JP5227965B2 - Nitrotriazole derivative and method for producing compound using the same - Google Patents

Nitrotriazole derivative and method for producing compound using the same Download PDF

Info

Publication number
JP5227965B2
JP5227965B2 JP2009536043A JP2009536043A JP5227965B2 JP 5227965 B2 JP5227965 B2 JP 5227965B2 JP 2009536043 A JP2009536043 A JP 2009536043A JP 2009536043 A JP2009536043 A JP 2009536043A JP 5227965 B2 JP5227965 B2 JP 5227965B2
Authority
JP
Japan
Prior art keywords
group
compound
μmol
general formula
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009536043A
Other languages
Japanese (ja)
Other versions
JPWO2009044707A1 (en
Inventor
幹子 袖岡
護 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2009536043A priority Critical patent/JP5227965B2/en
Publication of JPWO2009044707A1 publication Critical patent/JPWO2009044707A1/en
Application granted granted Critical
Publication of JP5227965B2 publication Critical patent/JP5227965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/14Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B43/00Formation or introduction of functional groups containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C329/00Thiocarbonic acids; Halides, esters or anhydrides thereof
    • C07C329/02Monothiocarbonic acids; Derivatives thereof
    • C07C329/04Esters of monothiocarbonic acids
    • C07C329/06Esters of monothiocarbonic acids having sulfur atoms of thiocarbonic groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C329/00Thiocarbonic acids; Halides, esters or anhydrides thereof
    • C07C329/02Monothiocarbonic acids; Derivatives thereof
    • C07C329/04Esters of monothiocarbonic acids
    • C07C329/10Esters of monothiocarbonic acids having sulfur atoms of thiocarbonic groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/301,4-Oxazines; Hydrogenated 1,4-oxazines not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring

Description

関連出願の相互参照Cross-reference of related applications

本出願は、2007年10月3日出願の日本特願2007−260255号および2007年12月28日出願の日本特願2007−338931号の優先権を主張し、それらの全記載は、ここに特に開示として援用される。   This application claims the priority of Japanese Patent Application No. 2007-260255 filed on Oct. 3, 2007 and Japanese Patent Application No. 2007-338931 filed on Dec. 28, 2007, the entire description of which is here Specifically incorporated by reference.

本発明は、3-nitro-1H-1,2,4-triazoleを基本骨格とする新規ニトロトリアゾール誘導体に関する。
更に本発明は、前記ニトロトリアゾール誘導体を使用し、保護基導入、医薬品合成のための試薬等として有用な化合物を製造する方法に関する。
The present invention relates to a novel nitrotriazole derivative having 3-nitro-1H-1,2,4-triazole as a basic skeleton.
Furthermore, the present invention relates to a method for producing a compound useful as a reagent for introducing a protective group, synthesizing a pharmaceutical, or the like, using the nitrotriazole derivative.

背景技術
カルバメート(carbamate)、カーボネート(carbonate)、チオカーボネート(thiocarbonate)は、合成化学において保護基導入のために多用される化合物であり、医薬品の合成中間体としても有用な化合物であるため、その需要は多い。現在、これらの合成のためには、Alkyl Chloroformate系の試薬、Succinimidyl/Benzotriazol-1-yl Carbamate系の試薬が主に使用されている(例えばWuts, P. G. M.; Greene, T. W. "Greene's PROTECTIVE GROUPS in ORGANIC SYNTHESIS 4th Ed." WILEY-INTERSCIENCE, New Jersey, 2007.参照、その全記載は、ここに特に開示として援用される。)。
Background Art Carbamate, carbonate, and thiocarbonate are compounds that are frequently used for the introduction of protecting groups in synthetic chemistry, and are also useful as synthetic intermediates for pharmaceuticals. There is much demand. At present, Alkyl Chloroformate type reagents and Succinimidyl / Benzotriazol-1-yl Carbamate type reagents are mainly used for these synthesis (for example, Wuts, PGM; Greene, TW "Greene's PROTECTIVE GROUPS in ORGANIC SYNTHESIS 4 th Ed. "WILEY-INTERSCIENCE, New Jersey, 2007., the entire description of which is hereby incorporated by reference.)

しかし、Alkyl Chloroformate系試薬は、独特の不快臭ある液体が多く、また熱的な安定性が低く取り扱いが困難である。更に長期保存できないものが多いため、使用直前に調製する必要がある。また、反応には塩基を必須とするため、塩基性条件下で不安定な置換基を有する化合物と反応させることができない。しかも、反応終了までに要する時間が長く、更に抽出・カラムクロマトグラフィーによる精製が必須であるため合成が長時間にわたり工程が煩雑になるという問題がある。また、Succinimidyl/Benzotriazol-1-yl Carbamate系試薬も、反応時間が長期にわたり、精製工程が必須である。
上記以外の試薬として、脱離基にアジドを有するものも知られているが、化合物の特性からスケールが大きくなるにしたがい取り扱いに注意を要する。
However, Alkyl Chloroformate type reagents have many liquids with unique unpleasant odors, and have low thermal stability and are difficult to handle. Furthermore, since there are many things which cannot be stored for a long time, it is necessary to prepare immediately before use. Further, since a base is essential for the reaction, it cannot be reacted with a compound having a substituent that is unstable under basic conditions. In addition, it takes a long time to complete the reaction, and further, there is a problem that the process becomes complicated over a long period of time because purification by extraction and column chromatography is essential. The Succinimidyl / Benzotriazol-1-yl Carbamate reagent also requires a long purification time and a purification process.
As other reagents, those having an azide as a leaving group are known, but due to the characteristics of the compound, handling is required with increasing scale.

発明の開示
そこで本発明の目的は、合成化学上有用なカルバメート、カーボネートおよびチオカーボネートを簡便な工程により合成するための合成試薬として有用な化合物を提供することにある。
DISCLOSURE OF THE INVENTION Accordingly, an object of the present invention is to provide a compound useful as a synthesis reagent for synthesizing carbamate, carbonate and thiocarbonate useful in synthetic chemistry by a simple process.

本発明者らは上記目的を達成するために鋭意検討を重ねた結果、3-nitro-1H-1,2,4-triazoleを基本骨格とする新規ニトロトリアゾール誘導体を見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found a novel nitrotriazole derivative having 3-nitro-1H-1,2,4-triazole as a basic skeleton, and have completed the present invention. It came.

本発明の一態様は、下記一般式(I)で表されるニトロトリアゾール誘導体に関する。

Figure 0005227965
[一般式(I)中、Rは、置換基を有していてもよいアリールオキシ基もしくはヘテロアリールオキシ基、置換基を有するメトキシ基もしくはエトキシ基、置換基を有していてもよい炭素数3〜30のアルキルオキシ基、置換基を有するメチル基、置換基を有していてもよい炭素数2〜30のアルキル基、または置換基を有していてもよいアリール基もしくはヘテロアリール基を表す。]One embodiment of the present invention relates to a nitrotriazole derivative represented by the following general formula (I).
Figure 0005227965
[In general formula (I), R represents an aryloxy group or heteroaryloxy group which may have a substituent, a methoxy group or an ethoxy group having a substituent, or a carbon number which may have a substituent. An alkyloxy group having 3 to 30; a methyl group having a substituent; an alkyl group having 2 to 30 carbon atoms which may have a substituent; or an aryl group or heteroaryl group which may have a substituent. Represent. ]

一般式(I)中、Rは、置換基を有するメトキシ基もしくはエトキシ基、または置換基を有していてもよい炭素数3〜30のアルキルオキシ基を表すことができる。   In general formula (I), R can represent a methoxy group or ethoxy group having a substituent, or an alkyloxy group having 3 to 30 carbon atoms which may have a substituent.

本発明の別の態様は、上記ニトロトリアゾール誘導体を、下記一般式(II):

Figure 0005227965
[一般式(II)中、Xはアミノ基、アルキルもしくはアリールアミノ基、アルキルもしくはアリールオキシ基またはアルキルもしくはアリールチオ基を表す。]
で表される化合物と反応させることにより、下記一般式(III):
Figure 0005227965
[一般式(III)中、Rは一般式(I)における定義と同義であり、Xは一般式(II)における定義と同義である。]
で表される化合物を製造する方法に関する。In another embodiment of the present invention, the nitrotriazole derivative is represented by the following general formula (II):
Figure 0005227965
[In the general formula (II), X represents an amino group, an alkyl or arylamino group, an alkyl or aryloxy group, or an alkyl or arylthio group. ]
Is reacted with a compound represented by the following general formula (III):
Figure 0005227965
[In general formula (III), R has the same definition as in general formula (I), and X has the same definition as in general formula (II). ]
It relates to the method of manufacturing the compound represented by these.

前記反応は、反応溶媒としてジクロロメタンおよび/またはクロロホルムを用いて行うことができる。   The reaction can be performed using dichloromethane and / or chloroform as a reaction solvent.

上記製造方法は、上記ニトロトリアゾール誘導体と、上記一般式(II)で表される化合物との反応混合物へ、ジクロロメタンおよび/またはクロロホルムを添加することを含むことができる。   The production method can include adding dichloromethane and / or chloroform to a reaction mixture of the nitrotriazole derivative and the compound represented by the general formula (II).

本発明のニトロトリアゾール誘導体は、高い結晶性を有し、潮解性がなく、安定で長期保存可能な結晶として得ることができる。また、基本骨格である3-nitro-1H-1,2,4-triazoleはジクロロメタンおよびクロロホルムへの溶解性が低いため、ジクロロメタンおよび/またはクロロホルムを反応溶媒として使用することで、脱離基として副生してくる3-nitro-1H-1,2,4-triazoleを反応系外に除去しながら、迅速かつ定量的に反応を進行させることができる。また、ほとんどの場合、目的物を得るためにカラムクロマトグラフィーによる精製は必須ではないため、簡便で環境にやさしいという利点もある。
更に、本発明のニトロトリアゾール誘導体は、上記目的物の合成において副生される3-nitro-1H-1,2,4-triazoleを回収・再利用することができるため、資源の再利用の面からも優れた試薬である。
The nitrotriazole derivative of the present invention has high crystallinity, does not have deliquescence, and can be obtained as a stable and long-term storable crystal. In addition, since 3-nitro-1H-1,2,4-triazole, which is the basic skeleton, has low solubility in dichloromethane and chloroform, by using dichloromethane and / or chloroform as a reaction solvent, a secondary group as a leaving group can be obtained. While removing the generated 3-nitro-1H-1,2,4-triazole out of the reaction system, the reaction can proceed rapidly and quantitatively. In addition, in most cases, purification by column chromatography is not essential to obtain the target product, so there is an advantage that it is simple and environmentally friendly.
Furthermore, since the nitrotriazole derivative of the present invention can recover and reuse 3-nitro-1H-1,2,4-triazole by-produced in the synthesis of the above-mentioned target product, the aspect of resource reuse It is also an excellent reagent.

発明を実施するための最良の形態
[新規ニトロトリアゾール誘導体]
本発明の新規ニトロトリアゾール誘導体は、下記一般式(I)で表される。

Figure 0005227965
BEST MODE FOR CARRYING OUT THE INVENTION
[New nitrotriazole derivatives]
The novel nitrotriazole derivative of the present invention is represented by the following general formula (I).
Figure 0005227965

一般式(I)中、Rは、置換基を有していてもよいアリールオキシ基もしくはヘテロアリールオキシ基、置換基を有するメトキシ基もしくはエトキシ基、置換基を有していてもよい炭素数3〜30のアルキルオキシ基、置換基を有するメチル基、置換基を有していてもよい炭素数2〜30のアルキル基、または置換基を有していてもよいアリール基もしくはヘテロアリール基を表す。
以下、本発明のニトロトリアゾール誘導体について、更に詳細に説明する。
In general formula (I), R is an aryloxy group or heteroaryloxy group which may have a substituent, a methoxy group or an ethoxy group having a substituent, or an optionally substituted carbon number 3 Represents an alkyloxy group having ˜30, a methyl group having a substituent, an alkyl group having 2 to 30 carbon atoms which may have a substituent, or an aryl group or heteroaryl group which may have a substituent; .
Hereinafter, the nitrotriazole derivative of the present invention will be described in more detail.

一般式(I)中、Rで表される基が置換基を有する場合、置換基としては、例えばアルキル基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、ヒドロキシル基、カルボキシル基、カルバモイル基、アリール基などを挙げることができる。アルキル基は、直鎖状、分岐状、環状のいずれでもよく、例えば、炭素数1〜30のアルキル基であることができ、具体的にはメチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ウンデシル基、ドデシル基、トリデシル基などを例示することができる。また、アリール基としては、ヘテロアリール基をも包含し、例えば、フェニル基、ナフチル基、アンスラニル基、ビフェニル基、4-ピリジル基、2-ピリジル基、イミダゾリル基、ピロリル基、インドリル基、フリル基を挙げることができる。   In the general formula (I), when the group represented by R has a substituent, examples of the substituent include an alkyl group, a halogen atom, a nitro group, an amino group, a cyano group, a hydroxyl group, a carboxyl group, a carbamoyl group, An aryl group etc. can be mentioned. The alkyl group may be linear, branched or cyclic, and can be, for example, an alkyl group having 1 to 30 carbon atoms, specifically, methyl group, propyl group, isopropyl group, butyl group, isobutyl. Examples thereof include a group, s-butyl group, t-butyl group, pentyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, undecyl group, dodecyl group, and tridecyl group. The aryl group also includes a heteroaryl group, for example, a phenyl group, a naphthyl group, an anthranyl group, a biphenyl group, a 4-pyridyl group, a 2-pyridyl group, an imidazolyl group, a pyrrolyl group, an indolyl group, a furyl group. Can be mentioned.

一般式(I)中、Rが置換基を有していてもよいアリールオキシ基である場合、アリールオキシ基に含まれるアリール環は、例えば炭素数3〜12であり、好ましくは6〜8であり、単環または多環のいずれでもよい。前記アリールオキシ基は、置換基を有していてもよい。前記アリールオキシ基としては、具体的には、置換または無置換のフェノキシ基、ナフトキシ基等を挙げることができ、より具体的には以下に示す置換アリールオキシ基を挙げることができる。なお、以下において、「・」は一般式(I)中のカルボニル(C=O)との結合位置を示す。また、以下に示す具体例の中には保護基として有用なものが含まれる。それらについては、保護基としての略称を、括弧書中に示す。本発明のニトロトリアゾール誘導体が保護基として有用な基を含む場合、後述する本発明の製造方法に用いることにより、保護基導入用試薬として有用な一般式(III)で表される化合物を得ることができる。   In the general formula (I), when R is an aryloxy group which may have a substituent, the aryl ring contained in the aryloxy group has, for example, 3 to 12 carbon atoms, preferably 6 to 8 carbon atoms. Yes, it may be monocyclic or polycyclic. The aryloxy group may have a substituent. Specific examples of the aryloxy group include substituted or unsubstituted phenoxy groups and naphthoxy groups, and more specific examples include the substituted aryloxy groups shown below. In the following, “•” represents a bonding position with carbonyl (C═O) in the general formula (I). Further, specific examples shown below include those useful as protecting groups. For these, the abbreviations as protecting groups are shown in parentheses. When the nitrotriazole derivative of the present invention contains a group useful as a protecting group, a compound represented by the general formula (III) useful as a protecting group introduction reagent is obtained by using it in the production method of the present invention described later. Can do.

Figure 0005227965
Figure 0005227965

一般式(I)中、Rが置換基を有していてもよいヘテロアリールオキシ基である場合、含まれるヘテロ原子としては、窒素原子(N)、酸素原子(O)、硫黄原子(S)、リン原子(P)を挙げることができる。前記ヘテロアリールオキシ基は、置換基を有することが好ましい。また、ヘテロアリールオキシ基に含まれるヘテロアリール環としては、5〜8員環が好ましく、単環または多環のいずれでもよい。ヘテロアリールオキシ基の具体例としては、置換または無置換のキノリロキシ基等を挙げることができ、より具体的には以下に示す置換ヘテロアリールオキシ基を挙げることができる。   In the general formula (I), when R is a heteroaryloxy group which may have a substituent, the hetero atom contained therein includes a nitrogen atom (N), an oxygen atom (O), a sulfur atom (S) And phosphorus atom (P). The heteroaryloxy group preferably has a substituent. Further, the heteroaryl ring contained in the heteroaryloxy group is preferably a 5- to 8-membered ring, and may be monocyclic or polycyclic. Specific examples of the heteroaryloxy group include a substituted or unsubstituted quinoloxy group, and more specifically include the following substituted heteroaryloxy groups.

Figure 0005227965
Figure 0005227965

一般式(I)中、Rは、置換基を有するメトキシ基もしくはエトキシ基、置換基を有していてもよい炭素数3〜30のアルキルオキシ基であることもできる。前記アルキルオキシ基が有するアルキル部分は、直鎖、分岐、環状またはそれらの組み合わせのいずれでもよく、炭素数は3〜30であり、好ましくは3〜6である。炭素数が上記範囲内であれば反応性が良好である。前記アルキルオキシ基は、置換基を有することが好ましい。前記置換メトキシ、置換エトキシ基および置換アルキルオキシ基の具体例を以下に示す。   In general formula (I), R may be a methoxy group or ethoxy group having a substituent, or an alkyloxy group having 3 to 30 carbon atoms which may have a substituent. The alkyl moiety of the alkyloxy group may be linear, branched, cyclic, or a combination thereof, and has 3 to 30 carbon atoms, preferably 3 to 6 carbon atoms. If the carbon number is within the above range, the reactivity is good. The alkyloxy group preferably has a substituent. Specific examples of the substituted methoxy, substituted ethoxy group and substituted alkyloxy group are shown below.

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

一般式(I)中、Rは、置換基を有するメチル基または置換基を有していてもよい炭素数2〜30のアルキル基であることもできる。Rが上記アルキル基であれば反応性が良好である。前記アルキル基は、直鎖であっても分岐を有してもよく環状構造を有していてもよい。その炭素数は2〜30であり、好ましくは2〜6である。前記アルキル基は置換基を有することが好ましい。前述の置換メチル基およびアルキル基の具体例を以下に示す。   In general formula (I), R may be a methyl group having a substituent or an alkyl group having 2 to 30 carbon atoms which may have a substituent. If R is the above alkyl group, the reactivity is good. The alkyl group may be linear or branched or may have a cyclic structure. The carbon number is 2-30, preferably 2-6. The alkyl group preferably has a substituent. Specific examples of the aforementioned substituted methyl group and alkyl group are shown below.

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

一般式(I)中、Rが置換基を有していてもよいアリール基である場合、該アリール基に含まれるアリール環の詳細は先にアリールオキシ基に含まれるアリール環について説明した通りである。また、Rが置換基を有していてもよいヘテロアリール基である場合、該ヘテロアリール基に含まれるヘテロ原子およびヘテロアリール環の詳細は、先にヘテロアリールオキシ基について説明した通りである。
以下に、前記アリール基およびヘテロアリール基の具体例を示す。
In the general formula (I), when R is an aryl group which may have a substituent, the details of the aryl ring contained in the aryl group are as described above for the aryl ring contained in the aryloxy group. is there. When R is a heteroaryl group which may have a substituent, details of the heteroatom and the heteroaryl ring contained in the heteroaryl group are as described above for the heteroaryloxy group.
Specific examples of the aryl group and heteroaryl group are shown below.

Figure 0005227965
Figure 0005227965

Figure 0005227965
Figure 0005227965

以上、一般式(I)中のRで表される基の具体例を示したが、本発明はこれら具体例に限定されるものではない。本発明のニトロトリアゾール誘導体を用いて得られる化合物の有用性、特に保護基導入用試薬としての有用性の点からは、Rは置換基を有するメトキシ基もしくはエトキシ基、または置換基を有していてもよい炭素数3〜30のアルキルオキシ基であることが好ましい。   Specific examples of the group represented by R in the general formula (I) are shown above, but the present invention is not limited to these specific examples. From the viewpoint of the usefulness of the compound obtained by using the nitrotriazole derivative of the present invention, particularly as a reagent for introducing a protecting group, R has a methoxy or ethoxy group having a substituent, or a substituent. It is preferably an alkyloxy group having 3 to 30 carbon atoms.

