JP5224773B2 - Commutator manufacturing method and manufacturing apparatus - Google Patents

Commutator manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP5224773B2
JP5224773B2 JP2007272649A JP2007272649A JP5224773B2 JP 5224773 B2 JP5224773 B2 JP 5224773B2 JP 2007272649 A JP2007272649 A JP 2007272649A JP 2007272649 A JP2007272649 A JP 2007272649A JP 5224773 B2 JP5224773 B2 JP 5224773B2
Authority
JP
Japan
Prior art keywords
commutator
cutting
cutting tool
commutator material
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007272649A
Other languages
Japanese (ja)
Other versions
JP2009105997A (en
Inventor
敏巳 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2007272649A priority Critical patent/JP5224773B2/en
Publication of JP2009105997A publication Critical patent/JP2009105997A/en
Application granted granted Critical
Publication of JP5224773B2 publication Critical patent/JP5224773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、整流子の製造方法及び製造装置に係り、特に切削工具で整流子素材の外周面を切削してこの整流子素材から整流子を製造する整流子の製造方法及び製造装置に関する。   The present invention relates to a commutator manufacturing method and a manufacturing apparatus, and more particularly, to a commutator manufacturing method and a manufacturing apparatus for manufacturing a commutator from the commutator material by cutting the outer peripheral surface of the commutator material with a cutting tool.

従来、整流子の製造方法及び製造装置としては、例えば、次のものがある(例えば、特許文献1参照)。この特許文献1に記載の例では、整流子素材の外周面を荒削り切削した後に、この荒削り切削により生じたバリを除去するために仕上げ切削をし、整流子素材から整流子を製造するようにしている。
特開平7−163092号公報 特開2004−289921号公報
Conventionally, as a commutator manufacturing method and manufacturing apparatus, for example, there is the following (for example, see Patent Document 1). In the example described in Patent Document 1, after the outer peripheral surface of the commutator material is roughly cut, finish cutting is performed to remove burrs generated by the rough cutting, and the commutator is manufactured from the commutator material. ing.
JP 7-163092 A JP 2004-289921 A

しかしながら、整流子素材を切削して整流子素材から整流子を製造する際に、切削工具を整流子素材に対し軸方向一方側から他方側へ相対移動させるとき(往路移動時)のみ整流子素材の外周面を切削し、切削工具を整流子素材に対し軸方向他方側から一方側へ相対移動させるとき(復路移動時)を原点位置に復帰させるためのエアカットとすると、この切削工具を整流子素材に対し軸方向他方側から一方側へ相対移動させることが無駄となり、生産効率が低下する。   However, when the commutator material is cut to produce a commutator from the commutator material, the commutator material is only moved when the cutting tool is moved relative to the commutator material from one side to the other in the axial direction (during forward movement). When cutting the outer peripheral surface of the metal and cutting the tool relative to the commutator material from the other side in the axial direction from one side to the other (when moving in the return path), the cutting tool is rectified. It is useless to move relative to the child material from the other side in the axial direction to one side, and the production efficiency is lowered.

本発明は、上記課題に鑑みてなされたものであって、生産効率を向上させることができる整流子の製造方法及び製造装置を提供することを目的とする。   This invention is made | formed in view of the said subject, Comprising: It aims at providing the manufacturing method and manufacturing apparatus of a commutator which can improve production efficiency.

前記課題を解決するために、請求項1に記載の整流子の製造方法は、切削工具を整流子素材に対し前記整流子素材の周方向に相対移動させながら前記整流子素材の軸方向一方側から他方側へ相対移動させて、前記切削工具の切削バイトに形成された第一の逃げ面である荒削り切削用刃面を利用して前記整流子素材の外周面を荒削り切削する第一工程と、前記切削工具を前記整流子素材に対し前記整流子素材の周方向に相対移動させながら前記整流子素材の軸方向他方側から一方側へ相対移動させて、前記切削バイトに形成された第二の逃げ面である仕上げ切削用刃面を利用して前記整流子素材の外周面を仕上げ切削する第二工程と、を備え、前記荒削り切削用刃面と前記整流子素材の軸方向表面とのなす角度である第一の逃げ角θ1と、前記仕上げ切削用刃面と前記整流子素材の軸方向表面とのなす角度である第二の逃げ角θ2との関係がθ1≧θ2を満足する前記切削バイトを用いることを特徴とする。 In order to solve the above-mentioned problem, the commutator manufacturing method according to claim 1, wherein the commutator material is moved relative to the commutator material in the circumferential direction of the commutator material, and one side of the commutator material in the axial direction. A first step of rough cutting the outer peripheral surface of the commutator material by using a rough cutting blade surface which is a first flank formed on a cutting bit of the cutting tool , relative to the other side of the cutting tool ; The cutting tool is moved relative to the commutator material in the circumferential direction of the commutator material while being relatively moved from the other axial side of the commutator material to the second side, and is formed on the cutting tool. A second step of finishing cutting the outer peripheral surface of the commutator material using a finishing cutting blade surface that is a flank surface of the rough cutting blade surface and the axial surface of the commutator material A first clearance angle θ1, which is an angle formed, and Characterized by using the cutting tool the relation between the second relief angle .theta.2 is an angle between the axial surface of the commutator materials and increased cutting edge surface satisfies .theta.1 ≧ .theta.2.

請求項1に記載の整流子の製造方法によれば、整流子素材を切削して整流子素材から整流子を製造する際に、切削工具を整流子素材に対し軸方向一方側から他方側へ相対移動させるとき(往路移動時)に加えて、切削工具を整流子素材に対し軸方向他方側から一方側へ相対移動させるとき(復路移動時)にも、整流子素材の外周面を切削工具により切削する。従って、切削工具を整流子素材に対し軸方向他方側から一方側へ相対移動させることが無駄となることを防止できるので、これにより、生産効率を向上させることができる。
特に、請求項1に記載の整流子の製造方法によれば、第一工程において整流子素材の外周面を切削工具により荒削り切削した後に、第二工程において整流子素材の外周面を切削工具により仕上げ切削するので、生産効率を向上させつつ、整流子の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)を確保できる。
しかも、請求項1に記載の整流子の製造方法によれば、整流子素材の外周面を荒削り切削するための荒削り切削用刃面と、整流子素材の外周面を仕上げ切削するための仕上げ切削用刃面と、を有する切削バイトを用いる。従って、荒削り切削加工(第一工程)と仕上げ切削加工(第二工程)とでそれぞれ専用の切削バイトを用いる必要が無い。このため、荒削り切削加工と仕上げ切削加工とで切削装置を別々としたり、荒削り切削加工と仕上げ切削加工とで各切削バイトを交換したり、荒削り切削加工及び仕上げ切削加工に合わせて切削工具を最適角度に傾斜させたりする必要が無い。これにより、生産効率をより一層向上させることができる。
また、請求項1に記載の整流子の製造方法によれば、荒削り切削用刃面と整流子素材の軸方向表面とのなす角度θ1と、仕上げ切削用刃面と整流子素材の軸方向表面とのなす角度θ2との関係がθ1≧θ2を満足する切削バイトを用いる。これにより、一つの切削バイトにより整流子素材の外周面の荒削り切削と仕上げ切削を行うことが可能となる。
According to the method for manufacturing a commutator according to claim 1, when the commutator material is cut to manufacture the commutator from the commutator material, the cutting tool is moved from one side to the other side in the axial direction with respect to the commutator material. In addition to the relative movement (during forward movement), the cutting tool can also be used to move the outer peripheral surface of the commutator material relative to the commutator material from the other side in the axial direction to one side (during backward movement). Cut by. Accordingly, it is possible to prevent wasteful movement of the cutting tool relative to the commutator material from the other side in the axial direction to the other side, thereby improving production efficiency.
In particular, according to the method for manufacturing a commutator according to claim 1, after the outer peripheral surface of the commutator material is roughly cut with a cutting tool in the first step, the outer peripheral surface of the commutator material is cut with the cutting tool in the second step. Since the finish cutting is performed, the quality of the commutator finish (for example, quality related to roundness, level difference between segments, surface roughness of the outer peripheral surface, complete removal of burrs, etc.) can be ensured while improving production efficiency.
Moreover, according to the method for manufacturing a commutator according to claim 1, a rough cutting blade surface for rough cutting the outer peripheral surface of the commutator material and a finish cutting for finishing cutting the outer peripheral surface of the commutator material. A cutting tool having a cutting edge surface is used. Therefore, it is not necessary to use dedicated cutting tools for rough cutting (first process) and finishing cutting (second process). For this reason, separate cutting tools are used for rough cutting and finishing cutting, each cutting tool is exchanged between rough cutting and finishing cutting, and the cutting tool is optimized for rough cutting and finishing cutting. There is no need to tilt it at an angle. Thereby, production efficiency can be further improved.
According to the commutator manufacturing method of claim 1, the angle θ1 formed between the rough cutting blade surface and the axial surface of the commutator material, and the axial surface of the finish cutting blade surface and the commutator material. A cutting tool satisfying θ1 ≧ θ2 in relation to the angle θ2 formed by Thereby, it is possible to perform rough cutting and finish cutting of the outer peripheral surface of the commutator material with one cutting tool.

請求項2に記載の整流子の製造方法は、請求項1に記載の整流子の製造方法において、前記第一工程の終了後で前記第二工程の開始前に、前記切削工具を前記第一工程における終了位置から前記整流子素材の軸方向一方側へ反転移動させた後に前記整流子素材に対し前記整流子素材の径方向内側へ相対移動させる、ことを特徴とする。   The commutator manufacturing method according to claim 2 is the commutator manufacturing method according to claim 1, wherein the cutting tool is moved to the first after the end of the first step and before the start of the second step. It is characterized in that the commutator material is relatively moved inward in the radial direction of the commutator material after being reversely moved from the end position in the process to one side in the axial direction of the commutator material.

仮に、第一工程の終了後で第二工程の開始前に、切削工具を第一工程における終了位置から整流子素材に対し整流子素材の径方向内側へ相対移動させて第二工程に向けての切り込み動作を行うようにした場合には、この第二工程に向けての切り込み動作のときに、切削工具の整流子素材に対する切削体積が大きくなり、この結果、切削工具に作用する切削抵抗が増加して切削工具の摩耗促進や整流子の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)が低下する虞がある。   Temporarily, after the end of the first step and before the start of the second step, the cutting tool is moved relative to the commutator material from the end position in the first step to the inside of the commutator material in the radial direction, toward the second step. When the cutting operation is performed, the cutting volume with respect to the commutator material of the cutting tool increases during the cutting operation toward the second step, and as a result, the cutting resistance acting on the cutting tool is reduced. There is a possibility that the wear acceleration of the cutting tool and the quality of the finish of the commutator (for example, the quality related to roundness, the level difference between the segments, the surface roughness of the outer peripheral surface, the complete removal of burrs, etc.) may decrease.

