermore, in order to simulate the behavior of coal softening and melting in a coke oven, a coal expansibility test method that improves the permeation behavior of gas generated during softening and melting of coal is also known (see, for example, Patent Document 3). This is because the permeable material is placed between the coal bed and the piston, or between the coal bed and the piston and below the coal bed, and the passage of volatiles and liquid substances generated from the coal is increased, thereby reducing the measurement environment. This is a method closer to the expansion behavior in the coke oven. Similarly, a method is also known in which a material having a through-passage is disposed on a coal bed, and the coal is microwave-heated while applying a load to measure the expansibility of the coal (see Patent Document 4).

特開平6−347392号公報JP-A-6-347392 特開2000−304674号公報JP 2000-304673 A 特許第2855728号公報Japanese Patent No. 2855728 特開2009−204609号公報JP 2009-204609 A

諸富ら著:「燃料協会誌」、Vol.53、1974年、p.779−790Morotomi et al .: “Journal of Fuel Association”, Vol. 53, 1974, p. 779-790 宮津ら著:「日本鋼管技報」、vol.67、1975年、p.125−137Miyazu et al .: “Nippon Steel Pipe Technical Report”, vol. 67, 1975, p. 125-137

冶金用コークスの製造においては、複数の銘柄の石炭を所定の割合で配合した配合炭を使用するのが一般的であるが、軟化溶融特性を正しく評価できないと、要求されているコークス強度を満足することができないという問題がある。高炉等の竪型炉で所定の強度を満足していない低強度のコークスを使用した場合、竪型炉内での粉の発生量を増加させて圧力損失の増大を招き、竪型炉の操業を不安定化させるとともにガスの流れが局所的に集中する、いわゆる吹き抜けといったトラブルを招く可能性がある。   In the manufacture of metallurgical coke, it is common to use blended coal that is a mixture of several brands of coal at a specified ratio. However, if the softening and melting characteristics cannot be evaluated correctly, the required coke strength is satisfied. There is a problem that you can not. When low-strength coke that does not satisfy the specified strength is used in a vertical furnace such as a blast furnace, the amount of powder generated in the vertical furnace is increased, resulting in an increase in pressure loss and the operation of the vertical furnace. May cause troubles such as so-called blow-through, in which the gas flow is locally concentrated.

従来の軟化溶融特性指標は、強度を正確に予測することが出来ない場合も少なくない。そのため、経験的に、軟化溶融特性の評価の不正確さに由来するコークス強度のバラツキを考慮して、目標とするコークス強度を予め高めに設定することでコークス強度を一定値以上に管理することが行われている。しかし、この方法では、一般的に知られている軟化溶融特性に優れた、比較的高価な石炭を使用して配合炭の平均的な品位を高めに設定することが必要となるため、コストの増大を招く。   Conventional softening and melting characteristics indicators often cannot accurately predict strength. Therefore, empirically, the coke strength is controlled to a certain value or higher by setting the target coke strength higher in advance in consideration of the variation in coke strength resulting from inaccuracy of the evaluation of softening and melting characteristics. Has been done. However, in this method, it is necessary to use a relatively expensive coal having excellent softening and melting characteristics, which is generally known, and to set the average quality of the blended coal to be higher, so that the cost is reduced. Incurs an increase.

コークス炉内において、軟化溶融時の石炭は隣接する層に拘束された状態で軟化溶融している。石炭の熱伝導率は小さいため、コークス炉内において石炭は一様に加熱されず、加熱面である炉壁側からコークス層、軟化溶融層、石炭層と状態が異なっている。コークス炉自体は乾留時多少膨張するがほとんど変形しないため、軟化溶融した石炭は隣接するコークス層、石炭層に拘束されている。   In the coke oven, the coal at the time of softening and melting is softened and melted while being constrained by adjacent layers. Since the thermal conductivity of coal is small, the coal is not uniformly heated in the coke oven, and the state differs from the coke layer, the softened molten layer, and the coal layer from the furnace wall side that is the heating surface. Since the coke oven itself expands somewhat during dry distillation but hardly deforms, the softened and melted coal is constrained by the adjacent coke layer and coal layer.

また、軟化溶融した石炭の周囲には、石炭層の石炭粒子間空隙、軟化溶融石炭の粒子間空隙、熱分解ガスの揮発により発生した粗大気孔、隣接するコークス層に生じる亀裂など、多数の欠陥構造が存在する。特に、コークス層に生じる亀裂は、その幅が数百ミクロンから数ミリ程度と考えられ、数十〜数百ミクロン程度の大きさである石炭粒子間空隙や気孔に比較して大きい。従って、このようなコークス層に生じる粗大欠陥へは、石炭から発生する副生物である熱分解ガスや液状物質だけではなく、軟化溶融した石炭自体の浸透も起こると考えられる。また、その浸透時に軟化溶融した石炭に作用するせん断速度は、銘柄毎に異なることが予想される。   In addition, there are many defects around the softened and melted coal, such as voids between coal particles in the coal bed, interparticle voids in the softened molten coal, rough air holes generated by volatilization of the pyrolysis gas, and cracks in the adjacent coke layer. Structure exists. In particular, the crack generated in the coke layer is considered to have a width of several hundred microns to several millimeters, and is larger than the voids and pores between coal particles having a size of about several tens to several hundreds of microns. Therefore, it is considered that coarse defects generated in such a coke layer are not only caused by pyrolysis gas and liquid substances, which are by-products generated from coal, but also permeate softened and melted coal itself. Further, it is expected that the shear rate acting on the softened and melted coal at the time of infiltration varies from brand to brand.

発明者らは、コークスの強度をより精度よく制御するためには、上記のような石炭がコークス炉内で置かれる環境を模擬した条件で測定される石炭軟化溶融特性を指標として用いる必要があると考えた。なかでも、軟化溶融した石炭が拘束された条件で、かつ周囲の欠陥構造への溶融物の移動、浸透を模擬した条件で測定することが重要であると考えた。しかし、従来の測定方法には以下のような問題があった。   In order to control the strength of coke more accurately, the inventors need to use the coal softening and melting characteristics measured under conditions simulating the environment in which the coal is placed in the coke oven as an index. I thought. In particular, it was important to measure under conditions where softened and melted coal was constrained, and under conditions simulating the movement and penetration of the melt into the surrounding defect structure. However, the conventional measuring method has the following problems.

ギーセラープラストメータ法は、石炭を容器に充填した状態での測定のため、拘束、浸透条件を全く考慮していない点で問題である。また、この方法は、高い流動性を示す石炭の測定には適さない。その理由は、高い流動性を示す石炭を測定する場合、容器内側壁部が空洞となる現象(Weissenberg効果)が起こり、撹拌棒が空転し、流動性を正しく評価できない場合があるためである(例えば、非特許文献1参照。)。   The Giselaer plastometer method is problematic in that it does not take into account any restraint or infiltration conditions for measurement in a state where coal is filled in a container. Moreover, this method is not suitable for the measurement of coal showing high fluidity. The reason is that, when measuring coal showing high fluidity, a phenomenon that the inner wall of the container becomes hollow (Weissenberg effect) occurs, the stirrer may idle, and the fluidity may not be evaluated correctly ( For example, refer nonpatent literature 1.).

定回転方式でトルクを測定する方法についても同様に、拘束条件、浸透条件を考慮していない点で不備がある。また、せん断速度一定下での測定のため、上記で述べたように石炭の軟化溶融特性を正しく比較評価することができない。   Similarly, the method of measuring the torque by the constant rotation method is deficient in that the constraint condition and the penetration condition are not taken into consideration. In addition, because of the measurement under a constant shear rate, it is impossible to correctly compare and evaluate the softening and melting characteristics of coal as described above.

動的粘弾性測定装置は、軟化溶融特性として粘性を対象とし、任意のせん断速度下で粘度が測定可能な装置である。よって、測定時のせん断速度を、コークス炉内での石炭に作用する値に設定すれば、コークス炉内での軟化溶融石炭の粘度を測定可能である。しかし、各銘柄のコークス炉内でのせん断速度を予め測定、または推定することは通常は困難である。   The dynamic viscoelasticity measuring apparatus is an apparatus that targets viscosity as a softening and melting characteristic and can measure the viscosity under an arbitrary shear rate. Therefore, if the shear rate at the time of measurement is set to a value that acts on the coal in the coke oven, the viscosity of the softened molten coal in the coke oven can be measured. However, it is usually difficult to measure or estimate the shear rate in each coke oven in advance.

石炭の軟化溶融特性として、活性炭、またはガラスビーズを用い、それらへの接着性を測定する方法は、石炭層の存在について浸透条件を再現しようとしているものの、コークス層と粗大欠陥を模擬していない点で問題がある。また、拘束下での測定でない点でも不十分である。   The method of measuring the adhesion to coal using activated carbon or glass beads as the softening and melting characteristics of coal tries to reproduce the infiltration conditions for the presence of coal layer, but does not simulate the coke layer and coarse defects There is a problem in terms. Moreover, the point which is not a measurement under restraint is also insufficient.

特許文献3に記載されている透過性材料を用いた石炭膨張性試験方法においては、石炭から発生するガス、液状物質の移動を考慮しているが、軟化溶融した石炭自体の移動を考慮していない点で問題である。これは特許文献3で用いる透過性材料の透過度が、軟化溶融石炭が移動するほど十分に大きくないためである。本発明者らが実際に特許文献3に記載の試験を行ったところ、軟化溶融石炭の透過性材料への浸透は起こらなかった。したがって、軟化溶融石炭の透過性材料への浸透を起こさせるためには、新たな条件を考慮する必要がある。   In the coal expansibility test method using the permeable material described in Patent Document 3, the movement of gas and liquid substance generated from coal is considered, but the movement of softened and melted coal itself is considered. There is no problem in that. This is because the permeability of the permeable material used in Patent Document 3 is not large enough to move the softened molten coal. When the present inventors actually performed the test described in Patent Document 3, penetration of the softened molten coal into the permeable material did not occur. Therefore, it is necessary to consider new conditions in order to cause the soft molten coal to penetrate into the permeable material.

特許文献4にも同様に石炭層の上に貫通経路を有する材料を配置して石炭から発生するガス、液状物質の移動を考慮した石炭の膨張性測定方法が開示されているが、加熱方法に制約があるという問題点の他、コークス炉内における浸透現象を評価するための条件が明確になっていないという問題がある。さらに特許文献4では、石炭溶融物の浸透現象と軟化溶融挙動の関係が明確になっておらず、石炭溶融物の浸透現象と生成するコークスの品質との関係についての示唆も無く、良好な品質のコークスの製造について記載されているものではない。   Similarly, Patent Document 4 discloses a method for measuring the expansibility of coal in consideration of the movement of gas and liquid substances generated from coal by arranging a material having a through path on the coal bed. In addition to the problem of restrictions, there is a problem that the conditions for evaluating the infiltration phenomenon in the coke oven are not clear. Furthermore, in Patent Document 4, the relationship between the infiltration phenomenon of the coal melt and the softening and melting behavior is not clear, and there is no suggestion about the relationship between the infiltration phenomenon of the coal melt and the quality of the coke to be produced. It does not describe the production of coke.

このように、従来技術ではコークス炉内において軟化溶融した石炭及び粘結材の周辺の環境を十分に模擬した状態で、石炭及び粘結材の流動性、粘性、接着性、浸透性、浸透時膨張率、浸透時圧力などの軟化溶融特性を測定することができない。   As described above, in the prior art, the fluidity, viscosity, adhesiveness, permeability, and penetration of coal and binder are fully simulated in the environment around coal and binder that has been softened and melted in a coke oven. Softening and melting properties such as expansion rate and pressure during penetration cannot be measured.

そこで、本発明は、コークス炉内において軟化溶融した石炭の周辺の環境を模擬した状態で石炭の軟化溶融特性を測定することにより配合炭に使用する石炭の軟化溶融特性を正確に評価し、その石炭のコークス強度への影響を明確にした上で、コークス強度に悪影響をもたらす石炭を改質して好ましい軟化溶融特性を持つようにし、改質された石炭を用いて強度等の品質に優れた冶金用コークスを製造するための方法を提供することを目的とする。   Therefore, the present invention accurately evaluates the softening and melting characteristics of the coal used in the blended coal by measuring the softening and melting characteristics of the coal while simulating the surrounding environment of the softened and melted coal in the coke oven, After clarifying the effect of coal on coke strength, coal that adversely affects coke strength is modified to have favorable softening and melting characteristics, and quality such as strength is excellent using the modified coal. It is an object to provide a method for producing metallurgical coke.