本発明のニトロトリアゾール誘導体は、ニトロトリアゾールに所望の置換基Rを導入することにより得ることができる。ニトロトリアゾールへの置換基Rの導入は、例えば、下記スキームIに従い、所望の置換基Rを有する酸ハライドをニトロトリアゾールと反応させることにより行うことができる。また、前記酸ハライドは市販品として入手可能なものもあり、公知の方法によって合成することもできる。例えば酸クロリドは、下記スキームII、IIIに示す文献公知の方法によって容易に合成することができる。   The nitrotriazole derivative of the present invention can be obtained by introducing a desired substituent R into nitrotriazole. Introduction of the substituent R into the nitrotriazole can be performed, for example, by reacting an acid halide having the desired substituent R with nitrotriazole according to the following scheme I. Some of the acid halides are commercially available, and can be synthesized by a known method. For example, acid chlorides can be easily synthesized by known methods shown in the following schemes II and III.

Figure 0005227965
[上記において、Yはハロゲン原子(例えば塩素原子)を表し、Rは一般式(I)における定義と同義である。]
Figure 0005227965
[In the above, Y represents a halogen atom (for example, chlorine atom), and R has the same definition as in formula (I). ]

上記反応は、適当な反応溶媒中、水素化ナトリウム、水素化カリウム、n-ブチルリチウム等の強塩基存在下で行うことができる。また、反応条件については後述の実施例も参照できる。また、目的のニトロトリアゾール誘導体が得られたことは、NMR、元素分析等の公知の同定方法によって確認することができる。なお、本発明のニトロトリアゾール化合物は、置換基Rの種類によっては塩を形成する場合があり、遊離の状態または塩の状態で水和物または溶媒和物を形成することもあるが、これらの状態も本発明の範囲に含まれるものとする。また、本発明のニトロトリアゾール誘導体は、高い結晶性を有し、かつ潮解性がない結晶として得ることができる。こうして得られた結晶は、長期保存が可能であるため、合成後、使用時まで保存しておくことが可能である。   The above reaction can be performed in a suitable reaction solvent in the presence of a strong base such as sodium hydride, potassium hydride, or n-butyllithium. Moreover, the below-mentioned Example can also be referred about reaction conditions. Moreover, it can confirm that the target nitrotriazole derivative was obtained by well-known identification methods, such as NMR and elemental analysis. The nitrotriazole compound of the present invention may form a salt depending on the type of the substituent R, and may form a hydrate or a solvate in a free state or a salt state. The state is also included in the scope of the present invention. The nitrotriazole derivative of the present invention can be obtained as a crystal having high crystallinity and no deliquescence. Since the crystals thus obtained can be stored for a long time, they can be stored after synthesis until use.

[化合物の製造方法]
本発明は、一般式(I)で表されるニトロトリアゾール誘導体を、下記一般式(II):

Figure 0005227965
[一般式(II)中、Xはアミノ基、アルキルもしくはアリールアミノ基、アルキルもしくはアリールオキシ基またはアルキルもしくはアリールチオ基を表す。]
で表される化合物と反応させることにより、下記一般式(III):
Figure 0005227965
[一般式(III)中、Rは一般式(I)における定義と同義であり、Xは一般式(II)における定義と同義である。]
で表される化合物を製造する方法に関する。[Method for producing compound]
The present invention relates to a nitrotriazole derivative represented by the general formula (I) represented by the following general formula (II):
Figure 0005227965
[In the general formula (II), X represents an amino group, an alkyl or arylamino group, an alkyl or aryloxy group, or an alkyl or arylthio group. ]
Is reacted with a compound represented by the following general formula (III):
Figure 0005227965
[In general formula (III), R has the same definition as in general formula (I), and X has the same definition as in general formula (II). ]
It relates to the method of manufacturing the compound represented by these.

一般式(II)中、Xはアミノ基、アルキルもしくはアリールアミノ基、アルキルもしくはアリールオキシ基またはアルキルもしくはアリールチオ基を表す。Xで表されるアルキルアミノ基は、モノアルキルアミノ基であってもジアルキルアミノ基であってもアリールアミノ基であってもよい。モノアルキルアミノ基 として、メチルアミノ基、エチルアミノ基、n−プロピルアミノ基、イソプロピルアミノ基、n−ブチルアミノ基、イソブチルアミノ基、1−フェニルエチルアミノ基、2−フェニルエチルアミノ基、1−ナフチルメチルアミノ基等を挙げることができる。ジアルキルアミノ基としては、上記モノアルキルアミノ基の窒素原子上にアルキル基が1つ置換したものを挙げることができる。置換するアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、炭素数1〜30のアルキル基であることができ、具体的にはメチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ウンデシル基、ドデシル基、トリデシル基などを例示することができる。アリールアミノ基としては、アミノ基の窒素原子上にアリール基が1つ置換したものを挙げることができる。置換するアリール基としては、ヘテロアリール基をも包含し、例えば、フェニル基、ナフチル基、アンスラニル基、ビフェニル基、4−ピリジル基、2−ピリジル基、イミダゾリル基、ピロリル基、インドリル基、フリル基、プリン基、ピリミジン基などを例示することができる。   In the general formula (II), X represents an amino group, an alkyl or arylamino group, an alkyl or aryloxy group, or an alkyl or arylthio group. The alkylamino group represented by X may be a monoalkylamino group, a dialkylamino group, or an arylamino group. As monoalkylamino group, methylamino group, ethylamino group, n-propylamino group, isopropylamino group, n-butylamino group, isobutylamino group, 1-phenylethylamino group, 2-phenylethylamino group, 1- A naphthylmethylamino group etc. can be mentioned. Examples of the dialkylamino group include those in which one alkyl group is substituted on the nitrogen atom of the monoalkylamino group. The substituted alkyl group may be linear, branched or cyclic, and can be, for example, an alkyl group having 1 to 30 carbon atoms, specifically a methyl group, a propyl group, an isopropyl group, butyl. Examples thereof include a group, isobutyl group, s-butyl group, t-butyl group, pentyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, undecyl group, dodecyl group, and tridecyl group. Examples of the arylamino group include those in which one aryl group is substituted on the nitrogen atom of the amino group. The substituted aryl group also includes a heteroaryl group, for example, a phenyl group, a naphthyl group, an anthranyl group, a biphenyl group, a 4-pyridyl group, a 2-pyridyl group, an imidazolyl group, a pyrrolyl group, an indolyl group, a furyl group. , Purine groups, pyrimidine groups, and the like.

一般式(II)中、Xで表されるアルキルオキシ基、アルキルチオ基が有するアルキル部分の詳細は、先にモノアルキルアミノ基を置換するアルキル基について説明した通りである。Xで表されるアルキルオキシ基の具体例としては、直鎖状、分岐状、環状のいずれでもよく、例えば、炭素数1〜30のアルキルオキシ基であることができ、具体的にはメトキシ基、プロピルオキシ基、2−プロピルオキシ基、1−ブチルオキシ基、2−ブチルオキシ基、t-ブチルオキシ基、ペンチルオキシ基、シクロプロパノキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基などを挙げることができ、Xで表されるアリールオキシ基の具体例としては、ヘテロアリール基をも包含し、例えば、フェニルオキシ基、ナフチルオキシ基、アンスラニルオキシ基、ビフェニルオキシ基、4−ピリジルオキシ基、2−ピリジルオキシ基、ベンゾトリアゾルオキシ基、フラン−2−オキシ基などを例示することができ、Xで表されるアルキルチオ基の具体例としては、直鎖状、分岐状、環状のいずれでもよく、例えば、炭素数1〜30のアルキルチオ基であることができ、具体的にはメチルチオ基、プロピルチオ基、2−プロピルチオ基、ブチルチオ基、1−ブチルチオ基、s−ブチルチオ基、t−ブチルチオ基、ペンチルチオ基、シクロプロピルチオ基、シクロブチルチオ基、シクロペンチルチオ基、シクロヘキシルチオ基、ウンデシルチオ基、ドデシルチオ基、トリデシルチオ基などを挙げることができ、Xで表されるアリールチオ基の具体例としては、ヘテロアリール基をも包含し、例えば、フェニルチオ基、p−フェニルチオ基、ナフチルチオ基、アンスラニルチオ基、ビフェニルチオ基、ベンゾチアゾール−2−チオ基などを例示することができる。   In the general formula (II), the details of the alkyl moiety of the alkyloxy group and alkylthio group represented by X are as described above for the alkyl group substituting the monoalkylamino group. Specific examples of the alkyloxy group represented by X may be linear, branched or cyclic, and may be, for example, an alkyloxy group having 1 to 30 carbon atoms, specifically a methoxy group. Propyloxy group, 2-propyloxy group, 1-butyloxy group, 2-butyloxy group, t-butyloxy group, pentyloxy group, cyclopropanoxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, un A decyloxy group, a dodecyloxy group, a tridecyloxy group, etc. can be mentioned. Specific examples of the aryloxy group represented by X include a heteroaryl group, for example, a phenyloxy group, a naphthyloxy group. , Anthranyloxy group, biphenyloxy group, 4-pyridyloxy group, 2-pyridyloxy group, benzotri A soloxy group, a furan-2-oxy group, and the like can be exemplified, and specific examples of the alkylthio group represented by X may be linear, branched, or cyclic. Specifically, a methylthio group, a propylthio group, a 2-propylthio group, a butylthio group, a 1-butylthio group, a s-butylthio group, a t-butylthio group, a pentylthio group, a cyclopropylthio group, A cyclobutylthio group, a cyclopentylthio group, a cyclohexylthio group, an undecylthio group, a dodecylthio group, a tridecylthio group, and the like can be mentioned. Specific examples of the arylthio group represented by X include a heteroaryl group, for example, , Phenylthio group, p-phenylthio group, naphthylthio group, anthranylthio group, biphenylthio group Examples include o group and benzothiazole-2-thio group.

以上説明したアミノ基、アルキルアミノ基、アリールアミノ基、アルキルオキシ基、アリールオキシ基、アルキルチオ基およびアリールチオ基は、それぞれ置換基を有することできる。置換基としては、一般式(I)中のRが有し得る置換基として挙げたものを例示できる。   The amino group, alkylamino group, arylamino group, alkyloxy group, aryloxy group, alkylthio group, and arylthio group described above can each have a substituent. Examples of the substituent include those exemplified as the substituent that R in the general formula (I) may have.

一般式(II)で表される化合物は、公知の方法で合成することができ、また市販品として入手可能なものもある。公知の方法の詳細については、Larock, R. C. In Comprehensive Organic Transformations: a guide to functional group preparations 2nd Ed.; Wiley-VCH: 1999.を参照することができる。その全記載は、ここに特に開示として援用される。The compound represented by the general formula (II) can be synthesized by a known method, and some compounds are commercially available. For more information about known methods, Larock, RC In Comprehensive Organic Transformations : a guide to functional group preparations 2 nd Ed .; Wiley-VCH: reference may be made to 1999.. The entire description is hereby specifically incorporated by reference.

本発明の一般式(III)で表される化合物の製造方法では、一般式(I)で表されるニトロトリアゾール誘導体と一般式(II)で表される化合物とを適当な反応溶媒中で反応させることにより、一般式(III)で表される化合物を得ることができる。反応溶媒としては、ジクロロメタン、クロロホルム、アセトニトリル、酢酸エチル、テトラヒドロフラン(THF)、水−ジクロロメタン混合溶媒、水−クロロホルム混合溶媒、水−酢酸エチル混合溶媒、水−テトラヒドロフラン(THF)混合溶媒等を使用することができる。ニトロトリアゾールはジクロロメタンおよびクロロホルムへの溶解性に乏しいため、反応溶媒としてジクロロメタンおよび/またはクロロホルムを使用することにより、脱離基として副生してくる3-nitro-1H-1,2,4-triazoleを反応系外に除去しながら、迅速かつ定量的に反応を進行させることができる。または、反応混合物へジクロロメタンおよび/またはクロロホルムを添加することにより、副生してくる3-nitro-1H-1,2,4-triazoleを反応系外に除去しながら、迅速かつ定量的に反応を進行させることもできる。また、反応により副生する3-nitro-1H-1,2,4-triazoleは反応後、容易に回収可能である。回収された3-nitro-1H-1,2,4-triazoleは、一般式(I)で表される化合物の合成のために再利用できる。この点は、資源の再利用の面で好ましく、本発明の大きな利点である。   In the method for producing a compound represented by the general formula (III) of the present invention, the nitrotriazole derivative represented by the general formula (I) and the compound represented by the general formula (II) are reacted in an appropriate reaction solvent. Thus, a compound represented by the general formula (III) can be obtained. As the reaction solvent, dichloromethane, chloroform, acetonitrile, ethyl acetate, tetrahydrofuran (THF), water-dichloromethane mixed solvent, water-chloroform mixed solvent, water-ethyl acetate mixed solvent, water-tetrahydrofuran (THF) mixed solvent, etc. are used. be able to. Nitrotriazole is poorly soluble in dichloromethane and chloroform, so by using dichloromethane and / or chloroform as a reaction solvent, 3-nitro-1H-1,2,4-triazole is generated as a by-product as a leaving group. The reaction can proceed promptly and quantitatively while removing from the reaction system. Alternatively, by adding dichloromethane and / or chloroform to the reaction mixture, 3-nitro-1H-1,2,4-triazole, which is a by-product, is removed from the reaction system, and the reaction is performed quickly and quantitatively. It can also be advanced. In addition, 3-nitro-1H-1,2,4-triazole by-produced by the reaction can be easily recovered after the reaction. The recovered 3-nitro-1H-1,2,4-triazole can be reused for the synthesis of the compound represented by the general formula (I). This is preferable in terms of resource reuse, and is a great advantage of the present invention.

本発明の製造方法の具体的態様としては、下記方法A〜Fを挙げることができる。方法Aは、一般式(II)中のXがアミノ基またはアルキルもしくはアリールアミノ基である場合、即ち一般式(II)で表される化合物がアミンである場合に好適である。方法Bは、一般式(II)で表される化合物がアミンであって、目的物をより高純度に得たい場合に好適であり、態様Dは更に高純度に得たい場合に好適である。中でも方法Aは塩基や活性化試薬を必要としないため、系内に析出してくるニトロトリアゾールをろ別するのみで目的物を得ることができる簡便な方法である。また、方法C、Eは、一般式(II)で表される化合物がアミン(中でも求核力が比較的弱いアミン)である場合に使用することができ、一般式(II)中のXがアルキルもしくはアリールオキシ基またはアルキルもしくはアリールチオ基である場合、即ち一般式(II)で表される化合物がアルコールまたはチオールである場合にも使用することができる。方法Cは、一般式(II)で表される化合物がアミンまたはチオールである場合に好適であり、方法Eは一般式(II)で表される化合物がアルコールである場合に好適である。また、各方法において、反応は0〜40℃程度、具体的には室温下で行うことができ、反応時間は5分〜24時間程度とすることができる。   Specific embodiments of the production method of the present invention include the following methods A to F. Method A is suitable when X in the general formula (II) is an amino group or an alkyl or arylamino group, that is, when the compound represented by the general formula (II) is an amine. Method B is suitable when the compound represented by the general formula (II) is an amine and the target product is to be obtained with higher purity, and the embodiment D is suitable when it is desired to obtain higher purity. Among them, since the method A does not require a base or an activating reagent, it is a simple method that can obtain the target product only by filtering out the nitrotriazole precipitated in the system. Methods C and E can be used when the compound represented by the general formula (II) is an amine (particularly an amine having a relatively weak nucleophilic power), and X in the general formula (II) is It can also be used when it is an alkyl or aryloxy group or an alkyl or arylthio group, that is, when the compound represented by the general formula (II) is an alcohol or a thiol. Method C is suitable when the compound represented by the general formula (II) is an amine or thiol, and Method E is suitable when the compound represented by the general formula (II) is an alcohol. In each method, the reaction can be performed at about 0 to 40 ° C., specifically at room temperature, and the reaction time can be about 5 minutes to 24 hours.

方法A
反応溶媒中、一般式(I)で表されるニトロトリアゾール誘導体を一般式(II)で表される化合物と攪拌し、析出してきたニトロトリアゾールをろ別し、溶媒を留去することで一般式(III)で表される目的化合物を得る。ここで、一般式(I)で表されるニトロトリアゾール誘導体と一般式(II)で表される化合物の混合比は、モル比で1:1とする。また、反応溶媒の量は、一般式(I)で表されるニトロトリアゾール誘導体の濃度で0.1〜1M程度とすることができる。
Method A
In the reaction solvent, the nitrotriazole derivative represented by the general formula (I) is stirred with the compound represented by the general formula (II), the precipitated nitrotriazole is filtered off, and the solvent is distilled off to remove the general formula. The target compound represented by (III) is obtained. Here, the mixing ratio of the nitrotriazole derivative represented by the general formula (I) and the compound represented by the general formula (II) is 1: 1 as a molar ratio. The amount of the reaction solvent can be about 0.1 to 1M in terms of the concentration of the nitrotriazole derivative represented by the general formula (I).

方法B
反応溶媒中、一般式(I)で表されるニトロトリアゾール誘導体を一般式(II)で表される化合物と攪拌した後、洗浄および乾燥し、溶媒を留去することで一般式(III)で表される目的化合物を得る。ここで、反応溶媒としてジクロロメタンおよび/もしくはクロロホルムを使用すること、ならびに/または、一般式(I)で表されるニトロトリアゾール誘導体と一般式(II)で表される化合物との反応混合物へジクロロメタンおよび/もしくはクロロホルムを添加することが、副生物である3-nitro-1H-1,2,4-triazoleを反応系外に除去しながら、迅速かつ定量的に反応を進行させることができるため好ましい。具体的には、一般式(I)で表されるニトロトリアゾール誘導体をジクロロメタンおよび/またはクロロホルム中に添加し、一般式(II)で表される化合物を加え攪拌した後、更にジクロロメタンを加え、飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を留去することで目的物を得る。または、ジクロロメタンおよび/またはクロロホルム以外の反応溶媒を使用する場合は反応混合物へジクロロメタンおよび/またはクロロホルムを添加した後、飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を留去することで目的物を得ることもできる。一般式(I)で表されるニトロトリアゾール誘導体と一般式(II)で表される化合物との混合比および添加量については、方法Aについて前述した通りである。
Method B
After stirring the nitrotriazole derivative represented by the general formula (I) with the compound represented by the general formula (II) in the reaction solvent, washing and drying, and distilling off the solvent, the general formula (III) The target compound represented is obtained. Here, dichloromethane and / or chloroform is used as a reaction solvent, and / or dichloromethane and a reaction mixture of a nitrotriazole derivative represented by the general formula (I) and a compound represented by the general formula (II) Addition of chloroform is preferable because the reaction can proceed rapidly and quantitatively while removing 3-nitro-1H-1,2,4-triazole as a by-product from the reaction system. Specifically, the nitrotriazole derivative represented by the general formula (I) is added to dichloromethane and / or chloroform, the compound represented by the general formula (II) is added and stirred, and further dichloromethane is added and saturated. After washing with an aqueous sodium hydrogen carbonate solution and drying over anhydrous sodium sulfate, the target product is obtained by distilling off the solvent. Alternatively, when using a reaction solvent other than dichloromethane and / or chloroform, add dichloromethane and / or chloroform to the reaction mixture, then wash with saturated aqueous sodium bicarbonate, dry over anhydrous sodium sulfate, and then evaporate the solvent. By doing so, the target object can be obtained. The mixing ratio and the addition amount of the nitrotriazole derivative represented by the general formula (I) and the compound represented by the general formula (II) are as described above for the method A.