この点、請求項2に記載の整流子の製造方法によれば、第一工程の終了後で第二工程の開始前に、切削工具を第一工程における終了位置から整流子素材の軸方向一方側へ反転移動させた後に整流子素材に対し整流子素材の径方向内側へ相対移動(いわゆる二段階移動)させて第二工程に向けての切り込み動作を行う。従って、第二工程に向けての切り込み動作のときに、切削工具の整流子素材に対する切削体積を小さくでき、切削工具に作用する切削抵抗を減少させることができる。これにより、切削工具の摩耗促進や整流子の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)が低下することを抑制することができる。   In this regard, according to the method for manufacturing a commutator according to claim 2, the cutting tool is moved from the end position in the first step to the axial direction of the commutator material after the end of the first step and before the start of the second step. After the reversal movement to the side, the commutator material is moved relative to the inside of the commutator material in the radial direction (so-called two-stage movement) to perform a cutting operation toward the second step. Therefore, the cutting volume with respect to the commutator material of the cutting tool can be reduced during the cutting operation toward the second step, and the cutting resistance acting on the cutting tool can be reduced. This suppresses the deterioration of cutting tool wear acceleration and commutator finish quality (for example, roundness, level difference between segments, surface roughness of the outer peripheral surface, and complete removal of burrs). be able to.

請求項3に記載の整流子の製造方法は、請求項1に記載の整流子の製造方法において、前記第一工程の終了後で前記第二工程の開始前に、前記切削工具を前記第一工程における終了位置から前記整流子素材の軸方向一方側へ反転移動させつつ前記整流子素材に対し前記整流子素材の径方向内側へ相対移動させる、ことを特徴とする。   The commutator manufacturing method according to claim 3 is the commutator manufacturing method according to claim 1, wherein the cutting tool is moved to the first after the end of the first step and before the start of the second step. It is characterized by moving relative to the commutator material radially inward of the commutator material while being reversely moved from the end position in the process to one side in the axial direction of the commutator material.

請求項3に記載の整流子の製造方法によれば、第一工程の終了後で第二工程の開始前に、切削工具を第一工程における終了位置から整流子素材の軸方向一方側へ反転移動させつつ整流子素材に対し整流子素材の径方向内側へ相対移動させて第二工程に向けての切り込み動作を行う。従って、第二工程に向けての切り込み動作のときに、切削工具の整流子素材に対する切削体積を小さくでき、切削工具に作用する切削抵抗を減少させることができる。これにより、切削工具の摩耗促進や整流子の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)が低下することを抑制することができる。   According to the method for manufacturing a commutator according to claim 3, the cutting tool is reversed from the end position in the first step to the one side in the axial direction of the commutator material after the end of the first step and before the start of the second step. While moving, the commutator material is moved relative to the inside of the commutator material in the radial direction to perform a cutting operation toward the second step. Therefore, the cutting volume with respect to the commutator material of the cutting tool can be reduced during the cutting operation toward the second step, and the cutting resistance acting on the cutting tool can be reduced. This suppresses the deterioration of cutting tool wear acceleration and commutator finish quality (for example, roundness, level difference between segments, surface roughness of the outer peripheral surface, and complete removal of burrs). be able to.

また、これに加えて、切削工具を第一工程における終了位置から整流子素材の軸方向一方側へ反転移動させつつ整流子素材に対し整流子素材の径方向内側へ相対移動させることで、上述のいわゆる二段階移動を行う場合に比して、切削工具の移動経路を短くできる。これにより、第一工程と第二工程との間の時間が短くなるので、生産効率をより一層向上させることができる。   Further, in addition to this, the cutting tool is moved relative to the commutator material radially inward with respect to the commutator material while being reversed and moved from the end position in the first step to the one side in the axial direction of the commutator material. Compared with the case where the so-called two-stage movement is performed, the moving path of the cutting tool can be shortened. Thereby, since the time between a 1st process and a 2nd process becomes short, production efficiency can be improved further.

また、前記課題を解決するために、請求項4に記載の整流子の製造装置は、切削工具と、前記切削工具を整流子素材に対し前記整流子素材の周方向に相対移動させるための周方向駆動手段と、前記切削工具を前記整流子素材に対し前記整流子素材の軸方向に相対移動させるための軸方向駆動手段と、前記周方向駆動手段及び前記軸方向駆動手段の駆動を制御する制御手段と、を備え、前記制御手段は、前記切削工具が前記整流子素材に対し前記整流子素材の周方向に相対移動されるように前記周方向駆動手段の駆動を制御しながら、前記切削工具が前記整流子素材の軸方向一方側から他方側へ相対移動されるように前記軸方向駆動手段の駆動を制御して、前記切削工具の切削バイトに形成された第一の逃げ面である荒削り切削用刃面を利用して前記整流子素材の外周面を荒削り切削させる第一ステップと、前記切削工具が前記整流子素材に対し前記整流子素材の周方向に相対移動されるように前記周方向駆動手段の駆動を制御しながら、前記切削工具が前記整流子素材の軸方向他方側から一方側へ相対移動されるように前記軸方向駆動手段の駆動を制御して、前記切削バイトに形成された第二の逃げ面である仕上げ切削用刃面を利用して前記整流子素材の外周面を仕上げ切削させる第二ステップと、を実行し、前記切削バイトは、前記荒削り切削用刃面と前記整流子素材の軸方向表面とのなす角度である第一の逃げ角θ1と、前記仕上げ切削用刃面と前記整流子素材の軸方向表面とのなす角度である第二の逃げ角θ2との関係がθ1≧θ2を満足する構成とされていることを特徴とするIn order to solve the above problem, the commutator manufacturing apparatus according to claim 4 includes a cutting tool and a peripheral for moving the cutting tool relative to the commutator material in a circumferential direction of the commutator material. Direction drive means, axial drive means for moving the cutting tool relative to the commutator material in the axial direction of the commutator material, and control of driving of the circumferential drive means and the axial drive means. Control means, wherein the control means controls the driving of the circumferential drive means so that the cutting tool is moved relative to the commutator material in the circumferential direction of the commutator material. It is a first flank formed on the cutting tool of the cutting tool by controlling the driving of the axial driving means so that the tool is relatively moved from one axial side to the other side of the commutator material. Using the rough cutting edge A first step of roughing and cutting the outer peripheral surface of the commutator material, and controlling the driving of the circumferential drive means so that the cutting tool is moved relative to the commutator material in the circumferential direction of the commutator material. However, by controlling the driving of the axial drive means so that the cutting tool is relatively moved from the other axial side of the commutator material to the other side, the second flank formed on the cutting tool Performing a second step of finishing cutting the outer peripheral surface of the commutator material using a certain cutting blade surface, and the cutting tool includes the rough cutting blade surface and the axial surface of the commutator material. The relationship between the first clearance angle θ1 that is an angle between the first clearance angle θ1 and the second clearance angle θ2 that is the angle between the finishing cutting blade surface and the axial surface of the commutator material satisfies θ1 ≧ θ2. It is configured to be .

請求項4に記載の整流子の製造装置によれば、整流子素材が切削されて整流子素材から整流子が製造される際に、切削工具が整流子素材に対し軸方向一方側から他方側へ相対移動されるとき(往路移動時)に加えて、切削工具が整流子素材に対し軸方向他方側から一方側へ相対移動されるとき(復路移動時)にも、整流子素材の外周面が切削工具により切削される。従って、切削工具が整流子素材に対し軸方向他方側から一方側へ相対移動されることが無駄となることを防止できるので、これにより、生産効率を向上させることができる。
特に、請求項4に記載の整流子の製造装置によれば、整流子素材の外周面が切削工具により荒削り切削された後に、整流子素材の外周面が切削工具により仕上げ切削されるので、生産効率を向上させつつ、整流子の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)を確保できる。
しかも、請求項4に記載の整流子の製造装置によれば、切削バイトは、整流子素材の外周面を荒削り切削するための荒削り切削用刃面と、整流子素材の外周面を仕上げ切削するための仕上げ切削用刃面と、を有する構成とされている。従って、荒削り切削加工(第一工程)と仕上げ切削加工(第二工程)とでそれぞれ専用の切削バイトを用いる必要が無い。このため、荒削り切削加工と仕上げ切削加工とで切削装置を別々としたり、荒削り切削加工と仕上げ切削加工とで各切削バイトを交換したり、荒削り切削加工及び仕上げ切削加工に合わせて切削工具を最適角度に傾斜させたりする必要が無い。これにより、生産効率をより一層向上させることができる。
また、請求項4に記載の整流子の製造装置によれば、切削バイトは、整流子素材の外周面を荒削り切削するための荒削り切削用刃面と、整流子素材の外周面を仕上げ切削するための仕上げ切削用刃面と、を有する構成とされている。従って、荒削り切削加工(第一工程)と仕上げ切削加工(第二工程)とでそれぞれ専用の切削バイトを用いる必要が無い。このため、荒削り切削加工と仕上げ切削加工とで切削装置を別々としたり、荒削り切削加工と仕上げ切削加工とで各切削バイトを交換したり、荒削り切削加工及び仕上げ切削加工に合わせて切削工具を最適角度に傾斜させたりする必要が無い。これにより、生産効率をより一層向上させることができる。
According to the commutator manufacturing apparatus of claim 4 , when the commutator material is cut and the commutator is manufactured from the commutator material, the cutting tool is moved from one side in the axial direction to the other side of the commutator material. When the cutting tool is moved relative to the commutator material from the other side in the axial direction to the other side (during backward travel), in addition to the relative movement of the commutator material Is cut by a cutting tool. Therefore, it is possible to prevent wasteful movement of the cutting tool relative to the commutator material from the other side in the axial direction to the one side, thereby improving production efficiency.
In particular, according to the commutator manufacturing apparatus according to claim 4, after the outer peripheral surface of the commutator material is roughly cut by the cutting tool, the outer peripheral surface of the commutator material is finish-cut by the cutting tool. While improving the efficiency, the quality of the commutator finish (for example, quality related to roundness, steps between segments, surface roughness of the outer peripheral surface, complete removal of burrs, etc.) can be ensured.
In addition, according to the commutator manufacturing apparatus of claim 4, the cutting tool finish-cuts the rough cutting blade surface for rough cutting the outer peripheral surface of the commutator material and the outer peripheral surface of the commutator material. And a cutting surface for finishing cutting. Therefore, it is not necessary to use dedicated cutting tools for rough cutting (first process) and finishing cutting (second process). For this reason, separate cutting tools are used for rough cutting and finishing cutting, each cutting tool is exchanged between rough cutting and finishing cutting, and the cutting tool is optimized for rough cutting and finishing cutting. There is no need to tilt it at an angle. Thereby, production efficiency can be further improved.
According to the commutator manufacturing apparatus of claim 4, the cutting tool finish-cuts the rough cutting blade surface for rough cutting the outer peripheral surface of the commutator material and the outer peripheral surface of the commutator material. And a cutting surface for finishing cutting. Therefore, it is not necessary to use dedicated cutting tools for rough cutting (first process) and finishing cutting (second process). For this reason, separate cutting tools are used for rough cutting and finishing cutting, each cutting tool is exchanged between rough cutting and finishing cutting, and the cutting tool is optimized for rough cutting and finishing cutting. There is no need to tilt it at an angle. Thereby, production efficiency can be further improved.