このような課題を解決するための本発明の特徴は以下の通りである。
[1]2種以上の石炭からなる配合炭もしくは2種以上の石炭に粘結材を配合してなる配合炭を乾留し、コークスを製造する方法であって、
前記配合炭を構成する各石炭及び粘結材を試料として容器に充填し、前記試料の上に上下面に貫通孔を有する材料を配置し、前記試料を加熱し、前記貫通孔へ浸透した前記試料の浸透距離とギーセラープラストメータ法による最高流動度(logMF)とを測定し、
前記浸透距離及び最高流動度が所定の管理範囲(A)に該当する石炭を選定し、
選定された石炭の一部または全部を、酸化雰囲気下、常温又は加熱処理によって風化させ、風化後の石炭の浸透距離及び最高流動度が所定の管理範囲(B)内になるようにし、前記風化した石炭を配合する、
ことを特徴とする、冶金用コークスの製造方法。
[2]前記浸透距離及び最高流動度の管理範囲(A)が、下記式(1)かつ式(2)を満足することを特徴とする、[1]に記載の冶金用コークスの製造方法。
logMF≧2.5 (1)
浸透距離≧1.3×a×logMF (2)
但し、“a”は、配合炭を構成する各石炭及び粘結材のうち、logMF<2.5の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数である。
[3]前記浸透距離及び最高流動度の管理範囲(A)が、下記式(3)かつ式(4)を満足することを特徴とする、[1]に記載の冶金用コークスの製造方法。
logMF≧2.5 (3)
浸透距離≧a’×logMF+b (4)
但し、“a’”は、配合炭を構成する各石炭及び粘結材のうち、logMF<2.5の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数である。
“b”は、前記回帰直線の作成に用いた銘柄から選ばれる1種類以上の同一試料を複数回測定した際の標準偏差の平均値以上で、前記平均値の5倍以下とする、定数である。
[4]前記管理範囲(A)が、以下によって求められることを特徴とする[1]に記載の冶金用コークスの製造方法。
コークス製造に用いる配合炭中に含まれる石炭または粘結材と前記石炭または粘結材の配合率を予め決定し、
前記石炭または粘結材の浸透距離及びlogMFを測定し、
配合炭に含まれるlogMFが3.2未満の石炭または粘結材の浸透距離と配合率から計算される加重平均浸透距離に対して2倍以上の範囲を前記浸透距離の管理範囲(A)と決定する。
[5]前記浸透距離の管理範囲(A)が、石炭または粘結材試料を粒径2mm以下が100mass%となるように粉砕し、該粉砕試料を充填密度0.8g/cm3で、層厚が10mmとなるように容器に充填して試料とし、該試料の上に直径2mmのガラスビーズを浸透距離以上の層厚で配置し、ガラスビーズの上部から圧力50kPaとなるように荷重を負荷しつつ、昇温速度3℃/分で室温から550℃まで不活性ガス雰囲気下で加熱した場合の測定値で15mm以上かつ、logMFが2.5以上であることを特徴とする、[1]に記載の冶金用コークスの製造方法。
[6]前記風化は、風化後の石炭の浸透距離及び最高流動度が、下記式(5)にて規定する管理範囲(B)内になるように風化させる、[1]ないし[5]のいずれかに記載の冶金用コークスの製造方法。
浸透距離<1.3×a×logMF (5)
但し、“a”は、配合炭を構成する各石炭及び粘結材のうち、logMF<2.5の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数である。
[7]前記風化は、風化後の石炭の浸透距離及び最高流動度が、下記式(6)にて規定する管理範囲(B)内になるように風化させる、[1]ないし[5]のいずれかに記載の冶金用コークスの製造方法。
浸透距離<a’×logMF+b (6)
但し、“a’”は、配合炭を構成する各石炭及び粘結材のうち、logMF<2.5の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数である。
bは、前記回帰直線の作成に用いた銘柄から選ばれる1種類以上の同一試料を複数回測定した際の標準偏差の平均値以上で、前記平均値の5倍以下とする、定数である。
[8]前記“a”が、配合炭を構成する各石炭及び粘結材のうち、1.75<logMF<2.50の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数であることを特徴とする[2]または[6]に記載の冶金用コークスの製造方法。
[9]前記“a’”が、配合炭を構成する各石炭及び粘結材のうち、1.75<logMF<2.50の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数であることを特徴とする[3]または[7]に記載の冶金用コークスの製造方法。
[10]コークス製造に用いる配合炭中に含まれる石炭または粘結材の銘柄と前記各銘柄の石炭または粘結材の配合率を予め決定し、
前記各銘柄の石炭または粘結材の浸透距離及びlogMFを測定し、配合炭に含まれるlogMFが3.2未満の各銘柄の石炭または粘結材の浸透距離と配合率から計算される加重平均浸透距離を算出し、
風化後の石炭の浸透距離が、前記加重平均浸透距離に対して2倍未満である管理範囲(B)内となるように風化させることを特徴とする、[1]ないし[5]のいずれかに記載の冶金用コークスの製造方法。
[11]風化後の石炭の浸透距離が、石炭試料を粒径2mm以下が100mass%となるように粉砕し、該粉砕試料を充填密度0.8g/cm3で、層厚が10mmとなるように容器に充填して試料とし、該試料の上に直径2mmのガラスビーズを浸透距離以上の層厚で配置し、ガラスビーズの上部から圧力50kPaとなるように荷重を負荷しつつ、昇温速度3℃/分で室温から550℃まで不活性ガス雰囲気下で加熱した場合の測定値で15mm未満である管理範囲(B)内となるように風化させる、
ことを特徴とする、[1]ないし[5]のいずれかに記載の冶金用コークスの製造方法。
[12]風化後の石炭の最高流動度が、logMF≧2.5かつ管理範囲(B)内になるように風化させることを特徴とする、[6]ないし[11]のいずれかに記載の冶金用コークスの製造方法。
[13]前記風化を行う際の酸化雰囲気として、O、CO、HOの1種以上の成分を含む気体雰囲気であることを特徴とする、[1]ないし[12]のいずれかに記載の冶金用コークスの製造方法。
[14]前記風化を行う際の酸化雰囲気として、空気雰囲気であることを特徴とする、[13]に記載の冶金用コークスの製造方法。
[15]前記風化を行う際の加熱処理として、処理温度100℃〜300℃、処理時間1〜120分であることを特徴とする、[1]ないし[14]のいずれかに記載の冶金用コークスの製造方法。
[16]前記風化を行う際の加熱処理として、処理温度180℃〜220℃、処理時間1〜30分であることを特徴とする、[15]に記載の冶金用コークスの製造方法。
[17]前記風化を行う際に、コークス製造に用いる石炭及び粘結材の一部または全量を事前に分級し、所定の篩目以上の粒子のみを風化させることを特徴とする、[1]ないし[16]のいずれかに記載の冶金用コークスの製造方法。
[18]前記風化を行う際に、コークス製造に用いる石炭及び粘結材を分級する際の所定の篩目が1mm〜6mmの範囲から選ばれるものであることを特徴とする、[17]に記載の冶金用コークスの製造方法。
[19]前記浸透距離の測定が、前記上下面に貫通孔を有する材料の上から一定荷重を負荷させつつ、所定の加熱速度で前記試料を加熱することを特徴とする[1]ないし[18]のいずれかに記載の冶金用コークスの製造方法。
[20]前記浸透距離の測定が、前記試料と前記上下面に貫通孔を有する材料を一定容積に保ちつつ、所定の加熱速度で前記試料を加熱することを特徴とする[1]ないし[18]のいずれかに記載の冶金用コークスの製造方法。
The features of the present invention for solving such problems are as follows.
[1] A method for producing coke by dry-distilling a blended coal comprising two or more types of coal or a blended coal obtained by blending a binder with two or more types of coal,
Filling a container with each coal and caking additive constituting the blended coal as a sample, placing a material having through holes on the upper and lower surfaces on the sample, heating the sample, and penetrating into the through hole Measure the permeation distance of the sample and the maximum fluidity (log MF) by the Gieseler plastometer method,
Select coal whose permeation distance and maximum fluidity fall within the prescribed management range (A),
A part or all of the selected coal is weathered in an oxidizing atmosphere at room temperature or by heat treatment so that the penetration distance and maximum fluidity of the coal after weathering are within a predetermined control range (B), Blended coal,
A method for producing metallurgical coke, characterized in that:
[2] The metallurgical coke manufacturing method according to [1], wherein the permeation distance and the maximum fluidity management range (A) satisfy the following formulas (1) and (2).
logMF ≧ 2.5 (1)
Permeation distance ≧ 1.3 × a × logMF (2)
However, “a” measures at least one permeation distance and log MF of coal and binder in the range of log MF <2.5 among each coal and binder constituting the coal blend, It is a constant in the range of 0.7 to 1.0 times the log MF coefficient when a regression line passing through the origin is created using the measured value.
[3] The metallurgical coke manufacturing method according to [1], wherein the permeation distance and the maximum fluidity management range (A) satisfy the following formulas (3) and (4).
logMF ≧ 2.5 (3)
Permeation distance ≧ a ′ × log MF + b (4)
However, "a '" measures the penetration distance and log MF of at least one kind of coal and binder in the range of log MF <2.5 among the coal and binder that constitute the blended coal, It is a constant in the range of 0.7 to 1.0 times the coefficient of logMF when a regression line passing through the origin is created using the measured value.
“B” is a constant that is not less than the average value of the standard deviation when measuring one or more types of the same sample selected from the brands used to create the regression line, and not more than 5 times the average value. is there.
[4] The metallurgical coke manufacturing method according to [1], wherein the management range (A) is obtained as follows.
Predetermining the coal or caking additive contained in the coal blend used for coke production and the blending ratio of the coal or caking additive,
Measure the penetration distance and log MF of the coal or caking additive,
The control range (A) of the permeation distance is a range more than twice the weighted average permeation distance calculated from the permeation distance and the blending rate of coal or caking material having a log MF of less than 3.2. decide.
[5] The permeation distance management range (A) is a coal or binder sample pulverized so that a particle size of 2 mm or less is 100 mass%, and the pulverized sample is packed at a packing density of 0.8 g / cm 3 . Fill the container so that the thickness is 10 mm and use it as a sample. Place a glass bead with a diameter of 2 mm on the sample with a layer thickness equal to or greater than the penetration distance, and apply a load from the top of the glass bead to a pressure of 50 kPa. However, the measured value when heated in an inert gas atmosphere from room temperature to 550 ° C. at a temperature rising rate of 3 ° C./min is 15 mm or more and the log MF is 2.5 or more, [1] A method for producing metallurgical coke as described in 1.
[6] The weathering is performed such that the coal penetration distance and the maximum fluidity after weathering are within the control range (B) defined by the following formula (5), [1] to [5] The manufacturing method of the coke for metallurgical products in any one.
Penetration distance <1.3 × a × logMF (5)
However, “a” measures at least one permeation distance and log MF of coal and binder in the range of log MF <2.5 among each coal and binder constituting the coal blend, It is a constant in the range of 0.7 to 1.0 times the log MF coefficient when a regression line passing through the origin is created using the measured value.
[7] The weathering is performed such that the infiltration distance and the maximum fluidity of the coal after weathering are within the control range (B) defined by the following formula (6), [1] to [5] The manufacturing method of the coke for metallurgical products in any one.
Permeation distance <a ′ × log MF + b (6)
However, "a '" measures the penetration distance and log MF of at least one kind of coal and binder in the range of log MF <2.5 among the coal and binder that constitute the blended coal, It is a constant in the range of 0.7 to 1.0 times the coefficient of logMF when a regression line passing through the origin is created using the measured value.
b is a constant that is not less than the average value of the standard deviation when measuring one or more types of the same sample selected from the brands used for creating the regression line, and not more than 5 times the average value.
[8] The penetration distance of at least one or more types of coal and caking material in the range of 1.75 <logMF <2.50 among the coal and caking material constituting the blended coal, The log MF is measured, and a constant in the range of 0.7 to 1.0 times the log MF coefficient when a regression line passing through the origin is created using the measured value [2] or [6] ] The manufacturing method of the coke for metallurgical products of description.
[9] The penetration distance of at least one or more coals and binders in the range of 1.75 <logMF <2.50 among the coals and binders constituting the blended coal, wherein “a ′” is And log MF, and a constant in the range of 0.7 to 1.0 times the log MF coefficient when a regression line passing through the origin is created using the measured value [3] or [ [7] A method for producing metallurgical coke according to [7].
[10] The brand of coal or caking additive contained in the blended coal used for coke production and the blending ratio of coal or caking additive of each brand are determined in advance,
The weighted average calculated by measuring the penetration distance and log MF of each brand of coal or binder, and calculating from the penetration distance and blending ratio of each brand of coal or binder with a log MF of less than 3.2. Calculate the penetration distance,
Any one of [1] to [5], wherein the weathered coal is infiltrated so that a permeation distance of the coal is within a control range (B) that is less than twice the weighted average permeation distance. A method for producing metallurgical coke as described in 1.
[11] The coal penetration distance after weathering is such that the coal sample is pulverized so that the particle size of 2 mm or less is 100 mass%, and the pulverized sample has a packing density of 0.8 g / cm 3 and a layer thickness of 10 mm. The sample is filled in a container, and a glass bead with a diameter of 2 mm is placed on the sample with a layer thickness equal to or greater than the permeation distance, while a load is applied from the top of the glass bead to a pressure of 50 kPa, and the rate of temperature rise Weathering to be within the control range (B) of less than 15 mm in the measured value when heated in an inert gas atmosphere from room temperature to 550 ° C. at 3 ° C./min,
The method for producing metallurgical coke according to any one of [1] to [5].
[12] It is weathered so that the maximum fluidity of coal after weathering is log MF ≧ 2.5 and within the control range (B), according to any one of [6] to [11] A method for producing metallurgical coke.
[13] Any one of [1] to [12], wherein the oxidizing atmosphere when the weathering is performed is a gas atmosphere containing one or more components of O 2 , CO 2 , and H 2 O. A method for producing metallurgical coke as described in 1.
[14] The method for producing metallurgical coke according to [13], wherein an oxidizing atmosphere when the weathering is performed is an air atmosphere.
[15] The metallurgy according to any one of [1] to [14], wherein the heat treatment at the time of weathering is a treatment temperature of 100 ° C. to 300 ° C. and a treatment time of 1 to 120 minutes. Coke production method.
[16] The method for producing metallurgical coke according to [15], wherein the heat treatment at the time of the weathering is a treatment temperature of 180 ° C. to 220 ° C. and a treatment time of 1 to 30 minutes.
[17] When performing the weathering, part or all of the coal and caking additive used for coke production are classified in advance, and only particles having a predetermined sieve mesh or more are weathered. [1] Thru | or the manufacturing method of the metallurgical coke in any one of [16].
[18] In the above [17], when the weathering is performed, a predetermined sieve mesh for classifying coal and caking additive used for coke production is selected from a range of 1 mm to 6 mm. The manufacturing method of the metallurgical coke as described.
[19] The measurement of the penetration distance includes heating the sample at a predetermined heating rate while applying a constant load from above the material having through holes on the upper and lower surfaces. ] The manufacturing method of the metallurgical coke in any one of.
[20] The measurement of the penetration distance includes heating the sample at a predetermined heating rate while maintaining the sample and the material having through holes in the upper and lower surfaces at a constant volume. ] The manufacturing method of the metallurgical coke in any one of.

本発明によれば、コークス炉内での石炭軟化溶融特性に大きな影響を及ぼすと考えられる、コークス炉内での石炭軟化溶融層周辺に存在する欠陥構造、特に軟化溶融層に隣接するコークス層に存在する亀裂の影響を模擬し、また、コークス炉内での軟化溶融物周辺の拘束条件を適切に再現した状態での、石炭ないし粘結材の軟化溶融特性の評価が可能である。これにより、特に、従来の軟化溶融特性の評価方法では検出することのできなかった過剰な流動性を示す石炭ないし粘結材由来の欠陥の生成を予測でき、コークス品質に悪影響を及ぼす石炭ないし粘結材を特定することができる。そして、好ましくない軟化溶融特性を有する石炭を風化処理によってコークス製造にとって好ましい軟化溶融特性を持つように改質できるため、コークス強度の低下抑止、コークス強度の向上が実現される、という効果を有する。   According to the present invention, the defect structure existing around the coal softening and melting layer in the coke oven, particularly the coke layer adjacent to the softening and melting layer, which is considered to have a great influence on the coal softening and melting characteristics in the coke oven. It is possible to evaluate the softening and melting characteristics of coal or binder in the state of simulating the effect of existing cracks and appropriately reproducing the restraint conditions around the softened melt in the coke oven. As a result, it is possible to predict the generation of defects derived from coal or caking material exhibiting excessive fluidity, which could not be detected by conventional methods for evaluating softening and melting properties, and to adversely affect coke quality. The binding material can be specified. Since coal having undesirable softening and melting characteristics can be modified by weathering so as to have softening and melting characteristics preferable for coke production, there is an effect that reduction of coke strength is reduced and improvement of coke strength is realized.

本発明で使用する石炭及び粘結材試料と上下面に貫通孔を有する材料に一定荷重を負荷させつつ軟化溶融特性を測定する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which measures a softening-melting characteristic, applying a fixed load to the coal and binder material used by this invention, and the material which has a through-hole in the upper and lower surfaces. 本発明で使用する上下面に貫通孔を有する材料のうち、円形貫通孔をもつものの一例を示す概略図である。It is the schematic which shows an example of what has a circular through-hole among the materials which have a through-hole in the upper and lower surfaces used by this invention. 本発明で使用する上下面に貫通孔を有する材料のうち、球形粒子充填層の一例を示す概略図である。It is the schematic which shows an example of a spherical particle packing layer among the materials which have a through-hole in the upper and lower surfaces used by this invention. 本発明で使用する上下面に貫通孔を有する材料のうち、円柱充填層の一例を示す概略図である。It is the schematic which shows an example of a cylindrical packing layer among the materials which have a through-hole in the upper and lower surfaces used by this invention. 本発明で規定した、通常の配合では強度低下を招くが、風化を行うことで強度低下を抑制できる石炭及び粘結材が存在する浸透距離及び最高流動度の範囲((イ)に該当)、好適な風化炭の浸透距離及び最高流動度の範囲((ホ)に該当)及び、最も好適な風化炭の浸透距離及び最高流動度の範囲((リ)に該当)を示す模式図である。In the normal formulation specified in the present invention, the strength is reduced, but the penetration distance and the maximum fluidity range (corresponding to (A)) where coal and caking additive that can suppress the strength reduction by weathering exist, It is a schematic diagram showing a suitable weathered coal penetration distance and maximum fluidity range (corresponding to (e)) and a most preferred weathered coal penetration distance and maximum fluidity range (corresponding to (i)). 本発明で規定した、通常の配合では強度低下を招くが、風化を行うことで強度低下を抑制できる石炭及び粘結材が存在する浸透距離及び最高流動度の範囲((ロ)に該当)、好適な風化炭の浸透距離及び最高流動度の範囲((へ)に該当)及び、最も好適な風化炭の浸透距離及び最高流動度の範囲((リ)に該当)を示す模式図である。In the normal formulation specified in the present invention, the strength is reduced, but the penetration distance and the maximum fluidity range (corresponding to (b)) where coal and caking additive that can suppress the strength reduction by weathering exist, It is a schematic diagram which shows the range of suitable penetration distance and the maximum fluidity of weathered coal (corresponding to (f)), and the most suitable range of weathered coal and range of maximum fluidity (corresponds to (ri)). 本発明で規定した、通常の配合では強度低下を招くが、風化を行うことで強度低下を抑制できる石炭及び粘結材が存在する浸透距離及び最高流動度の範囲((ハ)に該当)、好適な風化炭の浸透距離及び最高流動度の範囲((ト)に該当)及び、最も好適な風化炭の浸透距離及び最高流動度の範囲((リ)に該当)を示す模式図である。In the normal formulation specified in the present invention, the strength is reduced, but the penetration distance and the maximum fluidity range (corresponding to (c)) where coal and caking additive that can suppress the strength reduction by weathering are present, It is a schematic diagram showing a suitable weathered coal penetration distance and maximum fluidity range (corresponding to (g)) and a most preferred weathered coal penetration distance and maximum fluidity range (corresponding to (i)). 本発明で規定した、通常の配合では強度低下を招くが、風化を行うことで強度低下を抑制できる石炭及び粘結材が存在する浸透距離及び最高流動度の範囲((ニ)に該当)、好適な風化炭の浸透距離及び最高流動度の範囲((チ)に該当)及び、最も好適な風化炭の浸透距離及び最高流動度の範囲((リ)に該当)を示す模式図である。In the normal formulation specified in the present invention, the strength is reduced, but the penetration distance and the maximum fluidity range (corresponding to (d)) in which coal and caking additive that can suppress the strength reduction by weathering exist, It is a schematic diagram showing a suitable weathered coal penetration distance and maximum fluidity range (corresponding to (h)) and a most preferred weathered coal penetration distance and maximum fluidity range (corresponding to (i)). 本発明で測定した、石炭軟化溶融物の浸透距離の測定結果を示すグラフである。It is a graph which shows the measurement result of the penetration distance of a coal softening melt measured by the present invention. 実施例1で作製した配合炭を構成する石炭とF炭の浸透距離及び最高流動度と、(イ)に該当する浸透距離及び最高流動度の範囲との位置関係を示すグラフである。It is a graph which shows the positional relationship with the osmosis | permeation distance and the maximum fluidity of coal and F coal which comprise the combination coal produced in Example 1, and the range of the osmosis | permeation distance and the maximum fluidity applicable to (A). 実施例1で作製した配合炭を構成する石炭とF炭の浸透距離及び最高流動度と、(ロ)に該当する浸透距離及び最高流動度の範囲との位置関係を示すグラフである。It is a graph which shows the positional relationship with the osmosis | permeation distance and the maximum fluidity of coal and F coal which comprise the combination coal produced in Example 1, and the range of the osmosis | permeation distance and maximum fluidity applicable to (B). 実施例1で測定した、コークスのドラム強度の測定結果である。3 is a measurement result of coke drum strength measured in Example 1. FIG. 実施例1で作製した風化F炭の浸透距離及び最高流動度と、(ホ)に該当する浸透距離及び最高流動度の範囲(式(1)の線より下の範囲)との位置関係を示すグラフである。The positional relationship between the penetration distance and the maximum fluidity of weathered F charcoal produced in Example 1 and the range of the penetration distance and maximum fluidity corresponding to (e) (the range below the line of formula (1)) is shown. It is a graph. 実施例1で作製した風化F炭の浸透距離及び最高流動度と、(へ)に該当する浸透距離及び最高流動度の範囲(式(2)の線より下の範囲)との位置関係を示すグラフである。The positional relationship between the penetration distance and maximum fluidity of weathered F charcoal produced in Example 1 and the range of penetration distance and maximum fluidity corresponding to (f) (the range below the line of formula (2)) is shown. It is a graph. 実施例1で作製した風化F炭の浸透距離及び最高流動度と、(ト)に該当する浸透距離及び最高流動度の範囲(logMFが3.2未満の石炭からなるベース配合炭の加重平均浸透距離6.5mmの2倍である、浸透距離13mmの直線より下の範囲)との位置関係を示すグラフである。Penetration distance and maximum fluidity of weathered F coal produced in Example 1 and range of penetration distance and maximum fluidity corresponding to (g) (weighted average penetration of base blend coal consisting of coal with log MF less than 3.2) It is a graph which shows the positional relationship with the distance below the straight line of the penetration distance 13mm which is twice the distance 6.5mm. 実施例1で作製した風化F炭の浸透距離及び最高流動度と、(チ)に該当する浸透距離及び最高流動度の範囲(浸透距離15mmの直線より下の範囲)との位置関係を示すグラフである。The graph which shows the positional relationship of the osmosis | permeation distance of the weathered F charcoal produced in Example 1, and the maximum fluidity, and the osmosis | permeation distance corresponding to (h), and the range of the maximum fluidity (range below the osmosis | permeation distance of 15 mm). It is. 実施例1で、処理温度を変えて作製した風化F炭の浸透距離及び最高流動度の変化を示すグラフである。It is a graph which shows the penetration distance of the weathered F coal produced by changing process temperature in Example 1, and the change of the maximum fluidity. 実施例2で使用したU炭の浸透距離及び最高流動度と、(イ)に該当する浸透距離及び最高流動度の範囲との位置関係を示すグラフである。It is a graph which shows the positional relationship of the osmosis | permeation distance and the maximum fluidity of U charcoal used in Example 2, and the range of the osmosis | permeation distance and the highest fluidity applicable to (A). 実施例2で使用したU炭の浸透距離及び最高流動度と、(ロ)に該当する浸透距離及び最高流動度の範囲との位置関係を示すグラフである。It is a graph which shows the positional relationship of the osmosis | permeation distance and the maximum fluidity of U charcoal used in Example 2, and the range of the osmosis | permeation distance and the highest fluidity applicable to (b). 本発明で使用する石炭試料と上下面に貫通孔を有する材料を一定容積に保ちつつ軟化溶融特性を測定する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which measures a softening-melting characteristic, keeping the coal sample used by this invention, and the material which has a through-hole in an upper and lower surface at a fixed volume.