方法C
反応溶媒中、一般式(I)で表されるニトロトリアゾール誘導体、一般式(II)で表される化合物および塩基を加え、攪拌する。次いで、洗浄および乾燥した後、溶媒を留去することで一般式(III)で表される目的化合物を得る。具体的には、一般式(I)で表されるニトロトリアゾール誘導体をジクロロメタンおよび/またはクロロホルム中に添加し、一般式(II)で表される化合物および塩基(例えばトリエチルアミン、2,6−ルチジン等)を加え攪拌した後、更にジクロロメタンを加え、飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を留去することで目的物を得る。一般式(I)で表されるニトロトリアゾール誘導体と一般式(II)で表される化合物との混合比および添加量については、態様Aについて前述した通りである。また塩基の使用量は、例えば1〜10当量程度とすることができる。
Method C
In a reaction solvent, a nitrotriazole derivative represented by the general formula (I), a compound represented by the general formula (II) and a base are added and stirred. Next, after washing and drying, the target compound represented by the general formula (III) is obtained by distilling off the solvent. Specifically, a nitrotriazole derivative represented by the general formula (I) is added to dichloromethane and / or chloroform, and a compound represented by the general formula (II) and a base (for example, triethylamine, 2,6-lutidine, etc.) ) And stirred, further dichloromethane is added, washed with a saturated aqueous solution of sodium bicarbonate, dried over anhydrous sodium sulfate, and the solvent is distilled off to obtain the desired product. The mixing ratio and the addition amount of the nitrotriazole derivative represented by the general formula (I) and the compound represented by the general formula (II) are as described above for the embodiment A. Moreover, the usage-amount of a base can be about 1-10 equivalent, for example.

方法D
方法Bにおいて、溶媒を留去し、残渣をカラムクロマトグラフィーで分離精製することにより、目的化合物を得る。ただし、一般式(I)で表されるニトロトリアゾール誘導体と一般式(II)で表される化合物の混合比は、モル比で、例えば1:1〜5:1程度とする。
Method D
In Method B, the solvent is distilled off, and the residue is separated and purified by column chromatography to obtain the target compound. However, the mixing ratio of the nitrotriazole derivative represented by the general formula (I) and the compound represented by the general formula (II) is a molar ratio, for example, about 1: 1 to 5: 1.

方法E
方法Cにおいて、溶媒を留去し、残渣をカラムクロマトグラフィーで分離精製することにより、目的化合物を得る。ただし、一般式(I)で表されるニトロトリアゾール誘導体と一般式(II)で表される化合物の混合比は、モル比で、例えば1:1〜5:1程度とする。
Method E
In Method C, the solvent is distilled off, and the residue is separated and purified by column chromatography to obtain the target compound. However, the mixing ratio of the nitrotriazole derivative represented by the general formula (I) and the compound represented by the general formula (II) is a molar ratio, for example, about 1: 1 to 5: 1.

方法F
反応溶媒中、一般式(I)で表されるニトロトリアゾール誘導体、一般式(II)で表される化合物および塩基を加え、攪拌する。次いで、洗浄および乾燥した後、溶媒を留去することで一般式(III)で表される目的化合物を得る。具体的には、一般式(I)で表されるニトロトリアゾール誘導体を5% NaHCO3水溶液とジクロロメタン混合溶媒中に添加し、一般式(II)で表される化合物を加え攪拌した後、更にジクロロメタンを加え、飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を留去することで目的物を得る。一般式(I)で表されるニトロトリアゾール誘導体と一般式(II)で表される化合物との混合比および添加量については、方法Aについて前述した通りである。
Method F
In a reaction solvent, a nitrotriazole derivative represented by the general formula (I), a compound represented by the general formula (II) and a base are added and stirred. Next, after washing and drying, the target compound represented by the general formula (III) is obtained by distilling off the solvent. Specifically, the nitrotriazole derivative represented by the general formula (I) was added to a mixed solvent of 5% NaHCO 3 aqueous solution and dichloromethane, the compound represented by the general formula (II) was added and stirred, and further dichloromethane was added. After washing with a saturated aqueous solution of sodium bicarbonate and drying over anhydrous sodium sulfate, the solvent is distilled off to obtain the desired product. The mixing ratio and the addition amount of the nitrotriazole derivative represented by the general formula (I) and the compound represented by the general formula (II) are as described above for the method A.

本発明の製造方法により、合成化学において保護基導入試薬、医薬品等の合成中間体等として有用なカルバメート、カーボネートおよびチオカーボネートを得ることができる。本発明の製造方法によれば、塩基や活性化試薬を使用することなく目的物質を得ることも可能である。この場合、系内に析出してくる3-nitro-1H-1,2,4-triazoleをろ別するのみで目的物質を得ることができる。また、反応溶媒としてジクロロメタンを使用する場合、ジクロロメタンにわずかに溶解した3-nitro-1H-1,2,4-triazoleは、必要に応じて洗浄により完全に除去することが可能である。   By the production method of the present invention, carbamates, carbonates and thiocarbonates useful as synthetic intermediates for protecting group introduction reagents, pharmaceuticals and the like in synthetic chemistry can be obtained. According to the production method of the present invention, a target substance can be obtained without using a base or an activating reagent. In this case, the target substance can be obtained only by filtering out 3-nitro-1H-1,2,4-triazole precipitated in the system. When dichloromethane is used as the reaction solvent, 3-nitro-1H-1,2,4-triazole slightly dissolved in dichloromethane can be completely removed by washing as necessary.

更に、前記方法A〜Cは、カラムクロマトグラフィーによる精製を行うことなく目的物質を得ることができるため、簡便かつ環境にやさしい方法である。更に、先に説明したように反応溶媒としてジクロロメタンを使用することにより、3-nitro-1H-1,2,4-triazoleの回収・再利用が可能であることから、資源の再利用の面でも優れた方法である。   Furthermore, the methods A to C are simple and environmentally friendly methods because the target substance can be obtained without performing purification by column chromatography. Furthermore, as described above, by using dichloromethane as a reaction solvent, 3-nitro-1H-1,2,4-triazole can be recovered and reused, so that it can be used in the reuse of resources. It is an excellent method.

実施例
以下に、本発明を実施例により更に説明する。ただし、本発明は実施例に示す態様に限定されるものではない。また、以下において「NT」とは、3-nitro-1H-1,2,4-triazoleを示す。
Examples Hereinafter, the present invention will be further described by way of examples. However, this invention is not limited to the aspect shown in the Example. In the following, “NT” refers to 3-nitro-1H-1,2,4-triazole.

[合成例1]
Benzyl 3-nitro-1H-1,2,4-triazole-1-carboxylateの合成
[Synthesis Example 1]
Synthesis of Benzyl 3-nitro-1H-1,2,4-triazole-1-carboxylate

Figure 0005227965
Figure 0005227965

上記合成スキームに従い、以下の方法によりBenzyl 3-nitro-1H-1,2,4-triazole-1-carboxylate(以下、「Z-NT」という)を合成した。
NaH(60質量% in paraffin liquid)411.2 mgをAr雰囲気下、ヘキサン(10 ml×3)で共沸乾燥後、減圧乾燥し、NaH 249.6 mg(10.4 mmol)を得た。これに対し、Ar雰囲気下、ピリジン(5 ml×3)、トルエン(5 ml×3)で共沸乾燥したNT 1.19 g(10.4 mmol)のTHF溶液(30 ml)を加え、0 ℃で10分間攪拌した。溶液を0 ℃で攪拌しつつ、Z-Cl 1.48 ml(10.4 mmol)を加え、0 ℃で30分間攪拌後、室温で12時間攪拌した。塩をろ別し、溶媒を留去した後、EtOAcより再結晶を行い、目的化合物(収率95%。針状結晶。薄黄色)を得た。同定結果を以下に示す。
mp: 112-113 ℃ (dec.); 1H NMR (400 MHz, CDCl3) δ 8.99 (1H, s), 7.55-7.42 (5H, m), 5.54 (2H, s); 13C NMR (125 MHz, CDCl3) δ 163.1, 147.1, 146.0, 132.4, 129.9, 129.4, 129.0, 72.5; Anal. calcd for for C10H8N4O4・1/4H2O: C, 47.53; H, 3.39; N, 22.17. Found: C, 47.37; H, 3.32; N, 22.04.
According to the above synthesis scheme, Benzyl 3-nitro-1H-1,2,4-triazole-1-carboxylate (hereinafter referred to as “Z-NT”) was synthesized by the following method.
NaH (60 mass% in paraffin liquid) 411.2 mg was azeotropically dried with hexane (10 ml × 3) in an Ar atmosphere and then dried under reduced pressure to obtain NaH 249.6 mg (10.4 mmol). On the other hand, a THF solution (30 ml) of NT 1.19 g (10.4 mmol) azeotropically dried with pyridine (5 ml × 3) and toluene (5 ml × 3) was added under Ar atmosphere, and 10 minutes at 0 ° C. Stir. While the solution was stirred at 0 ° C, 1.48 ml (10.4 mmol) of Z-Cl was added, stirred at 0 ° C for 30 minutes, and then stirred at room temperature for 12 hours. The salt was filtered off and the solvent was distilled off, followed by recrystallization from EtOAc to obtain the target compound (yield 95%, needle-like crystals, light yellow). The identification results are shown below.
mp: 112-113 ° C (dec.); 1 H NMR (400 MHz, CDCl 3 ) δ 8.99 (1H, s), 7.55-7.42 (5H, m), 5.54 (2H, s); 13 C NMR (125 MHz, CDCl 3 ) δ 163.1, 147.1, 146.0, 132.4, 129.9, 129.4, 129.0, 72.5; Anal.calcd for for C 10 H 8 N 4 O 4・ 1 / 4H 2 O: C, 47.53; H, 3.39; N, 22.17. Found: C, 47.37; H, 3.32; N, 22.04.

[合成例2]
2,2,2-Trichloroethyl 3-nitro-1H-1,2,4-triazole-1-carboxylateの合成
出発物質を変更した点を除き、合成例1と同様の方法により、2,2,2-Trichloroethyl 3-nitro-1H-1,2,4-triazole-1-carboxylate(以下、「Troc-NT」という)を合成した(収率92%、角柱状結晶、薄黄色)。合成スキームおよび同定結果を以下に示す。
[Synthesis Example 2]
The synthesis of 2,2,2-Trichloroethyl 3-nitro-1H-1,2,4-triazole-1-carboxylate was carried out in the same manner as in Synthesis Example 1 except that the starting material was changed. Trichloroethyl 3-nitro-1H-1,2,4-triazole-1-carboxylate (hereinafter referred to as “Troc-NT”) was synthesized (yield 92%, prismatic crystals, light yellow). A synthesis scheme and identification results are shown below.

Figure 0005227965
Figure 0005227965

mp: 145-146 ℃ (dec.); 1H NMR (400 MHz, CDCl3) δ 8.96 (1H, s), 5.17 (2H, s); 13C NMR (125 MHz, CD3CN) δ 164.2, 149.6, 146.1, 94.0, 78.0; Anal. calcd for C5H3Cl3N4O4: C, 20.75; H, 1.04; N, 19.36. Found: C, 20.08; H, 1.07; N, 19.65.mp: 145-146 ° C (dec.); 1 H NMR (400 MHz, CDCl 3 ) δ 8.96 (1H, s), 5.17 (2H, s); 13 C NMR (125 MHz, CD 3 CN) δ 164.2, 149.6, 146.1, 94.0, 78.0; Anal.calcd for C 5 H 3 Cl 3 N 4 O 4 : C, 20.75; H, 1.04; N, 19.36.Found: C, 20.08; H, 1.07; N, 19.65.

[合成例3]
9H-Fluorenylmethyl 3-nitro-1H-1,2,4-triazole-1-carboxylateの合成
出発物質を変更した点を除き、合成例1と同様の方法により、9H-Fluorenylmethyl 3-nitro-1H-1,2,4-triazole-1-carboxylate(以下、「Fmoc-NT」という)を合成した(収率95%、針状結晶、薄黄色)。合成スキームおよび同定結果を以下に示す。
[Synthesis Example 3]
Synthesis of 9H-Fluorenylmethyl 3-nitro-1H-1,2,4-triazole-1-carboxylate 9H-Fluorenylmethyl 3-nitro-1H-1 by the same method as in Synthesis Example 1 except that the starting material was changed. , 2,4-triazole-1-carboxylate (hereinafter referred to as “Fmoc-NT”) was synthesized (yield 95%, needle-like crystals, light yellow). A synthesis scheme and identification results are shown below.

Figure 0005227965
Figure 0005227965

mp: 170-171 ℃ (dec.); 1H NMR (400 MHz, CDCl3) δ 8.71 (1H, s), 7.80 (2H, d, J = 7.3 Hz), 7.64 (2H, d, J = 7.3 Hz), 7.45 (2H, t, J = 7.3 Hz), 7.35 (2H, t, J = 7.3 Hz), 4.86 (2H, d, J = 7.1 Hz), 4.45 (1H, t, J = 7.1 Hz); 13C NMR (125 MHz, CD3COCD3) δ 164.1, 149.1, 147.1, 143.7, 142.1, 129.0, 128.2, 126.2, 121.0, 72.4, 47.1; Anal. calcd for C17H12N4O4: C, 60.71; H, 3.60; N, 16.66. Found: C, 60.57; H, 3.69; N, 16.87.mp: 170-171 ° C (dec.); 1 H NMR (400 MHz, CDCl 3 ) δ 8.71 (1H, s), 7.80 (2H, d, J = 7.3 Hz), 7.64 (2H, d, J = 7.3 Hz), 7.45 (2H, t, J = 7.3 Hz), 7.35 (2H, t, J = 7.3 Hz), 4.86 (2H, d, J = 7.1 Hz), 4.45 (1H, t, J = 7.1 Hz) ; 13 C NMR (125 MHz, CD 3 COCD 3 ) δ 164.1, 149.1, 147.1, 143.7, 142.1, 129.0, 128.2, 126.2, 121.0, 72.4, 47.1; Anal.calcd for C 17 H 12 N 4 O 4 : C , 60.71; H, 3.60; N, 16.66. Found: C, 60.57; H, 3.69; N, 16.87.

[合成例4]
2-(Trimethylsilyl)ethyl 3-nitro-1H-1,2,4-triazole-1-carboxylateの合成
出発物質を変更した点を除き、合成例1と同様の方法により、2-(trimethylsilyl)ethyl 3-nitro-1H-1,2,4-triazole-1-carboxylate(以下、「Teoc-NT」という)を合成した(収率96%、針状結晶、薄黄色)。合成スキームおよび同定結果を以下に示す。
[Synthesis Example 4]
Synthesis of 2- (Trimethylsilyl) ethyl 3-nitro-1H-1,2,4-triazole-1-carboxylate 2- (trimethylsilyl) ethyl 3 in the same manner as in Synthesis Example 1, except that the starting material was changed. -nitro-1H-1,2,4-triazole-1-carboxylate (hereinafter referred to as “Teoc-NT”) was synthesized (yield 96%, needle-like crystals, light yellow). A synthesis scheme and identification results are shown below.

Figure 0005227965
Figure 0005227965

mp: 85-86 ℃ (dec.); 1H NMR (500 MHz, CD3CN) δ 8.97 (1H, s), 4.67-4.60 (2H, m), 1.27-1.20 (2H, m), 0.08 (9H, s); 13C NMR (125 MHz, CD3CN) δ164.0, 148.8, 147.2, 70.8, 17.9, -1.7.mp: 85-86 ° C (dec.); 1 H NMR (500 MHz, CD 3 CN) δ 8.97 (1H, s), 4.67-4.60 (2H, m), 1.27-1.20 (2H, m), 0.08 ( 9H, s); 13 C NMR (125 MHz, CD 3 CN) δ164.0, 148.8, 147.2, 70.8, 17.9, -1.7.

[合成例5]
Anisoyl 3-nitro-1H-1,2,4-triazoleの合成
[Synthesis Example 5]
Synthesis of Anisoyl 3-nitro-1H-1,2,4-triazole

Figure 0005227965
Figure 0005227965

上記合成スキームに従い、以下の方法によりAnisoyl 3-nitro-1H-1,2,4-triazole(以下、「Ani-NT」という)を合成した。
NaH(60質量% in paraffin liquid)398.3 mgをAr雰囲気下、ヘキサン(10 ml×3)で共沸乾燥後、減圧乾燥し、NaH 202.0 mg(8.4 mmol)を得た。これに対し、Ar雰囲気下、ピリジン(5 ml×3)、トルエン(5 ml×3)で共沸乾燥したNT 958 mg(8.4 mmol)のTHF溶液(20 ml)を加え、0 ℃で10分間攪拌した。溶液を0 ℃で攪拌しつつ、Anisoyl chloride 1.14 ml(8.4 mmol)を加え、0 ℃で10分間攪拌後、室温で12時間攪拌した。塩をろ別し、溶媒を留去した後、EtOAcより再結晶を行い、目的化合物(収率92%。針状結晶。薄黄色)を得た。同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 9.10 (1H, s), 8.36 (2H, d, J = 9.0 Hz), 7.06 (2H, d, J = 9.0 Hz), 3.95 (3H, s); 13C NMR (100 MHz, CDCl3) δ 165.3, 162.5, 161.4, 146.7, 134.7, 119.3, 114.3, 55.7.
According to the above synthesis scheme, Anisoyl 3-nitro-1H-1,2,4-triazole (hereinafter referred to as “Ani-NT”) was synthesized by the following method.
NaH (60 mass% in paraffin liquid) 398.3 mg was azeotropically dried with hexane (10 ml × 3) in an Ar atmosphere and then dried under reduced pressure to obtain NaH 202.0 mg (8.4 mmol). To this, under an Ar atmosphere, a THF solution (20 ml) of NT 958 mg (8.4 mmol) azeotropically dried with pyridine (5 ml × 3) and toluene (5 ml × 3) was added, and at 0 ° C. for 10 minutes. Stir. While stirring the solution at 0 ° C., 1.14 ml (8.4 mmol) of Anisoyl chloride was added, and the mixture was stirred at 0 ° C. for 10 minutes and then at room temperature for 12 hours. The salt was filtered off and the solvent was distilled off, followed by recrystallization from EtOAc to obtain the desired compound (yield 92%, needle-like crystals, light yellow). The identification results are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 9.10 (1H, s), 8.36 (2H, d, J = 9.0 Hz), 7.06 (2H, d, J = 9.0 Hz), 3.95 (3H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 165.3, 162.5, 161.4, 146.7, 134.7, 119.3, 114.3, 55.7.

[合成例6]
t-Butoxy 3-nitro-1H-1,2,4-triazole-1-carboxylate の合成
出発物質を変更した点を除き、合成例5と同様の方法により、t-butoxy 3-nitro-1H-1,2,4-triazole-1-carboxylate(以下、「Boc-NT」という)を合成した(収率55%、薄黄色)。合成スキームおよび同定結果を以下に示す。
[Synthesis Example 6]
Synthesis of t-Butoxy 3-nitro-1H-1,2,4-triazole-1-carboxylate t-butoxy 3-nitro-1H-1 was carried out in the same manner as in Synthesis Example 5 except that the starting material was changed. , 2,4-triazole-1-carboxylate (hereinafter referred to as “Boc-NT”) was synthesized (yield 55%, light yellow). A synthesis scheme and identification results are shown below.

Figure 0005227965
Figure 0005227965

mp: 77-78 °C (dec.); 1H NMR (400 MHz, CDCl3) δ 8.81 (1H, s), 1.71 (9H, s); 13C NMR (125 MHz, CDCl3) δ 162.9, 146.6, 144.0, 90.5, 27.7.mp: 77-78 ° C (dec.); 1 H NMR (400 MHz, CDCl 3 ) δ 8.81 (1H, s), 1.71 (9H, s); 13 C NMR (125 MHz, CDCl 3 ) δ 162.9, 146.6, 144.0, 90.5, 27.7.

[合成例7]
Phenoxyacetyl 3-nitro-1H-1,2,4-triazoleの合成
出発物質を変更した点を除き、合成例5と同様の方法により、Phenoxyacetyl 3-nitro-1H-1,2,4-triazole(以下、「Pac-NT」という)を合成した(収率65%、板状結晶、薄黄色)。合成スキームおよび同定結果を以下に示す。
[Synthesis Example 7]
Synthesis of Phenoxyacetyl 3-nitro-1H-1,2,4-triazole Phenoxyacetyl 3-nitro-1H-1,2,4-triazole (hereinafter referred to as “Phenoxyacetyl 3-nitro-1H-1,2,4-triazole”) , “Pac-NT”) (yield 65%, plate-like crystals, light yellow). A synthesis scheme and identification results are shown below.