請求項5に記載の整流子の製造装置は、請求項4に記載の整流子の製造装置において、前記切削工具を前記整流子素材に対し前記整流子素材の径方向に相対移動させるための径方向駆動手段を備え、前記制御手段は、前記第一ステップの実行終了後で前記第二ステップの実行開始前に、前記軸方向駆動手段の駆動を制御して前記切削工具を前記第一ステップにおける終了位置から前記整流子素材の軸方向一方側へ反転移動させた後に前記径方向駆動手段の駆動を制御して前記切削工具を前記整流子素材に対し前記整流子素材の径方向内側へ相対移動させる、ことを特徴とする。 The commutator manufacturing apparatus according to claim 5 is the commutator manufacturing apparatus according to claim 4 , wherein the cutting tool is moved relative to the commutator material in a radial direction of the commutator material. Direction drive means, and the control means controls the drive of the axial direction drive means after the execution of the first step and before the execution of the second step, so that the cutting tool is moved in the first step. After the reverse movement from the end position to one side of the commutator material in the axial direction, the driving of the radial driving means is controlled to move the cutting tool relative to the commutator material inward in the radial direction of the commutator material. It is characterized by that.

仮に、制御手段における第一ステップの実行終了後で第二ステップの実行開始前に、径方向駆動手段の駆動が制御されて切削工具が第一ステップにおける終了位置から整流子素材に対し整流子素材の径方向内側へ相対移動されて第二ステップに向けての切り込み動作が行われるようにした場合には、この第二ステップに向けての切り込み動作のときに、切削工具の整流子素材に対する切削体積が大きくなり、この結果、切削工具に作用する切削抵抗が増加して切削工具の摩耗促進や整流子の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)が低下する虞がある。   Temporarily, after the execution of the first step in the control means and before the start of the execution of the second step, the drive of the radial driving means is controlled so that the cutting tool is commutated from the end position in the first step to the commutator material. When the cutting operation toward the second step is performed relative to the radial inner side of the cutting tool, the cutting tool cuts the commutator material during the cutting operation toward the second step. As a result, the cutting force acting on the cutting tool increases, resulting in increased wear resistance of the cutting tool and the quality of the finish of the commutator (for example, roundness, step between segments, surface roughness of the outer peripheral surface) , Quality related to complete removal of burrs, etc.) may be deteriorated.

この点、請求項5に記載の整流子の製造装置によれば、制御手段における第一ステップの実行終了後で第二ステップの実行開始前に、軸方向駆動手段の駆動が制御されて切削工具が第一ステップにおける終了位置から整流子素材の軸方向一方側へ反転移動された後に径方向駆動手段の駆動が制御されて切削工具が整流子素材に対し整流子素材の径方向内側へ相対移動(いわゆる二段階移動)される。従って、第二ステップに向けての切り込み動作のときに、切削工具の整流子素材に対する切削体積を小さくでき、切削工具に作用する切削抵抗を減少させることができる。これにより、切削工具の摩耗促進や整流子の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)が低下することを抑制することができる。 In this respect, according to the commutator manufacturing apparatus according to claim 5 , the cutting tool is controlled by controlling the driving of the axial driving means after the completion of the first step in the control means and before the execution of the second step. Is moved from the end position in the first step to one side in the axial direction of the commutator material, and then the driving of the radial drive means is controlled to move the cutting tool relative to the commutator material inward in the radial direction of the commutator material. (So-called two-stage movement). Therefore, during the cutting operation toward the second step, the cutting volume of the cutting tool with respect to the commutator material can be reduced, and the cutting resistance acting on the cutting tool can be reduced. This suppresses the deterioration of cutting tool wear acceleration and commutator finish quality (for example, roundness, level difference between segments, surface roughness of the outer peripheral surface, and complete removal of burrs). be able to.

請求項6に記載の整流子の製造装置は、請求項4に記載の整流子の製造装置において、前記切削工具を前記整流子素材に対し前記整流子素材の径方向に相対移動させるための径方向駆動手段を備え、前記制御手段は、前記第一ステップの実行終了後で前記第二ステップの実行開始前に、前記軸方向駆動手段及び前記径方向駆動手段の駆動を制御して前記切削工具を前記第一ステップにおける終了位置から前記整流子素材の軸方向一方側へ反転移動させつつ前記整流子素材に対し前記整流子素材の径方向内側へ相対移動させる、ことを特徴とする。 The commutator manufacturing apparatus according to claim 6 is a commutator manufacturing apparatus according to claim 4 , wherein the cutting tool is moved relative to the commutator material in a radial direction of the commutator material. Direction driving means, and the control means controls the driving of the axial direction driving means and the radial direction driving means after the completion of the execution of the first step and before the execution of the second step. Is moved relative to the commutator material inward in the radial direction of the commutator material while being reversely moved from the end position in the first step to one side in the axial direction of the commutator material.

請求項6に記載の整流子の製造装置によれば、制御手段における第一ステップの実行終了後で第二ステップの実行開始前に、軸方向駆動手段及び径方向駆動手段の駆動が制御されて切削工具が第一ステップにおける終了位置から整流子素材の軸方向一方側へ反転移動されつつ整流子素材に対し整流子素材の径方向内側へ相対移動される。従って、第二ステップに向けての切り込み動作のときに、切削工具の整流子素材に対する切削体積を小さくでき、切削工具に作用する切削抵抗を減少させることができる。これにより、切削工具の摩耗促進や整流子の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)が低下することを抑制することができる。 According to the commutator manufacturing apparatus of the sixth aspect , the driving of the axial driving means and the radial driving means is controlled after the execution of the first step in the control means and before the execution of the second step. The cutting tool is moved relative to the commutator material inward in the radial direction of the commutator material while being reversely moved from the end position in the first step to one side in the axial direction of the commutator material. Therefore, during the cutting operation toward the second step, the cutting volume of the cutting tool with respect to the commutator material can be reduced, and the cutting resistance acting on the cutting tool can be reduced. This suppresses the deterioration of cutting tool wear acceleration and commutator finish quality (for example, roundness, level difference between segments, surface roughness of the outer peripheral surface, and complete removal of burrs). be able to.

また、これに加えて、切削工具が第一ステップにおける終了位置から整流子素材の軸方向一方側へ反転移動されつつ整流子素材に対し整流子素材の径方向内側へ相対移動されることで、上述のいわゆる二段階移動される場合に比して、切削工具の移動経路を短くできる。これにより、第一ステップと第二ステップとの間の時間が短くなるので、生産効率をより一層向上させることができる。   In addition to this, the cutting tool is moved relative to the commutator material radially inward from the commutator material while being reversely moved from the end position in the first step to the one side in the axial direction of the commutator material. The moving path of the cutting tool can be shortened as compared with the above-described so-called two-stage movement. Thereby, since the time between the first step and the second step is shortened, the production efficiency can be further improved.

以下、図面に基づき、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1,図2には、本発明の一実施形態に係る整流子の製造装置10の全体構成が示されている。これらの図に示される整流子の製造装置10は、例えば、ブラシ付き直流モータに備えられる電機子50の整流子を製造するものであり、支持台12と、回転機構14と、切削工具16と、入力操作部18と、周方向駆動用モータ20と、軸方向駆動用モータ22と、径方向駆動用モータ24と、制御回路26と有して構成されている。   1 and 2 show the overall configuration of a commutator manufacturing apparatus 10 according to an embodiment of the present invention. A commutator manufacturing apparatus 10 shown in these drawings is for manufacturing a commutator of an armature 50 provided in a DC motor with a brush, for example, a support base 12, a rotating mechanism 14, a cutting tool 16, and the like. The input operation unit 18, the circumferential drive motor 20, the axial drive motor 22, the radial drive motor 24, and the control circuit 26 are configured.

支持台12は、一対の支持部28を有して構成されており、支持部28は、電機子50に備えられた回転シャフト52の軸方向両端部を回転可能に支持する構成とされている。   The support base 12 includes a pair of support portions 28, and the support portions 28 are configured to rotatably support both axial end portions of the rotary shaft 52 provided in the armature 50. .

回転機構14は、駆動ベルト30と、駆動プーリ32と、複数の従動プーリ34A〜34Dとを有して構成されている。駆動ベルト30は、駆動プーリ32及び複数の従動プーリ34A〜34Dにそれぞれ掛け渡しされている。複数の従動プーリ34A〜34Dのうち電機子50側に配置された一対の従動プーリ34A,34Bは、電機子50に備えられたコア54の外周部54A(この場合、鉛直方向上端部)に対し回転シャフト52側にオフセットして配置されており、駆動ベルト30における一対の従動プーリ34A,34B間の部分をコア54に押し付けている。そして、この回転機構14では、駆動プーリ32が回転されると、駆動ベルト30が回転されて、コア54と共に電機子50全体を回転させる構成とされている。   The rotating mechanism 14 includes a driving belt 30, a driving pulley 32, and a plurality of driven pulleys 34A to 34D. The drive belt 30 is looped over a drive pulley 32 and a plurality of driven pulleys 34A to 34D. Of the plurality of driven pulleys 34A to 34D, the pair of driven pulleys 34A and 34B arranged on the armature 50 side is relative to the outer peripheral portion 54A of the core 54 provided in the armature 50 (in this case, the upper end in the vertical direction). It is arranged offset to the rotating shaft 52 side, and a portion of the drive belt 30 between the pair of driven pulleys 34A, 34B is pressed against the core 54. In the rotating mechanism 14, when the driving pulley 32 is rotated, the driving belt 30 is rotated to rotate the entire armature 50 together with the core 54.