本発明者らは、コークス炉内において軟化溶融した石炭の周辺の環境を模擬した状態で軟化溶融特性を測定可能とし、測定した軟化溶融特性である「浸透距離」とコークス強度の関係について鋭意研究を重ね、以下の知見を得た。
・従来から報告されている軟化溶融特性にはほとんど差がない石炭であっても、軟化溶融した石炭の周辺の環境を模擬した状態で測定した本発明の方法による軟化溶融特性には差がある。
・本発明の方法で測定した軟化溶融特性に差がある石炭を配合してコークスを製造した場合には、それらのコークス強度も異なっている。
本発明者らは、上記知見に基づいて、コークス強度に悪影響を及ぼす石炭を改質して好ましい軟化溶融特性を持たせる方法を見いだして、本発明に至った。
The present inventors have made it possible to measure the softening and melting characteristics in a state of simulating the surrounding environment of the softened and melted coal in the coke oven, and eagerly researched the relationship between the measured softening and melting characteristics “penetration distance” and coke strength. The following findings were obtained.
・ There is a difference in softening and melting characteristics according to the method of the present invention measured in a state simulating the environment around the softened and melted coal even if there is little difference in the softening and melting characteristics reported so far. .
When coke is produced by blending coal having a difference in softening and melting characteristics measured by the method of the present invention, the coke strengths thereof are also different.
Based on the above findings, the present inventors have found a method for modifying coal that has an adverse effect on coke strength to have favorable softening and melting characteristics, and have reached the present invention.

図1に本発明で使用する軟化溶融特性(浸透距離)の測定装置の一例を示す。図1は石炭試料と上下面に貫通孔を有する材料に一定荷重を負荷させて石炭試料を加熱する場合の装置である。容器3下部に石炭を充填して試料1とし、試料1の上に、上下面に貫通孔を有する材料2を配置する。試料1を軟化溶融開始温度以上に加熱し、上下面に貫通孔を有する材料2に試料を浸透させ、浸透距離を測定する。加熱は不活性ガス雰囲気下で行なう。ここで、不活性ガスとは、測定温度域で石炭と反応しないガスを指し、代表的なガスとしてはアルゴンガス、ヘリウムガス、窒素ガス等である。なお、浸透距離の測定は、石炭と貫通孔を有する材料を一定容積に保ちつつ加熱するようにしてもよい。その場合に使用する軟化溶融特性(浸透距離)の測定装置の一例を図20に示す。   FIG. 1 shows an example of a measuring device for softening and melting characteristics (penetration distance) used in the present invention. FIG. 1 shows an apparatus for heating a coal sample by applying a constant load to the coal sample and a material having through holes on the upper and lower surfaces. The lower part of the container 3 is filled with coal to form a sample 1, and a material 2 having through holes on the upper and lower surfaces is arranged on the sample 1. The sample 1 is heated to the softening and melting start temperature or more, the sample is infiltrated into the material 2 having through holes on the upper and lower surfaces, and the permeation distance is measured. Heating is performed in an inert gas atmosphere. Here, the inert gas refers to a gas that does not react with coal in the measurement temperature range, and representative gases include argon gas, helium gas, nitrogen gas, and the like. Note that the penetration distance may be measured by heating the material having coal and the through-holes while maintaining a constant volume. An example of a measuring device for softening and melting characteristics (penetration distance) used in that case is shown in FIG.

図1に示す試料1と上下面に貫通孔を有する材料2に一定荷重を負荷して試料1を加熱する場合、試料1が膨張又は収縮を示し、上下面に貫通孔を有する材料2が上下方向に移動する。よって、上下面に貫通孔を有する材料2を介して試料浸透時の膨張率を測定することが可能である。図1に示すように上下面に貫通孔を有する材料2の上面に膨張率検出棒13を配置し、膨張率検出棒13の上端に荷重付加用の錘14を乗せ、その上に変位計15を配置し、膨張率を測定する。変位計15は、試料の膨張率の膨張範囲(−100%〜300%)を測定可能なものを用いれば良い。加熱系内を不活性ガス雰囲気に保持する必要があるため、非接触式の変位計が適しており、光学式変位計を用いることが望ましい。不活性ガス雰囲気としては、窒素雰囲気とすることが好ましい。上下面に貫通孔を有する材料2が粒子充填層の場合は、膨張率検出棒13が粒子充填層に埋没する可能性があるため、上下面に貫通孔を有する材料2と膨張率検出棒13の間に板を挟む措置を講ずるのが望ましい。負荷させる荷重は、試料上面に配置した上下面に貫通孔を有する材料の上面に対して、均等にかけることが好ましく、上下面に貫通孔を有する材料の上面の面積に対し、5〜80kPa、好ましくは15〜55kPa、最も好ましくは25〜50kPaの圧力を負荷することが望ましい。この圧力は、コークス炉内における軟化溶融層の膨張圧に基づいて設定することが好ましいが、測定結果の再現性、種々の石炭での銘柄差の検出力を検討した結果、炉内の膨張圧よりはやや高めの25〜50kPa程度が測定条件として最も好ましいことを見出した。   When a constant load is applied to the sample 1 shown in FIG. 1 and the material 2 having through holes on the upper and lower surfaces and the sample 1 is heated, the sample 1 expands or contracts, and the material 2 having the through holes on the upper and lower surfaces Move in the direction. Therefore, it is possible to measure the expansion coefficient at the time of sample penetration through the material 2 having through holes on the upper and lower surfaces. As shown in FIG. 1, an expansion coefficient detecting rod 13 is arranged on the upper surface of a material 2 having through holes on the upper and lower surfaces, a weight 14 for applying a load is placed on the upper end of the expansion coefficient detecting rod 13, and a displacement meter 15 is placed thereon. And measure the expansion rate. The displacement meter 15 may be one that can measure the expansion range (-100% to 300%) of the expansion coefficient of the sample. Since it is necessary to maintain the inside of the heating system in an inert gas atmosphere, a non-contact type displacement meter is suitable, and it is desirable to use an optical displacement meter. The inert gas atmosphere is preferably a nitrogen atmosphere. In the case where the material 2 having through holes on the upper and lower surfaces is a particle packed layer, the expansion coefficient detecting rod 13 may be buried in the particle packed layer, and therefore the material 2 having the through holes on the upper and lower surfaces and the expansion coefficient detecting rod 13. It is desirable to take measures to sandwich the board between the two. The load to be applied is preferably evenly applied to the upper surface of the material having through holes on the upper and lower surfaces arranged on the upper surface of the sample, and 5 to 80 kPa with respect to the area of the upper surface of the material having the through holes on the upper and lower surfaces, It is desirable to apply a pressure of preferably 15 to 55 kPa, most preferably 25 to 50 kPa. This pressure is preferably set based on the expansion pressure of the softened and molten layer in the coke oven, but as a result of examining the reproducibility of the measurement results and the ability to detect the difference in brands in various coals, It has been found that a slightly higher level of about 25 to 50 kPa is most preferable as a measurement condition.

加熱手段は、試料の温度を測定しつつ、所定の昇温速度で加熱できる方式のものを用いることが望ましい。具体的には、電気炉や、導電性の容器と高周波誘導を組み合わせた外熱式、またはマイクロ波のような内部加熱式である。内部加熱式を採用する場合は、試料内温度を均一にする工夫を施す必要があり、例えば、容器の断熱性を高める措置を講ずることが好ましい。   It is desirable to use a heating means that can heat at a predetermined rate of temperature rise while measuring the temperature of the sample. Specifically, an electric furnace, an external heating type that combines a conductive container and high frequency induction, or an internal heating type such as a microwave. When the internal heating method is adopted, it is necessary to devise a method for making the temperature in the sample uniform, and for example, it is preferable to take measures to increase the heat insulation of the container.

加熱速度については、コークス炉内での石炭及び粘結材の軟化溶融挙動を模擬するという目的から、コークス炉内での石炭の加熱速度に一致させる必要がある。コークス炉内での軟化溶融温度域における石炭の加熱速度は炉内の位置や操業条件によって異なるが概ね2〜10℃/分であり、平均的な加熱速度として2〜4℃/分とすることが望ましく、もっとも望ましいのは3℃/分程度である。しかし、非微粘結炭のように流動性の低い石炭の場合、3℃/分では浸透距離や膨張が小さく、検出が困難となる可能性がある。石炭は急速加熱することによりギーセラープラストメータによる流動性が向上することが一般的に知られている。従って、例えば浸透距離が1mm以下の石炭の場合には、検出感度を向上させるために、加熱速度を10〜1000℃/分に高めて測定しても良い。   The heating rate needs to match the heating rate of coal in the coke oven for the purpose of simulating the softening and melting behavior of coal and binder in the coke oven. Although the heating rate of coal in the softening and melting temperature range in the coke oven varies depending on the position in the furnace and operating conditions, it is generally 2 to 10 ° C / min, and the average heating rate should be 2 to 4 ° C / min. The most desirable is about 3 ° C./min. However, in the case of coal with low fluidity such as non-slightly caking coal, the permeation distance and expansion are small at 3 ° C./min, which may make detection difficult. It is generally known that coal is improved in fluidity by a Gisela plastometer by rapid heating. Therefore, for example, in the case of coal with an infiltration distance of 1 mm or less, measurement may be performed with the heating rate increased to 10 to 1000 ° C./min in order to improve detection sensitivity.

加熱を行なう温度範囲については、石炭及び粘結材の軟化溶融特性の評価が目的であるため、石炭及び粘結材の軟化溶融温度域まで加熱できればよい。コークス製造用の石炭及び粘結材の軟化溶融温度域を考慮すると、0℃(室温)〜550℃の範囲において、好ましくは石炭の軟化溶融温度である300〜550℃の範囲で所定の加熱速度で加熱すればよい。   About the temperature range which heats, since the objective is evaluation of the softening and melting characteristic of coal and a binder, what is necessary is just to be able to heat to the softening and melting temperature range of coal and a binder. Considering the softening and melting temperature range of coal and caking material for coke production, a predetermined heating rate in the range of 0 ° C (room temperature) to 550 ° C, preferably in the range of 300 to 550 ° C, which is the softening and melting temperature of coal. You can heat with.

上下面に貫通孔を有する材料は、透過係数をあらかじめ測定または算出できるものが望ましい。材料の形態の例として、貫通孔を持つ一体型の材料、粒子充填層が挙げられる。貫通孔を持つ一体型の材料としては、例えば、図2に示すような円形の貫通孔16を持つもの、矩形の貫通孔を持つもの、不定形の貫通孔を持つものなどが挙げられる。粒子充填層としては、大きく球形粒子充填層、非球形粒子充填層に分けられ、球形粒子充填層としては図3に示すようなビーズの充填粒子17からなるもの、非球形粒子充填層としては不定形粒子や、図4に示すような充填円柱18からなるものなどが挙げられる。測定の再現性を保つため、材料内の透過係数はなるべく均一で、かつ測定を簡便にするため、透過係数の算出が容易なものが望ましい。したがって、本発明で用いる上下面に貫通孔を有する材料には球形粒子充填層の利用が特に望ましい。上下面に貫通孔を有する材料の材質は、石炭軟化溶融温度域以上、具体的には600℃まで形状がほとんど変化せず、石炭とも反応しないものならば特に指定はない。また、その高さは、石炭の溶融物が浸透するのに十分な高さがあればよく、厚み5〜20mmの石炭層を加熱する場合には、20〜100mm程度あればよい。   The material having through holes on the upper and lower surfaces is preferably one that can measure or calculate the transmission coefficient in advance. Examples of the form of the material include an integrated material having a through hole and a particle packed layer. Examples of the integrated material having a through hole include a material having a circular through hole 16 as shown in FIG. 2, a material having a rectangular through hole, and a material having an indeterminate shape. The particle packed layer is roughly divided into a spherical particle packed layer and a non-spherical particle packed layer. The spherical particle packed layer is composed of beads packed particles 17 as shown in FIG. 3, and the non-spherical particle packed layer is not suitable. Examples thereof include regular particles and those made of filled cylinders 18 as shown in FIG. In order to maintain the reproducibility of the measurement, it is desirable that the transmission coefficient in the material is as uniform as possible and that the calculation of the transmission coefficient is easy in order to simplify the measurement. Therefore, the use of a spherical particle packed bed is particularly desirable for the material having through holes on the upper and lower surfaces used in the present invention. The material having the through holes on the upper and lower surfaces is not particularly specified as long as the shape hardly changes to the coal softening and melting temperature range, specifically up to 600 ° C., and does not react with coal. Moreover, the height should just be sufficient height for the melt of coal to osmose | permeate, and what is necessary is just about 20-100 mm when heating a coal layer of thickness 5-20 mm.

上下面に貫通孔を有する材料の透過係数は、コークス層に存在する粗大欠陥の透過係数を推定して設定する必要がある。本発明に特に望ましい透過係数について、粗大欠陥構成因子の考察や大きさの推定など、本発明者らが検討を重ねた結果、透過係数が1×108〜2×109-2の場合が最適であることを見出した。この透過係数は、下記(7)式で表されるDarcy則に基づき導出されるものである。
ΔP/L=K・μ・u ・・・ (7)
ここで、ΔPは上下面に貫通孔を有する材料内での圧力損失[Pa]、Lは貫通孔を有する材料の高さ[m]、Kは透過係数[m-2]、μは流体の粘度[Pa・s]、uは流体の速度[m/s]である。例えば上下面に貫通孔を有する材料として均一な粒径のガラスビーズ層を用いる場合、上述の好適な透過係数を持つようにするためには、直径0.2mmから3.5mm程度のガラスビーズを選択することが望ましく、もっとも望ましいのは2mmである。
The transmission coefficient of the material having through holes on the upper and lower surfaces needs to be set by estimating the transmission coefficient of coarse defects present in the coke layer. In the case where the transmission coefficient is 1 × 10 8 to 2 × 10 9 m −2 as a result of repeated investigations by the present inventors, such as consideration of coarse defect constituent factors and estimation of the size, which are particularly desirable for the present invention. Was found to be optimal. This transmission coefficient is derived based on the Darcy rule expressed by the following equation (7).
ΔP / L = K · μ · u (7)
Here, ΔP is the pressure loss [Pa] in the material having through holes on the upper and lower surfaces, L is the height [m] of the material having the through holes, K is the transmission coefficient [m −2 ], μ is the fluid. Viscosity [Pa · s], u is fluid velocity [m / s]. For example, when a glass bead layer having a uniform particle diameter is used as a material having through holes on the upper and lower surfaces, in order to have the above-mentioned preferable transmission coefficient, glass beads having a diameter of about 0.2 mm to 3.5 mm are used. It is desirable to choose, most preferably 2 mm.

測定試料とする石炭および粘結材はあらかじめ粉砕し、所定の充填密度で所定の層厚に充填する。粉砕粒度としては、コークス炉における装入石炭の粒度(粒径3mm以下の粒子の比率が全体の70〜80質量%程度)としてもよく、粒径3mm以下が70質量%以上となるように粉砕することが好ましいが、小さい装置での測定であることを考慮して、全量を粒径2mm以下に粉砕した粉砕物を用いることが特に好ましい。粉砕物を充填する密度はコークス炉内の充填密度に合わせ0.7〜0.9g/cm3とすることができるが、再現性、検出力を検討した結果、0.8g/cm3が好ましいことを知見した。また、充填する層厚は、コークス炉内における軟化溶融層の厚みに基づいて層厚5〜20mmとすることができるが、再現性、検出力を検討した結果、層厚は10mmとすることが好ましいことを知見した。 The coal and binder used as the measurement sample are pulverized in advance and filled to a predetermined layer thickness with a predetermined packing density. The pulverized particle size may be the particle size of the coal charged in the coke oven (the ratio of particles having a particle size of 3 mm or less is about 70 to 80% by mass), and pulverization is performed so that the particle size of 3 mm or less is 70% by mass or more. However, it is particularly preferable to use a pulverized product in which the total amount is pulverized to a particle size of 2 mm or less in consideration of measurement with a small apparatus. The density for filling the pulverized product can be 0.7 to 0.9 g / cm 3 in accordance with the packing density in the coke oven. As a result of studying reproducibility and detection power, 0.8 g / cm 3 is preferable. I found out. Further, the layer thickness to be filled can be 5 to 20 mm based on the thickness of the softened and melted layer in the coke oven, but as a result of studying reproducibility and detection power, the layer thickness should be 10 mm. I found it preferable.

以上の浸透距離の測定において、代表的な測定条件を以下に記す。
(1)石炭又は粘結材を粒径2mm以下が100質量%となるように粉砕し、該粉砕された石炭又は粘結材を充填密度0.8g/cmで、層厚が10mmとなるように容器に充填して試料を作成し、
(2)該試料の上に直径2mmのガラスビーズを浸透距離以上の層厚となるように配置し、
(3)前記ガラスビーズの上部から50kPaとなるように荷重を負荷しつつ、加熱速度3℃/分で室温から550℃まで不活性ガス雰囲気下で加熱し、
(4)前記ガラスビーズ層へ浸透した溶融試料の浸透距離を測定する。
In the measurement of the above penetration distance, typical measurement conditions are described below.
(1) Coal or caking material is pulverized so that the particle size of 2 mm or less is 100% by mass, and the pulverized coal or caking material has a packing density of 0.8 g / cm 3 and a layer thickness of 10 mm. Create a sample by filling the container like
(2) A glass bead having a diameter of 2 mm is arranged on the sample so as to have a layer thickness of an infiltration distance or more,
(3) Heating in an inert gas atmosphere from room temperature to 550 ° C. at a heating rate of 3 ° C./min while applying a load from the top of the glass beads to 50 kPa,
(4) The penetration distance of the molten sample that has penetrated into the glass bead layer is measured.

石炭及び粘結材の軟化溶融物の浸透距離は、加熱中に常時連続的に測定できることが本来望ましい。しかし、常時測定は、試料から発生するタールの影響などにより、困難である。加熱による石炭の膨張、浸透現象は不可逆的であり、一旦膨張、浸透した後は冷却してもほぼその形状が保たれているので、石炭溶融物が浸透終了した後、容器全体を冷却し、冷却後の浸透距離を測定することで加熱中にどこまで浸透したかを測定するようにしてもよい。例えば、冷却後の容器から上下面に貫通孔を有する材料を取り出し、ノギスや定規で直接測定することが可能である。また、上下面に貫通孔を有する材料として粒子を使用した場合には、粒子間空隙に浸透した軟化溶融物は、浸透した部分までの粒子層全体を固着させている。したがって、前もって粒子充填層の質量と高さの関係を求めておけば、浸透終了後、固着していない粒子の質量を測定し、初期質量から差し引くことで、固着している粒子の質量を導出でき、そこから浸透距離を算出することができる。   It is inherently desirable that the penetration distance of the softened melt of coal and caking can be measured continuously during heating. However, continuous measurement is difficult due to the influence of tar generated from the sample. The expansion and infiltration phenomenon of coal by heating is irreversible, and once expanded and infiltrated, the shape is maintained even after cooling, so after the coal melt has been infiltrated, the entire container is cooled, You may make it measure how much it penetrate | infiltrated during the heating by measuring the penetration distance after cooling. For example, it is possible to take out a material having through holes on the upper and lower surfaces from the cooled container and directly measure with a caliper or a ruler. Further, when particles are used as the material having through holes on the upper and lower surfaces, the softened melt that has permeated the interparticle voids fixes the entire particle layer up to the permeated portion. Therefore, if the relationship between the mass and height of the particle packed bed is obtained in advance, the mass of the non-adhered particles is measured after the infiltration, and the mass of the adhering particles is derived by subtracting from the initial mass. And the penetration distance can be calculated therefrom.

このような浸透距離の優位性は、コークス炉内状況に近い測定方法をとることに基づいて原理的に想定されるだけではなく、コークス強度への浸透距離の影響を調査した結果からも明らかとなった。実際、本発明の評価方法により、同程度のlogMF(ギーセラープラストメータ法による最高流動度の常用対数値)を持つ石炭であっても、銘柄により浸透距離に差があることが明らかとなり、浸透距離の異なる石炭を配合してコークスを製造した場合のコークス強度に対する影響も異なることが確認された。   The superiority of such penetration distance is not only assumed in principle based on the measurement method close to the coke oven conditions, but is also clear from the results of investigating the effect of penetration distance on coke strength. became. In fact, according to the evaluation method of the present invention, even if the coal has the same log MF (the common logarithm of the maximum fluidity by the Gieseller Plastometer method), it is clear that there is a difference in the penetration distance depending on the brand. It was confirmed that the effect on coke strength when coke was produced by blending coal with different distances was also different.

従来のギーセラープラストメータによる軟化溶融特性の評価では、高い流動性を示す石炭の方が石炭粒子同士を接着する効果が高いと考えられてきた。一方で、浸透距離とコークス強度との関係を調査することで、極端に浸透距離の大きい石炭を配合するとコークス化時に粗大な欠陥を残し、かつ薄い気孔壁の組織構造を形成するため、コークス強度が配合炭の平均品位から予想される値に比べて低下することが分かった。これは、浸透距離が大きすぎる石炭は、周囲の石炭粒子間に顕著に浸透することで、その石炭粒子が存在していた部分自体が大きな空洞となり、欠陥となってしまうためと推測される。特にギーセラープラストメータによる軟化溶融特性の評価において高い流動性を示す石炭においては、浸透距離の大小によりコークス中に残存する粗大な欠陥の生成量が異なることが分かった。この関係は粘結材に関しても同様に見られた。
本発明者らが鋭意研究を重ねた結果、コークス製造用原料に配合して使用される際に、コークス強度の低下を招く石炭ないし粘結材の範囲は、以下の(イ)〜(ニ)の4通りで規定することが効果的であることを見出した。
In the evaluation of the softening and melting characteristics using a conventional Gieseller plastometer, it has been considered that coal exhibiting high fluidity has a higher effect of adhering coal particles. On the other hand, by investigating the relationship between permeation distance and coke strength, when coal with extremely large permeation distance is blended, coarse defects are left at the time of coking and a thin pore wall structure is formed. Was found to be lower than the value expected from the average quality of the blended coal. This is presumed to be because coal with a too long permeation distance permeates significantly between surrounding coal particles, so that the portion where the coal particles existed itself becomes a large cavity and becomes a defect. In particular, in the evaluation of softening and melting characteristics with a Gieseler plastometer, it was found that the amount of coarse defects remaining in the coke differs depending on the penetration distance in coal that exhibits high fluidity. This relationship was similarly observed for the binder.
As a result of repeated studies by the present inventors, the range of coal or caking additive that causes a decrease in coke strength when used in a coke production raw material is as follows. It was found that it is effective to prescribe in 4 ways.

(イ)下記式(1)かつ式(2)で規定される範囲。
logMF≧2.5 (1)
浸透距離≧1.3×a×logMF (2)
但し、“a”は、配合炭を構成する各石炭及び粘結材のうち、logMF<2.5の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数である。
(A) A range defined by the following formula (1) and formula (2).
logMF ≧ 2.5 (1)
Permeation distance ≧ 1.3 × a × logMF (2)
However, “a” measures at least one permeation distance and log MF of coal and binder in the range of log MF <2.5 among each coal and binder constituting the coal blend, It is a constant in the range of 0.7 to 1.0 times the log MF coefficient when a regression line passing through the origin is created using the measured value.

(ロ)下記式(3)かつ式(4)で規定される範囲。
logMF≧2.5 (3)
浸透距離≧a’×logMF+b (4)
但し、“a’”は、配合炭を構成する各石炭及び粘結材のうち、logMF<2.5の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及び最高流動度を測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数である。“b”は、前記回帰直線の作成に用いた銘柄から選ばれる1種類以上の同一試料を複数回測定した際の標準偏差の平均値以上で、前記平均値の5倍以下とする、定数である。
(B) A range defined by the following formula (3) and formula (4).
logMF ≧ 2.5 (3)
Permeation distance ≧ a ′ × log MF + b (4)
However, "a '" measures the permeation distance and maximum fluidity of at least one kind of coal and caking additive in the range of logMF <2.5 among the coal and caking additive constituting the blended coal. The constant is in the range of 0.7 to 1.0 times the logMF coefficient when a regression line passing through the origin is created using the measured value. “B” is a constant that is not less than the average value of the standard deviation when measuring one or more types of the same sample selected from the brands used to create the regression line, and not more than 5 times the average value. is there.

(ハ)コークス製造に用いる配合炭の銘柄と配合率が予め決定できる場合には、配合炭に含まれるlogMFが3.2未満の各銘柄の石炭または粘結材の浸透距離と配合率から計算される加重平均浸透距離に対して2倍以上。この時、平均浸透距離は配合率を考慮した加重平均で求めることが好ましいが、単純平均値で代用することも可能である。   (C) If the brand and blending ratio of the blended coal used for coke production can be determined in advance, calculate from the penetration distance and blending ratio of each brand of coal or log binder containing less than 3.2 log MF More than twice the weighted average penetration distance. At this time, the average permeation distance is preferably obtained by a weighted average considering the blending rate, but a simple average value can be substituted.

(ニ)粒径2mm以下、100mass%の粒度に調製した石炭試料を0.8g/cm3の充填密度で容器内に厚さ10mmに充填し、貫通孔を有する材料として直径2mmのガラスビーズを用い、50kPaの荷重をかけ、3℃/分の加熱速度で550℃まで加熱して測定した場合の浸透距離15mm以上、かつlogMFが2.5以上。 (D) A coal sample prepared to have a particle size of 2 mm or less and a particle size of 100 mass% is filled in a container with a packing density of 0.8 g / cm 3 to a thickness of 10 mm, and glass beads having a diameter of 2 mm are used as materials having through holes. The penetration distance is 15 mm or more and the log MF is 2.5 or more when measured by heating to 550 ° C. at a heating rate of 3 ° C./min with a load of 50 kPa.

ここで、上記(イ)〜(ニ)の4種類の管理値の決め方を示したのは、浸透距離の値は、設定された測定条件、例えば、荷重、昇温速度、貫通孔を有する材料の種類、装置の構成、等によって変化するためで、本発明で述べた例と異なる測定条件の場合があることを考慮して検討した結果、(イ)〜(ハ)のような管理値の決め方が有効であることを見出したことに基づくものである。   Here, the method of determining the four types of management values (i) to (d) described above is that the value of the permeation distance is a material having a set measurement condition, for example, a load, a heating rate, and a through hole. As a result of considering that there are cases where the measurement conditions differ from the example described in the present invention, the management values of (a) to (c) are changed. This is based on the finding that the decision method is effective.

また、(イ)、(ロ)の範囲を決める際に使用する式(2)、(4)の定数aおよびa’は、logMF<2.5の範囲にある石炭の少なくとも1つ以上の浸透距離及び最高流動度を測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲となるように定める。これは、logMF<2.5の範囲では、石炭の最高流動度と浸透距離の間にはほぼ正の相関が見られるが、強度低下を招く銘柄は、その浸透距離がこの相関から正に大きく偏倚している銘柄であるためである。本発明者らは、鋭意検討を重ねた結果、上記回帰式により石炭のlogMF値に応じて求めた浸透距離の1.3倍以上の範囲に該当する銘柄が、強度低下を招く銘柄であることを知見し、式(1)、(2)により範囲の規定を行うこととした。また、上記回帰式から、測定誤差を超えて正に偏倚する銘柄が好ましくないとの理解に基づき、上記回帰式に、同一試料を複数回測定した際の標準偏差の1〜5倍を加えた値以上の範囲に該当する銘柄が、強度低下を招く銘柄であることを知見し、式(3)、(4)により範囲の規定を行うこととした。従って、定数bは、同一試料を複数回測定した際の標準偏差の1〜5倍の値を用いれば良く、本発明で述べた測定条件の場合、0.6〜3.0mm程度である。この時、(2)式、(4)式とも、その石炭のlogMF値に基づいて強度低下を招く浸透距離の範囲を定めている。これは、MFが大きいほど一般に浸透距離が高くなるため、その相関からどの程度偏倚するかが重要であるためである。なお、回帰直線の作成には、公知の最小二乗法による直線回帰の方法を用いてもよい。回帰の際に用いる石炭の数は多いほど回帰の誤差が少なくなるので好ましい。特に、MFが小さい銘柄では浸透距離が小さく誤差が大きくなりやすいため、1.75<logMF<2.50の範囲にある石炭の1種以上を用いて回帰直線を求めることが特に好ましい。   In addition, the constants a and a ′ in the formulas (2) and (4) used for determining the range of (A) and (B) are at least one penetration of coal in the range of logMF <2.5. The distance and maximum fluidity are measured, and the measured values are used to determine a range of 0.7 to 1.0 times the log MF coefficient when a regression line passing through the origin is created. This is because, in the range of log MF <2.5, there is an almost positive correlation between the maximum coal flow rate and the penetration distance. This is because the brand is biased. As a result of intensive studies, the present inventors have a brand that falls within a range of 1.3 times or more the penetration distance determined according to the log MF value of coal according to the above regression equation, which leads to a decrease in strength. Thus, it was decided to define the range by the formulas (1) and (2). In addition, based on the understanding that brands that deviate positively beyond measurement error are not preferable from the above regression equation, 1 to 5 times the standard deviation when the same sample was measured multiple times was added to the above regression equation. It was found that the brand corresponding to the range above the value was a brand that caused a decrease in strength, and the range was defined by the equations (3) and (4). Accordingly, the constant b may be 1 to 5 times the standard deviation when the same sample is measured a plurality of times, and is about 0.6 to 3.0 mm under the measurement conditions described in the present invention. At this time, both the expressions (2) and (4) define the range of the penetration distance that causes the strength to decrease based on the log MF value of the coal. This is because, as the MF increases, the penetration distance generally increases, so how much deviation is important from the correlation. In addition, you may use the method of the linear regression by the well-known least square method for preparation of a regression line. The larger the number of coals used in the regression, the better the error in the regression. In particular, for brands with small MF, the penetration distance is small and the error tends to be large, so it is particularly preferable to obtain a regression line using one or more kinds of coal in the range of 1.75 <log MF <2.50.

ここで、定数aおよびa’、bともに範囲を規定しているのは、これらの値を減少させることで、強度低下を招く石炭がより確実に検出できるようになるためであり、その値は操業上の要求によって調整することができる。ただし、この値を小さくしすぎると、コークス強度に悪影響を及ぼすと推定される石炭が多くなりすぎることおよび、実際は強度低下を招かない石炭であっても強度低下を起こすと誤認してしまうという問題が生じてしまうため、aおよびa’については回帰直線の傾きの0.7〜1.0倍とすることが好ましく、また、bについては同一試料を複数回測定した際の標準偏差の1〜5倍とすることが好ましい。   Here, the reason why both the constants a and a ′ and b define the range is that by reducing these values, it is possible to more reliably detect coal that causes a decrease in strength. Can be adjusted according to operational requirements. However, if this value is too small, too much coal is estimated to have an adverse effect on coke strength, and it may be misunderstood that even if it does not cause strength reduction, it will cause strength reduction. Therefore, a and a ′ are preferably 0.7 to 1.0 times the slope of the regression line, and b is 1 to 1 of the standard deviation when the same sample is measured a plurality of times. 5 times is preferable.

配合炭に使用する石炭ないし粘結材は、通常、銘柄ごとに様々な品位を予め測定して使用している。浸透距離についても同様に予め銘柄のロット毎に測定しておけばよい。配合炭の平均浸透距離は、予め各銘柄での浸透距離を測定しておき、その値を配合割合に応じて平均してもよいし、配合炭を作成して浸透距離を測定しても良い。これにより配合炭の平均浸透距離に対して極端に浸透距離の大きい銘柄を選定することが可能となる。コークス製造に用いる配合炭は、石炭ないし粘結材に加えて、油類、粉コークス、石油コークス、樹脂類、廃棄物などを含むものであってもよい。   Coal or caking additive used for blended coal is usually used by measuring various grades for each brand in advance. Similarly, the penetration distance may be measured in advance for each brand lot. The average penetration distance of the blended coal is measured in advance for each brand, and the value may be averaged according to the blending ratio, or the blended coal may be measured to measure the penetration distance. . This makes it possible to select a brand having an extremely large penetration distance with respect to the average penetration distance of the blended coal. The blended coal used for coke production may contain oils, powdered coke, petroleum coke, resins, waste, etc. in addition to coal or caking additive.

上記(イ)〜(ニ)に該当する石炭及び粘結材は、コークスの原料炭として通常の事前処理条件で使用すると、コークス化の際に粗大な欠陥を残し、かつ薄い気孔壁の組織構造を形成するため、コークス強度の低下を招く。そのため、当該銘柄及び粘結材の配合割合の制限をする措置を講じるのがコークス強度を維持するための手段として簡便かつ有効である。但し、原料の安定調達の観点から、多産地多銘柄の配合を指向する現在のコークス製造においては、(イ)〜(ニ)に該当するような石炭ないし粘結材であっても、それらの使用を余儀なくされる場合が多々ある。   When the coal and caking additive corresponding to the above (i) to (d) are used as coke raw coal under normal pretreatment conditions, coarse defects remain during coking, and the structure structure of thin pore walls This causes a reduction in coke strength. Therefore, it is convenient and effective as a means for maintaining the coke strength to take measures to limit the blending ratio of the brand and the binder. However, from the viewpoint of the stable procurement of raw materials, in the current coke production that is oriented to blending multi-country brands, even coal or caking materials that fall under (i) to (d) There are many cases where it is forced to use.

本発明者らは、上記(イ)〜(ニ)に該当するような石炭及び粘結材を配合してなる配合炭をコークス原料として使用する場合であっても、(イ)〜(ニ)に該当するような石炭及び粘結材を予め自然に、あるいは加熱処理によって強制的に風化させ、浸透距離及び最高流動度の値を制御することで、強度低下を抑制可能であることを知見した。石炭は、採掘されてから空気に触れると、しだいに粉化したり光沢が低下したりして性状が変化する。また、粘結性(最高流動度など)、発熱量、コークス化性も低下し、コークス用原料炭としての品質が劣るようになる。このような現象を風化と呼ぶ。石炭を風化させると、風化の進行に伴い浸透距離が低下する。本発明者らが鋭意研究を重ねた結果、上記(イ)〜(ニ)に該当するような石炭を予め自然にあるいは加熱処理によって強制的に風化させるに際しては、風化後の石炭の浸透距離及び最高流動度を、下記(ホ)〜(リ)の範囲になるように、風化の方法ないし進行度を制御することで、コークス強度が低下するのを効果的に抑制できることを見出した。   Even when the present inventors use a blended coal obtained by blending coal and a caking additive corresponding to the above (a) to (d) as a coke raw material, (a) to (d) It has been found that coal and caking materials that fall under these conditions can be naturally weathered in advance or by heat treatment, and strength reduction can be suppressed by controlling the values of permeation distance and maximum fluidity. . When coal is exposed to air after it has been mined, its properties change as it gradually pulverizes or loses its luster. Moreover, caking property (maximum fluidity etc.), a calorific value, and coking property also fall, and the quality as raw coal for cokes becomes inferior. Such a phenomenon is called weathering. When coal is weathered, the permeation distance decreases with the progress of weathering. As a result of repeated extensive research by the present inventors, when the coal corresponding to the above (i) to (d) is forcibly weathered in advance naturally or by heat treatment, the penetration distance of the coal after weathering and It has been found that the reduction in coke strength can be effectively suppressed by controlling the weathering method or the degree of progress so that the maximum fluidity falls within the following ranges (e) to (l).

(ホ)風化炭の浸透距離と最高流動度が、下記式(5)にて規定する範囲内になるように風化させる。
浸透距離<1.3×a×logMF (5)
(ヘ)風化炭の浸透距離と最高流動度が、下記式(6)にて規定する範囲内になるように風化させる。
浸透距離<a’×logMF+b (6)
ここで、aおよびa’、bは前記(イ)(ロ)の範囲の決定の場合と同じ方法で求めることができる。
(E) Weathering is performed so that the penetration distance and maximum fluidity of weathered coal are within the range defined by the following formula (5).
Penetration distance <1.3 × a × logMF (5)
(F) Weathering is performed so that the penetration distance and maximum fluidity of weathered coal are within the range defined by the following formula (6).
Permeation distance <a ′ × log MF + b (6)
Here, a, a ′, and b can be obtained by the same method as in the determination of the ranges (a) and (b).

(ト)コークス製造に用いる配合炭の銘柄と配合率が予め決定できる場合には、配合炭に含まれるlogMFが3.2未満の各銘柄の石炭または粘結材の浸透距離と配合率から計算される加重平均浸透距離に対して2倍未満となるように風化させる。   (G) When the brand name and blending ratio of the coal blend used for coke production can be determined in advance, calculation is based on the penetration distance and blending ratio of each brand coal or caking material with a log MF of less than 3.2. Weathered to be less than twice the weighted average penetration distance.

(チ)風化炭の浸透距離が、径2mm以下、100mass%の粒度に調製した試料を0.8g/cm3の充填密度で容器内に厚さ10mmに充填し、貫通孔を有する材料として直径2mmのガラスビーズを用い、50kPaの荷重をかけ、3℃/分の加熱速度で550℃まで加熱して測定した場合の浸透距離で15mm未満となるように風化させる。 (H) A sample prepared so that the penetration distance of weathered charcoal has a diameter of 2 mm or less and a particle size of 100 mass% is filled into a container with a packing density of 0.8 g / cm 3 to a thickness of 10 mm, and a diameter is used as a material having through holes Using 2 mm glass beads, a load of 50 kPa is applied, and weathering is performed so that the penetration distance is less than 15 mm when measured by heating to 550 ° C. at a heating rate of 3 ° C./min.

(リ)風化炭の浸透距離が、(ホ)〜(チ)の少なくともいずれかを満足し、かつ最高流動度がlogMF≧2.5の範囲になるように風化させる。   (Li) Weathering is performed so that the penetration distance of weathered coal satisfies at least one of (e) to (h) and the maximum fluidity is in a range of logMF ≧ 2.5.

ここで、本発明者らが鋭意研究を重ねた結果、風化炭の性状としては、浸透距離が小さく、最高流動度が高いことが、配合時のコークス強度を向上させる上で望ましいことを知見した。この理由として、浸透距離が低い方が望ましいのは上述したとおりであるが、最高流動度が大きい方が望ましいのは、石炭が軟化溶融した際に、粒子同士の接着が良好に行われるためである。従って、風化炭の浸透距離が(ホ)〜(チ)の少なくともいずれかを満足し、かつ最高流動度がなるべく低下しない様に風化の方法ないし進行度を制御することが、高強度コークスを製造する上で望ましい。そのため、(リ)に記載しているように、風化炭の最高流動度をlogMF≧2.5の範囲とすることで、接着不良を招くことなく、強度低下を効果的に抑制できる。   Here, as a result of repeated extensive research by the present inventors, it has been found that the properties of weathered coal are desirable for improving the coke strength at the time of blending with a small permeation distance and a high maximum fluidity. . The reason for this is that the lower permeation distance is desirable as described above, but the larger maximum fluidity is desirable because the particles adhere well when the coal is softened and melted. is there. Therefore, it is possible to produce high-strength coke by controlling the weathering method or the degree of progress so that the penetration distance of weathered coal satisfies at least one of (e) to (h) and the maximum fluidity does not decrease as much as possible. This is desirable. Therefore, as described in (i), by setting the maximum fluidity of weathered coal to a range of logMF ≧ 2.5, a decrease in strength can be effectively suppressed without causing poor adhesion.

上記、(イ)〜(ニ)に該当する、通常の配合では強度低下を招くが、風化を行うことで強度低下を抑制できる石炭及び粘結材が存在する浸透距離及び最高流動度の範囲、(ホ)〜(チ)に該当する、好適な風化炭の浸透距離及び最高流動度の範囲及び、(リ)に該当する、最も好適な風化炭の浸透距離及び最高流動度の範囲をまとめて、図5〜図8に模式的に図示する。なお(リ)は(ホ)〜(チ)の範囲に含まれている。   In the above, (i) to (d), the normal blending causes a decrease in strength, but the penetration distance and the maximum fluidity range in which coal and caking additive that can suppress the strength decrease by weathering exist, Summarize the suitable weathered coal penetration distance and maximum fluidity range corresponding to (e) to (h) and the most suitable weathered coal penetration distance and maximum fluidity range applicable to (i). These are schematically shown in FIGS. (Li) is included in the range of (e) to (h).

石炭の風化の進行速度は、酸素濃度、気圧、温度、石炭粒径、石炭水分等に依存することが一般的に知られている。浸透距離及び最高流動度の値を制御するために石炭を風化させるに際しては、上記の風化要因を適宜制御すればよい。   It is generally known that the coal weathering speed depends on oxygen concentration, atmospheric pressure, temperature, coal particle size, coal moisture, and the like. When the coal is weathered in order to control the permeation distance and the maximum fluidity, the above-mentioned weathering factors may be appropriately controlled.

本発明者らは、上記の風化要因を変えて石炭を風化させる実験を行なうことによって、浸透距離及び最高流動度の低下速度が風化条件によって異なる事を知見した。種々風化条件を変えた検討を重ねた結果、(リ)に該当するような性状を持つ風化炭を作製する上で、好適な風化方法を見出した。以下、その具体的な方法について記述する。   The inventors of the present invention have found that the permeation distance and the rate of decrease in the maximum fluidity differ depending on the weathering conditions by conducting an experiment in which coal is weathered by changing the above-mentioned weathering factors. As a result of repeated examinations with various weathering conditions, a suitable weathering method was found in producing weathered coal having properties corresponding to (i). The specific method will be described below.

風化を行う際の雰囲気としては、酸化雰囲気である必要がある。ここで酸化雰囲気とは、酸素を含む、ないし酸素を解離し、酸化する能力を有する物質を含む雰囲気である。そのような条件は無数に存在するが、入手・制御の容易さを考慮すると、O、CO、HOを含む気体雰囲気が望ましい。気体雰囲気であれば、酸化力を酸化性ガスの濃度、圧力で容易に調整可能であり、また、処理後に不活性ガスと置換することで、石炭及び粘結材の酸化の進行を速やかに制止できるため、処理時間も任意に設定できる。ここで、酸化性ガスの濃度が高いほど、圧力が高いほど、風化の進行が早い。一方、酸化性の液体雰囲気の場合、風化処理後に石炭及び粘結材と速やかに分離するのが困難であり、風化の進行度を制御する上で好ましくない。 The atmosphere for weathering needs to be an oxidizing atmosphere. Here, the oxidizing atmosphere is an atmosphere containing oxygen or containing a substance capable of dissociating and oxidizing oxygen. There are an infinite number of such conditions, but considering the ease of acquisition and control, a gas atmosphere containing O 2 , CO 2 , and H 2 O is desirable. In a gas atmosphere, the oxidizing power can be easily adjusted with the concentration and pressure of the oxidizing gas, and the progress of the oxidation of coal and binder can be quickly stopped by replacing it with an inert gas after the treatment. Therefore, the processing time can be arbitrarily set. Here, the higher the concentration of the oxidizing gas and the higher the pressure, the faster the weathering proceeds. On the other hand, in the case of an oxidizing liquid atmosphere, it is difficult to quickly separate from coal and caking additive after the weathering treatment, which is not preferable for controlling the degree of weathering progress.

また、最も安価、容易かつ大量に入手可能な酸化雰囲気は大気中の空気である。従って、工業的に大量処理が求められる場合などには、酸化雰囲気として大気中の空気を用いるのが望ましい。   In addition, the cheapest, easy, and available mass atmosphere is air in the atmosphere. Therefore, when industrial mass processing is required, it is desirable to use air in the atmosphere as the oxidizing atmosphere.

風化を行う際の処理温度としては、石炭の風化現象が起こる、常温から、石炭が軟化溶融を示す直前の温度までの範囲のいずれでも実施できる。風化の進行は温度が高くなるほど速くなることから、(ホ)〜(リ)に該当するような性状を持つ風化炭を作製するために必要な処理時間は、処理温度が高いほど短くなる。本発明者らは、処理温度が風化炭性状に及ぼす影響を調査した結果、処理温度が高いほど、風化炭の最高流動度の低下速度に対して、浸透距離の低下速度が速くなることを見出した。すなわち、高温で風化するほど、風化炭の最高流動度をなるべく下げずに、浸透距離を優先的に下げることが可能である。従って、(リ)に該当するような性状を持つ風化炭を作製する上で好適な処理温度、処理時間の条件として、高温、短時間が有効である事を知見した。   The treatment temperature at the time of weathering can be any of the range from the normal temperature at which coal weathering occurs to the temperature just before coal shows softening and melting. Since the progress of weathering becomes faster as the temperature becomes higher, the processing time required for producing weathered coal having properties corresponding to (e) to (ri) becomes shorter as the processing temperature becomes higher. As a result of investigating the influence of the treatment temperature on the weathered coal properties, the present inventors have found that the higher the treatment temperature, the faster the decrease rate of the penetration distance with respect to the decrease rate of the maximum fluidity of the weathered coal. It was. That is, it is possible to preferentially lower the permeation distance without lowering the maximum fluidity of weathered coal as much as possible at higher temperatures. Therefore, it has been found that high temperature and short time are effective as conditions for processing temperature and processing time suitable for producing weathered coal having properties corresponding to (i).

一方で、石炭を急速に風化させると、酸化発熱に伴う自然発火の恐れがあるため、散水する等の自然発火防止対策を講じる必要が生じる。また、処理温度が高すぎると、風化の速度が速いため、風化処理後の性状を制御することが困難になる。更に、石炭は、300℃を越えたあたりから熱分解により揮発分の放出を始めるため、軟化溶融特性が変化する。また、揮発分が放出する温度域での風化処理は、可燃性のガスが酸化雰囲気の加熱条件下で存在することとなり、爆発の危険性を伴う。 On the other hand, if coal is rapidly weathered, there is a risk of spontaneous ignition due to oxidation heat generation, so it is necessary to take measures to prevent spontaneous ignition such as watering. Further, if the treatment temperature is too high, the weathering speed is high, and it becomes difficult to control the properties after the weathering treatment. Further, since coal begins to emit volatile components by thermal decomposition from around 300 ° C., the softening and melting characteristics change. In addition, the weathering treatment in the temperature range where volatile matter is released involves the danger of explosion because flammable gas exists under heating conditions in an oxidizing atmosphere.

上述した理由から、風化を行う際の処理温度としては100℃〜300℃、処理時間としては1〜120分が望ましい。最も好ましくは、風化を行う際の処理温度としては180℃〜220℃、処理時間としては1〜30分が望ましい。   For the reasons described above, the treatment temperature during weathering is preferably 100 to 300 ° C., and the treatment time is preferably 1 to 120 minutes. Most preferably, the treatment temperature during weathering is 180 ° C. to 220 ° C., and the treatment time is 1 to 30 minutes.

風化処理を行う際の石炭粒径としては、(イ)〜(ニ)に該当する石炭及び粘結材の一部または全量を事前に分級し、所定の篩目以上の粒子のみを風化させることが望ましい。この理由は、次のように説明できる。   As the particle size of coal during the weathering treatment, part or all of the coal and caking additive corresponding to (i) to (d) are classified in advance, and only particles having a predetermined mesh size or more are weathered. Is desirable. The reason for this can be explained as follows.

(イ)〜(ニ)に該当する石炭及び粘結材が、配合時にコークス強度を低下させるのは、コークス化の際に粗大な欠陥を残し、かつ薄い気孔壁の組織構造を形成するためである。本発明者らは、(イ)〜(ニ)に該当する石炭及び粘結材であっても、微粒の場合には、粗大な欠陥を形成しないため、コークス強度の低下を招かないことを見出している。   The reason why the coal and the binder corresponding to (i) to (d) reduce the coke strength at the time of blending is to leave coarse defects at the time of coking and to form a thin pore wall structure. is there. The present inventors have found that even in the case of coal and caking materials corresponding to (i) to (d), in the case of fine particles, coarse defects are not formed, so that the coke strength is not lowered. ing.

また、微粒は、風化処理の際に比表面積が多いため、粗粒に比べて優先的に風化が進行する。そのため、(イ)〜(ニ)に該当する石炭及び粘結材の全粒子を風化させる場合、強度低下を招く粗粒を(ホ)〜(リ)に該当するように適正に風化させると、逆に微粒は、風化が進行しすぎて最高流動度がlogMF≧2.5の範囲から外れるため、接着不良を招き、コークス強度低下の要因となってしまう。   Further, since fine particles have a large specific surface area during the weathering treatment, weathering proceeds preferentially over coarse particles. Therefore, when weathering all the particles of coal and caking additive corresponding to (i) to (d), if coarse particles that cause strength reduction are appropriately weathered so as to correspond to (e) to (ri), On the contrary, the fine particles are too weathered and the maximum fluidity is out of the range of logMF ≧ 2.5, which leads to poor adhesion and causes a reduction in coke strength.

従って、コークス強度の低下を招く、(イ)〜(ニ)に該当する石炭及び粘結材の粗粒部のみを、分級によって予め取り出して風化を行うことで、強度低下を効果的に抑制できる。篩目としては、1mmが、強度低下を招く粗粒と風化が進行し易い微粒とに分けることが出来るため、望ましい。なお、分級は篩い分け処理で行なう方法が一般的であるが、それ以外の方法で分級してもよく、粗粒部に不可避的に含まれる微粒が存在していてもかまわない。   Therefore, only the coal and coarse-grained parts of the binder corresponding to (i) to (d), which cause a reduction in coke strength, are taken out in advance by classification and weathered to effectively suppress the strength reduction. . As the sieve mesh, 1 mm is preferable because it can be divided into coarse particles that cause a decrease in strength and fine particles that are likely to be weathered. In general, classification is performed by sieving, but classification may be performed by other methods, and fine particles inevitably included in the coarse particle portion may be present.

本発明者らは、以上のようにして、コークス強度低下を招く石炭を選定し、それらを適正な風化条件下で風化させ、適正なコークス化性を有する風化炭に改質してから配合することで、コークス強度低下を抑制することが出来ることを見出し、本発明を完成させるに至った。   As described above, the inventors select coals that cause reduction in coke strength, weather them under appropriate weathering conditions, and blend them after modifying them to weathered coals having appropriate coking properties. Thus, the present inventors have found that the reduction in coke strength can be suppressed and have completed the present invention.

21種類の石炭(石炭A〜U)及び1種類の粘結材(粘結材V)について、浸透距離の測定を行った。使用した石炭及び粘結材の性状値を表1に示す。ここで、RoはJIS M 8816の石炭のビトリニット平均最大反射率、logMFはギーセラープラストメータ法で測定した最高流動度(Maximum Fluidity:MF)の常用対数値、揮発分(VM)、灰分(Ash)はJIS M 8812の工業分析法による測定値である。   The penetration distance was measured for 21 types of coal (coal A to U) and one type of caking additive (caking agent V). Table 1 shows the property values of the used coal and the binder. Here, Ro is the maximum vitrinite average reflectance of coal according to JIS M 8816, log MF is the common logarithm of the maximum fluidity (Maximum Fluidity: MF) measured by the Gieseller Plastometer method, volatile content (VM), ash content (Ash) ) Are measured values according to the industrial analysis method of JIS M 8812.

図1に示した装置を用い、浸透距離の測定を行った。加熱方式は高周波誘導加熱式としたため、図1の発熱体8は誘導加熱コイルであり、容器3の素材は誘電体である黒鉛を使用した。容器の直径は18mm、高さ37mmとし、上下面に貫通孔を有する材料として直径2mmのガラスビーズを用いた。粒度2mm以下に粉砕し室温で真空乾燥した石炭試料2.04gを容器3に装入し、石炭試料の上から重さ200gの錘を落下距離20mmで5回落下させることにより試料1を充填した(この状態で試料層厚は10mmとなった。)。次に直径2mmのガラスビーズを試料1の充填層の上に25mmの厚さとなるように配置した。ガラスビーズ充填層の上に直径17mm、厚さ5mmのシリマナイト製円盤を配置し、その上に膨張率検出棒13として石英製の棒を置き、さらに石英棒の上部に1.3kgの錘14を置いた。これにより、シリマナイト円盤上にかかる圧力は50kPaとなる。不活性ガスとして窒素ガスを使用し、加熱速度3℃/分で550℃まで加熱した。加熱終了後、窒素雰囲気で冷却を行い、冷却後の容器から、軟化溶融した石炭と固着していないビーズ質量を計測した。なお、上記の測定条件は、種々の条件での測定結果の比較により、発明者らが好ましい浸透距離の測定条件として決定したものであるが、浸透距離測定はこの方法に限られるものではない。     The penetration distance was measured using the apparatus shown in FIG. Since the heating method was a high frequency induction heating type, the heating element 8 in FIG. 1 was an induction heating coil, and the material of the container 3 was graphite, which is a dielectric. The diameter of the container was 18 mm, the height was 37 mm, and glass beads with a diameter of 2 mm were used as materials having through holes on the upper and lower surfaces. The sample 1 was filled by loading 2.04 g of a coal sample pulverized to a particle size of 2 mm or less and vacuum-dried at room temperature into the container 3 and dropping a weight of 200 g from the top of the coal sample 5 times at a fall distance of 20 mm. (In this state, the sample layer thickness was 10 mm). Next, glass beads having a diameter of 2 mm were placed on the packed layer of Sample 1 so as to have a thickness of 25 mm. A sillimanite disk having a diameter of 17 mm and a thickness of 5 mm is placed on the glass bead packed layer, a quartz rod is placed thereon as the expansion coefficient detecting rod 13, and a weight of 1.3 kg is placed on the quartz rod. placed. As a result, the pressure applied on the sillimanite disk is 50 kPa. Nitrogen gas was used as the inert gas, and the mixture was heated to 550 ° C. at a heating rate of 3 ° C./min. After the heating, cooling was performed in a nitrogen atmosphere, and the mass of beads not fixed to the softened and melted coal was measured from the cooled container. In addition, although said measurement conditions are what the inventors determined as measurement conditions of a preferable penetration distance by the comparison of the measurement result on various conditions, a penetration distance measurement is not restricted to this method.

なお、ガラスビーズ層の厚みは浸透距離以上の層厚となるように配置すればよい。測定時にガラスビーズ層最上部まで溶融物が浸透してしまった場合には、ガラスビーズを増量して再測定を行なう。発明者らは、ガラスビーズの層厚を変更した試験を行ない、浸透距離以上のガラスビーズ層厚があれば、同一試料の浸透距離測定値は同じになることを確認している。浸透距離の大きい粘結材の測定を行なう際には、より大きな容器を用い、ガラスビーズの充填量も増やして測定を行なった。   In addition, what is necessary is just to arrange | position so that the thickness of a glass bead layer may become layer thickness more than an osmosis | permeation distance. If the melt has penetrated to the top of the glass bead layer during measurement, the glass beads are increased and remeasured. The inventors conducted a test in which the layer thickness of the glass beads was changed, and confirmed that the permeation distance measurement values of the same sample would be the same if there was a glass bead layer thickness greater than or equal to the penetration distance. When measuring a binder with a long penetration distance, a larger container was used and the amount of glass beads filled was also increased.

浸透距離は固着したビーズ層の充填高さとした。ガラスビーズ充填層の充填高さと質量の関係をあらかじめ求め、軟化溶融した石炭が固着したビーズの質量よりガラスビーズ充填高さを導出できるようにした。その結果が(8)式であり、(8)式より浸透距離を導出した。
L=(G−M)×H ・・・ (8)
ここで、Lは浸透距離[mm]、Gは充填したガラスビーズ質量[g]、Mは軟化溶融物と固着していないビーズ質量[g]、Hは本実験装置に充填されたガラスビーズの1gあたりの充填層高さ[mm/g]を表す。
The penetration distance was the filling height of the fixed bead layer. The relationship between the filling height and the mass of the glass bead packed bed was obtained in advance, and the glass bead filling height could be derived from the mass of the beads to which the softened and melted coal was fixed. The result was equation (8), and the penetration distance was derived from equation (8).
L = (GM) × H (8)
Here, L is the penetration distance [mm], G is the mass of the filled glass beads [g], M is the mass of the beads not fixed to the softened melt [g], and H is the glass beads filled in this experimental apparatus. It represents the height of the packed bed per gram [mm / g].

浸透距離測定結果とギーセラー最高流動度(Maximum Fluidity:MF)の対数値(logMF)の関係を図9に示す。図9より、本実施例で測定した浸透距離は最高流動度と相関は認められるが、同じMFであっても浸透距離の値には差がある。例えば、本装置での浸透距離の測定誤差を検討した結果、同一条件で3回試験を行った結果について標準偏差が0.6であったことを考慮すると、最高流動度がほぼ等しい石炭Aと石炭Cに対して、浸透距離に有意な差が認められた。   FIG. 9 shows the relationship between the measurement results of the osmotic distance and the logarithmic value (log MF) of the Gieseler maximum fluidity (MF). From FIG. 9, the permeation distance measured in this example has a correlation with the maximum fluidity, but there is a difference in the value of the permeation distance even with the same MF. For example, as a result of examining the measurement error of the penetration distance in this device, considering that the standard deviation was 0.6 for the result of three tests under the same conditions, coal A and For Coal C, a significant difference in penetration distance was observed.

次に、上記(イ)〜(ニ)に該当する石炭の風化による浸透距離、最高流動度及び乾留後のコークス強度の変化を調査するべく、(イ)〜(ニ)に該当する石炭を種々条件で風化させたものを10mass%配合した配合炭を作製し、乾留後のコークス強度を測定した。   Next, in order to investigate changes in permeation distance, maximum fluidity and coke strength after carbonization due to weathering of coal corresponding to (i) to (d) above, various coals corresponding to (i) to (d) are variously investigated. A coal blend was prepared by blending 10% by weight of what was weathered under the conditions, and the coke strength after dry distillation was measured.

従来のコークス強度を推定するための石炭配合理論において、コークス強度は主に、石炭のビトリニット平均最大反射率(Ro)と、logMFにより決定されると考えられてきた(例えば、非特許文献2参照。)。従って、配合炭全体の加重平均Ro、加重平均logMFが実操業の平均的な性状となるように種々の石炭を配合したベース配合炭を作製し(Ro=1.08、logMF=2.2)、この配合炭に対して上記(イ)〜(ニ)に該当する石炭であるF炭及びその風化炭を10mass%添加して試験に供する配合炭を作製した。   In the conventional coal blending theory for estimating coke strength, it has been considered that coke strength is mainly determined by the vitrinite average maximum reflectance (Ro) of coal and log MF (for example, see Non-Patent Document 2). .) Therefore, a base blended coal blended with various coals so that the weighted average Ro of the entire blended coal and the weighted average logMF are the average properties of actual operation is prepared (Ro = 1.08, logMF = 2.2). Then, 10% by mass of F coal, which is a coal corresponding to the above (i) to (d), and its weathered coal was added to this blended coal to prepare a blended coal for use in the test.

表2に、ベース配合炭を構成する石炭の浸透距離及び最高流動度を示す。加えて、ベース配合炭の加重平均性状値も示す。ここで、ベース配合炭の加重平均浸透距離は6.5mmであり、F炭の浸透距離は19.8mmであることから、F炭は上記(ハ)、(ニ)の何れの条件にも該当する。   Table 2 shows the penetration distance and the maximum fluidity of the coal constituting the base blended coal. In addition, the weighted average property value of the base coal blend is also shown. Here, since the weighted average permeation distance of the base blended coal is 6.5 mm and the permeation distance of the F coal is 19.8 mm, the F coal meets both the above conditions (c) and (d). To do.

配合炭を構成するlogMF<2.5の石炭の浸透距離及び最高流動度の対数値をもとに原点を通る回帰直線を求めた。式(2)、式(4)の定数aおよびa’は、求められた回帰直線の傾きと一致する2.9に決定した。式(4)の定数bは、本発明例の測定条件での標準偏差0.6の値の5倍から、3に決定した。これらの式を元に、配合炭を構成する石炭とF炭の浸透距離及び最高流動度と、上記(イ)、(ロ)の範囲との位置関係を調べた結果を図10、図11にそれぞれ示す。図10、図11より、F炭は(イ)、(ロ)の範囲の何れの条件にも該当する。   A regression line passing through the origin was determined based on the logarithm of the permeation distance and maximum fluidity of coal with log MF <2.5 constituting the blended coal. The constants a and a ′ in the equations (2) and (4) were determined to be 2.9 which coincided with the obtained slope of the regression line. The constant b in the formula (4) was determined to be 3 from 5 times the value of the standard deviation 0.6 under the measurement conditions of the example of the present invention. Based on these equations, the results of examining the positional relationship between the permeation distance and the maximum fluidity of coal and F coal constituting the blended coal and the ranges (i) and (b) above are shown in FIGS. Each is shown. From FIG. 10, FIG. 11, F charcoal corresponds to any conditions of the range of (A) and (B).

F炭の風化炭は、F炭を150℃、200℃に温度調節した空気雰囲気の加熱炉の中に所定時間静置して作製した。また、F炭を200℃に温度調節した空気雰囲気の加熱炉の中に12時間静置して、完全に風化した風化炭(MF=0)を作製した。さらに、1年間ドラム缶内において、常温で風化させた風化炭も作製した。F炭とその風化炭の風化条件、logMF、浸透距離の値を表3に示す。風化F炭1〜風化F炭4から、logMF、浸透距離の値は風化時間が長いほど低下し、時間とともに低下速度が減少する傾向にあることが分かる。本発明者らが実施例以外にも種々条件で石炭の風化を行ったところ、いかなる風化条件においてもlogMF、浸透距離は単調減少する関係にあることを確認している。従って、風化条件を適切に制御することで、浸透距離を任意に低下せしめることが可能である。   The weathered coal of F charcoal was produced by leaving it in a heating furnace in an air atmosphere whose temperature was adjusted to 150 ° C. and 200 ° C. for a predetermined time. Moreover, it left still in the heating furnace of the air atmosphere which adjusted the temperature of F charcoal to 200 degreeC for 12 hours, and produced the weathered charcoal (MF = 0) completely weathered. Furthermore, weathered charcoal weathered at room temperature in a drum can for one year was also produced. Table 3 shows the values of weathering conditions, log MF, and permeation distance of F coal and its weathered coal. From weathered F charcoal 1 to weathered F charcoal 4, it can be seen that the log MF and penetration distance values decrease as the weathering time increases, and the rate of decrease tends to decrease with time. When the present inventors weathered coal under various conditions other than the examples, it was confirmed that the log MF and permeation distance were monotonously decreased under any weathering conditions. Therefore, it is possible to arbitrarily reduce the permeation distance by appropriately controlling the weathering conditions.

表2記載のベース配合炭に、表3記載の風化炭を10mass%添加して作製した配合炭の加重平均性状値を表4に示す。表4記載の配合炭の粒度は3mm未満100mass%となるように粉砕し、配合炭全体の水分は8mass%になるように調整した。この配合炭16kgを、嵩密度750kg/m3となるように乾留缶に充填し、その上に10kgの錘を乗せた状態で、炉壁温度1050℃の電気炉内で6時間乾留後、炉から取り出し窒素冷却し、コークスを得た。得られたコークスのコークス強度は、JIS K 2151の回転強度試験法に基づき、15rpm、150回転後の粒径15mm以上のコークスの質量割合を測定し、回転前との質量比をドラム強度DI150/15として算出した。CO熱間反応後強度(ISO18894法に準拠)、マイクロ強度(MSI+65)の測定も行なった。 Table 4 shows the weighted average property values of blended coal prepared by adding 10 mass% of weathered coal described in Table 3 to the base blended coal described in Table 2. The particle size of the blended coal shown in Table 4 was pulverized to be less than 3 mm and 100 mass%, and the water content of the entire blended coal was adjusted to be 8 mass%. 16 kg of this blended charcoal was filled in a dry distillation can so that the bulk density was 750 kg / m 3, and 10 kg of weight was placed on the can, and after carbonization in an electric furnace with a furnace wall temperature of 1050 ° C., And then cooled with nitrogen to obtain coke. The coke strength of the obtained coke was measured based on the rotational strength test method of JIS K 2151 by measuring the mass ratio of coke with a particle size of 15 mm or more after 15 rpm and 150 revolutions, and the mass ratio with the pre-rotation drum strength DI150 / Calculated as 15. The strength after CO 2 hot reaction (based on ISO18894 method) and micro strength (MSI + 65) were also measured.

コークス強度の測定結果を表4に併せて示す。また、F炭の浸透距離とドラム強度との関係を図12に示す。上記(イ)〜(ニ)に該当するF炭の浸透距離を種々変化させると、配合炭の強度が変化することを確認した。従って、本発明で測定した浸透距離の値は、強度に影響を及ぼす因子であり、かつ、従来因子では説明できない因子であることを確認した。   The measurement results of coke strength are also shown in Table 4. FIG. 12 shows the relationship between the penetration distance of F charcoal and the drum strength. It was confirmed that the strength of the blended coal changes when the penetration distance of the F coal corresponding to the above (i) to (d) is changed variously. Therefore, it was confirmed that the value of the penetration distance measured in the present invention is a factor affecting the strength and cannot be explained by the conventional factor.