Figure 0005227965
Figure 0005227965

1H NMR (400 MHz, CD3CN) δ 9.10 (1H, s), 7.37-7.29 (2H, m), 7.08-6.98 (3H, m), 5.49 (2H, s); 13C NMR (100 MHz, CD3CN) δ 166.3, 163.4, 157.9, 146.7, 130.3, 122.7, 115.4, 66.7. 1 H NMR (400 MHz, CD 3 CN) δ 9.10 (1H, s), 7.37-7.29 (2H, m), 7.08-6.98 (3H, m), 5.49 (2H, s); 13 C NMR (100 MHz , CD 3 CN) δ 166.3, 163.4, 157.9, 146.7, 130.3, 122.7, 115.4, 66.7.

[合成例8]
Phenoxycarbonyl 3-nitro-1H-1,2,4-triazoleの合成
出発物質を変更した点を除き、合成例5と同様の方法により、Phenoxycarbonyl 3-nitro-1H-1,2,4-triazole(以下、「Px-NT」という)を合成した(収率87%、結晶、薄黄色)。合成スキームおよび同定結果を以下に示す。
[Synthesis Example 8]
Synthesis of Phenoxycarbonyl 3-nitro-1H-1,2,4-triazole Phenoxycarbonyl 3-nitro-1H-1,2,4-triazole (hereinafter referred to as “Phenoxycarbonyl 3-nitro-1H-1,2,4-triazole”) , “Px-NT”) (yield 87%, crystals, light yellow). A synthesis scheme and identification results are shown below.

Figure 0005227965
Figure 0005227965

1H NMR (400 MHz, CDCl3) δ 9.06 (1H, s), 7.56-7.49 (2H, m), 7.44-7.39 (1H, m), 7.37-7.32 (2H, m); 13C NMR (100 MHz, CDCl3) δ 163.2, 149.3, 147.3, 144.6, 130.0, 127.7, 120.3. 1 H NMR (400 MHz, CDCl 3 ) δ 9.06 (1H, s), 7.56-7.49 (2H, m), 7.44-7.39 (1H, m), 7.37-7.32 (2H, m); 13 C NMR (100 MHz, CDCl 3 ) δ 163.2, 149.3, 147.3, 144.6, 130.0, 127.7, 120.3.

[合成例9]
Palmitoyl 3-nitro-1H-1,2,4-triazoleの合成
出発物質を変更した点を除き、合成例5と同様の方法により、Palmitoyl 3-nitro-1H-1,2,4-triazole(以下、「Pal-NT」という)を合成した(収率95%、針状結晶、薄黄色)。合成スキームおよび同定結果を以下に示す。
[Synthesis Example 9]
Palmitoyl 3-nitro-1H-1,2,4 -triazole synthesis starting materials except for changing the, in the same manner as in Synthesis Example 5, Palmitoyl 3-nitro-1H -1,2,4-triazole ( hereinafter , “Pal-NT”) (yield 95%, needle-like crystals, light yellow). A synthesis scheme and identification results are shown below.

Figure 0005227965
Figure 0005227965

1H NMR (400 MHz, CDCl3) δ 8.94 (1H, s), 3.18 (2H, t, J = 7.4 Hz), 1.82 (2H, quintet, J = 7.4 Hz), 1.47-1.22 (24H, m), 0.88 (3H, t, J = 6.8 Hz); 13C NMR (100 MHz, CDCl3) δ 169.6, 162.5, 144.4, 34.3, 32.0, 29.8, 29.8, 29.8, 29.7, 29.6, 29.5, 29.2, 28.9, 23.6, 22.8, 14.3. 1 H NMR (400 MHz, CDCl 3 ) δ 8.94 (1H, s), 3.18 (2H, t, J = 7.4 Hz), 1.82 (2H, quintet, J = 7.4 Hz), 1.47-1.22 (24H, m) , 0.88 (3H, t, J = 6.8 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 169.6, 162.5, 144.4, 34.3, 32.0, 29.8, 29.8, 29.8, 29.7, 29.6, 29.5, 29.2, 28.9, 23.6, 22.8, 14.3.

合成例1〜9で得たニトロトリアゾール誘導体は、いずれも高い結晶性を有し、潮解性がなく高い安定性を有していた。   The nitrotriazole derivatives obtained in Synthesis Examples 1 to 9 all had high crystallinity, no deliquescence, and high stability.

[実施例1]
Benzyl (R)-1-phenylethylcarbamate (2)の合成(方法A)
[Example 1]
Synthesis of Benzyl (R) -1-phenylethylcarbamate (2) (Method A)

Figure 0005227965
Figure 0005227965

合成例1で得たZ-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物1(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物2)を得た(定量的、白色固体)。   Z-NT (100 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), then Compound 1 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (Compound 2) (quantitative, white solid).

実施例1で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.46-7.23 (10H, m), 5.13 (1H, d, J = 12.2 Hz), 5.04 (1H, d, J = 12.2 Hz), 5.09 (1H, br), 4.93-4.81 (1H, m), 1.49 (3H, d, J = 6.8 Hz); 13C NMR (100 MHz, CDCl3) δ 155.1, 143.1, 136.1, 128.3, 128.2, 127.8, 127.0, 125.6, 66.5, 50.6, 22.4; MS (MALDI TOF) m/z calcd for C16H17NNaO2 [M+Na]+ 278.12, found 277.99.
The identification results of the compound synthesized in Example 1 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.46-7.23 (10H, m), 5.13 (1H, d, J = 12.2 Hz), 5.04 (1H, d, J = 12.2 Hz), 5.09 (1H, br) , 4.93-4.81 (1H, m), 1.49 (3H, d, J = 6.8 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 155.1, 143.1, 136.1, 128.3, 128.2, 127.8, 127.0, 125.6, 66.5 , 50.6, 22.4; MS (MALDI TOF) m / z calcd for C 16 H 17 NNaO 2 [M + Na] + 278.12, found 277.99.

[実施例2]
2,2,2-Trichloroethyl (R)-1-phenylethylcarbamate (3)の合成
[Example 2]
Synthesis of 2,2,2-Trichloroethyl (R) -1-phenylethylcarbamate (3)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物1(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物3)を得た(定量的(4%のNTを含む)、白色固体)。
(1) Synthesis by Method A Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then Compound 1 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 3) (quantitative (containing 4% NT), white solid).

(2)方法Bによる合成
合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物1(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物3)を得た(収率88%、白色固体)。
(2) Synthesis by Method B Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then Compound 1 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off to obtain the desired product (Compound 3) (yield 88%, white solid).

実施例2で合成した化合物の同定結果を以下に示す。
1H NMR (300 MHz, CDCl3) δ 7.46-7.20 (5H, m), 5.28 (1H, brs), 4.88 (1H, dq, J = 7.0, 7.0 Hz), 4.75 (1H, d, J = 11.7 Hz), 4.67 (1H, d, J = 11.7 Hz), 1.53 (3H, d, J = 7.0 Hz); 13C NMR (100 MHz, CDCl3) δ 153.5, 142.6, 128.6, 127.4, 125.8, 95.5, 74.5, 51.1, 22.4; MS (FAB) m/z calcd for C11H13Cl3NO2 [M+H]+ 296.00, found 296.06.
The identification results of the compound synthesized in Example 2 are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ 7.46-7.20 (5H, m), 5.28 (1H, brs), 4.88 (1H, dq, J = 7.0, 7.0 Hz), 4.75 (1H, d, J = 11.7 Hz), 4.67 (1H, d, J = 11.7 Hz), 1.53 (3H, d, J = 7.0 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 153.5, 142.6, 128.6, 127.4, 125.8, 95.5, 74.5, 51.1, 22.4; MS ( FAB) m / z calcd for C 11 H 13 C l3 NO 2 [M + H] + 296.00, found 296.06.

[実施例3]
(9H-Fluoren-9-yl)methyl (R)-1-phenylethylcarbamate (4)の合成
[Example 3]
Synthesis of (9H-Fluoren-9-yl) methyl (R) -1-phenylethylcarbamate (4)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例3で得たFmoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物1(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物4)を得た(定量的(NTを含む)、白色固体。)。
(1) Synthesis by Method A Fmoc-NT (100 μmol) obtained in Synthesis Example 3 was added to dichloromethane (500 μl), then Compound 1 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 4) (quantitative (including NT), white solid).

(2)方法Bによる合成
合成例3で得たFmoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物1(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物4)を得た(収率96%、白色固体)。
(2) Synthesis by Method B Fmoc-NT (100 μmol) obtained in Synthesis Example 3 was added to dichloromethane (500 μl), then Compound 1 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (compound 4) (yield 96%, white solid).

実施例3で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.74 (2H, d, J = 7.3 Hz), 7.57 (2H, d, J = 7.3 Hz), 7.48-7.12 (9H, m), 5.04 (1H, brs), 4.85 (1H, brs), 4.40 (2H, brd, J = 6.8 Hz), 4.18 (1H, brs), 1.47 (3H, brd, J = 5.6 Hz); 13C NMR (100 MHz, CDCl3) δ 155.3, 143.7, 141.1, 128.5, 127.5, 127.2, 126.9, 125.8, 124.9, 124.8, 119.8, 66.5, 50.7, 47.4, 22.5; MS (MALDI TOF) m/z calcd for C23H21NNaO2 [M+Na]+ 366.15, found 366.12.
The identification results of the compound synthesized in Example 3 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.74 (2H, d, J = 7.3 Hz), 7.57 (2H, d, J = 7.3 Hz), 7.48-7.12 (9H, m), 5.04 (1H, brs) , 4.85 (1H, brs), 4.40 (2H, brd, J = 6.8 Hz), 4.18 (1H, brs), 1.47 (3H, brd, J = 5.6 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 155.3, 143.7, 141.1, 128.5, 127.5, 127.2, 126.9, 125.8, 124.9, 124.8, 119.8, 66.5, 50.7, 47.4, 22.5; MS (MALDI TOF) m / z calcd for C 23 H 21 NNaO 2 (M + Na ] + 366.15, found 366.12.

[実施例4]
2-(Trimethylsilyl)ethyl (R)-1-phenylethylcarbamate (5) (方法F)
[Example 4]
2- (Trimethylsilyl) ethyl (R) -1-phenylethylcarbamate (5) (Method F)

Figure 0005227965
Figure 0005227965

合成例4で得たTeoc-NT(100μmol)を5% NaHCO3水溶液とジクロロメタン混合液(1ml)に添加し、次いで化合物1(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去することで目的物(化合物5)を得た(収率95%、無色オイル)。Teoc-NT (100 μmol) obtained in Synthesis Example 4 was added to a 5% aqueous NaHCO 3 solution and dichloromethane (1 ml), then Compound 1 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the target product (compound 5) was obtained by distilling off the solvent (yield 95%, colorless oil).

実施例4で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.36-7.22 (5H, m), 4.91 (1H, brs), 4.91-4.76 (1H, m), 4.20-4.08 (2H, m), 1.47 (3H, d, J = 6.8 Hz), 0.96 (2H, t, J = 8.5 Hz), 0.02 (9H, s); 13C NMR (100 MHz, CDCl3) δ 155.7, 143.5, 128.4, 127.1, 125.8, 63.0, 50.5, 22.6, 17.9, -1.3; MS (MALDI TOF) m/z calcd for C14H23NNaO2Si [M+Na]+ 288.14, found 288.18.
The identification results of the compound synthesized in Example 4 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.36-7.22 (5H, m), 4.91 (1H, brs), 4.91-4.76 (1H, m), 4.20-4.08 (2H, m), 1.47 (3H, d , J = 6.8 Hz), 0.96 (2H, t, J = 8.5 Hz), 0.02 (9H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 155.7, 143.5, 128.4, 127.1, 125.8, 63.0, 50.5 , 22.6, 17.9, -1.3; MS (MALDI TOF) m / z calcd for C 14 H 23 NNaO 2 Si [M + Na] + 288.14, found 288.18.

[実施例5]
Benzyl 2,6-dimethylmorpholine-4-carboxylate (7)
[Example 5]
Benzyl 2,6-dimethylmorpholine-4-carboxylate (7)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例1で得たZ-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物6(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物7)を得た(定量的(2%のNTを含む)、白色固体)。
(1) Synthesis by Method A Z-NT (100 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), then compound 6 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 7) (quantitative (containing 2% NT), white solid).

(2)方法Bによる合成
合成例1で得たZ-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物6(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物7)を得た(収率89%、白色固体)。
(2) Synthesis by Method B Z-NT (100 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), then compound 6 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 7) (yield 89%, white solid).

実施例5で合成した化合物の同定結果を以下に示す。
1H NMR (300 MHz, CDCl3) δ 7.48-7.24 (5H, m), 5.14 (2H, s), 3.98 (2H, brs), 3.55 (2H, brs), 2.55 (2H, brs), 1.17 (6H, d, J = 5.9 Hz); 13C NMR (100 MHz, CDCl3) δ 154.8, 136.4, 128.4, 127.9, 127.8, 71.6, 67.2, 49.2, 18.8; MS (MALDI TOF) m/z calcd for C14H19NNaO3 [M+Na]+ 272.13, found 271.99.
The identification results of the compound synthesized in Example 5 are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ 7.48-7.24 (5H, m), 5.14 (2H, s), 3.98 (2H, brs), 3.55 (2H, brs), 2.55 (2H, brs), 1.17 ( 6H, d, J = 5.9 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 154.8, 136.4, 128.4, 127.9, 127.8, 71.6, 67.2, 49.2, 18.8; MS (MALDI TOF) m / z calcd for C 14 H 19 NNaO 3 [M + Na] + 272.13, found 271.99.

[実施例6]
2,2,2-Trichloroethyl 2,6-dimethylmorpholine-4-carboxylate (8)の合成
[Example 6]
Synthesis of 2,2,2-Trichloroethyl 2,6-dimethylmorpholine-4-carboxylate (8)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物6(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物8)を得た(定量的(NTを含む)、白色固体)。
(1) Synthesis by Method A Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then compound 6 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 8) (quantitative (including NT), white solid).

(2)方法Bによる合成
合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物6(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物8)を得た(収率92%、白色固体)。
(2) Synthesis by Method B Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then compound 6 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off to obtain the desired product (Compound 8) (yield 92%, white solid).

実施例6で合成した化合物の同定結果を以下に示す。
1H NMR (300 MHz, CDCl3) δ 4.78 (1H, s), 4.76 (1H, s), 3.99 (2H, brd, J = 13.2 Hz), 3.60 (2H, m), 2.67 (1H, t, J = 12.1 Hz), 2.58 (1H, t, J = 12.1 Hz), 1.20 (3H, d, J = 6.2 Hz); 13C NMR (100 MHz, CDCl3) δ 153.0, 95.5, 75.0, 71.7, 71.7, 49.6, 49.4, 18.8; MS (FAB) m/z calcd for C9H15Cl3NO3 [M+H]+ 290.01, found 290.07.
The identification results of the compound synthesized in Example 6 are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ 4.78 (1H, s), 4.76 (1H, s), 3.99 (2H, brd, J = 13.2 Hz), 3.60 (2H, m), 2.67 (1H, t, J = 12.1 Hz), 2.58 (1H, t, J = 12.1 Hz), 1.20 (3H, d, J = 6.2 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 153.0, 95.5, 75.0, 71.7, 71.7 , 49.6, 49.4, 18.8; MS (FAB) m / z calcd for C 9 H 15 Cl 3 NO 3 [M + H] + 290.01, found 290.07.

[実施例7]
(9H-Fluoren-9-yl)methyl 2,6-dimethylmorpholine-4-carboxylate (9)の合成
[Example 7]
Synthesis of (9H-Fluoren-9-yl) methyl 2,6-dimethylmorpholine-4-carboxylate (9)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例3で得たFmoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物6(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物9)を得た(定量的(NTを含む)、無色オイル)。
(1) Synthesis by Method A Fmoc-NT (100 μmol) obtained in Synthesis Example 3 was added to dichloromethane (500 μl), then compound 6 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 9) (quantitative (including NT), colorless oil).

(2)方法Bによる合成
合成例3で得たFmoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物6(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物9)を得た(定量的、無色オイル)。
(2) Synthesis by Method B Fmoc-NT (100 μmol) obtained in Synthesis Example 3 was added to dichloromethane (500 μl), then compound 6 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (compound 9) (quantitative, colorless oil).

実施例7で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.75 (2H, d, J = 7.3 Hz), 7.55 (2H, d, J = 7.3 Hz), 7.39 (2H, t, J = 7.3 Hz), 7.31 (2H, t, J = 7.3 Hz), 4.64-4.32 (2H, m), 4.24 (1H, t, J = 6.5 Hz), 3.95 (1H, brs), 3.71 (1H, brs), 3.47 (1H, brs), 3.37 (1H, brs), 2.50 (2H, brs), 1.14 (6H, brs); 13C NMR (100 MHz, CDCl3) δ 154.7, 143.8, 141.2, 127.5, 126.9, 124.7, 119.8, 71.6, 67.2, 49.5, 49.1, 47.5, 18.7; MS (MALDI TOF) m/z calcd for C21H23NNaO3 [M+Na]+ 360.16, found 360.14.
The identification results of the compound synthesized in Example 7 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.75 (2H, d, J = 7.3 Hz), 7.55 (2H, d, J = 7.3 Hz), 7.39 (2H, t, J = 7.3 Hz), 7.31 (2H , t, J = 7.3 Hz), 4.64-4.32 (2H, m), 4.24 (1H, t, J = 6.5 Hz), 3.95 (1H, brs), 3.71 (1H, brs), 3.47 (1H, brs) , 3.37 (1H, brs), 2.50 (2H, brs), 1.14 (6H, brs); 13 C NMR (100 MHz, CDCl 3 ) δ 154.7, 143.8, 141.2, 127.5, 126.9, 124.7, 119.8, 71.6, 67.2 , 49.5, 49.1, 47.5, 18.7; MS (MALDI TOF) m / z calcd for C 21 H 23 NNaO 3 [M + Na] + 360.16, found 360.14.

[実施例8]
2-(Trimethylsilyl)ethyl 2,6-dimethylmorpholine-4-carboxylate (10)の合成(方法A)
[Example 8]
Synthesis of 2- (Trimethylsilyl) ethyl 2,6-dimethylmorpholine-4-carboxylate (10) (Method A)

Figure 0005227965
Figure 0005227965

合成例4で得たTeoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物6(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物10)を得た(定量的、無色オイル)。   Teoc-NT (100 μmol) obtained in Synthesis Example 4 was added to dichloromethane (500 μl), then compound 6 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (Compound 10) (quantitative, colorless oil).

実施例8で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 4.22-4.12 (2H, m), 4.08-3.80 (2H, m), 3.58-3.48 (2H, m), 2.54-2.42 (2H, m), 1.17 (6H, d, J = 6.1 Hz), 1.04-1.96 (2H, m), 0.04 (9H, s); 13C NMR (100 MHz, CDCl3) δ 155.2, 71.7, 63.7, 49.1, 18.8, 17.9, -1.3; MS (FAB) m/z calcd for C12H25NNaO3Si [M+Na]+ 282.15, found 282.22.
The identification results of the compound synthesized in Example 8 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 4.22-4.12 (2H, m), 4.08-3.80 (2H, m), 3.58-3.48 (2H, m), 2.54-2.42 (2H, m), 1.17 (6H , d, J = 6.1 Hz), 1.04-1.96 (2H, m), 0.04 (9H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 155.2, 71.7, 63.7, 49.1, 18.8, 17.9, -1.3 ; MS (FAB) m / z calcd for C 12 H 25 NNaO 3 Si [M + Na] + 282.15, found 282.22.