切削工具16は、整流子素材56(整流子58になる前の段階の部材)に対し径方向に対向して配置されている。図3には、この切削工具16がより詳細に示されている。切削工具16は、図3(A),図3(B)に示されるように、ホルダ36と切削バイト38とを有して構成されている。切削バイト38は、ホルダ36の先端部に交換可能に保持されており、図3(C)に示されるように、すくい面38Aと、整流子素材56の外周面を荒削り切削するための荒削り切削用刃面38B(第一の逃げ面)と、整流子素材56の外周面を仕上げ切削するための仕上げ切削用刃面38C(第二の逃げ面)と、を有する構成とされている。   The cutting tool 16 is disposed to face the commutator material 56 (a member at a stage before becoming the commutator 58) in the radial direction. FIG. 3 shows the cutting tool 16 in more detail. The cutting tool 16 includes a holder 36 and a cutting tool 38 as shown in FIGS. 3 (A) and 3 (B). The cutting tool 38 is exchangeably held at the tip of the holder 36 and, as shown in FIG. 3C, rough cutting for rough cutting of the rake face 38A and the outer peripheral surface of the commutator material 56. The blade surface 38B (first flank) for cutting and the blade surface 38C (second flank) for finishing cutting the outer peripheral surface of the commutator material 56 are configured.

荒削り切削用刃面38Bと整流子素材56の軸方向表面56Aとのなす角度(第一の逃げ角)θ1と、仕上げ切削用刃面38Cと整流子素材56の軸方向表面56Aとのなす角度(第二の逃げ角)θ2との関係は、θ1≧θ2に設定されており、例えば、角度θ1は68°、角度θ2は35°にそれぞれ設定されている。切削バイト38の刃先先端38Dは、ダイヤモンド等で構成されると共に、整流子素材56への切り込み時における損傷を防止するためにノーズR形状とされている。   The angle (first clearance angle) θ1 formed between the rough cutting blade surface 38B and the axial surface 56A of the commutator material 56, and the angle formed between the finishing cutting blade surface 38C and the axial surface 56A of the commutator material 56. The relationship with (second clearance angle) θ2 is set to θ1 ≧ θ2, for example, angle θ1 is set to 68 °, and angle θ2 is set to 35 °. The cutting edge tip 38D of the cutting tool 38 is made of diamond or the like and has a nose radius shape to prevent damage when cutting into the commutator material 56.

入力操作部18は、送り速度、送り量、切り込み量などの加工条件や、加工開始及び加工終了の指令を入力できるようになっており、周方向駆動用モータ20は、上述の駆動プーリ32を回転させる構成とされている。   The input operation unit 18 can input machining conditions such as a feed speed, a feed amount, and a cutting amount, and commands for start and end of machining, and the circumferential drive motor 20 uses the drive pulley 32 described above. It is configured to rotate.

また、軸方向駆動用モータ22は、上述の切削工具16を整流子素材56に対し整流子素材56の軸方向に移動させる構成とされており、径方向駆動用モータ24は、上述の切削工具16を整流子素材56に対し整流子素材56の径方向に移動させる構成とされている。   The axial drive motor 22 is configured to move the cutting tool 16 in the axial direction of the commutator material 56 with respect to the commutator material 56, and the radial drive motor 24 is configured as described above. 16 is configured to move in the radial direction of the commutator material 56 with respect to the commutator material 56.

制御回路26は、例えば、CPU、ROM、RAM等を有する電子回路により構成されており、整流子素材56を荒削り切削及び仕上げ切削するためのプログラム(すなわち、本発明における第一ステップ及び第二ステップに関するプログラム)を予め記憶している。   The control circuit 26 is constituted by an electronic circuit having, for example, a CPU, a ROM, a RAM, and the like, and a program for rough cutting and finishing cutting of the commutator material 56 (that is, the first step and the second step in the present invention). Program) in advance.

そして、制御回路26は、入力操作部18から入力された送り速度、送り量、切り込み量などの加工条件や加工開始及び加工終了の指令に基づいて、上述の周方向駆動用モータ20、軸方向駆動用モータ22、径方向駆動用モータ24の駆動を制御し、切削工具16により整流子素材56を荒削り切削及び仕上げ切削する構成とされている。   Then, the control circuit 26, based on the machining conditions such as the feed speed, feed amount, and cutting amount input from the input operation unit 18 and the machining start and machining end commands, the circumferential drive motor 20 and the axial direction described above. The driving motor 22 and the radial driving motor 24 are controlled to perform rough cutting and finish cutting of the commutator material 56 with the cutting tool 16.

次に、上記構成からなる整流子の製造装置10を用いた整流子の製造方法について説明する。   Next, a commutator manufacturing method using the commutator manufacturing apparatus 10 having the above-described configuration will be described.

入力操作部18に加工開始指令が入力されると、制御回路26は、軸方向駆動用モータ22及び径方向駆動用モータ24の駆動を制御し、切削工具16を図2の矢印(1)で示されるように原点位置から整流子素材56の軸方向一方側(Z1側)に移動させる。なお、このとき、切削バイト38の先端の位置は、次の荒削り切削加工の切り込み量に合わせて設定される。   When a machining start command is input to the input operation unit 18, the control circuit 26 controls the driving of the axial direction driving motor 22 and the radial direction driving motor 24, and the cutting tool 16 is moved by the arrow (1) in FIG. As shown, the commutator material 56 is moved from the origin position to one side (Z1 side) in the axial direction. At this time, the position of the tip of the cutting bit 38 is set in accordance with the cutting amount of the next rough cutting.

続いて、制御回路26は、周方向駆動用モータ20の駆動を制御し、駆動プーリ32を回転させる。これにより、駆動ベルト30が回転されて、電機子50と共に整流子素材56が回転される。   Subsequently, the control circuit 26 controls driving of the circumferential driving motor 20 to rotate the driving pulley 32. As a result, the drive belt 30 is rotated, and the commutator material 56 is rotated together with the armature 50.

(第一工程:荒削り切削加工)
続いて、制御回路26は、整流子素材56を回転させながら、軸方向駆動用モータ22の駆動を制御し、切削工具16を図2の矢印(2)で示されるように整流子素材56の軸方向一方側(Z1側)から他方側(ライザ側;Z2側)に移動させる。このとき、切削工具16は、図3(C)に示される切削バイト38の荒削り切削用刃面38Bが進行方向(つまり軸方向他方側;Z2側)を向くように移動される。これにより、整流子素材56の外周面が軸方向一方側から他方側に荒削り切削される。
(First step: rough cutting)
Subsequently, the control circuit 26 controls the driving of the axial drive motor 22 while rotating the commutator material 56, and the cutting tool 16 is moved to the commutator material 56 as indicated by the arrow (2) in FIG. 2. Move from one axial side (Z1 side) to the other side (riser side; Z2 side). At this time, the cutting tool 16 is moved so that the rough cutting blade surface 38B of the cutting tool 38 shown in FIG. 3C faces the traveling direction (that is, the other side in the axial direction; Z2 side). Thereby, the outer peripheral surface of the commutator material 56 is rough cut from one side in the axial direction to the other side.

(第一工程の終了後で第二工程の開始前)
続いて、制御回路26は、軸方向駆動用モータ22の駆動を制御し、図4に示されるように、切削バイト38の荒削り切削用刃面38Bが整流子素材56の削り残し面56Bに対し軸方向一方側(Z1側)に離間されるように、切削工具16を図4の矢印(A)で示される如く第一工程における終了位置(二点鎖線で示される位置)から整流子素材56の軸方向一方側(Z1側)へ反転移動させる。
(After the end of the first step and before the start of the second step)
Subsequently, the control circuit 26 controls the driving of the axial direction drive motor 22, and the rough cutting blade surface 38 B of the cutting tool 38 is against the uncut surface 56 B of the commutator material 56 as shown in FIG. As shown by the arrow (A) in FIG. 4, the commutator material 56 is moved from the end position in the first step (position indicated by a two-dot chain line) so that the cutting tool 16 is separated from one side in the axial direction (Z1 side). Is reversed and moved to one side (Z1 side) in the axial direction.

その後、制御回路26は、径方向駆動用モータ24の駆動を制御し、切削工具16を図4の矢印(B)で示されるように上述の位置から次の仕上げ切削加工の切り込み量の分だけ径方向内側(R1側)に移動させる。   Thereafter, the control circuit 26 controls the driving of the radial direction driving motor 24, and the cutting tool 16 is moved from the above-mentioned position by the cutting amount of the next finishing cutting as shown by the arrow (B) in FIG. Move radially inward (R1 side).

(第二工程:仕上げ切削加工)
続いて、制御回路26は、整流子素材56を回転させながら、軸方向駆動用モータ22の駆動を制御し、切削工具16を図2の矢印(3)で示されるように整流子素材56の軸方向他方側(ライザ側;Z2側)から一方側(Z1側)に移動させる。このとき、切削工具16は、図3(C)に示される切削バイト38の仕上げ切削用刃面38Cが進行方向(つまり軸方向一方側;Z1側)を向くように移動される。これにより、整流子素材56の外周面が軸方向他方側から一方側に仕上げ切削される。
(Second process: finish cutting)
Subsequently, the control circuit 26 controls the driving of the axial driving motor 22 while rotating the commutator material 56, and the cutting tool 16 is moved to the commutator material 56 as indicated by an arrow (3) in FIG. 2. Move from the other side in the axial direction (riser side; Z2 side) to one side (Z1 side). At this time, the cutting tool 16 is moved so that the finish cutting blade surface 38C of the cutting tool 38 shown in FIG. 3C faces the traveling direction (that is, one side in the axial direction; Z1 side). Thereby, the outer peripheral surface of the commutator material 56 is finish-cut from the other side in the axial direction to one side.

続いて、制御回路26は、軸方向駆動用モータ22及び径方向駆動用モータ24の駆動を制御し、切削工具16を図2の矢印(4)で示されるように整流子素材56の軸方向一方側(Z1側)から原点位置に復帰させる。   Subsequently, the control circuit 26 controls the driving of the axial direction driving motor 22 and the radial direction driving motor 24 so that the cutting tool 16 is moved in the axial direction of the commutator material 56 as indicated by an arrow (4) in FIG. Return to the home position from one side (Z1 side).