従来、石炭は風化の進行に伴って溶融性が低下するため、それに伴って配合時のコークス強度も一様に低下すると考えられてきた。しかし、本実施例が示すとおり、上記(イ)〜(ニ)に該当するF炭を風化させた風化F炭1、風化F炭2、風化F炭6ないし風化F炭8を配合した配合炭2、配合炭3、配合炭7ないし配合炭9は、原炭を配合した配合炭1よりも乾留後のコークス強度が向上している。風化がさらに進行した風化F炭3、風化F炭4を配合した配合炭4、配合炭5は、原炭を配合した配合炭1と比べて乾留後のコークス強度が殆んど変わらない。そして、完全に風化した風化F炭5を配合した配合炭6は、原炭を配合した配合炭1と比べて乾留後のコークス強度が著しく低下している。すなわち、上記(イ)〜(ニ)に該当するF炭を風化させた場合、一様にコークス強度が低下するのではなく、一度コークス強度が向上し、その後低下するような関係となっている。このような結果となったのは、風化現象には、従来から言われているとおりの、石炭の溶融性(logMF)を低下させてそれに伴ってコークス強度を低下させる効果と、本発明に記載した浸透距離を低下させてそれに伴ってコークス強度を向上させる効果の2つの効果が存在するためであると考察される。   Conventionally, it has been considered that the coke strength at the time of blending also decreases uniformly with the progress of weathering, since the meltability of coal decreases. However, as shown in this example, the blended coal obtained by blending weathered F coal 1, weathered F coal 2, weathered F coal 6 or weathered F coal 8 obtained by weathering F coal corresponding to (i) to (d) above. 2, the blended coal 3, the blended coal 7 or the blended coal 9 has improved coke strength after dry distillation than the blended coal 1 blended with raw coal. Weathered F charcoal 3 and weathered F charcoal 4 blended with weathered F charcoal 4 and blended coal 5 have almost the same coke strength after dry distillation as blended coal 1 blended with raw coal. And the combination coal 6 which mix | blended the weathered F coal 5 completely weathered has the coke strength after dry distillation remarkably falling compared with the combination coal 1 which mix | blended raw coal. That is, when the F charcoal corresponding to the above (i) to (d) is weathered, the coke strength is not reduced uniformly, but the coke strength is once improved and then reduced. . Such a result has been described in the present invention in the weathering phenomenon, as it has been said conventionally, the effect of reducing the coal meltability (log MF) and accordingly reducing the coke strength. It is considered that this is because there are two effects of reducing the permeation distance and improving the coke strength accordingly.

ここで、風化F炭の浸透距離及び最高流動度と、上記(イ)〜(ニ)の範囲との位置関係を調べた結果を図13〜図16にそれぞれ示す。(ホ)〜(チ)の何れの範囲にも該当する風化F炭7の強度向上効果が、本実施例中、最も高い。また、(ト)、(チ)に該当する風化F炭2、(チ)のみに該当する風化F炭6も、原炭に対して強度向上効果があることを確認した。なお、風化F炭8は(ホ)〜(チ)のいずれも満たすもののMF値が(リ)で示した下限値に近いため、風化F炭7よりは強度向上効果は小さくなったが、原炭に対しては強度向上効果を有することが認められた。従って、風化炭の浸透距離及び最高流動度が、本発明で規定した範囲になるように風化することで、コークス強度を向上することが出来る。   Here, the results of examining the positional relationship between the permeation distance and the maximum fluidity of weathered F charcoal and the above ranges (A) to (D) are shown in FIGS. The strength improvement effect of the weathered F charcoal 7 corresponding to any range of (e) to (h) is the highest in this example. Moreover, it confirmed that the weathered F charcoal 2 applicable to (g) and (h) and the weathered F charcoal 6 applicable only to (h) also had a strength improvement effect with respect to raw coal. In addition, although weathered F charcoal 8 satisfy | fills all of (e)-(h), since the MF value is near the lower limit shown by (li), although the strength improvement effect became smaller than weathered F charcoal 7, It was recognized that it has a strength improvement effect on charcoal. Therefore, coke strength can be improved by weathering so that the penetration distance and the maximum fluidity of weathered coal are within the ranges defined in the present invention.

また、処理温度を変えて作製した風化F炭の浸透距離及び最高流動度の変化を図17に示す。図17より、150℃で風化する場合に比べて200℃で風化した方が、最高流動度の低下に対して、浸透距離の低下が大きく、望ましい性状の変化となることを確認した。   In addition, FIG. 17 shows changes in the penetration distance and maximum fluidity of weathered F charcoal produced by changing the treatment temperature. From FIG. 17, it was confirmed that the weathering at 200 ° C. compared to the case where it was weathered at 150 ° C. had a large decrease in the permeation distance with respect to the decrease in the maximum fluidity, resulting in a desirable property change.

本実施例から、上記(イ)〜(ニ)に該当するF炭を使用した場合であっても、浸透距離及び最高流動度を上記(ホ)〜(リ)の範囲になるように風化させてから配合することで、コークス強度を向上させることができることを確認した。   Even if it is a case where F charcoal corresponding to the above (i)-(d) is used from this example, it is weathered so that a penetration distance and the maximum fluidity may become the range of the above (e)-(li). It was confirmed that the coke strength can be improved by blending after that.

配合時に強度低下を招く、上記(イ)〜(ニ)に該当するU炭(浸透距離=46.5mm、logMF=4.56)の粗粒部分のみを風化した風化炭のコークス強度影響を調査するべく、ベース配合炭にU炭ないし風化U炭を10mass%配合した配合炭を作製し、乾留後のコークス強度を測定した。   Investigate the effect of coke strength on weathered coal that weathered only the coarse part of U coal (penetration distance = 46.5 mm, log MF = 4.56) corresponding to the above (i) to (d), which causes a decrease in strength when blended. Therefore, a blended coal in which 10 mass% of U coal or weathered U coal was blended with the base blended coal, and the coke strength after dry distillation was measured.

表5に、ベース配合炭の加重平均性状値を示す。ここで、ベース配合炭はlogMF<3.2の石炭からなっており、その加重平均浸透距離は9.0mmで、U炭の浸透距離は46.5mmであることから、U炭は上記(ハ)、(ニ)の何れの条件にも該当する。   Table 5 shows the weighted average property values of the base blended coal. Here, the base blended coal is made of coal with log MF <3.2, the weighted average penetration distance is 9.0 mm, and the penetration distance of U coal is 46.5 mm. ) And (d) both of the conditions are met.

配合炭を構成するlogMF<2.5の石炭の浸透距離及び最高流動度の対数値をもとに原点を通る回帰直線を求めた。式(2)、式(4)の定数aおよびa’は、求められた回帰直線の傾きと一致する3.8に決定した。式(4)の定数bは、本発明例の測定条件での標準偏差0.6の値の5倍から、3に決定した。これらの式を元に、U炭の浸透距離及び最高流動度と、上記(イ)、(ロ)の範囲との位置関係を調べた結果を、図18、図19にそれぞれ示す。図18、図19より、U炭は(イ)、(ロ)の範囲の何れの条件にも該当する。   A regression line passing through the origin was determined based on the logarithm of the permeation distance and maximum fluidity of coal with log MF <2.5 constituting the blended coal. The constants a and a ′ of the equations (2) and (4) were determined to be 3.8, which coincides with the obtained slope of the regression line. The constant b in the formula (4) was determined to be 3 from 5 times the value of the standard deviation 0.6 under the measurement conditions of the example of the present invention. The results of examining the positional relationship between the permeation distance and maximum fluidity of U charcoal based on these formulas and the above ranges (A) and (B) are shown in FIGS. 18 and 19, respectively. From FIG. 18 and FIG. 19, U charcoal corresponds to any condition in the range of (A) and (B).

U炭を分級せずに、200℃に温度調整した空気雰囲気の加熱炉の中に30分静置して、風化U炭1を作製した。また、U炭を全量篩目1mmの篩に通して分級し、篩上の1mm以上の粒度を有するU炭のみを、同様の条件で風化させ、風化に供さなかった1mm未満の粒度を有するU炭と合せて良く混合し、風化U炭2を作製した。U炭とその風化炭の風化条件、logMF、浸透距離の値を表6に示す。風化U炭1と風化U炭2では、風化の程度が異なり、全量を風化させた風化U炭1の方が、浸透距離、最高流動度共に、風化U炭に比べて低下していることを確認した。   Without classifying U charcoal, it left still for 30 minutes in the heating furnace of the air atmosphere adjusted to 200 degreeC, and the weathered U charcoal 1 was produced. In addition, U charcoal is classified by passing through a 1 mm sieve, and only U charcoal having a particle size of 1 mm or more on the sieve is weathered under the same conditions and has a particle size of less than 1 mm that was not subjected to weathering. Weathered U charcoal 2 was prepared by mixing well with U charcoal. Table 6 shows weathering conditions, log MF, and permeation distance values of U coal and its weathered coal. Weathered U charcoal 1 and weathered U charcoal 2 differ in the degree of weathering, and weathered U charcoal 1 that has been weathered in its entirety is reduced in both penetration distance and maximum fluidity compared to weathered U charcoal. confirmed.

表5記載のベース配合炭に、U炭ないし風化U炭を10mass%添加して作製した配合炭の加重平均性状値を表7に示す。表7記載の配合炭を実施例1と同様の方法で乾留してコークスを作製し、JIS K 2151の回転強度試験法に基づき、ドラム強度DI150/15を測定した。   Table 7 shows the weighted average property values of the blended coal prepared by adding 10 mass% of U coal or weathered U coal to the base blended coal described in Table 5. Coke was produced by dry distillation of the blended coal described in Table 7 in the same manner as in Example 1, and the drum strength DI 150/15 was measured based on the rotational strength test method of JIS K 2151.

ドラム強度の測定結果を表7に併せて示す。本実施例が示すとおり、上記(イ)〜(ニ)に該当するU炭を配合した配合炭11はベース配合炭である配合炭10よりもコークス強度が低下している。また、風化U炭1、風化U炭2を配合した配合炭12、配合炭13は、U炭を配合した配合炭11よりも乾留後のコークス強度が向上している。さらに、配合炭12、配合炭13を比較すると、粗粒のみを風化した風化炭U炭2を配合した配合炭13の方が乾留後のコークス強度が高い。これは、強度低下を招くU炭の粗粒部のみを風化にさせたことで、優先的な風化により接着不良を招く微粒部をつくることなく、U炭の性状を効果的に改質できたためであると推察される。   The measurement results of drum strength are also shown in Table 7. As this example shows, coke strength of blended coal 11 blended with U coal corresponding to (i) to (d) above is lower than blended coal 10 which is a base blended coal. Moreover, the combination coal 12 and the combination coal 13 which mix | blended the weathered U coal 1 and the weathered U coal 2 have the coke strength after dry distillation improving rather than the combination coal 11 which mix | blended U coal. Further, when the blended coal 12 and the blended coal 13 are compared, the blended coal 13 blended with the weathered coal U coal 2 weathered only with coarse particles has higher coke strength after dry distillation. This is because only the coarse-grained portion of U char that causes strength reduction was weathered, so that the properties of U char were effectively improved without creating fine particles that caused poor adhesion due to preferential weathering. It is guessed that.

本実施例より、上記(イ)〜(ニ)に該当する石炭及び粘結材を風化にさせてコークス化性を向上させる場合、強度低下を招く原因となる粗粒部のみを風化させることで、強度低下の抑制ないし向上効果を効果的に得られることを確認した。   From this example, when coal and caking materials corresponding to the above (i) to (d) are weathered to improve coking properties, only the coarse particles that cause a decrease in strength are weathered. It was confirmed that the effect of suppressing or improving the strength reduction can be effectively obtained.

本発明で測定する浸透距離を用いることにより、風化によりコークス化性が向上する銘柄を判定可能である。風化反応は自発的にも起こりうる反応であるので、そのような銘柄を自然風化させることで、余分なコスト増を招くことなくコークス化性を向上させることが可能である。また、上記より、風化により石炭のコークス化性を向上させる際に、適正な風化範囲を規定することが可能である。更には、風化の方法として、コークス化性の向上度合いを最大にする適正な条件が存在することも見出した。   By using the permeation distance measured in the present invention, it is possible to determine a brand whose coking property is improved by weathering. Since the weathering reaction can occur spontaneously, it is possible to improve the coking property without incurring extra cost by naturally weathering such brands. Moreover, when improving the coking property of coal by weathering from the above, it is possible to prescribe | regulate an appropriate weathering range. Furthermore, it has also been found that there is an appropriate condition for maximizing the degree of improvement of coking property as a weathering method.

1 試料
2 上下面に貫通孔を有する材料
3 容器
5 スリーブ
7 温度計
8 発熱体
9 温度検出器
10 温度調節器
11 ガス導入口
12 ガス排出口
13 膨張率検出棒
14 錘
15 変位計
16 円形貫通孔
17 充填粒子
18 充填円柱
DESCRIPTION OF SYMBOLS 1 Sample 2 Material which has a through-hole in the upper and lower surfaces 3 Container 5 Sleeve 7 Thermometer 8 Heating element 9 Temperature detector 10 Temperature controller 11 Gas inlet 12 Gas outlet 13 Expansion rate detection rod 14 Weight 15 Displacement meter 16 Circular penetration Hole 17 Packing particle 18 Packing cylinder

Claims (11)

2種以上の石炭からなる配合炭もしくは2種以上の石炭に粘結材を配合してなる配合炭を乾留し、コークスを製造する方法であって、
前記配合炭を構成する各石炭及び粘結材を試料として容器に充填し、前記試料の上に上下面に貫通孔を有する材料を配置し、前記試料を加熱し、前記貫通孔へ浸透した前記試料の浸透距離とギーセラープラストメータ法による最高流動度(logMF)とを測定し、
前記浸透距離及び最高流動度が、下記式(1)かつ式(2)を満足する管理範囲(A)に該当する石炭を選定し、
選定された石炭の一部または全部を、酸化雰囲気下、常温又は加熱処理によって風化させ、風化後の石炭の浸透距離及び最高流動度が、下記式(5)を満足する管理範囲(B)内になるようにし、前記風化した石炭を配合する、
ことを特徴とする、冶金用コークスの製造方法。
logMF≧2.5 (1)
浸透距離≧1.3×a×logMF (2)
但し、“a”は、配合炭を構成する各石炭及び粘結材のうち、logMF<2.5の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数である
化後の石炭の浸透距離<1.3×a×風化後の石炭の最高流動度(logMF) (5
A method of producing coke by dry-distilling a blended coal composed of two or more types of coal or a blended coal obtained by blending a binder with two or more types of coal,
Filling a container with each coal and caking additive constituting the blended coal as a sample, placing a material having through holes on the upper and lower surfaces on the sample, heating the sample, and penetrating into the through hole Measure the permeation distance of the sample and the maximum fluidity (log MF) by the Gieseler plastometer method,
Select the coal whose permeation distance and maximum fluidity fall within the control range (A) satisfying the following formula (1) and formula (2),
A part or all of the selected coal is weathered in an oxidizing atmosphere at room temperature or heat treatment, and the coal penetration distance and maximum fluidity after weathering are within the control range (B) where the following formula (5) is satisfied . And blending the weathered coal,
A method for producing metallurgical coke, characterized in that:
logMF ≧ 2.5 (1)
Permeation distance ≧ 1.3 × a × logMF (2)
However, “a” measures at least one permeation distance and log MF of coal and binder in the range of log MF <2.5 among each coal and binder constituting the coal blend, It is a constant in the range of 0.7 to 1.0 times the log MF coefficient when a regression line passing through the origin is created using the measured value .
Penetration distance of coal after the wind of <1.3 × a × maximum fluidity of the coal after weathering (logMF) (5)
2種以上の石炭からなる配合炭もしくは2種以上の石炭に粘結材を配合してなる配合炭を乾留し、コークスを製造する方法であって、
前記配合炭を構成する各石炭及び粘結材を試料として容器に充填し、前記試料の上に上下面に貫通孔を有する材料を配置し、前記試料を加熱し、前記貫通孔へ浸透した前記試料の浸透距離とギーセラープラストメータ法による最高流動度(logMF)とを測定し、
前記浸透距離及び最高流動度が、下記式(3)かつ式(4)を満足する管理範囲(A)に該当する石炭を選定し、
選定された石炭の一部または全部を、酸化雰囲気下、常温又は加熱処理によって風化させ、風化後の石炭の浸透距離及び最高流動度が、下記式(6)を満足する管理範囲(B)内になるようにし、前記風化した石炭を配合する、
ことを特徴とする、冶金用コークスの製造方法。
logMF≧2.5 (3)
浸透距離≧a’×logMF+b (4)
但し、“a’”は、配合炭を構成する各石炭及び粘結材のうち、logMF<2.5の範囲にある石炭及び粘結材の少なくとも1種以上の浸透距離及びlogMFを測定し、その測定値を用いて原点を通る回帰直線を作成した際のlogMFの係数の0.7から1.0倍の範囲の定数である。
“b”は、前記回帰直線の作成に用いた銘柄から選ばれる1種類以上の同一試料を複数回測定した際の標準偏差の平均値以上で、前記平均値の5倍以下とする、定数である
化後の石炭の浸透距離<a’× 風化後の石炭の最高流動度(logMF)+b (6
A method of producing coke by dry-distilling a blended coal composed of two or more types of coal or a blended coal obtained by blending a binder with two or more types of coal,
Filling a container with each coal and caking additive constituting the blended coal as a sample, placing a material having through holes on the upper and lower surfaces on the sample, heating the sample, and penetrating into the through hole Measure the permeation distance of the sample and the maximum fluidity (log MF) by the Gieseler plastometer method,
Select the coal whose permeation distance and maximum fluidity fall within the control range (A) satisfying the following formula (3) and formula (4),
Some or all of the selected coal is weathered in an oxidizing atmosphere at room temperature or heat treatment, and the coal penetration distance and maximum fluidity after weathering are within the control range (B) where the following equation (6) is satisfied . And blending the weathered coal,
A method for producing metallurgical coke, characterized in that:
logMF ≧ 2.5 (3)
Permeation distance ≧ a ′ × log MF + b (4)
However, "a '" measures the penetration distance and log MF of at least one kind of coal and binder in the range of log MF <2.5 among the coal and binder that constitute the blended coal, It is a constant in the range of 0.7 to 1.0 times the coefficient of logMF when a regression line passing through the origin is created using the measured value.
“B” is a constant that is not less than the average value of the standard deviation when measuring one or more types of the same sample selected from the brands used to create the regression line, and not more than 5 times the average value. There is .
Penetration distance of coal after the wind of <a '× maximum fluidity of the coal after weathering (logMF) + b (6)
2種以上の石炭からなる配合炭もしくは2種以上の石炭に粘結材を配合してなる配合炭を乾留し、コークスを製造する方法であって、
前記配合炭を構成する各石炭及び粘結材を試料として容器に充填し、前記試料の上に上下面に貫通孔を有する材料を配置し、前記試料を加熱し、前記貫通孔へ浸透した前記試料の浸透距離とギーセラープラストメータ法による最高流動度(logMF)とを測定し、
前記浸透距離及び最高流動度が、下記(a)〜(c)によって求められる管理範囲(A)に該当する石炭を選定し、
選定された石炭の一部または全部を、酸化雰囲気下、常温又は加熱処理によって風化させ、風化後の石炭の浸透距離が、下記の管理範囲(B)内になるようにし、前記風化した石炭を配合する、
ことを特徴とする、冶金用コークスの製造方法。
(a)コークス製造に用いる配合炭中に含まれる石炭または粘結材と、前記石炭または粘結材の配合率を予め決定し、
(b)前記石炭または粘結材の浸透距離及びlogMFを測定し、
(c)前記配合炭に含まれるlogMFが3.2未満の石炭または粘結材の浸透距離と配合率から計算される加重平均浸透距離に対して2倍以上の範囲を管理範囲(A)と決定する
理範囲(B)は、上記(c)で計算された加重平均浸透距離に対して2倍未満となる浸透距離の範囲である
A method of producing coke by dry-distilling a blended coal composed of two or more types of coal or a blended coal obtained by blending a binder with two or more types of coal,
Filling a container with each coal and caking additive constituting the blended coal as a sample, placing a material having through holes on the upper and lower surfaces on the sample, heating the sample, and penetrating into the through hole Measure the permeation distance of the sample and the maximum fluidity (log MF) by the Gieseler plastometer method,
Select the coal whose permeation distance and maximum fluidity fall within the management range (A) required by the following (a) to (c),
Coal part or all of the selected coal, an oxidizing atmosphere, weathered by cold or heat treatment, penetration distance coal after weathering, to be within the management scope of the following (B), described above weathered Blending,
A method for producing metallurgical coke, characterized in that:
(A) Predetermining the coal or caking additive contained in the coal blend used for coke production, and the blending ratio of the coal or caking additive,
(B) Measure the penetration distance and log MF of the coal or binder;
(C) The control range (A) is a range that is at least twice the weighted average penetration distance calculated from the penetration distance and blending ratio of coal or binder with a log MF less than 3.2 contained in the blended coal. To decide .
Management range (B) is in the range of penetration distance is less than 2 times the weighted average permeation distance calculated above (c).
2種以上の石炭からなる配合炭もしくは2種以上の石炭に粘結材を配合してなる配合炭を乾留し、コークスを製造する方法であって、
前記配合炭を構成する各石炭及び粘結材を試料として容器に充填し、前記試料の上に上下面に貫通孔を有する材料を配置し、前記試料を加熱し、前記貫通孔へ浸透した前記試料の浸透距離とギーセラープラストメータ法による最高流動度(logMF)とを測定し、
前記浸透距離及び最高流動度が、以下の(d)かつ(e)によって求まる管理範囲(A)に該当する石炭を選定し、
選定された石炭の一部または全部を、酸化雰囲気下、常温又は加熱処理によって風化させ、風化後の石炭の浸透距離が、下記の管理範囲(B)内になるようにし、前記風化した石炭を配合する、
ことを特徴とする、冶金用コークスの製造方法。
(d)石炭または粘結材試料を、粒径2mm以下が100mass%となるように粉砕し、該粉砕試料を充填密度0.8g/cm3で、層厚が10mmとなるように容器に充填して試料とし、該試料の上に直径2mmのガラスビーズを浸透距離以上の層厚で配置し、ガラスビーズの上部から圧力50kPaとなるように荷重を負荷しつつ、昇温速度3℃/分で室温から550℃まで不活性ガス雰囲気下で加熱した場合の測定条件で、管理範囲(A)の浸透距離が15mm以上、かつ、
(e)管理範囲(A)のlogMFが2.5以上である
理範囲(B)は、風化後の石炭を石炭試料とし、該石炭試料を粒径2mm以下が100mass%となるように粉砕し、該粉砕試料を充填密度0.8g/cm3で、層厚が10mmとなるように容器に充填して試料とし、該試料の上に直径2mmのガラスビーズを浸透距離以上の層厚で配置し、ガラスビーズの上部から圧力50kPaとなるように荷重を負荷しつつ、昇温速度3℃/分で室温から550℃まで不活性ガス雰囲気下で加熱した場合の測定値で15mm未満となる浸透距離の範囲である。
A method of producing coke by dry-distilling a blended coal composed of two or more types of coal or a blended coal obtained by blending a binder with two or more types of coal,
Filling a container with each coal and caking additive constituting the blended coal as a sample, placing a material having through holes on the upper and lower surfaces on the sample, heating the sample, and penetrating into the through hole Measure the permeation distance of the sample and the maximum fluidity (log MF) by the Gieseler plastometer method,
Select the coal whose permeation distance and maximum fluidity fall within the management range (A) determined by (d) and (e) below,
Coal part or all of the selected coal, an oxidizing atmosphere, weathered by cold or heat treatment, penetration distance coal after weathering, to be within the management scope of the following (B), described above weathered Blending,
A method for producing metallurgical coke, characterized in that:
(D) Coal or caking material sample is pulverized so that the particle size is 2 mm or less is 100 mass%, and the pulverized sample is filled into a container so as to have a packing density of 0.8 g / cm 3 and a layer thickness of 10 mm. A glass bead having a diameter of 2 mm is arranged on the sample with a layer thickness equal to or greater than the permeation distance, and a heating rate is 3 ° C./min while applying a load from the top of the glass bead to a pressure of 50 kPa. In the measurement conditions when heated in an inert gas atmosphere from room temperature to 550 ° C., the penetration distance of the management range (A) is 15 mm or more, and
(E) The log MF of the management range (A) is 2.5 or more .
Management range (B) is a coal after weathering and coal samples were pulverized the coal sample as the particle size 2mm or less is 100 mass%, the ground sample in packing density 0.8 g / cm 3, the layer Fill the container so that the thickness is 10 mm and use it as a sample. Place a glass bead with a diameter of 2 mm on the sample with a layer thickness equal to or greater than the penetration distance, and apply a load from the top of the glass bead to a pressure of 50 kPa. However, it is the range of the permeation distance that is less than 15 mm as measured when heated in an inert gas atmosphere from room temperature to 550 ° C. at a rate of temperature rise of 3 ° C./min.
風化後の石炭の最高流動度がlogMF≧2.5かつ、風化後の石炭の浸透距離が管理範囲(B)の範囲内になるように風化させることを特徴とする、請求項1ないし請求項4のいずれか1項に記載の冶金用コークスの製造方法。 Maximum fluidity degree l ogMF ≧ 2.5 coal after weathering, and penetration distance of the coal after weathering which is characterized in that is weathered to be within the scope of the management range (B), claims 1 The manufacturing method of the metallurgical coke of any one of Claim 4. 前記風化を行う際の酸化雰囲気として、O、CO、HOの1種以上の成分を含む気体雰囲気であることを特徴とする、請求項1ないし請求項5のいずれか1項に記載の冶金用コークスの製造方法。 The oxidizing atmosphere for performing the weathering is a gas atmosphere containing one or more components of O 2 , CO 2 , and H 2 O, according to any one of claims 1 to 5. The manufacturing method of the metallurgical coke as described. 前記風化を行う際の酸化雰囲気として、空気雰囲気であることを特徴とする、請求項6に記載の冶金用コークスの製造方法。   The method for producing metallurgical coke according to claim 6, wherein the oxidizing atmosphere at the time of the weathering is an air atmosphere. 前記風化を行う際の加熱処理として、処理温度100℃〜300℃、処理時間1〜120分であることを特徴とする、請求項1ないし請求項7のいずれか1項に記載の冶金用コークスの製造方法。   The metallurgical coke according to any one of claims 1 to 7, wherein the heat treatment at the time of the weathering is a treatment temperature of 100 ° C to 300 ° C and a treatment time of 1 to 120 minutes. Manufacturing method. 前記風化を行う際の加熱処理として、処理温度180℃〜220℃、処理時間1〜30分であることを特徴とする、請求項8に記載の冶金用コークスの製造方法。   The method for producing metallurgical coke according to claim 8, wherein the heat treatment at the time of the weathering is a treatment temperature of 180 ° C. to 220 ° C. and a treatment time of 1 to 30 minutes. 前記風化を行う際に、コークス製造に用いる石炭及び粘結材の一部または全量を事前に分級し、所定の篩目以上の粒子のみを風化させることを特徴とする、請求項1ないし請求項9のいずれか1項に記載の冶金用コークスの製造方法。   When performing the weathering, part or all of the coal and caking additive used for coke production are classified in advance, and only particles having a predetermined mesh size or more are weathered. 10. The method for producing metallurgical coke according to any one of 9 above. 前記風化を行う際に、コークス製造に用いる石炭及び粘結材を分級する際の所定の篩目が1mm〜6mmの範囲から選ばれるものであることを特徴とする、請求項10に記載の冶金用コークスの製造方法。   The metallurgy according to claim 10, characterized in that, when the weathering is performed, a predetermined sieve mesh for classifying coal and caking additive used for coke production is selected from a range of 1 mm to 6 mm. Coke production method.
JP2011187111A 2010-09-01 2011-08-30 Method for producing metallurgical coke Active JP5229362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011187111A JP5229362B2 (en) 2010-09-01 2011-08-30 Method for producing metallurgical coke

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010195620 2010-09-01
JP2010195620 2010-09-01
JP2011187111A JP5229362B2 (en) 2010-09-01 2011-08-30 Method for producing metallurgical coke

Publications (3)

Publication Number Publication Date
JP2012072389A JP2012072389A (en) 2012-04-12
JP2012072389A5 JP2012072389A5 (en) 2012-09-20
JP5229362B2 true JP5229362B2 (en) 2013-07-03

Family

ID=45773048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011187111A Active JP5229362B2 (en) 2010-09-01 2011-08-30 Method for producing metallurgical coke

Country Status (4)

Country Link
JP (1) JP5229362B2 (en)
KR (1) KR101451050B1 (en)
CN (1) CN103154200B (en)
WO (1) WO2012029979A1 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998316B2 (en) 2009-03-17 2011-08-16 Suncoke Technology And Development Corp. Flat push coke wet quenching apparatus and process
US9200225B2 (en) 2010-08-03 2015-12-01 Suncoke Technology And Development Llc. Method and apparatus for compacting coal for a coal coking process
IN2015KN00248A (en) 2012-07-31 2015-06-12 Suncoke Technology & Dev Llc
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9249357B2 (en) 2012-08-17 2016-02-02 Suncoke Technology And Development Llc. Method and apparatus for volatile matter sharing in stamp-charged coke ovens
US9169439B2 (en) * 2012-08-29 2015-10-27 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
EP2898048B8 (en) 2012-09-21 2020-08-12 SunCoke Technology and Development LLC Reduced output rate coke oven operation with gas sharing providing extended process cycle
US10047295B2 (en) 2012-12-28 2018-08-14 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US9238778B2 (en) 2012-12-28 2016-01-19 Suncoke Technology And Development Llc. Systems and methods for improving quenched coke recovery
WO2014105065A1 (en) 2012-12-28 2014-07-03 Suncoke Technology And Development Llc. Vent stack lids and associated systems and methods
CN104902984B (en) 2012-12-28 2019-05-31 太阳焦炭科技和发展有限责任公司 System and method for removing the mercury in emission
US9273249B2 (en) 2012-12-28 2016-03-01 Suncoke Technology And Development Llc. Systems and methods for controlling air distribution in a coke oven
WO2014105063A1 (en) 2012-12-28 2014-07-03 Suncoke Technology And Development Llc. Systems and methods for maintaining a hot car in a coke plant
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US9193915B2 (en) 2013-03-14 2015-11-24 Suncoke Technology And Development Llc. Horizontal heat recovery coke ovens having monolith crowns
US9273250B2 (en) 2013-03-15 2016-03-01 Suncoke Technology And Development Llc. Methods and systems for improved quench tower design
JP2015086301A (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Coke production method
EP3090034B1 (en) 2013-12-31 2020-05-06 Suncoke Technology and Development LLC Methods for decarbonizing coking ovens, and associated systems and devices
JP5975191B2 (en) * 2014-03-28 2016-08-23 Jfeスチール株式会社 Coal mixture, method for producing coal mixture, and method for producing coke
CA2954063C (en) 2014-06-30 2022-06-21 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
CN106574189A (en) * 2014-08-15 2017-04-19 杰富意钢铁株式会社 Metallurgical coke and method of manufacturing same
UA123493C2 (en) 2014-08-28 2021-04-14 Санкоук Текнолоджі Енд Дівелепмент Ллк Method and system for optimizing coke plant operation and output
AU2015317909B2 (en) 2014-09-15 2020-11-05 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10975310B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
EP3240862A4 (en) 2015-01-02 2018-06-20 Suncoke Technology and Development LLC Integrated coke plant automation and optimization using advanced control and optimization techniques
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
KR102467182B1 (en) * 2015-12-17 2022-11-17 주식회사 포스코 Method for manufacturing coke
CA3203921A1 (en) 2015-12-28 2017-07-06 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
EP3465369A4 (en) 2016-06-03 2020-01-15 Suncoke Technology and Development LLC Methods and systems for automatically generating a remedial action in an industrial facility
WO2018217955A1 (en) 2017-05-23 2018-11-29 Suncoke Technology And Development Llc System and method for repairing a coke oven
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
WO2020140079A1 (en) 2018-12-28 2020-07-02 Suncoke Technology And Development Llc Decarbonizatign of coke ovens, and associated systems and methods
WO2020140086A1 (en) 2018-12-28 2020-07-02 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
BR112021012455B1 (en) 2018-12-28 2023-10-24 Suncoke Technology And Development Llc COKE OVEN
US11365355B2 (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
CA3125585C (en) 2018-12-31 2023-10-03 Suncoke Technology And Development Llc Improved systems and methods for utilizing flue gas
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
CN110491454B (en) * 2019-08-09 2022-11-18 中冶赛迪工程技术股份有限公司 Blast furnace smelting cost management method and system and computer-storable medium
CA3177017C (en) 2020-05-03 2024-04-16 John Francis Quanci High-quality coke products
CN115141639A (en) * 2021-03-28 2022-10-04 上海梅山钢铁股份有限公司 Sample arrangement device and method for coke dry quenching tank
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas
WO2023081821A1 (en) 2021-11-04 2023-05-11 Suncoke Technology And Development Llc Foundry coke products, and associated systems, devices, and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4048756B2 (en) * 2001-10-19 2008-02-20 住友金属工業株式会社 Coke production method with uniform quality
JP2007262296A (en) * 2006-03-29 2007-10-11 Jfe Steel Kk Method for producing metallurgical coke
JP2010043196A (en) * 2008-08-13 2010-02-25 Jfe Steel Corp Method for preparing high strength coke
JP2010190761A (en) * 2009-02-19 2010-09-02 Jfe Steel Corp Method for evaluating softening and melting characteristics of coal

Also Published As

Publication number Publication date
WO2012029979A1 (en) 2012-03-08
CN103154200A (en) 2013-06-12
JP2012072389A (en) 2012-04-12
KR101451050B1 (en) 2014-10-15
CN103154200B (en) 2015-04-01
KR20130059429A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5229362B2 (en) Method for producing metallurgical coke
JP5071578B2 (en) Preparation method of coal for coke production
JP5152378B2 (en) Method for producing metallurgical coke
WO2012029985A1 (en) Method for evaluating thermal plasticities of coal and caking additive and method for producing coke
JP6056157B2 (en) Coke blending coal composition determination method and coke manufacturing method
JP2010190761A (en) Method for evaluating softening and melting characteristics of coal
JP5578293B2 (en) Preparation method of coal for coke production
JP5201250B2 (en) Method for producing metallurgical coke and caking material for producing metallurgical coke
JP5062378B1 (en) Coke production method
JP5067495B2 (en) Method for producing metallurgical coke
JP6036891B2 (en) Coke production method
TWI457555B (en) Evaluation method of softening and melting of coal and binder and method for manufacturing coke

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120806

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250