[実施例9]
Benzyl (1S,2R)-2,3-dihydro-2-hydroxy-1H-inden-1-ylcarbamate (12)の合成(方法A)
[Example 9]
Synthesis of Benzyl (1S, 2R) -2,3-dihydro-2-hydroxy-1H-inden-1-ylcarbamate (12) (Method A)

Figure 0005227965
Figure 0005227965

合成例1で得たZ-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物11(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物12)を得た(収率95%、白色固体)。   Z-NT (100 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), then Compound 11 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (Compound 12) (yield 95%, white solid).

実施例9で合成した化合物の同定結果を以下に示す。
1H NMR (300 MHz, CDCl3) δ 7.44-7.12 (9H, m), 5.56-5.36 (1H, m), 5.20-5.04 (3H, m), 4.55 (1H, bs), 3.10 (1H, dd, J = 16.5, 4.8 Hz), 2.88 (1H, dd, J = 16.5, 1.7 Hz), 2.29 (1H, br); 13C NMR (100 MHz, CDCl3) δ 156.6, 140.3, 139.5, 136.1, 128.4, 128.1, 128.0, 128.0, 127.0, 125.2, 124.3, 73.5, 67.1, 59.3, 39.5; MS (MALDI TOF) m/z calcd for C17H17NNaO3 [M+Na]+ 306.11, found 306.02.
The identification results of the compound synthesized in Example 9 are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ 7.44-7.12 (9H, m), 5.56-5.36 (1H, m), 5.20-5.04 (3H, m), 4.55 (1H, bs), 3.10 (1H, dd , J = 16.5, 4.8 Hz), 2.88 (1H, dd, J = 16.5, 1.7 Hz), 2.29 (1H, br); 13 C NMR (100 MHz, CDCl 3 ) δ 156.6, 140.3, 139.5, 136.1, 128.4 , 128.1, 128.0, 128.0, 127.0, 125.2, 124.3, 73.5, 67.1, 59.3, 39.5; MS (MALDI TOF) m / z calcd for C 17 H 17 NNaO 3 [M + Na] + 306.11, found 306.02.

[実施例10]
2,2,2-Trichloroethyl (1S,2R)-2,3-dihydro-2-hydroxy-1H-inden-1-ylcarbamate (13)の合成
[Example 10]
Synthesis of 2,2,2-Trichloroethyl (1S, 2R) -2,3-dihydro-2-hydroxy-1H-inden-1-ylcarbamate (13)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物11(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物13)を得た(収率95%(4%のNTを含む)、白色固体)。
(1) Synthesis by Method A Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then Compound 11 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (Compound 13) (yield 95% (including 4% NT), white solid).

(2)方法Bによる合成
合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物11(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物13)を得た(収率92%、白色固体)。
(2) Synthesis by Method B Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then compound 11 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 13) (yield 92%, white solid).

実施例10で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.38-7.21 (4H, m), 5.73 (1H, brd, J = 8.3 Hz), 5.14 (1H, dd, J = 8.3, 5.0 Hz), 4.86 (1H, d, J = 12.0 Hz), 4.74 (1H, d, J = 12.0 Hz), 4.62 (1H, dt, J = 5.0, 2.0 Hz), 3.16 (1H, dd, J = 16.6, 5.0 Hz), 2.93 (1H, dd, J = 16.6, 2.0 Hz), 2.09 (1H, brs); 13C NMR (100 MHz, CDCl3) δ 154.8, 139.9, 139.4, 128.3, 127.2, 125.3, 124.4, 95.5, 74.7, 73.5, 59.4, 39.7; MS (MALDI TOF) m/z calcd for C12H12Cl3NNaO3 [M+Na]+ 345.98, found 345.94.
The identification result of the compound synthesize | combined in Example 10 is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.38-7.21 (4H, m), 5.73 (1H, brd, J = 8.3 Hz), 5.14 (1H, dd, J = 8.3, 5.0 Hz), 4.86 (1H, d, J = 12.0 Hz), 4.74 (1H, d, J = 12.0 Hz), 4.62 (1H, dt, J = 5.0, 2.0 Hz), 3.16 (1H, dd, J = 16.6, 5.0 Hz), 2.93 ( 1H, dd, J = 16.6, 2.0 Hz), 2.09 (1H, brs); 13 C NMR (100 MHz, CDCl 3 ) δ 154.8, 139.9, 139.4, 128.3, 127.2, 125.3, 124.4, 95.5, 74.7, 73.5, 59.4, 39.7; MS (MALDI TOF) m / z calcd for C 12 H 12 Cl 3 NNaO 3 [M + Na] + 345.98, found 345.94.

[実施例11]
(9H-Fluoren-9-yl)methyl (1S,2R)-2,3-dihydro-2-hydroxy-1H-inden-1-ylcarbamate (14)の合成
[Example 11]
Synthesis of (9H-Fluoren-9-yl) methyl (1S, 2R) -2,3-dihydro-2-hydroxy-1H-inden-1-ylcarbamate (14)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例3で得たFmoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物11(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物14)を得た(定量的(NTを含む)、白色固体)。
(1) Synthesis by Method A Fmoc-NT (100 μmol) obtained in Synthesis Example 3 was added to dichloromethane (500 μl), then Compound 11 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 14) (quantitative (including NT), white solid).

(2)方法Bによる合成
合成例3で得たFmoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物11(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物14)を得た(収率94%、白色固体)。
(2) Synthesis by Method B Fmoc-NT (100 μmol) obtained in Synthesis Example 3 was added to dichloromethane (500 μl), then Compound 11 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off to obtain the desired product (Compound 14) (yield 94%, white solid).

実施例11で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.76 (2H, d, J = 7.5 Hz), 7.62 (2H, d, J = 7.3 Hz), 7.40 (2H, t, J = 7.5 Hz), 7.31 (2H, t, J = 7.3 Hz), 7.22 (4H, brs), 5.39 (1H, brs), 5.12 (1H, brs), 4.62-4.48 (3H, m), 4.25 (1H, t, J = 6.6 Hz), 3.12 (1H, dd, J = 16.4, 4.6 Hz), 2.90 (1H, d, J = 16.4 Hz), 1.97 (1H, brs); 13C NMR (100 MHz, CDCl3) δ 156.6, 143.7, 141.2, 141.2, 140.2, 139.5, 128.1, 127.6, 127.1, 126.9, 126.9, 125.2, 124.9, 124.3, 119.9, 73.5, 66.8, 59.3, 47.4, 39.6; MS (MALDI TOF) m/z calcd for C24H21NNaO3 [M+Na]+ 394.14, found 394.16.
The identification result of the compound synthesize | combined in Example 11 is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.76 (2H, d, J = 7.5 Hz), 7.62 (2H, d, J = 7.3 Hz), 7.40 (2H, t, J = 7.5 Hz), 7.31 (2H , t, J = 7.3 Hz), 7.22 (4H, brs), 5.39 (1H, brs), 5.12 (1H, brs), 4.62-4.48 (3H, m), 4.25 (1H, t, J = 6.6 Hz) , 3.12 (1H, dd, J = 16.4, 4.6 Hz), 2.90 (1H, d, J = 16.4 Hz), 1.97 (1H, brs); 13 C NMR (100 MHz, CDCl 3 ) δ 156.6, 143.7, 141.2 , 141.2, 140.2, 139.5, 128.1, 127.6, 127.1, 126.9, 126.9, 125.2, 124.9, 124.3, 119.9, 73.5, 66.8, 59.3, 47.4, 39.6; MS (MALDI TOF) m / z calcd for C 24 H 21 NNaO 3 [M + Na] + 394.14, found 394.16.

[実施例12]
2-(Trimethylsilyl)ethyl (1S,2R)-2,3-dihydro-2-hydroxy-1H-inden-1-ylcarbamate (15)の合成(方法F)
[Example 12]
Synthesis of 2- (Trimethylsilyl) ethyl (1S, 2R) -2,3-dihydro-2-hydroxy-1H-inden-1-ylcarbamate (15) (Method F)

Figure 0005227965
Figure 0005227965

合成例4で得たTeoc-NT(100μmol)を5% NaHCO3水溶液とジクロロメタン混合液(1ml)に添加し、次いで化合物11(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去することで目的物(化合物15)を得た(定量的、黄色固体)。Teoc-NT (100 μmol) obtained in Synthesis Example 4 was added to a 5% aqueous NaHCO 3 solution and dichloromethane mixture (1 ml), then compound 11 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the target object (compound 15) was obtained by distilling a solvent off (quantitative, yellow solid).

実施例12で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.31-7.20 (5H, m), 5.34 (1H, brs), 5.17-5.05 (1H, m), 4.63-4.54 (1H, m), 4.23 (2H, t, J = 8.5 Hz), 3.12 (1H, dd, J = 16.6, 5.2 Hz), 2.91 (1H, dd, J = 16.6, 1.9 Hz), 2.40 (1H, br), 1.02 (2H, t, J = 8.5 Hz), 0.06 (9H, s); 13C NMR (125 MHz, CDCl3) δ 157.2, 140.6, 139.8, 128.2, 127.1, 125.3, 124.4, 73.5, 63.5, 59.1, 39.4, 17.7, -1.5; MS (MALDI TOF) m/z calcd for C15H23NNaO3Si [M+Na]+ 316.13, found 316.06.
The identification result of the compound synthesize | combined in Example 12 is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.31-7.20 (5H, m), 5.34 (1H, brs), 5.17-5.05 (1H, m), 4.63-4.54 (1H, m), 4.23 (2H, t , J = 8.5 Hz), 3.12 (1H, dd, J = 16.6, 5.2 Hz), 2.91 (1H, dd, J = 16.6, 1.9 Hz), 2.40 (1H, br), 1.02 (2H, t, J = 8.5 Hz), 0.06 (9H, s); 13 C NMR (125 MHz, CDCl 3 ) δ 157.2, 140.6, 139.8, 128.2, 127.1, 125.3, 124.4, 73.5, 63.5, 59.1, 39.4, 17.7, -1.5; MS (MALDI TOF) m / z calcd for C 15 H 23 NNaO 3 Si [M + Na] + 316.13, found 316.06.

[実施例13]
Benzyl 4-phenylpiperazine-1-carboxylate (17) の合成
[Example 13]
Synthesis of Benzyl 4-phenylpiperazine-1-carboxylate (17)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例1で得たZ-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物16(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物17)を得た(定量的(10%のNTを含む)、黄色オイル)。
(1) Synthesis by Method A Z-NT (100 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), then compound 16 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 17) (quantitative (containing 10% NT), yellow oil).

(2)方法Bによる合成
合成例1で得たZ-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物16(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物17)を得た(収率91%、黄色オイル)。
(2) Synthesis by Method B Z-NT (100 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), then Compound 16 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off to obtain the desired product (Compound 17) (yield 91%, yellow oil).

実施例13で合成した化合物の同定結果を以下に示す。
1H NMR (300 MHz, CDCl3) δ 7.44-7.18 (6H, m), 6.96-6.84 (3H, m), 5.16 (2H, s), 3.66 (4H, t, J = 5.0 Hz), 3.14 (4H, brs); 13C NMR (100 MHz, CDCl3) δ 155.0, 151.0, 136.4, 129.0, 128.4, 127.9, 127.8, 120.3, 116.6, 67.2, 49.5, 43.8; MS (MALDI TOF) m/z calcd for C18H20N2NaO2 [M+Na]+ 319.14, found 319.08.
The identification result of the compound synthesize | combined in Example 13 is shown below.
1 H NMR (300 MHz, CDCl 3 ) δ 7.44-7.18 (6H, m), 6.96-6.84 (3H, m), 5.16 (2H, s), 3.66 (4H, t, J = 5.0 Hz), 3.14 ( 4H, brs); 13 C NMR (100 MHz, CDCl 3 ) δ 155.0, 151.0, 136.4, 129.0, 128.4, 127.9, 127.8, 120.3, 116.6, 67.2, 49.5, 43.8; MS (MALDI TOF) m / z calcd for C 18 H 20 N 2 NaO 2 [M + Na] + 319.14, found 319.08.

[実施例14]
2,2,2-Trichloroethyl 4-phenylpiperazine-1-carboxylate (18)の合成(方法A)
[Example 14]
Synthesis of 2,2,2-Trichloroethyl 4-phenylpiperazine-1-carboxylate (18) (Method A)

Figure 0005227965
Figure 0005227965

合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物16(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物18)を得た(定量的、薄黄オイル)。   Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then compound 16 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 18) (quantitative, light yellow oil).

実施例14で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.31-7.25 (2H, m), 6.96-6.87 (3H, m), 4.78 (2H, s), 3.72 (4H, brd, J = 18.8 Hz), 3.22-3.15 (4H, m); 13C NMR (100 MHz, CDCl3) δ 153.2, 150.8, 129.1, 120.5, 116.7, 95.6, 75.1, 49.5, 44.1; MS (MALDI TOF) m/z calcd for C13H16Cl3N2O2 [M+H]+ 337.03, found 336.98.
The identification results of the compound synthesized in Example 14 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.31-7.25 (2H, m), 6.96-6.87 (3H, m), 4.78 (2H, s), 3.72 (4H, brd, J = 18.8 Hz), 3.22- 3.15 (4H, m); 13 C NMR (100 MHz, CDCl 3 ) δ 153.2, 150.8, 129.1, 120.5, 116.7, 95.6, 75.1, 49.5, 44.1; MS (MALDI TOF) m / z calcd for C 13 H 16 Cl 3 N 2 O 2 [M + H] + 337.03, found 336.98.

[実施例15]
(9H-Fluoren-9-yl)methyl 4-phenylpiperazine-1-carboxylate (19)の合成
[Example 15]
Synthesis of (9H-Fluoren-9-yl) methyl 4-phenylpiperazine-1-carboxylate (19)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例3で得たFmoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物16(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物19)を得た(定量的(NTを含む)、淡黄オイル)。
(1) Synthesis by Method A Fmoc-NT (100 μmol) obtained in Synthesis Example 3 was added to dichloromethane (500 μl), then Compound 16 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 19) (quantitative (including NT), pale yellow oil).

(2)方法Bによる合成
合成例3で得たFmoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物16(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物19)を得た(収率93%、淡黄オイル)。
(2) Synthesis by Method B Fmoc-NT (100 μmol) obtained in Synthesis Example 3 was added to dichloromethane (500 μl), then compound 16 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off to obtain the desired product (Compound 19) (yield 93%, pale yellow oil).

実施例15で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.78 (2H, d, J = 7.6 Hz), 7.60 (2H, d, J = 7.1 Hz), 7.41 (2H, t, J = 7.6 Hz), 7.33 (2H, t, J = 7.1 Hz), 7.30 (1H, d, J = 8.3 Hz), 7.28 (1H, d, J = 8.3 Hz), 6.93 (1H, d, J = 8.3 Hz), 6.92 (2H, t, J = 8.3 Hz), 4.49 (2H, d, J = 6.6 Hz), 4.27 (1H, t, J = 6.6 Hz), 3.62 (4H, brs), 3.12 (4H, brs); 13C NMR (100 MHz, CDCl3) δ 154.9, 150.9, 143.7, 141.1, 129.0, 127.5, 126.9, 124.8, 120.3, 119.8, 116.6, 67.3, 49.4, 47.4, 43.8; MS (MALDI TOF) m/z calcd for C25H25N2O2 [M+H]+ 385.19, found 385.19.
The identification results of the compound synthesized in Example 15 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.78 (2H, d, J = 7.6 Hz), 7.60 (2H, d, J = 7.1 Hz), 7.41 (2H, t, J = 7.6 Hz), 7.33 (2H , t, J = 7.1 Hz), 7.30 (1H, d, J = 8.3 Hz), 7.28 (1H, d, J = 8.3 Hz), 6.93 (1H, d, J = 8.3 Hz), 6.92 (2H, t , J = 8.3 Hz), 4.49 (2H, d, J = 6.6 Hz), 4.27 (1H, t, J = 6.6 Hz), 3.62 (4H, brs), 3.12 (4H, brs); 13 C NMR (100 MHz, CDCl 3 ) δ 154.9, 150.9, 143.7, 141.1, 129.0, 127.5, 126.9, 124.8, 120.3, 119.8, 116.6, 67.3, 49.4, 47.4, 43.8; MS (MALDI TOF) m / z calcd for C 25 H 25 N 2 O 2 [M + H] + 385.19, found 385.19.

[実施例16]
2-(Trimethylsilyl)ethyl 4-phenylpiperazine-1-carboxylate (20)の合成(方法A)
[Example 16]
Synthesis of 2- (Trimethylsilyl) ethyl 4-phenylpiperazine-1-carboxylate (20) (Method A)

Figure 0005227965
Figure 0005227965

合成例4で得たTeoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物16(100μmol)を加え室温で5分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物20)を得た(定量的、黄色固体)。   Teoc-NT (100 μmol) obtained in Synthesis Example 4 was added to dichloromethane (500 μl), then compound 16 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 20) (quantitative, yellow solid).

実施例16で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.27 (2H, dd, J = 7.6, 7.3 Hz), 6.93 (2H, d, J = 7.6 Hz), 6.89 (1H, t, J = 7.3 Hz), 4.22 (2H, t, J = 8.4 Hz), 3.63 (4H, t, J = 4.9 Hz), 3.14 (4H, t, J = 4.9 Hz), 1.03 (2H, t, J = 8.4 Hz), 0.05 (9H, s); 13C NMR (100 MHz, CDCl3) δ 155.4, 151.0, 129.0, 120.2, 116.6, 63.7, 49.5, 43.7, 17.9, -1.3; MS (MALDI TOF) m/z calcd for C16H27N2O2Si [M+H]+ 307.18, found 307.08.
The identification results of the compound synthesized in Example 16 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.27 (2H, dd, J = 7.6, 7.3 Hz), 6.93 (2H, d, J = 7.6 Hz), 6.89 (1H, t, J = 7.3 Hz), 4.22 (2H, t, J = 8.4 Hz), 3.63 (4H, t, J = 4.9 Hz), 3.14 (4H, t, J = 4.9 Hz), 1.03 (2H, t, J = 8.4 Hz), 0.05 (9H , s); 13 C NMR (100 MHz, CDCl 3 ) δ 155.4, 151.0, 129.0, 120.2, 116.6, 63.7, 49.5, 43.7, 17.9, -1.3; MS (MALDI TOF) m / z calcd for C 16 H 27 N 2 O 2 Si [M + H] + 307.18, found 307.08.

[実施例17]
Benzyl 3-hydroxypropylcarbamate (22)の合成
[Example 17]
Synthesis of Benzyl 3-hydroxypropylcarbamate (22)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例1で得たZ-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物21(100μmol)を加え室温で30分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物22)を得た(定量的(NTを含む)、無色オイル)。
(1) Synthesis by Method A Z-NT (100 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), then Compound 21 (100 μmol) was added, and the mixture was stirred at room temperature for 30 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (Compound 22) (quantitative (including NT), colorless oil).

(2)方法Bによる合成
合成例1で得たZ-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物21(100μmol)を加え室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物22)を得た(収率94%、無色オイル)。
(2) Synthesis by Method B Z-NT (100 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), then compound 21 (100 μmol) was added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Next, the solvent was distilled off to obtain the desired product (Compound 22) (yield 94%, colorless oil).

(3)方法Cによる合成
合成例1で得たZ-NT(100μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(200μmol)および化合物21(100μmol)を加え、室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物22)を得た(収率97%、無色オイル)。
(3) Synthesis by Method C Z-NT (100 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), triethylamine (200 μmol) and compound 21 (100 μmol) were added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 22) (yield 97%, colorless oil).