(バリ取り工程)
そして、整流子素材56は、上述の切削加工の後、図7に示される如く、バリ取り工程に搬送される。そして、このバリ取り工程において、整流子素材56は、バリ取り装置のナイロンブラシ40によってアンダーカット溝に残されたバリ等を除去される。本発明の一実施形態に係る整流子の製造方法では、以上の要領により、整流子素材56から整流子58が製造される。
(Deburring process)
Then, the commutator material 56 is conveyed to the deburring step as shown in FIG. In this deburring step, the commutator material 56 is removed of the burrs and the like left in the undercut groove by the nylon brush 40 of the deburring device. In the commutator manufacturing method according to the embodiment of the present invention, the commutator 58 is manufactured from the commutator material 56 in the above manner.

なお、本実施形態において、上述の第一工程において制御回路26が実行する動作が本発明における第一ステップに相当し、上述の第二工程において制御回路26が実行する動作が本発明における第二ステップに相当する。   In the present embodiment, the operation performed by the control circuit 26 in the first step described above corresponds to the first step in the present invention, and the operation performed by the control circuit 26 in the second step described above is the second step in the present invention. It corresponds to a step.

次に、上述の本発明の一実施形態に係る整流子の製造方法の効果について説明する。   Next, the effect of the commutator manufacturing method according to the embodiment of the present invention described above will be described.

ここで、本発明の一実施形態に係る整流子の製造方法の効果をより明確にするために、比較例に係る整流子の製造方法について説明する。   Here, in order to clarify the effect of the commutator manufacturing method according to the embodiment of the present invention, a commutator manufacturing method according to a comparative example will be described.

図8,図9には、比較例に係る整流子の製造方法で用いられる整流子の製造装置110の全体構成が示されている。この比較例に係る整流子の製造装置110は、切削工具116を除き、上述の本発明の一実施形態に係る整流子の製造装置10と機械的な構成は同一とされている。   8 and 9 show the overall configuration of a commutator manufacturing apparatus 110 used in the commutator manufacturing method according to the comparative example. The commutator manufacturing apparatus 110 according to this comparative example has the same mechanical configuration as the commutator manufacturing apparatus 10 according to the above-described embodiment of the present invention except for the cutting tool 116.

なお、比較例に係る整流子の製造装置110において、入力操作部18と、周方向駆動用モータ20と、軸方向駆動用モータ22と、径方向駆動用モータ24と、制御回路26の図示は省略されており、これらについては図1を参照することとする。また、比較例に係る整流子の製造装置110において、上述の本発明の一実施形態に係る整流子の製造装置10と同一の構成については、便宜上、同一の符合を用いることとする。   In the commutator manufacturing apparatus 110 according to the comparative example, the input operation unit 18, the circumferential drive motor 20, the axial drive motor 22, the radial drive motor 24, and the control circuit 26 are illustrated. These are omitted, and reference is made to FIG. 1 for these. In the commutator manufacturing apparatus 110 according to the comparative example, the same reference numerals are used for the same configuration as the commutator manufacturing apparatus 10 according to the embodiment of the present invention.

比較例に係る整流子の製造方法では、荒削り切削加工と仕上げ切削加工とでそれぞれ別々の整流子の製造装置110が使用される。つまり、図8に示される整流子の製造装置10は、荒削り切削加工用とされており、図9に示される整流子の製造装置110は、仕上げ切削加工用とされている。   In the commutator manufacturing method according to the comparative example, separate commutator manufacturing apparatuses 110 are used for rough cutting and finish cutting, respectively. That is, the commutator manufacturing apparatus 10 shown in FIG. 8 is for rough cutting, and the commutator manufacturing apparatus 110 shown in FIG. 9 is for finishing cutting.

図10には、比較例に係る整流子の製造装置110に備えられた切削工具116が示されている。切削工具116は、図10に示されるように、ホルダ136と切削バイト138とを有して構成されている。切削バイト138は、ホルダ136の先端部に交換可能に保持されており、図10(C)に示されるように、すくい面138Aと、第一の逃げ面138Bと、第二の逃げ面138Cと、を有する構成とされている。また、切削バイト138の刃先先端138Dは、シャープエッジ形状とされている。   FIG. 10 shows a cutting tool 116 provided in the commutator manufacturing apparatus 110 according to the comparative example. As shown in FIG. 10, the cutting tool 116 includes a holder 136 and a cutting tool 138. The cutting tool 138 is exchangeably held at the tip of the holder 136, and as shown in FIG. 10C, a rake face 138A, a first flank 138B, a second flank 138C, , And so on. The cutting edge tip 138D of the cutting bit 138 has a sharp edge shape.

そして、この比較例に係る整流子の製造装置110では、次の方法で、整流子の製造が行われる。   In the commutator manufacturing apparatus 110 according to this comparative example, commutators are manufactured by the following method.

すなわち、図8に示される荒削り切削加工用の整流子の製造装置110において、制御回路26は、入力操作部18に加工開始指令が入力されると、軸方向駆動用モータ22及び径方向駆動用モータ24の駆動を制御し、切削工具116を図8の矢印(1)で示されるように原点位置から整流子素材56の軸方向一方側(Z1側)に移動させる。なお、このとき、切削バイト138の先端の位置は、次の荒削り切削加工の切り込み量に合わせて設定される。   That is, in the commutator manufacturing apparatus 110 for rough cutting shown in FIG. 8, when a machining start command is input to the input operation unit 18, the control circuit 26 and the axial driving motor 22 and the radial driving motor The driving of the motor 24 is controlled, and the cutting tool 116 is moved from the origin position to one side (Z1 side) in the axial direction of the commutator material 56 as indicated by an arrow (1) in FIG. At this time, the position of the tip of the cutting tool 138 is set in accordance with the cutting amount of the next rough cutting process.

続いて、制御回路26は、周方向駆動用モータ20の駆動を制御し、駆動プーリ32を回転させる。これにより、駆動ベルト30が回転されて、電機子50と共に整流子素材56が回転される。   Subsequently, the control circuit 26 controls driving of the circumferential driving motor 20 to rotate the driving pulley 32. As a result, the drive belt 30 is rotated, and the commutator material 56 is rotated together with the armature 50.

(第一工程:荒削り切削加工)
続いて、制御回路26は、整流子素材56を回転させながら、軸方向駆動用モータ22の駆動を制御し、切削工具116を図8の矢印(2)で示されるように整流子素材56の軸方向一方側(Z1側)から他方側(ライザ側;Z2側)に移動させる。このとき、切削工具116は、図10(C)に示される切削バイト138の第一の逃げ面138Bが進行方向(つまり軸方向他方側;Z2側)を向くように移動される。これにより、整流子素材56の外周面が軸方向一方側から他方側に荒削り切削される。
(First step: rough cutting)
Subsequently, the control circuit 26 controls the driving of the axial direction driving motor 22 while rotating the commutator material 56, and the cutting tool 116 is moved to the commutator material 56 as indicated by an arrow (2) in FIG. 8. Move from one axial side (Z1 side) to the other side (riser side; Z2 side). At this time, the cutting tool 116 is moved so that the first flank 138B of the cutting tool 138 shown in FIG. 10C faces the traveling direction (that is, the other side in the axial direction; Z2 side). Thereby, the outer peripheral surface of the commutator material 56 is rough cut from one side in the axial direction to the other side.

(第一工程の終了後で第二工程の開始前)
続いて、制御回路26は、径方向駆動用モータ24の駆動を制御し、切削工具116を図8の矢印(3)で示される如く第一工程における終了位置から整流子素材56の径方向外側へ退避させる。そして、その後、制御回路26は、軸方向駆動用モータ22及び径方向駆動用モータ24の駆動を制御し、切削工具116を図8の矢印(4)で示されるように上述の退避位置から原点位置に復帰させる。
(After the end of the first step and before the start of the second step)
Subsequently, the control circuit 26 controls the driving of the radial drive motor 24 and moves the cutting tool 116 radially outward of the commutator material 56 from the end position in the first step as indicated by the arrow (3) in FIG. Evacuate to. Thereafter, the control circuit 26 controls the driving of the axial direction driving motor 22 and the radial direction driving motor 24, and the cutting tool 116 is moved from the retraction position to the origin as indicated by the arrow (4) in FIG. Return to position.

そして、整流子58は、上述の荒削り切削加工の後、図9に示される如く、仕上げ切削加工用の整流子の製造装置110に搬送される。なお、荒削り切削加工と仕上げ切削加工とで共通の整流子の製造装置110を用いる場合には、切削バイト138を荒削り切削加工用から仕上げ切削加工用に交換したり、次の仕上げ切削加工に合わせて切削工具116を最適角度に傾斜させたりする必要がある。   Then, the commutator 58 is conveyed to the commutator manufacturing apparatus 110 for finish cutting as shown in FIG. 9 after the above rough cutting. When the commutator manufacturing apparatus 110 that is common to rough cutting and finishing cutting is used, the cutting tool 138 is exchanged from rough cutting to finishing cutting, or to the next finishing cutting. Therefore, it is necessary to incline the cutting tool 116 at an optimum angle.

(第二工程:仕上げ切削加工)
そして、図9に示される仕上げ切削加工用の整流子の製造装置110において、制御回路26は、入力操作部18に加工開始指令が入力されると、軸方向駆動用モータ22及び径方向駆動用モータ24の駆動を制御し、切削工具116を図9の矢印(5)で示されるように原点位置から整流子素材56の軸方向一方側(Z1側)に再び移動させる。なお、このとき、切削バイト138の先端の位置は、次の仕上げ切削加工の切り込み量に合わせて設定される。
(Second process: finish cutting)
Then, in the finishing cutting commutator manufacturing apparatus 110 shown in FIG. 9, when the machining start command is input to the input operation unit 18, the control circuit 26 and the axial driving motor 22 and the radial driving motor The drive of the motor 24 is controlled, and the cutting tool 116 is again moved from the origin position to one side (Z1 side) in the axial direction of the commutator material 56 as indicated by an arrow (5) in FIG. At this time, the position of the tip of the cutting tool 138 is set in accordance with the cutting amount of the next finish cutting process.

続いて、制御回路26は、周方向駆動用モータ20の駆動を制御し、駆動プーリ32を回転させる。これにより、駆動ベルト30が回転されて、電機子50と共に整流子素材56が回転される。   Subsequently, the control circuit 26 controls driving of the circumferential driving motor 20 to rotate the driving pulley 32. As a result, the drive belt 30 is rotated, and the commutator material 56 is rotated together with the armature 50.