実施例17で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.44-7.28 (5H, m), 5.12 (1H, brs), 5.11 (2H, s), 3.67 (2H, t, J = 5.8 Hz), 2.64 (1H, br), 3.35 (2H, q, J = 5.8 Hz), 1.70 (2H, quintet, J = 5.8 Hz); 13C NMR (100 MHz, CDCl3) δ 157.2, 136.3, 128.4, 128.0, 128.0, 66.9, 59.5, 37.8, 32.6; MS (MALDI TOF) m/z calcd for C11H15NNaO3 [M+Na]+ 232.09, found 231.90.
The identification result of the compound synthesize | combined in Example 17 is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.44-7.28 (5H, m), 5.12 (1H, brs), 5.11 (2H, s), 3.67 (2H, t, J = 5.8 Hz), 2.64 (1H, br), 3.35 (2H, q, J = 5.8 Hz), 1.70 (2H, quintet, J = 5.8 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 157.2, 136.3, 128.4, 128.0, 128.0, 66.9, 59.5, 37.8, 32.6; MS (MALDI TOF) m / z calcd for C 11 H 15 NNaO 3 [M + Na] + 232.09, found 231.90.

[実施例18]
2,2,2-Trichloroethyl 3-hydroxypropylcarbamate (23)の合成
[Example 18]
Synthesis of 2,2,2-Trichloroethyl 3-hydroxypropylcarbamate (23)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物21(100μmol)を加え室温で30分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物23)を得た(定量的(2%のNTを含む)、無色オイル)。
(1) Synthesis by Method A Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then Compound 21 (100 μmol) was added, and the mixture was stirred at room temperature for 30 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (Compound 23) (quantitative (containing 2% NT), colorless oil).

(2)方法Bによる合成
合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物21(100μmol)を加え室温で30分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物23)を得た(収率95%、無色オイル)。
(2) Synthesis by Method B Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then compound 21 (100 μmol) was added, and the mixture was stirred at room temperature for 30 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 23) (yield 95%, colorless oil).

実施例18で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 5.41 (1H, brs), 4.74 (2H, s), 3.73 (2H, t, J = 6.0 Hz), 3.41 (2H, q, J = 6.0 Hz), 2.41 (1H, brs), 1.76 (2H, quintet, J = 6.0 Hz); 13C NMR (100 MHz, CDCl3) δ155.0, 95.3, 74.4, 59.7, 38.1, 32.2; MS (MALDI TOF) m/z calcd for C6H11Cl3NO3 [M+H]+ 249.98, found 249.81.
The identification results of the compound synthesized in Example 18 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 5.41 (1H, brs), 4.74 (2H, s), 3.73 (2H, t, J = 6.0 Hz), 3.41 (2H, q, J = 6.0 Hz), 2.41 (1H, brs), 1.76 (2H, quintet, J = 6.0 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ155.0, 95.3, 74.4, 59.7, 38.1, 32.2; MS (MALDI TOF) m / z calcd for C 6 H 11 Cl 3 NO 3 [M + H] + 249.98, found 249.81.

[実施例19]
(9H-Fluoren-9-yl)methyl 3-hydroxypropylcarbamate (24)の合成
[Example 19]
Synthesis of (9H-Fluoren-9-yl) methyl 3-hydroxypropylcarbamate (24)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例3で得たFmoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物21(100μmol)を加え室温で30分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物24)を得た(定量的(NTを含む)、白色固体)。
(1) Synthesis by Method A Fmoc-NT (100 μmol) obtained in Synthesis Example 3 was added to dichloromethane (500 μl), then compound 21 (100 μmol) was added, and the mixture was stirred at room temperature for 30 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (Compound 24) (quantitative (including NT), white solid).

(2)方法Bによる合成
合成例3で得たFmoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物21(100μmol)を加え室温で30分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物24)を得た(収率93%、白色固体)。
(2) Synthesis by Method B Fmoc-NT (100 μmol) obtained in Synthesis Example 3 was added to dichloromethane (500 μl), then compound 21 (100 μmol) was added, and the mixture was stirred at room temperature for 30 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off to obtain the desired product (Compound 24) (yield 93%, white solid).

実施例19で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.75 (2H, d, J = 7.6 Hz), 7.57 (2H, d, J = 7.6 Hz), 7.39 (2H, t, J = 7.6 Hz), 7.30 (2H, t, J = 7.6 Hz), 5.06 (1H, brs), 4.42 (2H, d, J = 6.6 Hz), 4.20 (1H, t, J = 6.6 Hz), 3.72-3.52 (2H, m), 3.40-3.28 (2H, m), 2.60 (1H, brs), 1.80-1.58 (2H, m); 13C NMR (100 MHz, CDCl3) δ 157.1, 143.7, 141.1, 127.5, 126.9, 124.8, 119.8, 66.6, 59.5, 47.3, 37.7, 32.6; MS (MALDI TOF) m/z calcd for C18H19NNaO3 [M+Na]+ 320.13, found 320.06.
The identification results of the compound synthesized in Example 19 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.75 (2H, d, J = 7.6 Hz), 7.57 (2H, d, J = 7.6 Hz), 7.39 (2H, t, J = 7.6 Hz), 7.30 (2H , t, J = 7.6 Hz), 5.06 (1H, brs), 4.42 (2H, d, J = 6.6 Hz), 4.20 (1H, t, J = 6.6 Hz), 3.72-3.52 (2H, m), 3.40 -3.28 (2H, m), 2.60 (1H, brs), 1.80-1.58 (2H, m); 13 C NMR (100 MHz, CDCl 3 ) δ 157.1, 143.7, 141.1, 127.5, 126.9, 124.8, 119.8, 66.6 , 59.5, 47.3, 37.7, 32.6; MS (MALDI TOF) m / z calcd for C 18 H 19 NNaO 3 [M + Na] + 320.13, found 320.06.

[実施例20]
2-(Trimethylsilyl)ethyl 3-hydroxypropylcarbamate (25)の合成(方法A)
[Example 20]
Synthesis of 2- (Trimethylsilyl) ethyl 3-hydroxypropylcarbamate (25) (Method A)

Figure 0005227965
Figure 0005227965

合成例4で得たTeoc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物21(100μmol)を加え室温で30分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物25)を得た(定量的、無色オイル)。   Teoc-NT (100 μmol) obtained in Synthesis Example 4 was added to dichloromethane (500 μl), then compound 21 (100 μmol) was added, and the mixture was stirred at room temperature for 30 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (Compound 25) (quantitative, colorless oil).

実施例20で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 4.99 (1H, brs), 4.17 (2H, t, J = 8.4 Hz), 3.69 (2H, t, J = 5.9 Hz), 3.34 (2H, q, J = 5.9 Hz), 1.71 (2H, quintet, J = 5.9 Hz), 0.99 (2H, t, J = 8.4 Hz), 0.04 (9H, s); 13C NMR (100 MHz, CDCl3) δ 157.6, 63.3, 59.4, 37.5, 32.8, 17.9, -1.3; MS (MALDI TOF) m/z calcd for C9H21NNaO3Si [M+Na]+ 242.12, found 242.10.
The identification result of the compound synthesize | combined in Example 20 is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 4.99 (1H, brs), 4.17 (2H, t, J = 8.4 Hz), 3.69 (2H, t, J = 5.9 Hz), 3.34 (2H, q, J = 5.9 Hz), 1.71 (2H, quintet, J = 5.9 Hz), 0.99 (2H, t, J = 8.4 Hz), 0.04 (9H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 157.6, 63.3, 59.4, 37.5, 32.8, 17.9, -1.3; MS (MALDI TOF) m / z calcd for C 9 H 21 NNaO 3 Si [M + Na] + 242.12, found 242.10.

[実施例21]
Benzyl phenylcarbamate (27)の合成(方法E)
[Example 21]
Synthesis of Benzyl phenylcarbamate (27) (Method E)

Figure 0005227965
Figure 0005227965

合成例1で得たZ-NT(200μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(500μmol)および化合物26(100μmol)を加え、室温で15分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し、残渣をカラムクロマトグラフィー(Hexane : EtOAc = 9 : 1)で分離精製し目的物(化合物27)を得た(収率87%、白色固体)。   Z-NT (200 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), triethylamine (500 μmol) and compound 26 (100 μmol) were added, and the mixture was stirred at room temperature for 15 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off, and the residue was separated and purified by column chromatography (Hexane: EtOAc = 9: 1) to obtain the desired product (Compound 27) (yield 87%, white solid).

実施例21で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.42-7.25 (9H, m), 7.05 (1H, t, J = 7.3 Hz), 6.72 (1H, brs), 5.18 (2H, s); 13C NMR (100 MHz, CDCl3) δ 153.1, 137.6, 135.9, 128.9, 128.5, 128.2, 128.1, 123.4, 118.6, 67.0; MS (MALDI TOF) m/z calcd for C14H13NNaO2 [M+Na]+ 250.08, found 249.91.
The identification result of the compound synthesize | combined in Example 21 is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.42-7.25 (9H, m), 7.05 (1H, t, J = 7.3 Hz), 6.72 (1H, brs), 5.18 (2H, s); 13 C NMR ( 100 MHz, CDCl 3 ) δ 153.1, 137.6, 135.9, 128.9, 128.5, 128.2, 128.1, 123.4, 118.6, 67.0; MS (MALDI TOF) m / z calcd for C 14 H 13 NNaO 2 [M + Na] + 250.08 , found 249.91.

[実施例22]
2,2,2-Trichloroethyl phenylcarbamate (28)の合成
[Example 22]
Synthesis of 2,2,2-Trichloroethyl phenylcarbamate (28)

Figure 0005227965
Figure 0005227965

(1)方法Aによる合成
合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物26(100μmol)を加え室温で15分間攪拌した。析出したニトロトリアゾールをろ別し、溶媒を留去することで目的物(化合物28)を得た(定量的(4%のTroc-NTを含む)、白色固体)。
(1) Synthesis by Method A Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then Compound 26 (100 μmol) was added, and the mixture was stirred at room temperature for 15 minutes. The precipitated nitrotriazole was filtered off and the solvent was distilled off to obtain the desired product (compound 28) (quantitative (containing 4% Troc-NT), white solid).

(2)方法Bによる合成
合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物26(100μmol)を加え室温で15分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物28)を得た(収率97%、白色固体)。
(2) Synthesis by Method B Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then Compound 26 (100 μmol) was added, and the mixture was stirred at room temperature for 15 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 28) (yield 97%, white solid).

実施例22で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.45-7.29 (4H, m), 7.14-7.08 (1H, m), 6.95 (1H, brs), 4.82 (2H, s); 13C NMR (100 MHz, CDCl3) δ 151.3, 136.8, 129.0, 124.0, 118.8, 95.2, 74.5; MS (FAB) m/z calcd for C9H8Cl3NNaO2 [M+Na]+ 289.95, found 290.00.
The identification results of the compound synthesized in Example 22 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.45-7.29 (4H, m), 7.14-7.08 (1H, m), 6.95 (1H, brs), 4.82 (2H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 151.3, 136.8, 129.0, 124.0, 118.8, 95.2, 74.5; MS (FAB) m / z calcd for C 9 H 8 Cl 3 NNaO 2 [M + Na] + 289.95, found 290.00.

[実施例23]
2-(Trimethylsilyl)ethyl phenylcarbamate (29)の合成(方法E)
[Example 23]
Synthesis of 2- (Trimethylsilyl) ethyl phenylcarbamate (29) (Method E)

Figure 0005227965
Figure 0005227965

合成例4で得たTeoc-NT(200μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(500μmol)および化合物26(100μmol)を加え、室温で60分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し、残渣をカラムクロマトグラフィー(Hexane : EtOAc = 9 : 1)で分離精製し目的物(化合物29)を得た(収率94%、黄色オイル)。   Teoc-NT (200 μmol) obtained in Synthesis Example 4 was added to dichloromethane (500 μl), triethylamine (500 μmol) and compound 26 (100 μmol) were added, and the mixture was stirred at room temperature for 60 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off, and the residue was separated and purified by column chromatography (Hexane: EtOAc = 9: 1) to obtain the desired product (Compound 29) (yield 94%, yellow oil).

実施例23で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.40-7.24 (4H, m), 7.05 (1H, t, J = 7.3 Hz), 6.59 (1H, brs), 4.29-4.23 (2H, m), 1.08-1.02 (2H, m), 0.06 (9H, s); 13C NMR (100 MHz, CDCl3) δ 153.5, 137.8, 128.8, 123.1, 118.5, 63.5, 17.9, -1.3; MS (FAB) m/z calcd for C12H19NNaO2Si [M+Na]+ 260.11, found 260.16.
The identification results of the compound synthesized in Example 23 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.40-7.24 (4H, m), 7.05 (1H, t, J = 7.3 Hz), 6.59 (1H, brs), 4.29-4.23 (2H, m), 1.08- 1.02 (2H, m), 0.06 (9H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 153.5, 137.8, 128.8, 123.1, 118.5, 63.5, 17.9, -1.3; MS (FAB) m / z calcd for C 12 H 19 NNaO 2 Si [M + Na] + 260.11, found 260.16.

[実施例24]
2,2,2-Trichloroethyl 4-(phenylthio)phenylcarbamate (31)の合成(方法D)
[Example 24]
Synthesis of 2,2,2-Trichloroethyl 4- (phenylthio) phenylcarbamate (31) (Method D)

Figure 0005227965
Figure 0005227965

合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物30(100μmol)を加え室温で一晩攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し、残渣をカラムクロマトグラフィー(Hexane : EtOAc = 9 : 1)で分離精製し目的物(化合物31)を得た(収率92%、オレンジ色固体)。   Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), then compound 30 (100 μmol) was added, and the mixture was stirred overnight at room temperature. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off, and the residue was separated and purified by column chromatography (Hexane: EtOAc = 9: 1) to obtain the desired product (Compound 31) (yield 92%, orange solid).

実施例24で合成した化合物の同定結果を以下に示す。
1H NMR(400MHz, CDCl3) δ 7.42-7.34 (4H, m), 7.30-7.17 (5H, m), 6.93 (1H, brs), 4.82 (2H, s); 13C NMR(100MHz, CDCl3) δ 151.2, 136.5, 136.4, 133.0, 130.0, 129.0, 126.5, 119.5, 95.1, 74.5.
The identification results of the compound synthesized in Example 24 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.42-7.34 (4H, m), 7.30-7.17 (5H, m), 6.93 (1H, brs), 4.82 (2H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 151.2, 136.5, 136.4, 133.0, 130.0, 129.0, 126.5, 119.5, 95.1, 74.5.

[実施例25]
Dibenzyl carbonate (33)の合成(方法C)
[Example 25]
Synthesis of Dibenzyl carbonate (33) (Method C)

Figure 0005227965
Figure 0005227965

合成例1で得たZ-NT(100μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(200μmol)および化合物32(100μmol)を加え、室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物33)を得た(収率98%、無色オイル)。   Z-NT (100 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), triethylamine (200 μmol) and compound 32 (100 μmol) were added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 33) (yield 98%, colorless oil).

実施例25で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.44-7.24 (10H, m), 5.16 (4H, s); 13C NMR (100 MHz, CDCl3) δ 154.7, 134.8, 128.2, 128.2, 128.0, 69.5; MS (FAB) m/z calcd for C15H14NaO3 [M+Na]+ 265.08, found 265.13.
The identification results of the compound synthesized in Example 25 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.44-7.24 (10H, m), 5.16 (4H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 154.7, 134.8, 128.2, 128.2, 128.0, 69.5; MS (FAB) m / z calcd for C 15 H 14 NaO 3 [M + Na] + 265.08, found 265.13.

[実施例26]
Benzyl 2,2,2-trichloroethyl carbonate (34)の合成(方法C)
[Example 26]
Synthesis of Benzyl 2,2,2-trichloroethyl carbonate (34) (Method C)

Figure 0005227965
Figure 0005227965

合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(200μmol)および化合物32(100μmol)を加え、室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物34)を得た(収率96%、無色オイル)。   Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), triethylamine (200 μmol) and compound 32 (100 μmol) were added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off to obtain the desired product (Compound 34) (yield 96%, colorless oil).

実施例26で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.48-7.32 (5H, m), 5.24 (2H, s), 4.77 (2H, s); 13C NMR (100 MHz, CDCl3) δ 153.7, 134.3, 128.7, 128.5, 128.3, 94.3, 76.8, 70.7; MS (FAB) m/z calcd for C10H9Cl3NaO3 [M+Na]+ 304.95, found 305.02.
The identification results of the compound synthesized in Example 26 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.48-7.32 (5H, m), 5.24 (2H, s), 4.77 (2H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 153.7, 134.3, 128.7 , 128.5, 128.3, 94.3, 76.8, 70.7; MS (FAB) m / z calcd for C 10 H 9 Cl 3 NaO 3 [M + Na] + 304.95, found 305.02.

[実施例27]
Benzyl 2-(trimethylsilyl)ethyl carbonate (35)の合成(方法C)
[Example 27]
Synthesis of Benzyl 2- (trimethylsilyl) ethyl carbonate (35) (Method C)

Figure 0005227965
Figure 0005227965

合成例4で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(200μmol)および化合物32(100μmol)を加え、室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物35)を得た(収率92%、無色オイル)。   Troc-NT (100 μmol) obtained in Synthesis Example 4 was added to dichloromethane (500 μl), triethylamine (200 μmol) and compound 32 (100 μmol) were added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 35) (yield 92%, colorless oil).

実施例27で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.41-7.30 (5H, m), 5.15 (2H, s), 4.27-4.21 (2H, m), 1.09-1.03 (2H, m), 0.04 (9H, s); 13C NMR (100 MHz, CDCl3) δ 155.1, 135.4, 128.5, 128.3, 128.2, 69.3, 66.6, 17.6, -1.5; MS (FAB) m/z calcd for C13H20NaO3Si [M+Na]+ 275.11, found 275.17.
The identification results of the compound synthesized in Example 27 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.41-7.30 (5H, m), 5.15 (2H, s), 4.27-4.21 (2H, m), 1.09-1.03 (2H, m), 0.04 (9H, s ); 13 C NMR (100 MHz, CDCl 3 ) δ 155.1, 135.4, 128.5, 128.3, 128.2, 69.3, 66.6, 17.6, -1.5; MS (FAB) m / z calcd for C 13 H 20 NaO 3 Si [M + Na] + 275.11, found 275.17.

[実施例28]
Benzyl (1S,2R,5S)-2-isopropyl-5-methylcyclohexyl carbonate (37)の合成(方法E)
[Example 28]
Synthesis of Benzyl (1S, 2R, 5S) -2-isopropyl-5-methylcyclohexyl carbonate (37) (Method E)

Figure 0005227965
Figure 0005227965

合成例1で得たZ-NT(200μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(500μmol)および化合物36(100μmol)を加え、室温で加え、1時間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し、残渣をカラムクロマトグラフィー(Hexane : EtOAc = 9 : 1)で分離精製し目的物(化合物37)を得た(収率95%、白色固体)。   Z-NT (200 μmol) obtained in Synthesis Example 1 was added to dichloromethane (500 μl), triethylamine (500 μmol) and compound 36 (100 μmol) were added, and the mixture was added at room temperature and stirred for 1 hour. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off, and the residue was separated and purified by column chromatography (Hexane: EtOAc = 9: 1) to obtain the desired product (Compound 37) (yield 95%, white solid).

実施例28で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.44-7.28 (5H. m), 5.15 (1H, s), 5.14 (1H, s), 4.53 (1H, dt, J = 10.0, 4.4 Hz), 2.11-2.05 (1H, m), 1.95 (1H, doublet of quintet, J = 7.0, 2.7 Hz), 1.71-1.64 (2H, m), 1.54-1.40 (1H, m), 1.40 (1H, tt, J = 12.0, 3.2 Hz), 1.05 (2H, q, J = 11.8 Hz), 0.91 (3H, d, J = 6.6 Hz), 0.88 (3H, d, J = 6.6 Hz), 0.88-0.81 (1H, m), 0.78 (3H, d, J = 7.1 Hz); 13C NMR (100 MHz, CDCl3) δ 154.7, 135.3, 128.4, 128.2, 128.0, 78.6, 69.3, 47.1, 40.8, 34.2, 31.5, 26.1, 23.4, 22.1, 20.9, 16.4; MS (FAB) m/z calcd for C18H26NaO3 [M+Na]+ 313.18, found 313.18.
The identification results of the compound synthesized in Example 28 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.44-7.28 (5H.m), 5.15 (1H, s), 5.14 (1H, s), 4.53 (1H, dt, J = 10.0, 4.4 Hz), 2.11- 2.05 (1H, m), 1.95 (1H, doublet of quintet, J = 7.0, 2.7 Hz), 1.71-1.64 (2H, m), 1.54-1.40 (1H, m), 1.40 (1H, tt, J = 12.0 , 3.2 Hz), 1.05 (2H, q, J = 11.8 Hz), 0.91 (3H, d, J = 6.6 Hz), 0.88 (3H, d, J = 6.6 Hz), 0.88-0.81 (1H, m), 0.78 (3H, d, J = 7.1 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 154.7, 135.3, 128.4, 128.2, 128.0, 78.6, 69.3, 47.1, 40.8, 34.2, 31.5, 26.1, 23.4, 22.1 , 20.9, 16.4; MS (FAB) m / z calcd for C 18 H 26 NaO 3 [M + Na] + 313.18, found 313.18.

[実施例29]
2,2,2-Trichloroethyl (1S,2R,5S)-2-isopropyl-5-methylcyclohexyl carbonate (38)の合成(方法E)
[Example 29]
Synthesis of 2,2,2-Trichloroethyl (1S, 2R, 5S) -2-isopropyl-5-methylcyclohexyl carbonate (38) (Method E)

Figure 0005227965
Figure 0005227965

合成例2で得たTroc-NT(200μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(500μmol)および化合物36(100μmol)を加え、室温で加え、5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し、残渣をカラムクロマトグラフィー(Hexane : EtOAc = 9 : 1)で分離精製し目的物(化合物38)を得た(収率96%、白色固体)。   Troc-NT (200 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), triethylamine (500 μmol) and compound 36 (100 μmol) were added, and the mixture was added at room temperature and stirred for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off, and the residue was separated and purified by column chromatography (Hexane: EtOAc = 9: 1) to obtain the desired product (Compound 38) (yield 96%, white solid).

実施例29で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 4.79 (1H, d, J = 11.9 Hz), 4.76 (1H, d, J = 11.9 Hz), 4.60 (1H, dt, J = 11.0, 4.5 Hz), 2.12-2.05 (1H, m), 1.98 (doublet of quintet, J = 6.9, 2.7 Hz), 1.75-1.65 (2H, m), 1.55-1.43 (2H, m), 1.12 (1H, q, J = 11.8 Hz), 1.12-1.00 (1H, m), 0.93 (3H, d, J = 6.4 Hz), 0.91 (3H, d, J = 7.1 Hz), 0.91-0.85 (1H, m), 0.80 (3H, d, J = 7.1 Hz); 13C NMR (100 MHz, CDCl3) δ 153.6, 94.7, 80.0, 76.5, 47.0, 40.6, 34.1, 31.6, 26.3, 23.5, 22.1, 20.8, 16.4; MS (MALDI TOF) m/z calcd for C13H22Cl3O3 [M+H]+ 331.06, found 331.16.
The identification results of the compound synthesized in Example 29 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 4.79 (1H, d, J = 11.9 Hz), 4.76 (1H, d, J = 11.9 Hz), 4.60 (1H, dt, J = 11.0, 4.5 Hz), 2.12 -2.05 (1H, m), 1.98 (doublet of quintet, J = 6.9, 2.7 Hz), 1.75-1.65 (2H, m), 1.55-1.43 (2H, m), 1.12 (1H, q, J = 11.8 Hz ), 1.12-1.00 (1H, m), 0.93 (3H, d, J = 6.4 Hz), 0.91 (3H, d, J = 7.1 Hz), 0.91-0.85 (1H, m), 0.80 (3H, d, J = 7.1 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 153.6, 94.7, 80.0, 76.5, 47.0, 40.6, 34.1, 31.6, 26.3, 23.5, 22.1, 20.8, 16.4; MS (MALDI TOF) m / z calcd for C 13 H 22 Cl 3 O 3 [M + H] + 331.06, found 331.16.

[実施例30]
2-(Trimethylsilyl)ethyl (1S,2R,5S)-2-isopropyl-5-methylcyclohexyl carbonate (39)の合成(方法E)
[Example 30]
Synthesis of 2- (Trimethylsilyl) ethyl (1S, 2R, 5S) -2-isopropyl-5-methylcyclohexyl carbonate (39) (Method E)

Figure 0005227965
Figure 0005227965

合成例4で得たTeoc-NT(200μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(500μmol)および化合物36(100μmol)を加え、室温で加え、1時間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し、残渣をカラムクロマトグラフィー(Hexane : EtOAc = 9 : 1)で分離精製し目的物(化合物39)を得た(収率97%、白色固体)。   Teoc-NT (200 μmol) obtained in Synthesis Example 4 was added to dichloromethane (500 μl), triethylamine (500 μmol) and compound 36 (100 μmol) were added, and the mixture was added at room temperature and stirred for 1 hour. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Then, the solvent was distilled off, and the residue was separated and purified by column chromatography (Hexane: EtOAc = 9: 1) to obtain the desired product (Compound 39) (yield 97%, white solid).

実施例30で合成した化合物の同定結果を以下に示す。
1H NMR (500 MHz, CDCl3) δ 4.50 (1H, dt, J = 11.0, 4.6 Hz), 4.25-4.16 (2H, m), 2.10-2.04 (1H, m), 1.97 (doublet of quintet, J = 6.9, 2.8 Hz), 1.71-1.64 (2H, m), 1.54-1.43 (1H, m), 1.40 (1H, tt, J = 11.5, 3.2 Hz), 1.10-1.00 (4H, m), 0.91 (3H, d, J = 6.4 Hz), 0.90 (3H, d, J = 6.8 Hz), 0.91-0.83 (1H, m), 0.79 (3H, d, J = 6.9 Hz), 0.05 (9H, s); 13C NMR (125 MHz, CDCl3) δ 155.0, 78.0, 66.0, 47.0, 40.8, 34.1, 31.4, 26.0, 23.3, 22.0, 20.7, 17.5, 16.2, -1.6; MS (FAB) m/z calcd for C16H32NaO3Si [M+Na]+ 323.20, found 323.21.
The identification result of the compound synthesize | combined in Example 30 is shown below.
1 H NMR (500 MHz, CDCl 3 ) δ 4.50 (1H, dt, J = 11.0, 4.6 Hz), 4.25-4.16 (2H, m), 2.10-2.04 (1H, m), 1.97 (doublet of quintet, J = 6.9, 2.8 Hz), 1.71-1.64 (2H, m), 1.54-1.43 (1H, m), 1.40 (1H, tt, J = 11.5, 3.2 Hz), 1.10-1.00 (4H, m), 0.91 ( 3H, d, J = 6.4 Hz), 0.90 (3H, d, J = 6.8 Hz), 0.91-0.83 (1H, m), 0.79 (3H, d, J = 6.9 Hz), 0.05 (9H, s); 13 C NMR (125 MHz, CDCl 3 ) δ 155.0, 78.0, 66.0, 47.0, 40.8, 34.1, 31.4, 26.0, 23.3, 22.0, 20.7, 17.5, 16.2, -1.6; MS (FAB) m / z calcd for C 16 H 32 NaO 3 Si [M + Na] + 323.20, found 323.21.

[実施例31]
O-2,2,2-Trichloroethyl S-4-methoxyphenyl carbonothioate (41)の合成(方法C)
[Example 31]
Synthesis of O-2,2,2-Trichloroethyl S-4-methoxyphenyl carbonothioate (41) (Method C)

Figure 0005227965
Figure 0005227965

合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(200μmol)および化合物40(100μmol)を加え、室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物41)を得た(定量的、無色オイル)。   Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), triethylamine (200 μmol) and compound 40 (100 μmol) were added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 41) (quantitative, colorless oil).

実施例31で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.46 (2H, d, J = 9.8 Hz), 6.93 (2H, d, J = 9.8 Hz), 4.81 (2H, s), 3.83 (2H, s); 13C NMR (100 MHz, CDCl3) δ 169.7, 160.9, 136.6, 114.9, 94.3, 75.7, 55.5; MS (FAB) m/z calcd for C10H9Cl3NaO3S [M+Na]+ 336.92, found 336.95.
The identification result of the compound synthesize | combined in Example 31 is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.46 (2H, d, J = 9.8 Hz), 6.93 (2H, d, J = 9.8 Hz), 4.81 (2H, s), 3.83 (2H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 169.7, 160.9, 136.6, 114.9, 94.3, 75.7, 55.5; MS (FAB) m / z calcd for C 10 H 9 Cl 3 NaO 3 S [M + Na] + 336.92, found 336.95.

[実施例32]
O-2,2,2-Trichloroethyl S-propyl carbonothioate (43)の合成(方法C)
[Example 32]
Synthesis of O-2,2,2-Trichloroethyl S-propyl carbonothioate (43) (Method C)

Figure 0005227965
Figure 0005227965

合成例2で得たTroc-NT(100μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(200μmol)および化合物42(100μmol)を加え、室温で5分間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物43)を得た(収率94%、無色オイル)。   Troc-NT (100 μmol) obtained in Synthesis Example 2 was added to dichloromethane (500 μl), triethylamine (200 μmol) and compound 42 (100 μmol) were added, and the mixture was stirred at room temperature for 5 minutes. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 43) (yield 94%, colorless oil).

実施例32で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 4.83 (2H, s), 2.91 (2H, t, J = 7.3 Hz), 1.71 (2H, tq, J = 7.3, 7.3 Hz), 1.01 (3H, t, J = 7.3 Hz); 13C NMR (100 MHz, CDCl3) δ 170.5, 94.5, 75.4, 33.3, 23.1, 13.3.
The identification results of the compound synthesized in Example 32 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 4.83 (2H, s), 2.91 (2H, t, J = 7.3 Hz), 1.71 (2H, tq, J = 7.3, 7.3 Hz), 1.01 (3H, t, J = 7.3 Hz); 13 C NMR (100 MHz, CDCl 3 ) δ 170.5, 94.5, 75.4, 33.3, 23.1, 13.3.

[実施例33]
2',3',5'-O-Tris-t-butyldimethylsilyl-4-N-[2-(trimethylsilyl)ethoxycarbonyl]-cytidine (44)の合成(方法D)
[Example 33]
Synthesis of 2 ', 3', 5'-O-Tris-t-butyldimethylsilyl-4-N- [2- (trimethylsilyl) ethoxycarbonyl] -cytidine (44) (Method D)

Figure 0005227965
Figure 0005227965

合成例4で得たTeoc-NT(100μmol)をジクロロメタン(500μl)に添加し、化合物44(50μmol)を加え、室温で1時間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し、残渣をカラムクロマトグラフィー(MeOH : CH2Cl2 = 98 : 2)で分離精製し目的物(化合物45)を得た(定量的、無色オイル)。Teoc-NT (100 μmol) obtained in Synthesis Example 4 was added to dichloromethane (500 μl), compound 44 (50 μmol) was added, and the mixture was stirred at room temperature for 1 hour. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off, and the residue was separated and purified by column chromatography (MeOH: CH 2 Cl 2 = 98: 2) to obtain the desired product (compound 45) (quantitative, colorless oil).

実施例33で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 8.53 (1H, d, J = 7.3 Hz), 7.58 (1H, brs), 7.17 (1H, d, J = 7.3 Hz), 5.79 (1H, brs), 4.32-4.25 (2H, m), 4.17-4.08 (3H, m), 4.07-4.02 (1H, m), 3.80 (1H, d, J = 11.2 Hz), 1.10-1.03 (2H, m), 0.97 (9H, s), 0.92 (9H, s), 0.89 (9H, s), 0.24 (3H, s), 0.16 (3H, s), 0.14 (3H, s), 0.13 (3H, s), 0.06 (9H, s), 0.05 (6H, s); 13C NMR (100 MHz, CDCl3) δ 162.0, 154.8, 152.3, 144.5, 93.9, 90.8, 83.0, 76.2, 68.9, 64.8, 60.7, 26.2, 26.0, 26.0, 18.7, 18.2, 17.6, -1.3, -3.9, -4.0, -4.9, -5.0, -5.0, -5.4; MS (MALDI TOF) m/z calcd for C33H67N3NaO7Si4 [M+Na]+ 752.40, found 752.60.
The identification results of the compound synthesized in Example 33 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 8.53 (1H, d, J = 7.3 Hz), 7.58 (1H, brs), 7.17 (1H, d, J = 7.3 Hz), 5.79 (1H, brs), 4.32 -4.25 (2H, m), 4.17-4.08 (3H, m), 4.07-4.02 (1H, m), 3.80 (1H, d, J = 11.2 Hz), 1.10-1.03 (2H, m), 0.97 (9H , s), 0.92 (9H, s), 0.89 (9H, s), 0.24 (3H, s), 0.16 (3H, s), 0.14 (3H, s), 0.13 (3H, s), 0.06 (9H, s), 0.05 (6H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 162.0, 154.8, 152.3, 144.5, 93.9, 90.8, 83.0, 76.2, 68.9, 64.8, 60.7, 26.2, 26.0, 26.0, 18.7 , 18.2, 17.6, -1.3, -3.9, -4.0, -4.9, -5.0, -5.0, -5.4; MS (MALDI TOF) m / z calcd for C 33 H 67 N 3 NaO 7 Si 4 [M + Na ] + 752.40, found 752.60.

[実施例34]
2',3',5'-O-Tris-t-butyldimethylsilyl-6-N-[2-(trimethylsilyl)ethoxycarbonyl]-adenosine (47)の合成(方法D)
[Example 34]
Synthesis of 2 ', 3', 5'-O-Tris-t-butyldimethylsilyl-6-N- [2- (trimethylsilyl) ethoxycarbonyl] -adenosine (47) (Method D)

Figure 0005227965
Figure 0005227965

合成例4で得たTeoc-NT(200μmol)をジクロロメタン(500μl)に添加し、化合物46(50μmol)を加え、室温で12時間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し、残渣をカラムクロマトグラフィー(MeOH : CH2Cl2 = 99 : 1)で分離精製し目的物(化合物47)を得た(収率98%、無色オイル)。Teoc-NT (200 μmol) obtained in Synthesis Example 4 was added to dichloromethane (500 μl), compound 46 (50 μmol) was added, and the mixture was stirred at room temperature for 12 hours. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off, and the residue was separated and purified by column chromatography (MeOH: CH 2 Cl 2 = 99: 1) to obtain the desired product (Compound 47) (yield 98%, colorless oil).

実施例34で合成した化合物の同定結果を以下に示す。
1H NMR (300 MHz, CDCl3) δ 8.74 (1H, s), 8.32 (1H, s), 8.25 (1H, brs), 6.08 (1H, d, J = 5.2 Hz), 4.67 (1H, dd, J = 5.2, 4.5 Hz), 4.43-4.28 (3H, m), 4.19-4.12 (1H, m), 4.03 (1H, dd, J = 11.4, 3.9 Hz), 3.80 (1H, dd, J = 11.4, 2.8 Hz), 1.17-1.05 (2H, m), 0.96 (9H, s), 0.94 (9H, s), 0.79 (9H, s), 0.15 (3H, s), 0.14 (3H, s), 0.11 (6H, s), 0.07 (9H, s), -0.04 (3H, s), -0.26 (3H, s); 13C NMR (100 MHz, CDCl3) δ 152.6, 150.9, 150.8, 149.2, 141.4, 122.1, 88.3, 85.6, 75.9, 72.0, 64.5, 62.5, 26.2, 26.0, 25.8, 18.7, 18.2, 18.0, 17.8, -1.3, -4.2, -4.5, -4.5, -4.9, -5.2, -5.2; MS (MALDI TOF) m/z calcd for C34H67N5NaO6Si4 [M+Na]+ 776.41, found 776.60.
The identification results of the compound synthesized in Example 34 are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ 8.74 (1H, s), 8.32 (1H, s), 8.25 (1H, brs), 6.08 (1H, d, J = 5.2 Hz), 4.67 (1H, dd, J = 5.2, 4.5 Hz), 4.43-4.28 (3H, m), 4.19-4.12 (1H, m), 4.03 (1H, dd, J = 11.4, 3.9 Hz), 3.80 (1H, dd, J = 11.4, 2.8 Hz), 1.17-1.05 (2H, m), 0.96 (9H, s), 0.94 (9H, s), 0.79 (9H, s), 0.15 (3H, s), 0.14 (3H, s), 0.11 ( 6H, s), 0.07 (9H, s), -0.04 (3H, s), -0.26 (3H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 152.6, 150.9, 150.8, 149.2, 141.4, 122.1 , 88.3, 85.6, 75.9, 72.0, 64.5, 62.5, 26.2, 26.0, 25.8, 18.7, 18.2, 18.0, 17.8, -1.3, -4.2, -4.5, -4.5, -4.9, -5.2, -5.2; MS ( MALDI TOF) m / z calcd for C 34 H 67 N 5 NaO 6 Si 4 [M + Na] + 776.41, found 776.60.

[実施例35]
2',3',5'-O-Tris-t-butyldimethylsilyl-2-N-[2-(trimethylsilyl)ethoxycarbonyl]-guanosine (49)の合成(方法E)
[Example 35]
Synthesis of 2 ', 3', 5'-O-Tris-t-butyldimethylsilyl-2-N- [2- (trimethylsilyl) ethoxycarbonyl] -guanosine (49) (Method E)

Figure 0005227965
Figure 0005227965

合成例4で得たTeoc-NT(200μmol)をジクロロメタン(500μl)に添加し、トリエチルアミン(500μmol)および化合物48(50μmol)を加え、室温で4時間攪拌した。反応混合物にジクロロメタン4mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し、残渣をカラムクロマトグラフィー(MeOH : CH2Cl2 = 99 : 1)で分離精製し目的物(化合物49)を得た(収率80%、無色オイル)。Teoc-NT (200 μmol) obtained in Synthesis Example 4 was added to dichloromethane (500 μl), triethylamine (500 μmol) and compound 48 (50 μmol) were added, and the mixture was stirred at room temperature for 4 hours. After adding 4 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off, and the residue was separated and purified by column chromatography (MeOH: CH 2 Cl 2 = 99: 1) to obtain the desired product (Compound 49) (yield 80%, colorless oil).

実施例35で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 11.30 (1H, brs), 8.04 (1H, s), 7.47 (1H, brs), 5.86 (1H, d, J = 5.4 Hz), 4.38-4.32 (3H, m), 4.26 (1H, dd, J = 4.4, 3.4 Hz), 4.09 (1H, ddd, J = 3.4, 3.2, 2.2 Hz), 3.92 (1H, dd, J = 11.5, 3.2 Hz), 3.78 (1H, dd, J = 11.5, 2.2 Hz), 1.12-1.05 (2H, m), 0.96 (9H, s), 0.94 (9H, s), 0.81 (9H, s), 0.14 (3H, s), 0.13 (3H, s), 0.11 (3H, s), 0.10 (3H, s), 0.08 (9H, s), -0.02 (3H, s), -0.21 (3H, s); 13C NMR (100 MHz, CDCl3) δ 155.3, 153.1, 148.2, 146.2, 136.8, 120.7, 87.3, 85.6, 76.9, 72.1, 66.0, 62.7, 26.2, 25.9, 25.7, 18.6, 18.2, 18.0, 17.7, -1.4, -4.2, -4.4, -4.5, -4.9, -5.2, -5.3. HRMS (FAB+) m/z calcd for C34H67N5NaO7Si4 [M+Na]+ 792.4015, found 792.4020.
The identification result of the compound synthesize | combined in Example 35 is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 11.30 (1H, brs), 8.04 (1H, s), 7.47 (1H, brs), 5.86 (1H, d, J = 5.4 Hz), 4.38-4.32 (3H, m), 4.26 (1H, dd, J = 4.4, 3.4 Hz), 4.09 (1H, ddd, J = 3.4, 3.2, 2.2 Hz), 3.92 (1H, dd, J = 11.5, 3.2 Hz), 3.78 (1H , dd, J = 11.5, 2.2 Hz), 1.12-1.05 (2H, m), 0.96 (9H, s), 0.94 (9H, s), 0.81 (9H, s), 0.14 (3H, s), 0.13 ( 3H, s), 0.11 (3H, s), 0.10 (3H, s), 0.08 (9H, s), -0.02 (3H, s), -0.21 (3H, s); 13 C NMR (100 MHz, CDCl 3 ) δ 155.3, 153.1, 148.2, 146.2, 136.8, 120.7, 87.3, 85.6, 76.9, 72.1, 66.0, 62.7, 26.2, 25.9, 25.7, 18.6, 18.2, 18.0, 17.7, -1.4, -4.2, -4.4, -4.5, -4.9, -5.2, -5.3. HRMS (FAB + ) m / z calcd for C 34 H 67 N 5 NaO 7 Si 4 [M + Na] + 792.4015, found 792.4020.

[実施例36]
Benzyl (R)-1-phenylethylcarbamate (2)の合成(方法B)
[Example 36]
Synthesis of Benzyl (R) -1-phenylethylcarbamate (2) (Method B)

Figure 0005227965
Figure 0005227965

合成例1で得たZ-NT(100μmol)をTHF(500μl)に添加し、次いで化合物1(100μmol)を加え室温で15分間攪拌した。反応混合物にジクロロメタン3mlを加えた後、飽和炭酸水素ナトリウム水溶液(3ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物2)を得た(収率94%、白色固体)。   Z-NT (100 μmol) obtained in Synthesis Example 1 was added to THF (500 μl), then Compound 1 (100 μmol) was added, and the mixture was stirred at room temperature for 15 minutes. After adding 3 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous solution of sodium bicarbonate (3 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 2) (yield 94%, white solid).

[実施例37]
Benzyl (R)-1-phenylethylcarbamate (2)の合成(方法B)
[Example 37]
Synthesis of Benzyl (R) -1-phenylethylcarbamate (2) (Method B)

Figure 0005227965
Figure 0005227965

合成例1で得たZ-NT(100μmol)をCH3CN(500μl)に添加し、次いで化合物1(100μmol)を加え室温で15分間攪拌した。反応混合物にジクロロメタン3mlを加えた後、飽和炭酸水素ナトリウム水溶液(3ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物2)を得た(収率96%、白色固体)。Z-NT (100 μmol) obtained in Synthesis Example 1 was added to CH 3 CN (500 μl), then Compound 1 (100 μmol) was added, and the mixture was stirred at room temperature for 15 minutes. After adding 3 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous solution of sodium bicarbonate (3 ml × 3) and dried over anhydrous sodium sulfate. Next, the solvent was distilled off to obtain the desired product (Compound 2) (yield 96%, white solid).

[実施例38]
t-Butyl (R)-1-phenylethylcarbamate (50)の合成(方法B)

Figure 0005227965
[Example 38]
Synthesis of t-Butyl (R) -1-phenylethylcarbamate (50) (Method B)
Figure 0005227965

Boc-NT(100μmol)をTHF(500μl)に添加し、次いで化合物1(100μmol)を加え室温で60分間攪拌した。反応混合物にジクロロメタン3mlを加えた後、飽和炭酸水素ナトリウム水溶液(3ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物50)を得た(定量的、白色固体)。 Boc-NT (100 μmol) was added to THF (500 μl), then compound 1 (100 μmol) was added, and the mixture was stirred at room temperature for 60 minutes. After adding 3 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous solution of sodium bicarbonate (3 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 50) (quantitative, white solid).

実施例38で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.48-7.16 (5H, m), 4.80 (2H, brs), 1.64-1.20 (12H, brs).
The identification results of the compound synthesized in Example 38 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.48-7.16 (5H, m), 4.80 (2H, brs), 1.64-1.20 (12H, brs).

[実施例39]
t-Butyl 4-phenylpiperazine-1-carboxylate (52)の合成(方法B)
[Example 39]
Synthesis of t-Butyl 4-phenylpiperazine-1-carboxylate (52) (Method B)

Figure 0005227965
Figure 0005227965

Boc-NT(100μmol)をジクロロメタン(500μl)に添加し、次いで化合物51(100μmol)を加え室温で15分間攪拌した。反応混合物に更にジクロロメタン3mlを加えた後、飽和炭酸水素ナトリウム水溶液(3ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去し目的物(化合物52)を得た(定量的、白色固体)。   Boc-NT (100 μmol) was added to dichloromethane (500 μl), then compound 51 (100 μmol) was added, and the mixture was stirred at room temperature for 15 minutes. After further adding 3 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (3 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the solvent was distilled off to obtain the desired product (Compound 52) (quantitative, white solid).

実施例39で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 7.31-7.23 (2H, m), 6.96-6.85 (3H, m), 3.58 (4H, t, J = 5.0 Hz), 3.13 (4H, t, J = 5.0 Hz), 1.48 (9H, s).
The identification results of the compound synthesized in Example 39 are shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.31-7.23 (2H, m), 6.96-6.85 (3H, m), 3.58 (4H, t, J = 5.0 Hz), 3.13 (4H, t, J = 5.0 Hz), 1.48 (9H, s).

[実施例40]
N,N'-Bispalmitoyl-L-lysine ethyl ester (54)の合成(方法F)
[Example 40]
Synthesis of N, N'-Bispalmitoyl-L-lysine ethyl ester (54) (Method F)

Figure 0005227965
Figure 0005227965

Pal-NT(200μmol)を5% NaHCO3水溶液とジクロロメタン混合液(1ml)に添加し、次いで化合物53(100μmol)を加え室温で30分間攪拌した。反応混合物にジクロロメタン5mlを加えた後、飽和炭酸水素ナトリウム水溶液(5ml×3)で洗浄し、無水硫酸ナトリウムで乾燥した。次いで、溶媒を留去することで目的物(化合物54)を得た(収率93%、白色固体)。Pal-NT (200 μmol) was added to a 5% aqueous NaHCO 3 solution and dichloromethane mixture (1 ml), then compound 53 (100 μmol) was added, and the mixture was stirred at room temperature for 30 minutes. After adding 5 ml of dichloromethane to the reaction mixture, it was washed with a saturated aqueous sodium hydrogen carbonate solution (5 ml × 3) and dried over anhydrous sodium sulfate. Subsequently, the target product (Compound 54) was obtained by distilling off the solvent (yield 93%, white solid).

実施例40で合成した化合物の同定結果を以下に示す。
1H NMR (400 MHz, CDCl3) δ 6.20 (1H, d, J = 7.8 Hz), 5.76-5.70 (1H, m), 4.56 (1H, dt, J = 8.1, 4.4 Hz), 4.19 (2H, q, J = 7.2 Hz), 3.27-3.20 (2H, m), 2.23 (2H, t, J = 7.6 Hz), 2.16 (2H, t, J = 7.7 Hz), 1.89-1.78 (1H, m), 1.73-1.48 (7H, m), 1.40-1.19 (53H, m), 0.88 (6H, t, J = 6.8 Hz); 13C NMR (125 MHz, CDCl3) δ 173.2, 173.0, 172.4, 61.5, 51.7, 38.9, 36.9, 36.7, 32.3, 32.0, 29.8, 29.8, 29.6, 29.5, 29.5, 29.5, 29.4, 28.9, 26.0, 25.8, 22.8, 22.5, 14.3, 14.3.
The identification result of the compound synthesize | combined in Example 40 is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 6.20 (1H, d, J = 7.8 Hz), 5.76-5.70 (1H, m), 4.56 (1H, dt, J = 8.1, 4.4 Hz), 4.19 (2H, q, J = 7.2 Hz), 3.27-3.20 (2H, m), 2.23 (2H, t, J = 7.6 Hz), 2.16 (2H, t, J = 7.7 Hz), 1.89-1.78 (1H, m), 1.73-1.48 (7H, m), 1.40-1.19 (53H, m), 0.88 (6H, t, J = 6.8 Hz); 13 C NMR (125 MHz, CDCl 3 ) δ 173.2, 173.0, 172.4, 61.5, 51.7 , 38.9, 36.9, 36.7, 32.3, 32.0, 29.8, 29.8, 29.6, 29.5, 29.5, 29.5, 29.4, 28.9, 26.0, 25.8, 22.8, 22.5, 14.3, 14.3.

本発明により、合成化学において有用な各種カルバメート、カーボネートおよびチオカーボネートを簡便かつ効率的に得ることができる。   According to the present invention, various carbamates, carbonates and thiocarbonates useful in synthetic chemistry can be obtained simply and efficiently.

Claims (5)

下記一般式(I)で表されるニトロトリアゾール誘導体。
Figure 0005227965
[一般式(I)中、Rは、置換基を有していてもよいアリールオキシ基もしくはヘテロアリールオキシ基、置換基を有するメトキシ基もしくはエトキシ基、置換基を有していてもよい炭素数3〜30のアルキルオキシ基、置換基を有するメチル基、置換基を有していてもよい炭素数2〜30のアルキル基、または置換基を有していてもよいアリール基もしくはヘテロアリール基を表す。]
A nitrotriazole derivative represented by the following general formula (I).
Figure 0005227965
[In general formula (I), R represents an aryloxy group or heteroaryloxy group which may have a substituent, a methoxy group or an ethoxy group having a substituent, or a carbon number which may have a substituent. An alkyloxy group having 3 to 30; a methyl group having a substituent; an alkyl group having 2 to 30 carbon atoms which may have a substituent; or an aryl group or heteroaryl group optionally having a substituent. Represent. ]
一般式(I)中、Rは、置換基を有するメトキシ基もしくはエトキシ基、または置換基を有していてもよい炭素数3〜30のアルキルオキシ基を表す請求項1に記載のニトロトリアゾール誘導体。 The nitrotriazole derivative according to claim 1, wherein R in the general formula (I) represents a methoxy group or an ethoxy group having a substituent, or an alkyloxy group having 3 to 30 carbon atoms which may have a substituent. . 請求項1または2に記載のニトロトリアゾール誘導体を、下記一般式(II):
Figure 0005227965
[一般式(II)中、Xはアミノ基、アルキルもしくはアリールアミノ基、アルキルもしくはアリールオキシ基またはアルキルもしくはアリールチオ基を表す。]
で表される化合物と反応させることにより、下記一般式(III):
Figure 0005227965
[一般式(III)中、Rは一般式(I)における定義と同義であり、Xは一般式(II)における定義と同義である。]
で表される化合物を製造する方法。
The nitrotriazole derivative according to claim 1 or 2 is represented by the following general formula (II):
Figure 0005227965
[In the general formula (II), X represents an amino group, an alkyl or arylamino group, an alkyl or aryloxy group, or an alkyl or arylthio group. ]
Is reacted with a compound represented by the following general formula (III):
Figure 0005227965
[In general formula (III), R has the same definition as in general formula (I), and X has the same definition as in general formula (II). ]
The method to manufacture the compound represented by these.
前記反応は、反応溶媒としてジクロロメタンおよび/またはクロロホルムを用いて行われる請求項3に記載の製造方法。 The said reaction is a manufacturing method of Claim 3 performed using a dichloromethane and / or chloroform as a reaction solvent. 請求項1または2に記載のニトロトリアゾール誘導体と、上記一般式(II)で表される化合物との反応混合物へ、ジクロロメタンおよび/またはクロロホルムを添加することを含む請求項3または4に記載の製造方法。 The production according to claim 3 or 4, comprising adding dichloromethane and / or chloroform to a reaction mixture of the nitrotriazole derivative according to claim 1 or 2 and the compound represented by the general formula (II). Method.
JP2009536043A 2007-10-03 2008-09-29 Nitrotriazole derivative and method for producing compound using the same Active JP5227965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009536043A JP5227965B2 (en) 2007-10-03 2008-09-29 Nitrotriazole derivative and method for producing compound using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007260255 2007-10-03
JP2007260255 2007-10-03
JP2007338931 2007-12-28
JP2007338931 2007-12-28
PCT/JP2008/067662 WO2009044707A1 (en) 2007-10-03 2008-09-29 Nitrotriazole derivative and method for producing compound using the same
JP2009536043A JP5227965B2 (en) 2007-10-03 2008-09-29 Nitrotriazole derivative and method for producing compound using the same

Publications (2)

Publication Number Publication Date
JPWO2009044707A1 JPWO2009044707A1 (en) 2011-02-10
JP5227965B2 true JP5227965B2 (en) 2013-07-03

Family

ID=40526136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009536043A Active JP5227965B2 (en) 2007-10-03 2008-09-29 Nitrotriazole derivative and method for producing compound using the same

Country Status (2)

Country Link
JP (1) JP5227965B2 (en)
WO (1) WO2009044707A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520744A (en) 2004-11-19 2008-06-19 ザ・レジェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア Anti-inflammatory pyrazolopyrimidine
NZ571182A (en) 2006-04-04 2010-09-30 Univ California Pyrazolo[3,4-d]pyrimidines
US20110160232A1 (en) 2007-10-04 2011-06-30 Pingda Ren Certain chemical entities and therapeutic uses thereof
US8193182B2 (en) 2008-01-04 2012-06-05 Intellikine, Inc. Substituted isoquinolin-1(2H)-ones, and methods of use thereof
NZ587051A (en) 2008-01-04 2012-12-21 Intellikine Llc Isoquinolinone derivatives, compositions and methods of inhibiting phosphatidyl inositol-3 kinase (pi3 kinase)
US8637542B2 (en) 2008-03-14 2014-01-28 Intellikine, Inc. Kinase inhibitors and methods of use
WO2009114874A2 (en) 2008-03-14 2009-09-17 Intellikine, Inc. Benzothiazole kinase inhibitors and methods of use
BRPI0915231A2 (en) 2008-07-08 2018-06-12 Intellikine Inc kinase inhibitor compounds and methods of use
US20110224223A1 (en) 2008-07-08 2011-09-15 The Regents Of The University Of California, A California Corporation MTOR Modulators and Uses Thereof
US8703778B2 (en) 2008-09-26 2014-04-22 Intellikine Llc Heterocyclic kinase inhibitors
ES2570429T3 (en) 2008-10-16 2016-05-18 Univ California Condensed Ring Heteroaryl Kinase Inhibitors
US8476282B2 (en) 2008-11-03 2013-07-02 Intellikine Llc Benzoxazole kinase inhibitors and methods of use
CA2760791C (en) 2009-05-07 2017-06-20 Intellikine, Inc. Heterocyclic compounds and uses thereof
WO2011047384A2 (en) 2009-10-16 2011-04-21 The Regents Of The University Of California Methods of inhibiting ire1
ES2593256T3 (en) 2010-05-21 2016-12-07 Infinity Pharmaceuticals, Inc. Chemical compounds, compositions and methods for kinase modulations
WO2012064973A2 (en) 2010-11-10 2012-05-18 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
CN103648499B (en) 2011-01-10 2017-02-15 无限药品股份有限公司 Processes for preparing isoquinolinones and solid forms of isoquinolinones
US9295673B2 (en) 2011-02-23 2016-03-29 Intellikine Llc Combination of mTOR inhibitors and P13-kinase inhibitors, and uses thereof
EP2734520B1 (en) 2011-07-19 2016-09-14 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
CA2842190A1 (en) 2011-07-19 2013-01-24 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
WO2013032591A1 (en) 2011-08-29 2013-03-07 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
CA2846496C (en) 2011-09-02 2020-07-14 The Regents Of The University Of California Substituted pyrazolo[3,4-d]pyrimidines and uses thereof
US8940742B2 (en) 2012-04-10 2015-01-27 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US8828998B2 (en) 2012-06-25 2014-09-09 Infinity Pharmaceuticals, Inc. Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors
JP2015532287A (en) 2012-09-26 2015-11-09 ザ・リージエンツ・オブ・ザ・ユニバーシテイー・オブ・カリフオルニア IRE1 regulation
US9481667B2 (en) 2013-03-15 2016-11-01 Infinity Pharmaceuticals, Inc. Salts and solid forms of isoquinolinones and composition comprising and methods of using the same
CA2925944C (en) 2013-10-04 2023-01-10 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2015051241A1 (en) 2013-10-04 2015-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
EP4066834A1 (en) 2014-03-19 2022-10-05 Infinity Pharmaceuticals, Inc. Heterocyclic compounds for use in the treatment of pi3k-gamma mediated disorders
WO2015160975A2 (en) 2014-04-16 2015-10-22 Infinity Pharmaceuticals, Inc. Combination therapies
WO2016054491A1 (en) 2014-10-03 2016-04-07 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
CN108349985A (en) 2015-09-14 2018-07-31 无限药品股份有限公司 Solid form, preparation method, the composition and its application method comprising it of isoquinolines
US10759806B2 (en) 2016-03-17 2020-09-01 Infinity Pharmaceuticals, Inc. Isotopologues of isoquinolinone and quinazolinone compounds and uses thereof as PI3K kinase inhibitors
US10919914B2 (en) 2016-06-08 2021-02-16 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2017223422A1 (en) 2016-06-24 2017-12-28 Infinity Pharmaceuticals, Inc. Combination therapies

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1689477A1 (en) * 1988-06-20 1991-11-07 Le I Textilnoi Composition for low temperature bleaching clothes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1689477A1 (en) * 1988-06-20 1991-11-07 Le I Textilnoi Composition for low temperature bleaching clothes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013009896; Helal CJ et al: Org Lett Vol.6, No.11, 2004, p.1853-6 *
JPN6013009897; Oka N et al: Tetrahedron Vol.62, 2006, p.3667-73 *

Also Published As

Publication number Publication date
JPWO2009044707A1 (en) 2011-02-10
WO2009044707A1 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5227965B2 (en) Nitrotriazole derivative and method for producing compound using the same
CN102712585B (en) Intermediates of neutral endopeptidase inhibitors and preparation method thereof
ES2685621T3 (en) Processes for preparing intermediates for the manufacture of NEP inhibitors
KR101401118B1 (en) Process for preparing biaryl substituted 4-amino-butyric acid or derivatives thereof and their use in the production of nep inhibitors
US5599994A (en) Amino acid-derived diaminopropanols
EP3333173A1 (en) Methods for preparing anti-viral nucleotide analogs
EP3481201B1 (en) Processes for the preparation of 4-alkoxy-3-(acyl or alkyl)oxypicolinamides
Avenoza et al. Enantioselective synthesis of (S)-and (R)-α-methylserines: application to the synthesis of (S)-and (R)-N-Boc-N, O-isopropylidene-α-methylserinals
RU2581841C2 (en) Method for obtaining 2-amino-n-(2,2,2-trifluoroethyl)acetamide
KR20180038461A (en) Method for preparing cytotoxic benzodiazepine derivatives
EP2760848B1 (en) Processes for the preparation of cabazitaxel involving c(7)-oh and c(13)-oh silylation or just c(7)-oh silylation
WO2020158687A1 (en) Method of producing photoreactive nucleotide analog
JPH07116126B2 (en) 2,3-diaminoacrylonitrile derivative
JP2005075734A (en) Method for producing optically active homocitric acid
KR102559870B1 (en) Method for preparing carbamate compound
US11358937B2 (en) Reagents based on a tertiary amine backbone to introduce chemical functionality in nucleic acids and sequence-controlled polymers
CN115028661A (en) 4-aminopiperidine-1-methyl phosphate and preparation method thereof
US20050004371A1 (en) Solution and solid phase synthesis of pyrrolinones and polypyrrolinones
WO2002012186A1 (en) Optically active aziridine-2-carboxylate derivatives and a process for preparing them
JP3526606B2 (en) Method for producing N-substituted pyrazinecarboxamides
KR100650207B1 (en) Glutaryl 7-amino-3-vinyl-cephalosporanic acid derivatives and process for preparing it
WO2022111587A1 (en) Method for preparing cannabinoid compounds
JP3669726B2 (en) Process for producing optically active 3- (p-alkoxyphenyl) glycidic acid ester derivative
CN113527178A (en) Symmetric diheterodisulfide compound and synthesis method and application thereof
RU2203284C1 (en) Method of synthesis of n-substituted alkyl-(2-dialkoxyphosphoryl)alkylimidates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

R150 Certificate of patent or registration of utility model

Ref document number: 5227965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250