(第二工程:仕上げ切削加工)
続いて、制御回路26は、整流子素材56を回転させながら、軸方向駆動用モータ22の駆動を制御し、切削工具116を図9の矢印(6)で示されるように整流子素材56の軸方向一方側(Z1側)から他方側(ライザ側;Z2側)に移動させる。このとき、切削工具116は、図10(C)に示される切削バイト138の第一の逃げ面138Bが進行方向(つまり軸方向他方側;Z2側)を向くように移動される。これにより、整流子素材56の外周面が軸方向一方側から他方側に仕上げ切削される。
(Second process: finish cutting)
Subsequently, the control circuit 26 controls the driving of the axial drive motor 22 while rotating the commutator material 56, and the cutting tool 116 is moved to the commutator material 56 as indicated by an arrow (6) in FIG. 9. Move from one axial side (Z1 side) to the other side (riser side; Z2 side). At this time, the cutting tool 116 is moved so that the first flank 138B of the cutting tool 138 shown in FIG. 10C faces the traveling direction (that is, the other side in the axial direction; Z2 side). Thereby, the outer peripheral surface of the commutator material 56 is finish-cut from the one side in the axial direction to the other side.

続いて、制御回路26は、径方向駆動用モータ24の駆動を制御し、切削工具116を図9の矢印(7)で示される如く第一工程における終了位置から整流子素材56の径方向外側へ退避させる。そして、その後、制御回路26は、軸方向駆動用モータ22及び径方向駆動用モータ24の駆動を制御し、切削工具116を図9の矢印(8)で示されるように上述の退避位置から原点位置に復帰させる。   Subsequently, the control circuit 26 controls the driving of the radial driving motor 24 and moves the cutting tool 116 radially outward of the commutator material 56 from the end position in the first step as shown by the arrow (7) in FIG. Evacuate to. Thereafter, the control circuit 26 controls the driving of the axial direction driving motor 22 and the radial direction driving motor 24, and the cutting tool 116 is moved from the retraction position to the origin as shown by the arrow (8) in FIG. Return to position.

(バリ取り工程)
続いて、整流子素材56は、上述の切削加工の後、図7に示される如く、バリ取り工程に搬送される。そして、このバリ取り工程において、整流子素材56は、バリ取り装置のナイロンブラシ40によってアンダーカット溝に残されたバリ等を除去される。比較例に係る整流子の製造方法では、以上の要領により、整流子素材56から整流子58が製造される。
(Deburring process)
Subsequently, the commutator material 56 is transported to the deburring step as shown in FIG. 7 after the above-described cutting process. In this deburring step, the commutator material 56 is removed of the burrs and the like left in the undercut groove by the nylon brush 40 of the deburring device. In the commutator manufacturing method according to the comparative example, the commutator 58 is manufactured from the commutator material 56 in the manner described above.

しかしながら、上述の比較例に係る整流子の製造方法のように、整流子素材56を切削して整流子素材56から整流子58を製造する際に、切削工具116を整流子素材56に対し軸方向一方側(Z1側)から他方側(Z2側)へ相対移動させるとき(往路移動時)のみ整流子素材56の外周面を切削し、切削工具116を整流子素材56に対し軸方向他方側(Z2側)から一方側(Z1側)へ相対移動させるとき(復路移動時)を原点位置に復帰させるためのエアカットとすると、この切削工具116を整流子素材56に対し軸方向他方側(Z2側)から一方側(Z1側)へ相対移動させることが無駄となり、生産効率が低下する。   However, when the commutator material 56 is cut and the commutator 58 is manufactured from the commutator material 56 as in the commutator manufacturing method according to the comparative example described above, the cutting tool 116 is pivoted with respect to the commutator material 56. The outer peripheral surface of the commutator material 56 is cut only when the relative movement from one direction (Z1 side) to the other side (Z2 side) is performed (during forward movement), and the cutting tool 116 is axially opposite to the commutator material 56. When the air cut for returning to the home position is performed when the relative movement from the (Z2 side) to the one side (Z1 side) (return movement) is performed, the cutting tool 116 is moved to the commutator material 56 in the other axial direction ( The relative movement from the Z2 side to the one side (Z1 side) is useless, and the production efficiency is reduced.

これに対し、本発明の一実施形態に係る整流子の製造方法によれば、図2に示されるように、整流子素材56を切削して整流子素材56から整流子58を製造する際に、切削工具16を整流子素材56に対し軸方向一方側(Z1側)から他方側(Z2側)へ相対移動させるとき(往路移動時)に加えて、切削工具16を整流子素材56に対し軸方向他方側(Z2側)から一方側(Z1側)へ相対移動させるとき(復路移動時)にも、整流子素材56の外周面を切削工具16により切削する。従って、切削工具16を整流子素材56に対し軸方向他方側(Z2側)から一方側(Z1側)へ相対移動させることが無駄となることを防止できるので、これにより、生産効率を向上させることができる。   In contrast, according to the method for manufacturing a commutator according to an embodiment of the present invention, as shown in FIG. 2, when the commutator material 56 is cut to manufacture the commutator 58 from the commutator material 56. In addition to when the cutting tool 16 is moved relative to the commutator material 56 in the axial direction from one side (Z1 side) to the other side (Z2 side) (during forward movement), the cutting tool 16 is moved relative to the commutator material 56. The outer peripheral surface of the commutator material 56 is also cut by the cutting tool 16 when the relative movement is made from the other side (Z2 side) in the axial direction to the one side (Z1 side) (when moving in the return path). Therefore, it is possible to prevent wasteful movement of the cutting tool 16 relative to the commutator material 56 from the other axial side (Z2 side) to the one side (Z1 side), thereby improving production efficiency. be able to.

しかも、本発明の一実施形態に係る整流子の製造方法によれば、第一工程において整流子素材56の外周面を切削工具16により荒削り切削した後に、第二工程において整流子素材56の外周面を切削工具16により仕上げ切削するので、生産効率を向上させつつ、整流子58の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)を確保できる。   Moreover, according to the method for manufacturing a commutator according to an embodiment of the present invention, after the outer peripheral surface of the commutator material 56 is roughly cut by the cutting tool 16 in the first step, the outer periphery of the commutator material 56 in the second step. Since the surface is finish-cut with the cutting tool 16, the quality of the finish of the commutator 58 (for example, roundness, steps between segments, surface roughness of the outer peripheral surface, complete removal of burrs, etc., while improving production efficiency) Quality).

ここで、仮に、第一工程の終了後で第二工程の開始前に、例えば、図6の矢印(A)で示される如く、切削工具16を第一工程における終了位置(二点鎖線で示される位置)から整流子素材56に対し整流子素材56の径方向内側(R1側)へ相対移動させて第二工程に向けての切り込み動作を行うようにした場合には、この第二工程に向けての切り込み動作のときに、切削工具16の整流子素材56に対する切削体積(つまり、斜線Q3で示される部分)が大きくなり、この結果、切削工具16に作用する切削抵抗が増加して切削バイト38の摩耗促進や整流子58の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)が低下する虞がある。   Here, for example, after the first step is finished and before the second step is started, for example, as indicated by an arrow (A) in FIG. If the cutting operation toward the second step is performed by moving the commutator material 56 relative to the commutator material 56 in the radial direction (R1 side) from the position of the commutator material 56, the second step When the cutting operation is directed toward, the cutting volume of the cutting tool 16 with respect to the commutator material 56 (that is, the portion indicated by the oblique line Q3) increases, and as a result, the cutting resistance acting on the cutting tool 16 increases and cutting is performed. There is a possibility that the wear quality of the cutting tool 38 and the quality of the finish of the commutator 58 (for example, quality related to roundness, level difference between the segments, surface roughness of the outer peripheral surface, complete removal of burrs, etc.) may be deteriorated.

この点、本発明の一実施形態に係る整流子の製造方法によれば、第一工程の終了後で第二工程の開始前に、図4の矢印(A)、(B)で示される如く、切削工具16を第一工程における終了位置(二点鎖線で示される位置)から整流子素材56の軸方向一方側(Z1側)へ反転移動させた後に整流子素材56に対し整流子素材56の径方向内側(R1側)へ相対移動(いわゆる二段階移動)させて第二工程に向けての切り込み動作を行う。従って、第二工程に向けての切り込み動作のときに、切削工具16の整流子素材56に対する切削体積(つまり、斜線Q1で示される部分)を小さくでき、切削工具16に作用する切削抵抗を減少させることができる。これにより、切削バイト38の摩耗促進や整流子58の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)が低下することを抑制することができる。   In this regard, according to the method of manufacturing a commutator according to an embodiment of the present invention, as shown by arrows (A) and (B) in FIG. 4 after the end of the first step and before the start of the second step. Then, the cutting tool 16 is reversely moved from the end position in the first step (the position indicated by the two-dot chain line) to one side (Z1 side) in the axial direction of the commutator material 56, and then the commutator material 56 with respect to the commutator material 56. Is moved relative to the inner side in the radial direction (R1 side) (so-called two-stage movement) to perform a cutting operation toward the second step. Therefore, during the cutting operation toward the second step, the cutting volume of the cutting tool 16 with respect to the commutator material 56 (that is, the portion indicated by the oblique line Q1) can be reduced, and the cutting resistance acting on the cutting tool 16 is reduced. Can be made. As a result, the wear acceleration of the cutting tool 38 and the quality of the finish of the commutator 58 (for example, quality related to roundness, level difference between segments, surface roughness of the outer peripheral surface, complete removal of burrs, etc.) are reduced. Can be suppressed.

また、本発明の一実施形態に係る整流子の製造方法によれば、整流子素材56の外周面を荒削り切削するための荒削り切削用刃面38Bと、整流子素材56の外周面を仕上げ切削するための仕上げ切削用刃面38Cと、を有する切削バイト38を用いる。従って、荒削り切削加工(第一工程)と仕上げ切削加工(第二工程)とでそれぞれ専用の切削バイトを用いる必要が無い。このため、荒削り切削加工と仕上げ切削加工とで切削装置を別々としたり、荒削り切削加工と仕上げ切削加工とで各切削バイトを交換したり、荒削り切削加工及び仕上げ切削加工に合わせて切削工具16を最適角度に傾斜させたりする必要が無い。これにより、生産効率をより一層向上させることができる。   In addition, according to the commutator manufacturing method according to an embodiment of the present invention, the rough cutting blade surface 38B for rough cutting the outer peripheral surface of the commutator material 56 and the outer peripheral surface of the commutator material 56 are finish-cut. A cutting tool 38 having a finish cutting blade surface 38C for the purpose is used. Therefore, it is not necessary to use dedicated cutting tools for rough cutting (first process) and finishing cutting (second process). For this reason, the cutting tool is used separately for rough cutting and finishing cutting, each cutting tool is exchanged between rough cutting and finishing cutting, and the cutting tool 16 is used in accordance with rough cutting and finishing cutting. There is no need to tilt to the optimum angle. Thereby, production efficiency can be further improved.

さらに、本発明の一実施形態に係る整流子の製造方法によれば、荒削り切削用刃面38Bと整流子素材56の軸方向表面56Aとのなす角度θ1と、仕上げ切削用刃面38Cと整流子素材56の軸方向表面56Aとのなす角度θ2との関係がθ1≧θ2を満足する切削バイト38を用いる。これにより、一つの切削バイト38により整流子素材56の外周面の荒削り切削と仕上げ切削を行うことが可能となる。   Furthermore, according to the commutator manufacturing method according to the embodiment of the present invention, the angle θ1 formed between the rough cutting blade surface 38B and the axial surface 56A of the commutator material 56, the finish cutting blade surface 38C, and the rectification. A cutting tool 38 having a relationship of θ1 ≧ θ2 with respect to the angle θ2 formed with the axial surface 56A of the child material 56 is used. Thereby, it is possible to perform rough cutting and finish cutting of the outer peripheral surface of the commutator material 56 with one cutting tool 38.

以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において種々変形して実施することが可能であることは勿論である。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited above, Of course, it can change and implement variously within the range which does not deviate from the main point. .

例えば、上記実施形態では、第一工程の終了後で第二工程の開始前に、図4に示されるように、切削工具16を第一工程における終了位置(二点鎖線で示される位置)から整流子素材56の軸方向一方側(Z1側)へ反転移動させた後に整流子素材56に対し整流子素材56の径方向内側(R1側)へ相対移動(いわゆる二段階移動)させて第二工程に向けての切り込み動作を行っていたが、次のようにしても良い。   For example, in the above embodiment, after the end of the first step and before the start of the second step, as shown in FIG. 4, the cutting tool 16 is moved from the end position in the first step (position indicated by a two-dot chain line). After the commutator material 56 is reversed and moved to one side (Z1 side) in the axial direction, the commutator material 56 is moved relative to the radially inner side (R1 side) of the commutator material 56 (so-called two-stage movement) to be second. Although the cutting operation for the process is performed, the following may be performed.

すなわち、第一工程の終了後で第二工程の開始前に、図5の矢印(A)で示される如く、切削工具16を第一工程における終了位置(二点鎖線で示される位置)から整流子素材56の軸方向一方側(Z1側)へ反転移動させつつ整流子素材56に対し整流子素材56の径方向内側(R1側)へ相対移動させて第二工程に向けての切り込み動作を行っても良い。   That is, after the end of the first step and before the start of the second step, as shown by the arrow (A) in FIG. 5, the cutting tool 16 is rectified from the end position in the first step (the position indicated by the two-dot chain line). The reversing movement to the one side (Z1 side) in the axial direction of the child material 56 is made to move relative to the radially inner side (R1 side) of the commutator material 56 with respect to the commutator material 56 to perform a cutting operation toward the second step. You can go.

このようにすれば、第二工程に向けての切り込み動作のときに、切削工具16の整流子素材56に対する切削体積(つまり、斜線Q2で示される部分)を小さくでき、切削工具16に作用する切削抵抗を減少させることができる。これにより、切削バイト38の摩耗促進や整流子58の仕上がりの品質(例えば、真円度、各セグメント間の段差、外周面の表面粗さ、バリの完全除去等に関する品質)が低下することを抑制することができる。   In this way, the cutting volume of the cutting tool 16 relative to the commutator material 56 (that is, the portion indicated by the hatched line Q2) can be reduced during the cutting operation toward the second step, and this acts on the cutting tool 16. Cutting resistance can be reduced. As a result, the wear acceleration of the cutting tool 38 and the quality of the finish of the commutator 58 (for example, quality related to roundness, level difference between segments, surface roughness of the outer peripheral surface, complete removal of burrs, etc.) are reduced. Can be suppressed.

また、これに加えて、切削工具16を第一工程における終了位置から整流子素材56の軸方向一方側(Z1側)へ反転移動させつつ整流子素材56に対し整流子素材56の径方向内側(R1側)へ相対移動させることで、上述のいわゆる二段階移動を行う場合(図5の場合)に比して、切削工具16の移動経路を短くできる。これにより、第一工程と第二工程との間の時間が短くなるので、生産効率をより一層向上させることができる。   In addition to this, the cutting tool 16 is reversely moved from the end position in the first step to the one axial side (Z1 side) of the commutator material 56 while the commutator material 56 is radially inward of the commutator material 56. By making the relative movement to the (R1 side), the movement path of the cutting tool 16 can be shortened as compared with the case of performing the so-called two-stage movement (in the case of FIG. 5). Thereby, since the time between a 1st process and a 2nd process becomes short, production efficiency can be improved further.

また、上記実施形態では、回転機構14及び周方向駆動用モータ20を用いて、切削工具16を整流子素材56に対し整流子素材56の周方向に移動させていたが、その他の周方向駆動手段を用いて、切削工具16が整流子素材56に対し整流子素材56の周方向に相対移動されるように、切削工具16及び整流子素材56の少なくとも一つを移動させるようにしても良い。   In the above embodiment, the cutting tool 16 is moved in the circumferential direction of the commutator material 56 with respect to the commutator material 56 by using the rotation mechanism 14 and the circumferential drive motor 20. Means may be used to move at least one of the cutting tool 16 and the commutator material 56 such that the cutting tool 16 is moved relative to the commutator material 56 in the circumferential direction of the commutator material 56. .

また、上記実施形態では、軸方向駆動用モータ22を用いて、切削工具16を整流子素材56に対し整流子素材56の軸方向に移動させていたが、その他の軸方向駆動手段を用いて、切削工具16が整流子素材56に対し整流子素材56の軸方向に相対移動されるように、切削工具16及び整流子素材56の少なくとも一つを移動させるようにしても良い。   Moreover, in the said embodiment, although the cutting tool 16 was moved to the axial direction of the commutator raw material 56 with respect to the commutator raw material 56 using the axial direction drive motor 22, other axial direction drive means were used. Alternatively, at least one of the cutting tool 16 and the commutator material 56 may be moved so that the cutting tool 16 is moved relative to the commutator material 56 in the axial direction of the commutator material 56.

また、上記実施形態では、径方向駆動用モータ24を用いて、切削工具16を整流子素材56に対し整流子素材56の径方向に移動させていたが、その他の径方向駆動手段を用いて、切削工具16が整流子素材56に対し整流子素材56の径方向に相対移動されるように、切削工具16及び整流子素材56の少なくとも一つを移動させるようにしても良い。   Moreover, in the said embodiment, although the cutting tool 16 was moved to the radial direction of the commutator raw material 56 with respect to the commutator raw material 56 using the radial direction drive motor 24, other radial direction drive means were used. Alternatively, at least one of the cutting tool 16 and the commutator material 56 may be moved so that the cutting tool 16 is moved relative to the commutator material 56 in the radial direction of the commutator material 56.

本発明の一実施形態に係る整流子の製造装置の全体構成を示す正面図である。It is a front view which shows the whole structure of the manufacturing apparatus of the commutator which concerns on one Embodiment of this invention. 本発明の一実施形態に係る整流子の製造装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the manufacturing apparatus of the commutator which concerns on one Embodiment of this invention. 本発明の一実施形態に係る整流子の製造装置に備えられた切削工具の構成を示す図である。It is a figure which shows the structure of the cutting tool with which the manufacturing apparatus of the commutator which concerns on one Embodiment of this invention was equipped. 切削工具の動作説明図である。It is operation | movement explanatory drawing of a cutting tool. 切削工具の動作説明図である。It is operation | movement explanatory drawing of a cutting tool. 切削工具の動作説明図である。It is operation | movement explanatory drawing of a cutting tool. 整流子素材のバリを除去するためのバリ取り工程を説明する図である。It is a figure explaining the deburring process for removing the burr | flash of a commutator raw material. 比較例に係る整流子の製造方法を説明する図である。It is a figure explaining the manufacturing method of the commutator which concerns on a comparative example. 比較例に係る整流子の製造方法を説明するA method for manufacturing a commutator according to a comparative example will be described. 比較例に係る整流子の製造装置に備えられた切削工具の構成を示す図である。It is a figure which shows the structure of the cutting tool with which the manufacturing apparatus of the commutator which concerns on a comparative example was equipped.

符号の説明Explanation of symbols

10…整流子の製造装置、14…回転機構(周方向駆動手段の一部)、16…切削工具、20…周方向駆動用モータ(周方向駆動手段の一部)、22…軸方向駆動用モータ(軸方向駆動手段)、24…径方向駆動用モータ、26…制御回路(制御手段)、38…切削バイト、38B…荒削り切削用刃面、38C…仕上げ切削用刃面、50…電機子、56…整流子素材 DESCRIPTION OF SYMBOLS 10 ... Commutator manufacturing apparatus, 14 ... Rotation mechanism (a part of circumferential direction drive means), 16 ... Cutting tool, 20 ... Circumferential direction drive motor (a part of circumferential direction drive means), 22 ... Axial direction drive Motor (axial driving means), 24 ... radial driving motor, 26 ... control circuit (control means), 38 ... cutting tool, 38B ... rough cutting blade surface, 38C ... finish cutting blade surface, 50 ... armature 56 ... Commutator material

Claims (6)

切削工具を整流子素材に対し前記整流子素材の周方向に相対移動させながら前記整流子素材の軸方向一方側から他方側へ相対移動させて、前記切削工具の切削バイトに形成された第一の逃げ面である荒削り切削用刃面を利用して前記整流子素材の外周面を荒削り切削する第一工程と、
前記切削工具を前記整流子素材に対し前記整流子素材の周方向に相対移動させながら前記整流子素材の軸方向他方側から一方側へ相対移動させて、前記切削バイトに形成された第二の逃げ面である仕上げ切削用刃面を利用して前記整流子素材の外周面を仕上げ切削する第二工程と、
を備えると共に、
前記荒削り切削用刃面と前記整流子素材の軸方向表面とのなす角度である第一の逃げ角θ1と、前記仕上げ切削用刃面と前記整流子素材の軸方向表面とのなす角度である第二の逃げ角θ2との関係がθ1≧θ2を満足する前記切削バイトを用いる、
ことを特徴とする整流子の製造方法。
A first tool formed on a cutting bit of the cutting tool by moving the cutting tool relative to the commutator material in the circumferential direction of the commutator material while relatively moving the commutator material in the axial direction from one side to the other side. A first step of rough cutting the outer peripheral surface of the commutator material using a rough cutting blade surface which is a flank of
The cutting tool is moved relative to the commutator material in the circumferential direction of the commutator material, while being relatively moved from the other side in the axial direction of the commutator material to the second side, and a second tool formed on the cutting tool. A second step of finishing cutting the outer peripheral surface of the commutator material using a cutting surface for finishing cutting which is a flank ;
The equipped Rutotomoni,
The first clearance angle θ1, which is an angle formed by the rough cutting blade surface and the axial surface of the commutator material, and an angle formed by the finishing cutting blade surface and the axial surface of the commutator material. Using the cutting tool whose relationship with the second clearance angle θ2 satisfies θ1 ≧ θ2;
A method of manufacturing a commutator characterized by the above.
前記第一工程の終了後で前記第二工程の開始前に、前記切削工具を前記第一工程における終了位置から前記整流子素材の軸方向一方側へ反転移動させた後に前記整流子素材に対し前記整流子素材の径方向内側へ相対移動させる、
ことを特徴とする請求項1に記載の整流子の製造方法。
After the end of the first step and before the start of the second step, the cutting tool is reversely moved from the end position in the first step to one side in the axial direction of the commutator material, and then the commutator material is moved. Moving the commutator material radially inward,
The method of manufacturing a commutator according to claim 1.
前記第一工程の終了後で前記第二工程の開始前に、前記切削工具を前記第一工程における終了位置から前記整流子素材の軸方向一方側へ反転移動させつつ前記整流子素材に対し前記整流子素材の径方向内側へ相対移動させる、
ことを特徴とする請求項1に記載の整流子の製造方法。
After the end of the first step and before the start of the second step, the cutting tool is reversely moved from the end position in the first step to the one side in the axial direction of the commutator material. Move the commutator material radially inward,
The method of manufacturing a commutator according to claim 1.
切削工具と、Cutting tools,
前記切削工具を整流子素材に対し前記整流子素材の周方向に相対移動させるための周方向駆動手段と、  Circumferential driving means for moving the cutting tool relative to the commutator material in the circumferential direction of the commutator material;
前記切削工具を前記整流子素材に対し前記整流子素材の軸方向に相対移動させるための軸方向駆動手段と、  Axial driving means for moving the cutting tool relative to the commutator material in the axial direction of the commutator material;
前記周方向駆動手段及び前記軸方向駆動手段の駆動を制御する制御手段と、  Control means for controlling the driving of the circumferential driving means and the axial driving means;
を備え、  With
前記制御手段は、  The control means includes
前記切削工具が前記整流子素材に対し前記整流子素材の周方向に相対移動されるように前記周方向駆動手段の駆動を制御しながら、前記切削工具が前記整流子素材の軸方向一方側から他方側へ相対移動されるように前記軸方向駆動手段の駆動を制御して、前記切削工具の切削バイトに形成された第一の逃げ面である荒削り切削用刃面を利用して前記整流子素材の外周面を荒削り切削させる第一ステップと、  While controlling the driving of the circumferential drive means so that the cutting tool is moved relative to the commutator material in the circumferential direction of the commutator material, the cutting tool is moved from one axial direction side of the commutator material. The commutator is controlled by controlling the driving of the axial driving means so as to be relatively moved to the other side and using a rough cutting blade surface which is a first flank formed on a cutting tool of the cutting tool. A first step of roughing and cutting the outer peripheral surface of the material;
前記切削工具が前記整流子素材に対し前記整流子素材の周方向に相対移動されるように前記周方向駆動手段の駆動を制御しながら、前記切削工具が前記整流子素材の軸方向他方側から一方側へ相対移動されるように前記軸方向駆動手段の駆動を制御して、前記切削バイトに形成された第二の逃げ面である仕上げ切削用刃面を利用して前記整流子素材の外周面を仕上げ切削させる第二ステップと、  While controlling the driving of the circumferential driving means so that the cutting tool is moved relative to the commutator material in the circumferential direction of the commutator material, the cutting tool is moved from the other axial side of the commutator material. The outer periphery of the commutator material is controlled by controlling the driving of the axial driving means so as to be relatively moved to one side and using a cutting surface for finishing cutting which is a second flank formed on the cutting tool. A second step to finish-cut the surface;
を実行し、  Run
前記切削バイトは、  The cutting bit is
前記荒削り切削用刃面と前記整流子素材の軸方向表面とのなす角度である第一の逃げ角θ1と、前記仕上げ切削用刃面と前記整流子素材の軸方向表面とのなす角度である第二の逃げ角θ2との関係がθ1≧θ2を満足する構成とされている、  The first clearance angle θ1, which is an angle formed by the rough cutting blade surface and the axial surface of the commutator material, and an angle formed by the finishing cutting blade surface and the axial surface of the commutator material. The relationship with the second clearance angle θ2 satisfies θ1 ≧ θ2.
ことを特徴とする整流子の製造装置。  A commutator manufacturing apparatus characterized by that.
前記切削工具を前記整流子素材に対し前記整流子素材の径方向に相対移動させるための径方向駆動手段を備え、Radial direction drive means for moving the cutting tool relative to the commutator material in the radial direction of the commutator material,
前記制御手段は、前記第一ステップの実行終了後で前記第二ステップの実行開始前に、前記軸方向駆動手段の駆動を制御して前記切削工具を前記第一ステップにおける終了位置から前記整流子素材の軸方向一方側へ反転移動させた後に前記径方向駆動手段の駆動を制御して前記切削工具を前記整流子素材に対し前記整流子素材の径方向内側へ相対移動させる、  The control means controls the drive of the axial drive means after the execution of the first step and before the execution of the second step, and moves the cutting tool from the end position in the first step to the commutator. After reversing the material axially to one side, controlling the driving of the radial driving means to move the cutting tool relative to the commutator material radially inward of the commutator material;
ことを特徴とする請求項4に記載の整流子の製造装置。  The commutator manufacturing apparatus according to claim 4.
前記切削工具を前記整流子素材に対し前記整流子素材の径方向に相対移動させるための径方向駆動手段を備え、Radial direction drive means for moving the cutting tool relative to the commutator material in the radial direction of the commutator material,
前記制御手段は、前記第一ステップの実行終了後で前記第二ステップの実行開始前に、前記軸方向駆動手段及び前記径方向駆動手段の駆動を制御して前記切削工具を前記第一ステップにおける終了位置から前記整流子素材の軸方向一方側へ反転移動させつつ前記整流子素材に対し前記整流子素材の径方向内側へ相対移動させる、  The control means controls the drive of the axial direction drive means and the radial direction drive means after the completion of the execution of the first step and before the execution of the second step, so that the cutting tool is moved in the first step. Moving relative to the commutator material radially inward relative to the commutator material while reversing and moving from the end position to one side of the commutator material in the axial direction;
ことを特徴とする請求項4に記載の整流子の製造装置。  The commutator manufacturing apparatus according to claim 4.
JP2007272649A 2007-10-19 2007-10-19 Commutator manufacturing method and manufacturing apparatus Expired - Fee Related JP5224773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007272649A JP5224773B2 (en) 2007-10-19 2007-10-19 Commutator manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272649A JP5224773B2 (en) 2007-10-19 2007-10-19 Commutator manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2009105997A JP2009105997A (en) 2009-05-14
JP5224773B2 true JP5224773B2 (en) 2013-07-03

Family

ID=40707166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272649A Expired - Fee Related JP5224773B2 (en) 2007-10-19 2007-10-19 Commutator manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5224773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8566627B2 (en) 2000-01-18 2013-10-22 Sameer Halepete Adaptive power control

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010064321A1 (en) 2010-12-29 2012-07-05 Robert Bosch Gmbh Commutator and manufacturing process for it and electric machine
CN108134300B (en) * 2018-01-31 2024-02-23 瑞安市龙星机电配件厂(普通合伙) Commutator processing equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535219B2 (en) * 1989-03-24 1996-09-18 株式会社三ツ葉電機製作所 Commutator cutting machine
JP2516702B2 (en) * 1990-09-21 1996-07-24 オーエスジー株式会社 Grooving Tool
JP2919256B2 (en) * 1993-12-03 1999-07-12 株式会社ミツバ Cutting method of commutator surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8566627B2 (en) 2000-01-18 2013-10-22 Sameer Halepete Adaptive power control
US8806247B2 (en) 2000-01-18 2014-08-12 Intellectual Venture Funding Llc Adaptive power control

Also Published As

Publication number Publication date
JP2009105997A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP6184472B2 (en) Milling drill tools
JP2006198766A (en) Method for machining rotor equipped with integral blade
JP4765533B2 (en) Thread cutting tool and thread processing device
JP5846082B2 (en) Grinding method for skiving cutter
JP5549527B2 (en) Grooving method
JP5224773B2 (en) Commutator manufacturing method and manufacturing apparatus
JP4189878B2 (en) Manufacturing method of bevel gear forging die
TW201908040A (en) Thread cutting device and thread cutting method
WO2010032371A1 (en) Band saw cutting device and method of cutting ingot
CN105965265A (en) Motor shell machining tool
JP5353375B2 (en) Cutting method
JP5189997B2 (en) Commutator manufacturing method and manufacturing apparatus
KR101332150B1 (en) Broach chip removal apparatus and broach chip removal method
JP2007283452A (en) Cutting method
JP2006346886A (en) Tire manufacturing method and tire groove forming device
JP2016038701A (en) Workpiece machining control device of machine tool and workpiece machining control method using control device, and workpiece machining program
JP6311201B2 (en) Method for manufacturing sintered part having through hole and sintered part
JP2009131072A (en) Method of manufacturing of commutator, method of manufacturing of armature, and apparatus for manufacturing commutator
WO2020100536A1 (en) Method for manufacturing component, processing apparatus, and component
JP5836897B2 (en) Gear grinding tool processing method and gear grinding tool
JP2501732B2 (en) Method for machining wheel axles driven via friction rolls
JPH10128647A (en) Deburring method and deburring structure of grinding wheel used in the deburring method
JP2018089638A (en) Spot welding electrode polishing method
JP2007105864A (en) Method and apparatus for lathe turning
JPH08336709A (en) Product material form and machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5224773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees