JP5224531B2 - Treatment for bladder cancer - Google Patents

Treatment for bladder cancer Download PDF

Info

Publication number
JP5224531B2
JP5224531B2 JP2009027692A JP2009027692A JP5224531B2 JP 5224531 B2 JP5224531 B2 JP 5224531B2 JP 2009027692 A JP2009027692 A JP 2009027692A JP 2009027692 A JP2009027692 A JP 2009027692A JP 5224531 B2 JP5224531 B2 JP 5224531B2
Authority
JP
Japan
Prior art keywords
bladder cancer
titanium oxide
group
therapeutic agent
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009027692A
Other languages
Japanese (ja)
Other versions
JP2010180192A (en
Inventor
平 幸 輝 金
修 司 曾根▲崎▼
神 有 美 大
村 智 美 中
村 保 広 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
National Cancer Center Japan
Original Assignee
Toto Ltd
National Cancer Center Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, National Cancer Center Japan filed Critical Toto Ltd
Priority to JP2009027692A priority Critical patent/JP5224531B2/en
Publication of JP2010180192A publication Critical patent/JP2010180192A/en
Application granted granted Critical
Publication of JP5224531B2 publication Critical patent/JP5224531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水溶性高分子により水系溶媒中で分散させた酸化チタン複合体に対して、水溶性高分子を変質させることなくリンカー分子を酸化チタン表面に結合させ、さらに該リンカー分子を介して抗体が結合されてなり、超音波の照射による触媒活性を有する酸化チタン−抗体複合体であることを特徴とする、膀胱癌治療剤に関する。   The present invention relates to a titanium oxide complex dispersed in an aqueous solvent with a water-soluble polymer, by binding a linker molecule to the titanium oxide surface without altering the water-soluble polymer, and further via the linker molecule. The present invention relates to a therapeutic agent for bladder cancer, which is a titanium oxide-antibody complex having an antibody bound thereto and having catalytic activity by irradiation with ultrasonic waves.

酸化チタンはpH6前後に等電点を有すると言われている。このため、酸化チタン粒子は中性付近の水系溶媒中では凝集を生じてしまい、これを均一に分散させることは極めて難しい。そのため、酸化チタン粒子を水系の分散媒に均一に分散させるため、今まで種々の試みがなされてきた。   Titanium oxide is said to have an isoelectric point around pH 6. For this reason, the titanium oxide particles are aggregated in an aqueous solvent near neutrality, and it is extremely difficult to uniformly disperse them. Therefore, various attempts have been made so far to uniformly disperse the titanium oxide particles in the aqueous dispersion medium.

PEG(ポリエチレングリコール)を分散剤として添加して、分散媒中における酸化チタン粒子の分散性を向上させることが知られている(特許文献1(特開平2−307524号公報)および特許文献2(特開2002−60651号公報)参照)。   It is known that PEG (polyethylene glycol) is added as a dispersant to improve the dispersibility of titanium oxide particles in a dispersion medium (Patent Document 1 (JP-A-2-307524) and Patent Document 2). JP 2002-60651 A).

あるいは酸化チタン微粒子に、ポリアクリル酸等の親水性高分子を、カルボキシル基を介して結合させた、表面改質酸化チタン微粒子も知られている(特許文献3(WO2004/087577)参照)。この技術は、ポリアクリル酸等といったアニオン性ポリマーの使用を念頭としたものである。アニオン性ポリマーのもつカルボキシル基等の官能基により表面電荷を与え、それにより生体内環境に近い中性の生理食塩水においても安定した分散性を示し、かつ紫外線照射時の光触媒活性機能を有するものである。   Alternatively, surface-modified titanium oxide fine particles in which a hydrophilic polymer such as polyacrylic acid is bonded to the titanium oxide fine particles via a carboxyl group are also known (see Patent Document 3 (WO 2004/087577)). This technique is intended for the use of anionic polymers such as polyacrylic acid. A surface charge is imparted by a functional group such as a carboxyl group of an anionic polymer, thereby exhibiting a stable dispersibility even in neutral physiological saline close to the in vivo environment, and having a photocatalytic activity function during ultraviolet irradiation It is.

更に、酸化チタンに機能性を付与する検討がなされている。例えば、前記表面改質酸化チタン微粒子に対して、前記親水性高分子の結合に関与していないカルボキシル残基に、目的分子に対して特異的な結合能を有する分子を固定化した、分子識別能を有する二酸化チタン複合体が提案されている(特許文献4(特許第3835700号)参照)。この技術は、アニオン性ポリマーのもつカルボキシル基等の官能基により、分子が固定化されていても表面電荷を与え、安定した分散性を示すものである。一方で、官能基によって与えられる表面電荷は分散性に直接寄与しており、結合に関与していない残基に分子を固定化することで表面電荷は減少する。このことが固定化される分子の量等に対して制限を与える。   Furthermore, studies have been made to impart functionality to titanium oxide. For example, a molecule having a specific binding ability to a target molecule is immobilized on a carboxyl residue that is not involved in the binding of the hydrophilic polymer to the surface-modified titanium oxide fine particles. A titanium dioxide composite having a function has been proposed (see Patent Document 4 (Patent No. 3835700)). This technique gives a surface charge even when a molecule is fixed by a functional group such as a carboxyl group of an anionic polymer, and exhibits a stable dispersibility. On the other hand, the surface charge provided by the functional group directly contributes to the dispersibility, and the surface charge is reduced by immobilizing the molecule on a residue that is not involved in binding. This places a limit on the amount of molecules to be immobilized.

膀胱癌は、泌尿器領域の一般的な癌である。膀胱癌では浸潤(筋層浸潤とも言う)の程度がリンパ節や遠隔転移の頻度と相関することが知られている。膀胱癌の7割から8割は浸潤のない表在性の癌である。表在性膀胱癌の患者は経尿道的腫瘍切除を受け、その後、一部の患者では、膀胱内の免疫療法/化学療法で治療を受ける。その結果、表在性膀胱癌の患者の5年間の生存率は90%に近い。しかし、表在性膀胱癌の患者の5割から7割は再発し、その内5〜20%は筋層に浸潤する膀胱癌へと進展することが知られている。再発の原因は、膀胱癌が多発性であることが多く、手術等の治療によって除去しきれない膀胱癌細胞が残存するためである。再発防止を目的として、免疫療法/化学療法での治療が行われることがあるが、例えばBCG膀胱内注入療法においては、正常部位にも作用してしまうため、膀胱炎等の副作用を伴うことがほとんどである。いったん再発した患者はその後再発を繰り返しながら、最終的には膀胱の全摘出をよぎなくされる場合もあり、膀胱癌治療における患者のQOL(クオリティーオブライフ)の向上が求められている。   Bladder cancer is a common cancer in the urological area. It is known that the degree of invasion (also called muscle layer invasion) correlates with the frequency of lymph nodes and distant metastases in bladder cancer. 70% to 80% of bladder cancer is superficial cancer without invasion. Patients with superficial bladder cancer undergo transurethral tumor resection, and some patients are subsequently treated with intravesical immunotherapy / chemotherapy. As a result, the 5-year survival rate for patients with superficial bladder cancer is close to 90%. However, it is known that 50% to 70% of patients with superficial bladder cancer will relapse, and 5-20% of them will progress to bladder cancer infiltrating the muscle layer. The cause of recurrence is that bladder cancer is often multiple, and bladder cancer cells that cannot be removed by treatment such as surgery remain. For the purpose of preventing recurrence, treatment with immunotherapy / chemotherapy may be performed. For example, in BCG intravesical infusion therapy, since it also acts on a normal site, it may have side effects such as cystitis. Is almost. Once a patient has relapsed, the recurrence may be repeated, and eventually the entire bladder may not be removed. Therefore, improvement of the patient's QOL (quality of life) in the treatment of bladder cancer is required.

特開平2−307524号公報JP-A-2-307524 特開2002−60651号公報JP 2002-60651 A WO2004/087577号パンフレットWO2004 / 087577 pamphlet 特許第3835700号公報Japanese Patent No. 3835700

本発明は、水溶性高分子により水系溶媒中で分散性を保ち、超音波の照射による触媒活性を有する酸化チタン複合体に対して、水溶性高分子を変質させることなくリンカー分子を介して抗体を修飾することで、分散性と触媒活性を失うことなく選択的な結合能を付与した酸化チタン−抗体複合体であることを特徴とする膀胱癌治療剤の提供をその目的としている。   The present invention relates to a titanium oxide complex that retains dispersibility in an aqueous solvent by a water-soluble polymer and has catalytic activity by irradiation with ultrasonic waves, through a linker molecule without altering the water-soluble polymer. The purpose of the present invention is to provide a therapeutic agent for bladder cancer, which is a titanium oxide-antibody complex imparted with a selective binding ability without losing dispersibility and catalytic activity.

本発明者らは、今般、水溶性高分子により水系溶媒中で分散させた酸化チタン複合体の酸化チタン表面にリンカー分子を結合させることにより、前記水溶性高分子を変質させることなく、分散性と触媒活性を保ちながら、新たに抗体を付与することが可能である、との知見を得た。   The present inventors have recently made it possible to disperse the water-soluble polymer without altering the water-soluble polymer by bonding a linker molecule to the titanium oxide surface of the titanium oxide composite dispersed in an aqueous solvent. It was found that it is possible to newly apply an antibody while maintaining catalytic activity.

すなわち、本発明の膀胱癌治療剤によれば、水溶性高分子により水系溶媒中で分散させた酸化チタン複合体の酸化チタン表面にリンカー分子を結合し、さらに該リンカー分子を介して抗体を結合させることにより、水溶性高分子を変質させることなく高い分散性を保持し、なおかつ超音波の照射による触媒活性を有し、さらに抗原と結合可能な酸化チタン−抗体複合体粒子であることを特徴とする膀胱癌治療剤を作製することができる。該抗体として膀胱癌細胞の表面抗原に対して特異的に結合する抗体を用い、膀胱癌治療剤が抗原である膀胱癌細胞の表面抗原と結合している状態で超音波照射をすることで、生成されたラジカル種が膀胱癌細胞に対して作用し、治療効果を高めることが期待できる。さらに、周辺の正常細胞に悪影響を及ぼさない程度の微弱な超音波照射を行うことで、膀胱癌治療剤が集積した局所のみで効果を発揮し、副作用の低減が期待できる。また、この超音波照射において、膀胱表面の広い範囲に照射を行うことで、多発性の膀胱癌に対する治療が可能であり、手術等の治療によって除去しきれない膀胱癌細胞に対しても作用し、再発防止の効果を期待できる。よって本発明の膀胱癌治療剤は、患部に集積させ、さらに超音波を照射することにより行われる超音波膀胱癌治療を促進する薬剤として利用可能である。   That is, according to the bladder cancer therapeutic agent of the present invention, a linker molecule is bound to the titanium oxide surface of a titanium oxide complex dispersed in an aqueous solvent with a water-soluble polymer, and further an antibody is bound via the linker molecule. It is a titanium oxide-antibody complex particle that retains high dispersibility without altering the water-soluble polymer, has catalytic activity due to ultrasonic irradiation, and can bind to an antigen. A therapeutic agent for bladder cancer can be prepared. By using an antibody that specifically binds to the surface antigen of the bladder cancer cell as the antibody, and by irradiating the bladder cancer therapeutic agent with the surface antigen of the bladder cancer cell that is the antigen, ultrasonic irradiation, It can be expected that the generated radical species act on bladder cancer cells and enhance the therapeutic effect. Furthermore, by performing weak ultrasonic irradiation that does not adversely affect the surrounding normal cells, the effect is exerted only in the local area where the bladder cancer therapeutic agent is accumulated, and side effects can be expected to be reduced. In addition, this ultrasonic irradiation can treat multiple bladder cancers by irradiating a wide area of the bladder surface, and also acts on bladder cancer cells that cannot be removed by treatment such as surgery. The effect of preventing recurrence can be expected. Therefore, the bladder cancer therapeutic agent of the present invention can be used as an agent for promoting ultrasonic bladder cancer treatment performed by accumulating in an affected area and further irradiating ultrasonic waves.

そして、本発明の膀胱癌治療剤は、酸化チタン粒子の表面に、カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基の群から選択される少なくとも一つの官能基を介して結合されてなる水溶性高分子を備えてなる、酸化チタン複合体と、
該酸化チタン複合体の表面に結合されてなるリンカー分子と、
該リンカー分子を介して結合されてなる抗体と
を含んでなり、超音波の照射による触媒活性を有する酸化チタン−抗体複合体である膀胱癌治療剤であって、
前記膀胱癌治療剤が、膀胱内に注入されて抗原である膀胱癌細胞の表面抗原と結合され、排尿もしくは膀胱内洗浄によって未結合の膀胱癌治療剤が除去されることにより投与されることを特徴とするものである。
The bladder cancer therapeutic agent of the present invention is bound to the surface of the titanium oxide particles via at least one functional group selected from the group of carboxyl group, amino group, diol group, salicylic acid group, and phosphoric acid group. A titanium oxide composite comprising a water-soluble polymer,
A linker molecule bonded to the surface of the titanium oxide complex;
A therapeutic agent for bladder cancer, which is a titanium oxide-antibody complex comprising an antibody bound via the linker molecule and having catalytic activity by ultrasonic irradiation,
The bladder cancer therapeutic agent is administered by being injected into the bladder and bound to the surface antigen of the bladder cancer cell, which is an antigen, and the unbound bladder cancer therapeutic agent is removed by urination or intravesical washing. It is a feature.

また、本発明による分散液は、膀胱癌治療剤と、該膀胱癌治療剤が分散される溶媒とを含んでなるものである。   The dispersion according to the present invention comprises a therapeutic agent for bladder cancer and a solvent in which the therapeutic agent for bladder cancer is dispersed.

本発明によれば、水溶性高分子により水系溶媒中で分散性を保ち、超音波の照射による触媒活性を有する酸化チタン複合体に対して、水溶性高分子を変質させることなくリンカー分子を介して抗体を修飾することで、分散性と触媒活性を失うことなく選択的な結合能を付与した酸化チタン−抗体複合体であることを特徴とした膀胱癌治療剤およびその分散体を提供できる。   According to the present invention, a titanium oxide composite that maintains dispersibility in an aqueous solvent by a water-soluble polymer and has catalytic activity due to ultrasonic irradiation can be mediated through a linker molecule without altering the water-soluble polymer. Thus, it is possible to provide a therapeutic agent for bladder cancer, and a dispersion thereof, which is a titanium oxide-antibody complex imparted with a selective binding ability without losing dispersibility and catalytic activity by modifying the antibody.

また、本発明による膀胱癌治療剤は、膀胱癌治療剤または膀胱癌治療剤が分散された分散液を含んでなるものである。   The bladder cancer therapeutic agent according to the present invention comprises a bladder cancer therapeutic agent or a dispersion in which a bladder cancer therapeutic agent is dispersed.

本発明の膀胱癌治療剤の一例を示す図である。It is a figure which shows an example of the bladder cancer therapeutic agent of this invention. 例9において各種粒子について測定された、超音波照射による一重項酸素の発生に起因する、一重項酸素検出用蛍光試薬を介した蛍光強度を示す図である。It is a figure which shows the fluorescence intensity through the fluorescence reagent for a singlet oxygen detection resulting from generation | occurrence | production of the singlet oxygen by ultrasonic irradiation measured about various particles in Example 9. 例10において酸化チタン−抗体複合体について表面プラズモン共鳴法で測定されて得られたセンサグラムを示す図である。In Example 10, it is a figure which shows the sensorgram obtained by measuring with a surface plasmon resonance method about a titanium oxide antibody complex. 例15において酸化チタン複合体Eについて測定された、超音波照射後のヒドロキシラジカルの発生に起因する、ヒドロキシラジカル検出用蛍光試薬を介した蛍光強度を示す図である。It is a figure which shows the fluorescence intensity through the fluorescent reagent for hydroxy radical detection resulting from the generation | occurrence | production of the hydroxy radical after ultrasonic irradiation measured about the titanium oxide composite E in Example 15. 例18において試験溶液A、試験溶液Bおよびコントロールについて、フローサイトメトリー法で測定された、腫瘍細胞への結合に伴う細胞数に対する蛍光強度分布を示す図である。In Example 18, it is a figure which shows the fluorescence intensity distribution with respect to the cell number accompanying the coupling | bonding to the tumor cell measured by the flow cytometry method about the test solution A, the test solution B, and control.

本発明の膀胱癌治療剤は、酸化チタン粒子と、水溶性高分子と、リンカー分子と、抗体とからなる酸化チタン−抗体複合体を含む。図1に、膀胱癌治療剤の一例を示す。図1に示されるように、複合体粒子は、酸化チタン粒子1の表面に水溶性高分子2およびリンカー分子3が結合され、リンカー分子3を介して抗体4が結合されたものである。酸化チタン粒子1と水溶性高分子2との結合は、カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基から選択される少なくとも1種の官能基を介して形成される。   The therapeutic agent for bladder cancer of the present invention includes a titanium oxide-antibody complex comprising titanium oxide particles, a water-soluble polymer, a linker molecule, and an antibody. FIG. 1 shows an example of a bladder cancer therapeutic agent. As shown in FIG. 1, the composite particle is a particle in which a water-soluble polymer 2 and a linker molecule 3 are bonded to the surface of a titanium oxide particle 1 and an antibody 4 is bonded through the linker molecule 3. The bond between the titanium oxide particles 1 and the water-soluble polymer 2 is formed through at least one functional group selected from a carboxyl group, an amino group, a diol group, a salicylic acid group, and a phosphoric acid group.

すなわち、これらの官能基は酸化チタンとの間で強固な結合を形成するため、酸化チタン粒子の高い触媒活性に関わらず分散性を保持できる。また、リンカー分子を介して抗体の結合を保持することが可能である。なお、本発明における結合形態は、体内における安全性の観点から、体内への投与後24〜72時間後に分散性が確保されている程度の結合形態であればよい。生理条件での分散が安定しており、かつ超音波照射後も水溶性高分子の遊離が無く、正常細胞へのダメージが少ない点で、共有結合であるのが望ましい。   That is, since these functional groups form a strong bond with titanium oxide, dispersibility can be maintained regardless of the high catalytic activity of the titanium oxide particles. It is also possible to retain antibody binding via a linker molecule. In addition, from the viewpoint of safety in the body, the binding form in the present invention may be a binding form in which dispersibility is ensured 24 to 72 hours after administration to the body. A covalent bond is desirable in that the dispersion under physiological conditions is stable, the water-soluble polymer is not released even after ultrasonic irradiation, and damage to normal cells is small.

カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基は、3官能シラノール基のような相互に三次元的に縮合重合して重合物で酸化チタン粒子の表面を覆い尽くしてしまう官能基とは異なり、官能基同士で重合することが無いため、図1に示されるように酸化チタン粒子の表面に剥き出しの部分を確保することができると考えられる。その結果、表面が重合体で覆われることによって起こりうる失活を抑制しつつ、酸化チタン粒子の触媒活性を十分に発揮させることができる。   A carboxyl group, an amino group, a diol group, a salicylic acid group, and a phosphoric acid group are functional groups such as trifunctional silanol groups that are three-dimensionally condensed with each other and cover the surface of the titanium oxide particles with the polymer. Unlike the case, since the functional groups do not polymerize, it is considered that an exposed portion can be secured on the surface of the titanium oxide particles as shown in FIG. As a result, the catalytic activity of the titanium oxide particles can be sufficiently exhibited while suppressing the deactivation that may occur when the surface is covered with the polymer.

そして、酸化チタン粒子の表面に結合した水溶性高分子は、電荷あるいは水和の作用によって、酸化チタン粒子の分散が困難とされる中性付近の水系溶媒中であって、本発明の膀胱癌治療剤を分散させることができる。抗体を、酸化チタン粒子の表面に結合した水溶性高分子に対して導入する方法については公知である。このような場合は、水溶性高分子と抗体を化学結合するために、水溶性高分子は反応性の高い極性基を含んでなることが必要である。この水溶性高分子に含まれる極性基は、抗体が結合されると失われる。このことにより、水溶性高分子の極性自体に変化が生じる。つまり、酸化チタン粒子の表面に結合した水溶性高分子のもつ電荷あるいは水和の作用によって分散しているバランスが、抗体の結合前後において変化すると考えられる。この酸化チタン粒子の表面に結合した水溶性高分子の変質に伴う電荷あるいは水和のバランスをうまくコントロールすることでのみ達成しうる。一方、本発明における酸化チタン粒子の表面に結合したリンカー分子を介して結合した抗体については、水溶性高分子を変質させることなく結合させることにより、水溶性高分子による高い分散性を保持できる。このため、水溶性高分子の変質によって生じる分散性の変化を考慮することなく、抗体の結合に際して自由度の高い分子設計が可能である。   The water-soluble polymer bonded to the surface of the titanium oxide particles is in a neutral aqueous solvent in which it is difficult to disperse the titanium oxide particles due to the action of charge or hydration, and the bladder cancer of the present invention The therapeutic agent can be dispersed. A method for introducing an antibody to a water-soluble polymer bound to the surface of titanium oxide particles is known. In such a case, in order to chemically bond the water-soluble polymer and the antibody, the water-soluble polymer needs to contain a highly reactive polar group. The polar group contained in the water-soluble polymer is lost when the antibody is bound. This causes a change in the polarity of the water-soluble polymer itself. That is, it is considered that the balance dispersed by the action of charge or hydration of the water-soluble polymer bonded to the surface of the titanium oxide particles changes before and after the antibody binding. This can only be achieved by well controlling the balance of charge or hydration associated with the alteration of the water-soluble polymer bound to the surface of the titanium oxide particles. On the other hand, the antibody bound through the linker molecule bound to the surface of the titanium oxide particles in the present invention can retain high dispersibility due to the water-soluble polymer by binding without altering the water-soluble polymer. For this reason, it is possible to design a molecule with a high degree of freedom when binding an antibody without considering dispersibility change caused by alteration of the water-soluble polymer.

本発明の膀胱癌治療剤によれば、水溶性高分子により水系溶媒中で分散させた酸化チタン複合体の酸化チタン表面にリンカー分子を結合し、さらに該リンカー分子を介して抗体を結合させることにより、水溶性高分子を変質させることなく高い分散性を保持する酸化チタン−抗体複合体であることを特徴とする膀胱癌治療剤を作製することができる。このように抗体を結合することにより、本発明の膀胱癌治療剤が抗原と結合することを可能とする。また、本発明の膀胱癌治療剤に対して超音波照射をすることでラジカル種を発生することができる。一般的にラジカル種は高い反応性をもつが寿命が短く、ごく僅かに拡散して近傍の物質と反応する。このため、本発明の膀胱癌治療剤が抗原と結合している状態で超音波照射をすることで、ラジカル種と抗原との反応性を高めることが期待できる。該抗体として膀胱癌細胞の表面抗原に対して特異的に結合する抗体を用い、膀胱癌治療剤が抗原である膀胱癌細胞の表面抗原と結合している状態で超音波照射をすることで、生成されたラジカル種が膀胱癌細胞に対して作用し、治療効果を高めることが期待できる。、さらに、周辺の正常細胞に悪影響を及ぼさない程度の微弱な超音波照射を行うことで、膀胱癌治療剤が集積した局所のみで効果を発揮し、副作用の低減が期待できる。また、この超音波照射において、膀胱表面の広い範囲に照射を行うことで、多発性の膀胱癌に対する治療が可能であり、手術等の治療によって除去しきれない膀胱癌細胞に対しても作用し、再発防止の効果を期待できる。よって本発明の膀胱癌治療剤は、患部に集積させ、さらに超音波を照射することにより行われる超音波膀胱癌治療を促進する薬剤として利用可能である。   According to the bladder cancer therapeutic agent of the present invention, a linker molecule is bound to the titanium oxide surface of a titanium oxide complex dispersed in an aqueous solvent with a water-soluble polymer, and an antibody is further bound via the linker molecule. Thus, a bladder cancer therapeutic agent characterized by being a titanium oxide-antibody complex that retains high dispersibility without altering the water-soluble polymer can be produced. By binding the antibody in this way, the therapeutic agent for bladder cancer of the present invention can bind to the antigen. In addition, radical species can be generated by irradiating the therapeutic agent for bladder cancer of the present invention with ultrasonic waves. In general, radical species are highly reactive but have a short lifetime, and they diffuse slightly and react with nearby substances. For this reason, it can be expected that the reactivity between the radical species and the antigen is enhanced by irradiating with ultrasound in the state where the therapeutic agent for bladder cancer of the present invention is bound to the antigen. By using an antibody that specifically binds to the surface antigen of the bladder cancer cell as the antibody, and by irradiating the bladder cancer therapeutic agent with the surface antigen of the bladder cancer cell that is the antigen, ultrasonic irradiation, It can be expected that the generated radical species act on bladder cancer cells and enhance the therapeutic effect. Furthermore, by performing weak ultrasonic irradiation that does not adversely affect the surrounding normal cells, the effect is exerted only in the local area where the bladder cancer therapeutic agent is accumulated, and side effects can be expected to be reduced. In addition, this ultrasonic irradiation can treat multiple bladder cancers by irradiating a wide area of the bladder surface, and also acts on bladder cancer cells that cannot be removed by treatment such as surgery. The effect of preventing recurrence can be expected. Therefore, the bladder cancer therapeutic agent of the present invention can be used as an agent for promoting ultrasonic bladder cancer treatment performed by accumulating in an affected area and further irradiating ultrasonic waves.

また、本発明の膀胱癌治療剤によれば、酸化チタン−抗体複合体の酸化チタン表面に対し、リンカー分子を介して光応答性の分子や放射性物質を結合することで、水溶性高分子を変質させることなく高い分散性を保持することができる。特に、放射性物質に関しては、安全性の観点からなるべく少ない工程で用いることが必要であるが、水溶性高分子により水系溶媒中で分散させた酸化チタン複合体に対して、酸化チタン表面に放射性物質を結合した後に、未結合の放射性物質を適当な方法で分離除去するだけの、簡易でかつ少ない工程によって粒子の標識ができる。このため、放射性物質が外部に広がる機会が少なく、安全性の面において優れる。また、これを適当な機器により測定することで粒子のイメージングや定量の測定が可能である。そのため、本発明の膀胱癌治療剤は、体内に投与後に体内動態を確認するためのトレーサー実験用材料や、患部に超音波照射することにより行われる診断および治療のための医療用材料としても利用可能である。   Further, according to the bladder cancer therapeutic agent of the present invention, a water-soluble polymer can be obtained by binding a photoresponsive molecule or radioactive substance via a linker molecule to the titanium oxide surface of the titanium oxide-antibody complex. High dispersibility can be maintained without alteration. In particular, radioactive materials need to be used in as few steps as possible from the viewpoint of safety, but radioactive materials on the surface of titanium oxide are compared to titanium oxide composites dispersed in water-based solvents with water-soluble polymers. After binding, the particles can be labeled in a simple and few steps by simply separating and removing unbound radioactive material by an appropriate method. For this reason, there are few opportunities for a radioactive substance to spread outside, and it is excellent in terms of safety. Further, by measuring this with an appropriate instrument, particle imaging and quantitative measurement are possible. Therefore, the therapeutic agent for bladder cancer of the present invention is also used as a tracer experimental material for confirming pharmacokinetics after administration into the body, or as a medical material for diagnosis and treatment performed by irradiating the affected area with ultrasonic waves. Is possible.

本発明の好ましい態様によれば、本発明に用いる水溶性高分子は、酸化チタン粒子の表面に、カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基の群から選択される少なくともひとつの官能基を介して結合されてなることが好ましい。これによって、酸化チタン粒子の表面に強固に結合することが可能であり、また、3官能シラノール基のような相互に三次元的に縮合重合して重合物で酸化チタン粒子の表面を覆い尽くしてしまう官能基とは異なり、官能基同士で重合することが無いため、図1に示されるように酸化チタン粒子の表面に剥き出しの部分を多く確保することができると考えられる。その結果、表面が重合体で覆われることによって起こりうる失活を抑制し、酸化チタン粒子の触媒活性を十分に発揮させることができる。   According to a preferred embodiment of the present invention, the water-soluble polymer used in the present invention is at least one selected from the group consisting of a carboxyl group, an amino group, a diol group, a salicylic acid group, and a phosphoric acid group on the surface of the titanium oxide particles. It is preferable that it couple | bonds through the functional group of. As a result, it is possible to firmly bond to the surface of the titanium oxide particle, and the surface of the titanium oxide particle is covered with a polymer by three-dimensional condensation polymerization such as trifunctional silanol groups. Unlike the functional group, the functional groups are not polymerized with each other, so that it is considered that a large number of exposed portions can be secured on the surface of the titanium oxide particles as shown in FIG. As a result, the deactivation that may occur when the surface is covered with the polymer can be suppressed, and the catalytic activity of the titanium oxide particles can be sufficiently exhibited.

本発明の好ましい態様によれば、本発明に用いる水溶性高分子は、酸化チタン−抗体複合体を水系溶媒中で分散させることができれば特に限定されない。本発明に用いる水溶性高分子において、電荷を有するものとしては、アニオン性またはカチオン性を有する水溶性高分子、また、電荷を有さずに水和によって分散性を与えるものとしてはノニオン性を有する水溶性高分子が挙げられ、これらの少なくとも一種を含んでなる。   According to a preferred embodiment of the present invention, the water-soluble polymer used in the present invention is not particularly limited as long as the titanium oxide-antibody complex can be dispersed in an aqueous solvent. Among the water-soluble polymers used in the present invention, those having a charge are anionic or cationic water-soluble polymers, and those having no charge and imparting dispersibility by hydration are nonionic. A water-soluble polymer having at least one of them.

本発明の好ましい態様によれば、前記水溶性高分子は重量平均分子量2000〜100000である。水溶性高分子の重量平均分子量はサイズ排除クロマトグラフィーを用いて求めた値である。前記分子量をこの範囲とすることで、水溶性高分子のもつ電荷あるいは水和の作用によって、酸化チタン粒子の分散が困難とされる中性付近の水系溶媒中であって酸化チタン−抗体複合体を分散させることができる。より好ましい範囲は5000〜100000であり、さらに好ましくは5000〜40000である。   According to a preferred embodiment of the present invention, the water-soluble polymer has a weight average molecular weight of 2000 to 100,000. The weight average molecular weight of the water-soluble polymer is a value determined using size exclusion chromatography. By setting the molecular weight within this range, the titanium oxide-antibody complex is in a neutral aqueous solvent in which it is difficult to disperse the titanium oxide particles due to the charge or hydration action of the water-soluble polymer. Can be dispersed. A more preferred range is 5000 to 100,000, and even more preferred is 5000 to 40,000.

本発明の好ましい態様によれば、本発明に用いる水溶性高分子は、アニオン性を有する水溶性高分子が、本発明の膀胱癌治療剤を水系溶媒中で分散させることができればいずれも使用可能である。アニオン性を有する水溶性高分子は、複数のカルボキシル基を有するものが好適に利用可能であり、例えばカルボキシメチルデンプン、カルボキシメチルデキストラン、カルボキシメチルセルロース、ポリカルボン酸類、およびカルボキシル基単位を有する共重合体(コポリマー)などが挙げられる。具体的には、水溶性高分子の加水分解性および溶解度の観点から、ポリアクリル酸、ポリマレイン酸等のポリカルボン酸類、およびアクリル酸/マレイン酸やアクリル酸/スルフォン酸系モノマーの共重合体(コポリマー)がより好適に使用され、さらに好ましくはポリアクリル酸である。   According to a preferred embodiment of the present invention, any water-soluble polymer used in the present invention can be used as long as the water-soluble polymer having anionic property can disperse the bladder cancer therapeutic agent of the present invention in an aqueous solvent. It is. As the water-soluble polymer having an anionic property, those having a plurality of carboxyl groups can be suitably used. For example, carboxymethyl starch, carboxymethyl dextran, carboxymethyl cellulose, polycarboxylic acids, and a copolymer having a carboxyl group unit. (Copolymer) and the like. Specifically, from the viewpoint of hydrolyzability and solubility of water-soluble polymers, polycarboxylic acids such as polyacrylic acid and polymaleic acid, and copolymers of acrylic acid / maleic acid and acrylic acid / sulfonic acid monomers ( Copolymer) is more preferably used, more preferably polyacrylic acid.

アニオン性を有する水溶性高分子として、ポリアクリル酸を用いる場合、分散性の観点からポリアクリル酸の重量平均分子量は2000〜100000であるのが好ましく、より好ましくは5000〜40000であり、さらに好ましくは5000〜20000である。   When polyacrylic acid is used as the water-soluble polymer having anionic property, the weight average molecular weight of polyacrylic acid is preferably 2000 to 100000, more preferably 5000 to 40000, even more preferably from the viewpoint of dispersibility. Is 5000-20000.

本発明の好ましい態様によれば、本発明に用いる水溶性高分子は、カチオン性を有する水溶性高分子が、本発明の膀胱癌治療剤を水系溶媒中で分散させることができればいずれも使用可能である。カチオン性を有する水溶性高分子は、複数のアミノ基を有するものとしてが好適に利用可能であり、例えばポリアミノ酸、ポリペプチド、ポリアミン類、およびアミン単位を有する共重合体(コポリマー)などが挙げられる。具体的には、水溶性高分子の加水分解性および溶解度の観点から、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン等のポリアミン類がより好適に使用され、さらに好ましくはポリエチレンイミンである。   According to a preferred embodiment of the present invention, any water-soluble polymer used in the present invention can be used as long as the water-soluble polymer having a cationic property can disperse the bladder cancer therapeutic agent of the present invention in an aqueous solvent. It is. The water-soluble polymer having a cationic property can be suitably used as a polymer having a plurality of amino groups, and examples thereof include polyamino acids, polypeptides, polyamines, and copolymers (copolymers) having amine units. It is done. Specifically, from the viewpoint of hydrolyzability and solubility of the water-soluble polymer, polyamines such as polyethyleneimine, polyvinylamine, and polyallylamine are more preferably used, and polyethyleneimine is more preferable.

カチオン性を有する水溶性高分子として、ポリエチレンイミンを用いる場合、分散性の観点からポリエチレンイミンの重量平均分子量は2000〜100000であるのが好ましく、より好ましくは5000〜40000であり、さらに好ましくは5000〜20000である。   When polyethyleneimine is used as the water-soluble polymer having cationic property, the weight average molecular weight of polyethyleneimine is preferably 2000 to 100,000, more preferably 5000 to 40000, and further preferably 5000 from the viewpoint of dispersibility. ~ 20,000.

本発明の好ましい態様によれば、本発明に用いる水溶性高分子は、ノニオン性を有する水溶性高分子が、本発明の膀胱癌治療剤を水系溶媒中で分散させることができればいずれも使用可能である。ノニオン性を有する水溶性高分子は、好ましくは水酸基および/またはポリオキシアルキレン基を有する高分子が挙げられる。そのような水溶性高分子の好ましい例としては、ポリエチレングリコール(PEG)、ポリビニルアルコール、ポリエチレンオキシド、デキストランあるいはそれらを含有するコポリマーが挙げられ、より好ましくはポリエチレングリコール(PEG)およびデキストランであり、さらに好ましくはポリエチレングリコールである。   According to a preferred embodiment of the present invention, the water-soluble polymer used in the present invention can be any nonionic water-soluble polymer as long as the bladder cancer therapeutic agent of the present invention can be dispersed in an aqueous solvent. It is. The water-soluble polymer having nonionic properties is preferably a polymer having a hydroxyl group and / or a polyoxyalkylene group. Preferable examples of such water-soluble polymers include polyethylene glycol (PEG), polyvinyl alcohol, polyethylene oxide, dextran or copolymers containing them, more preferably polyethylene glycol (PEG) and dextran, Polyethylene glycol is preferred.

ノニオン性を有する水溶性高分子として、ポリエチレングリコールを用いる場合、分散性の観点からポリエチレングリコールの重量平均分子量は2000〜100000であるのが好ましく、より好ましくは5000〜40000である。   When polyethylene glycol is used as the water-soluble polymer having nonionic properties, the weight average molecular weight of polyethylene glycol is preferably 2000 to 100,000, more preferably 5000 to 40,000 from the viewpoint of dispersibility.

以上に例示した水溶性高分子は、本発明の膀胱癌治療剤の分散性を妨げない範囲内において、これまでに記載した各要素を自由に組み合わせることができる。   The water-soluble polymers exemplified above can be freely combined with each of the elements described so far as long as the dispersibility of the therapeutic agent for bladder cancer of the present invention is not hindered.

本発明の好ましい態様によれば、本発明に用いるリンカー分子は、酸化チタン粒子表面に結合してなるが、該機能性分子はカルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基の群から選択される少なくともひとつの官能基を有する。   According to a preferred embodiment of the present invention, the linker molecule used in the present invention is bonded to the surface of the titanium oxide particle, and the functional molecule is a carboxyl group, amino group, diol group, salicylic acid group, or phosphoric acid group. Having at least one functional group selected from the group.

本発明の好ましい態様によれば、本発明に用いるリンカー分子は、a)炭素数6〜40の飽和又は不飽和の鎖状炭化水素基、b)置換基を有するか有しない飽和又は不飽和の5〜6員環複素環式基、又はc)置換基を有するか有しない飽和又は不飽和の5〜6員環環状炭化水素基を含んでなる化合物である。   According to a preferred embodiment of the present invention, the linker molecule used in the present invention is a) a saturated or unsaturated chain hydrocarbon group having 6 to 40 carbon atoms, b) a saturated or unsaturated group having or not having a substituent. It is a compound comprising a 5- or 6-membered heterocyclic group, or c) a saturated or unsaturated 5- or 6-membered cyclic hydrocarbon group having or not having a substituent.

上記炭素数よりなるリンカー分子は、前記水溶性高分子と比べて分子の大きさが小さい。また、リンカー分子は酸化チタン表面に結合してなる。このため、本発明の酸化チタン−抗体複合体において、外殻に水溶性高分子が位置するのに対し、より内部の位置にリンカー分子を有する構造をとる。該外殻は本発明の膀胱癌治療剤の分散性に対する影響が最も大きい。すなわち外殻に位置する水溶性高分子に対して、内部に位置するリンカー分子が分散性に与える影響は小さくなり、好適に用いることができる。   The linker molecule having the above carbon number has a smaller molecular size than the water-soluble polymer. The linker molecule is bonded to the titanium oxide surface. For this reason, in the titanium oxide-antibody complex of the present invention, the water-soluble polymer is located in the outer shell, whereas it has a structure having a linker molecule at a more internal position. The outer shell has the greatest influence on the dispersibility of the therapeutic agent for bladder cancer of the present invention. That is, the water-soluble polymer located in the outer shell has less influence on the dispersibility of the linker molecule located inside, and can be suitably used.

本発明の膀胱癌治療剤に結合されたリンカー分子の量は、酸化チタン粒子の質量:1gあたり1.0×10−6〜1.0×10−3 molであり、より好ましくは1.0×10−6〜1.0×10−4 mol/酸化チタン粒子‐gである。この範囲であると、本発明の膀胱癌治療剤は生体内環境に近い、10%タンパク質溶液を溶媒としても分散することができるため、好適に用いることができる。さらに、この範囲であると、本発明の膀胱癌治療剤は超音波を照射する際に触媒活性を有し、ラジカル種を発生することができるため、好適に用いることができる。 The amount of the linker molecule bound to the bladder cancer therapeutic agent of the present invention is 1.0 × 10 −6 to 1.0 × 10 −3 mol per gram of titanium oxide particles, more preferably 1.0. × 10 −6 to 1.0 × 10 −4 mol / titanium oxide particles-g. Within this range, the therapeutic agent for bladder cancer of the present invention can be preferably used because it can be dispersed in a 10% protein solution that is close to the in vivo environment as a solvent. Furthermore, when it is within this range, the therapeutic agent for bladder cancer of the present invention can be suitably used because it has catalytic activity and can generate radical species when irradiated with ultrasonic waves.

そのようなリンカー分子の例としては、芳香族化合物やアルキル構造をもつ分子等が考えられ、より具体的には、ベンゼン環をもつ分子として、カテコール、メチルカテコール、ターシャリーブチルカテコールドーパ、ドーパミン、ジヒドロキシフェニルエタノール、ジヒドロキシフェニルプロピオン酸、ジヒドロキシフェニル酢酸等の、分子内にカテコールの構造を有する、カテコール類などが挙げられる。また、他の環状分子として、フェロセン、フェロセンカルボン酸、アスコルビン酸、ジハイドロキシシクロブテンジエン、アリザリン、ビナフタレンジオール等が好適に使用できる。さらに、アルキル構造をもつ分子としては、ヘキシル基、オクチル基、ラウリル基、パルミチル基、ステアリル基などのアルキル基を有する分子が挙げられる。あるいは、ヘキセニル基、オクテニル基、オレイル基などのアルケニル基、または、シクロアルキル基などの飽和又は不飽和脂肪族炭化水素基をもつものなどが挙げられる。   Examples of such linker molecules include aromatic compounds and molecules having an alkyl structure, and more specifically, molecules having a benzene ring include catechol, methyl catechol, tertiary butyl catechol dopa, dopamine, Examples thereof include catechols having a catechol structure in the molecule, such as dihydroxyphenylethanol, dihydroxyphenylpropionic acid, and dihydroxyphenylacetic acid. As other cyclic molecules, ferrocene, ferrocene carboxylic acid, ascorbic acid, dihydroxycyclobutene diene, alizarin, binaphthalenediol and the like can be suitably used. Furthermore, as a molecule | numerator which has an alkyl structure, the molecule | numerator which has alkyl groups, such as a hexyl group, an octyl group, a lauryl group, a palmityl group, a stearyl group, is mentioned. Alternatively, an alkenyl group such as a hexenyl group, an octenyl group, or an oleyl group, or a saturated or unsaturated aliphatic hydrocarbon group such as a cycloalkyl group can be used.

以上に例示したリンカー分子およびその量は、これまでに記載した各構成要素と好適に組み合わせることができる。   The linker molecule and the amount thereof exemplified above can be suitably combined with each component described so far.

本明細書中で使用される場合、「抗体」は、免疫グロブリン(IgA、IgD、IgE、IgG、IgMおよびこれらのFabフラグメント、F(ab’)2フラグメント、Fcフラグメント)が意図され、例としては、ポリクローナル抗体、モノクローナル抗体、単鎖抗体および抗イディオタイプ抗体が挙げられるがこれらに限定されない。特異的な結合能や薬剤製造の品質管理の観点等から、モノクローナル抗体が好ましい。また、これらの作製方法は特に限定されない。   As used herein, "antibody" is intended to be an immunoglobulin (IgA, IgD, IgE, IgG, IgM and their Fab fragments, F (ab ') 2 fragments, Fc fragments), as an example Include, but are not limited to, polyclonal antibodies, monoclonal antibodies, single chain antibodies and anti-idiotype antibodies. Monoclonal antibodies are preferred from the standpoint of specific binding ability and quality control in drug production. Moreover, these production methods are not particularly limited.

本発明の好ましい態様によれば、リンカー分子を介して結合する抗体としては、膀胱癌細胞の表面抗原に対して特異的に結合する抗体が望ましい。より具体的には、抗EpCAM抗体、抗CD44抗体、抗EGFレセプター抗体等が挙げられる。   According to a preferred embodiment of the present invention, the antibody that binds via the linker molecule is preferably an antibody that specifically binds to the surface antigen of bladder cancer cells. More specifically, anti-EpCAM antibody, anti-CD44 antibody, anti-EGF receptor antibody and the like can be mentioned.

また、本発明の膀胱癌治療剤を積極的に膀胱癌部位へ集積させるため、リンカー分子を介して結合する分子は抗体に限らず、例えば膀胱癌細胞の表面抗原に対して特異的に結合するペプチドやアミノ酸配列であってもよい。より具体的には5−アミノレブリン酸、メチオニン、システイン、グリシン等が挙げられる。あるいは、糖鎖を含んでもよい。さらに、結合性を有する核酸を含んでいても良い。核酸としては、特に制限はなく、DNA、RNA等の核酸塩基、PNA等のペプチド核酸、あるいはそれらが高次構造を形成するアプタマー等を用いることもできる。以上に記載したペプチドやアミノ酸配列は、抗体と組み合わせて使用しても良い。また、これらのペプチドやアミノ酸配列はこれまでに記載した各構成要素と好適に組み合わせることができる。   In addition, in order to positively accumulate the bladder cancer therapeutic agent of the present invention at the bladder cancer site, the molecule that binds via the linker molecule is not limited to the antibody, but specifically binds to, for example, the surface antigen of bladder cancer cells. It may be a peptide or amino acid sequence. More specifically, 5-aminolevulinic acid, methionine, cysteine, glycine and the like can be mentioned. Alternatively, a sugar chain may be included. Furthermore, it may contain a nucleic acid having binding properties. There is no restriction | limiting in particular as a nucleic acid, Nucleobases, such as DNA and RNA, Peptide nucleic acids, such as PNA, or an aptamer etc. in which they form a higher-order structure can also be used. The peptides and amino acid sequences described above may be used in combination with antibodies. Moreover, these peptides and amino acid sequences can be suitably combined with each component described so far.

本発明の好ましい態様によれば、リンカー分子を介して結合する抗体以外にも、リンカー分子を介してさらに別の機能性分子が結合しても良い。機能性分子の例として光応答性分子が挙げられ、光応答性分子としては蛍光性分子を用いることができる。   According to a preferred embodiment of the present invention, in addition to an antibody that binds via a linker molecule, another functional molecule may be bound via a linker molecule. An example of the functional molecule is a photoresponsive molecule, and a fluorescent molecule can be used as the photoresponsive molecule.

また、機能性分子の他の例としては放射性化合物が挙げられる。放射性化合物としては同位体元素を含む化合物が挙げられ、例えば14Cを有する14C標識カテコールなどが好適に用いられる。 Moreover, a radioactive compound is mentioned as another example of a functional molecule. The radioactive compounds include compounds containing an isotope element, for example, 14 C-labeled catechol with 14 C-is preferably used.

また、機能性分子の他の例としてはラジカル応答性化合物が挙げられる。ラジカル応答性化合物としては、ラジカルと特異的な反応性を示す化学発光性分子や蛍光性分子、またはスピントラップ剤を含んでなる。より具体的には、化学発光性分子や蛍光性分子として、ルミノール、海ホタルルシフェリン類縁体、シュウ酸エステル、アクリジニウム、パラヒドロキシフェニルフルオレセイン、パラアミノフェニルフルオレセイン、ジヒドロローダミン123、ジヒドロローダミン6G、トランス‐1‐(2’‐メトキシビニル)ピレン、ジヒドロキシエチジウム、葉酸、(2’,7’−dichlorodihydrofluorescein diacetate,succinimidyl ester(インビトロジェン)、)、5−or6−(N−Succinimidyloxycarbonyl)−3’,6’−O,O’−diacetylfluorescein、Cy色素(アマシャムバイオサイエンス社製)、プテリンなどであり、スピントラップ剤としては、4,6−Tri−tert−butylnitrosobenzene、2−Methyl−2−nitrosopropane、3,3,5,5−Tetramethyl−1−pyrroline N−Oxide、5,5−Dimethyl−1−pyrroline N−Oxide、5−(Diethylphosphono)−5−methyl−1−pyrroline N−Oxide、N−tert−Butyl−alpha−(4−pyridyl−1−oxide)nitrone、N−tert−Butyl−alpha−phenylnitrone、Nitrosobenzene、5,5−Dimethyl−1−pyrroline N−oxide、4−Hydroxy−2,2,6,6−tetramethylpiperidinyloxy, free radical、2−(5,5−Dimethyl−2−oxo−2λ5−[1,3,2]dioxaphosphinan−2−yl)−2−methyl−3,4−dihydro−2H−pyrrole 1−oxide、5−Diethoxyphosphoryl−5−methyl−1−pyrroline−N−oxideなどである。   Another example of a functional molecule is a radical responsive compound. The radical-responsive compound includes a chemiluminescent molecule, a fluorescent molecule, or a spin trap agent that exhibits specific reactivity with a radical. More specifically, chemiluminescent molecules and fluorescent molecules include luminol, sea firefly luciferin analog, oxalate ester, acridinium, parahydroxyphenylfluorescein, paraaminophenylfluorescein, dihydrorhodamine 123, dihydrorhodamine 6G, trans-1 -(2'-methoxyvinyl) pyrene, dihydroxyethidium, folic acid, (2 ', 7'-dichlorodihydrofluorescein diacetate, succinimidyl ester, Invitrogen), 5-or6- (N-Succinimidyloxycarbonyl) -3', 6'-O ' , O'-diacetylfluorescein, Cy dye (Amersham Biosciences), pterin, etc. Examples of the pin trap agent include 4,6-Tri-tert-butylnitrosobenzene, 2-Methyl-2-nitrosopropane, 3,3,5,5-tetramethyl-1-pyrroline N-Oxide, 5,5-Dimethyl-1-pyrroline. N-Oxide, 5- (Diethylphosphono) -5-methyl-1-pyrroline N-Oxide, N-tert-Butyl-alpha- (4-pyridyl-1-oxide) nitrone, N-tert-Butyl-alpha-phenylene Nitrosorbene, 5,5-Dimethyl-1-pyrroline N-oxide, 4-Hydroxy-2,2 6,6-tetramethylperidinyloxy, free radical, 2- (5,5-Dimethyl-2-oxo-2λ5- [1,3,2] dioxaphosphin-2-yl) -2-methyl-3,4-dihydro-2H- pyrrole 1-oxide, 5-Diethylphosphophoryl-5-methyl-1-pyrroline-N-oxide, and the like.

また、機能性分子の他の例としては、フルオロウラシル、ゲムシタビン、メソトレキセート、シクロホスファミド、塩酸ダウノルビシン、アドリアマイシン、塩酸イダルビシン、ブレオマイシン、マイトマイシン、アクチノマイシン、ビンクリスチン、シスプラチン、カルボプラチン、エトポシド、ネダプラチン、パクリタキセル、ドセタキセル、塩酸イリノテカン等から少なくとも一つの抗がん剤、ペニシリン系、マクロライド系、ニューキノロン系、テトラサイクリン系等の抗菌剤、ラミブジン、ネルフィナビル、インジナビ、サキナビル、インターフェロン、アマンタジン、アシクロビル等のウイルス治療薬、そして、ニュープロレリン、ブセレリン、ゴセレリン、トリプトレリン、ナファレリン等のホルモン疾患治療薬、イブプロフェン等の鎮痛薬等が挙げられる。   Other examples of functional molecules include fluorouracil, gemcitabine, methotrexate, cyclophosphamide, daunorubicin hydrochloride, adriamycin, idarubicin hydrochloride, bleomycin, mitomycin, actinomycin, vincristine, cisplatin, carboplatin, etoposide, nedaplatin, paclitaxel, At least one anticancer agent from docetaxel, irinotecan hydrochloride, etc., antibacterial agents such as penicillin, macrolide, new quinolone, tetracycline, lamivudine, nelfinavir, indinavir, saquinavir, interferon, amantadine, acyclovir and other antiviral agents, And hormonal disease treatments such as neuprorelin, buserelin, goserelin, triptorelin, nafarelin, ibuprof Analgesics such as emissions and the like.

また、機能性分子の他の例としては、低原子価遷移金属を含む分子が挙げられる。低原子価遷移金属はHarber−Weiss機構によって過酸化水素を分解してヒドロキシラジカルを発生することが知られており(活性酸素種の化学〔季刊 化学総説 No.7〕 日本化学会編)、低原子価遷移金属として、例えば二価の鉄イオンを用いた場合はFenton反応としてよく知られている。また、ヒドロキシラジカルを含む各種のラジカルは細胞障害作用を有している。そのため、リンカー分子を介してこれらの低原子価遷移金属を含む分子が結合していれば、過酸化水素が存在する限りラジカルを発生することが可能となり、細胞障害作用を持続することができる。すなわち、超音波照射を停止した後も、系中に蓄積した過酸化水素と、本発明の膀胱癌治療剤に結合した低原子価遷移金属を含む分子とのフェントン反応によって、より酸化力の強いヒドロキシラジカルを発生を継続的に行い、これに伴う持続的な抗腫瘍効果を得ることが可能である。ただし、低原子価遷移金属を含む分子として錯体を用いた場合、フリーのヒドロキシラジカルだけではなく、例えば鉄錯体を用いた場合に生じうるフェリル錯体等、いわゆるCrypto−HO・の形で酸化反応に関与することも考えられる。このような低原子価遷移金属としては、二価の鉄の他に、三価のチタン、二価のクロム、一価の銅などが挙げられる。さらに、このような低原子価遷移金属を含む分子としては、フェロセンカルボン酸、ビシンコニン酸と一価の銅との錯体等が挙げられる。   Another example of a functional molecule is a molecule containing a low-valent transition metal. Low-valent transition metals are known to generate hydrogen radicals by decomposing hydrogen peroxide by the Harber-Weiss mechanism (chemicals of reactive oxygen species [quarterly published Chemical Review No. 7] edited by The Chemical Society of Japan) For example, when a divalent iron ion is used as the valence transition metal, it is well known as the Fenton reaction. In addition, various radicals including hydroxy radicals have a cytotoxic effect. Therefore, if molecules containing these low-valent transition metals are bonded via a linker molecule, radicals can be generated as long as hydrogen peroxide is present, and the cytotoxic action can be sustained. That is, even after the ultrasonic irradiation is stopped, the hydrogen peroxide accumulated in the system and the oxidizing power is stronger due to the Fenton reaction between the molecule containing the low-valent transition metal bonded to the bladder cancer therapeutic agent of the present invention. It is possible to continuously generate hydroxy radicals and obtain a continuous antitumor effect associated therewith. However, when a complex is used as a molecule containing a low-valent transition metal, not only a free hydroxy radical but also a ferryl complex that can be generated when an iron complex is used, for example, a so-called Crypto-HO. Involvement is also possible. Examples of such low-valent transition metals include trivalent titanium, divalent chromium, and monovalent copper in addition to divalent iron. Furthermore, examples of the molecule containing such a low-valent transition metal include ferrocenecarboxylic acid, a complex of bicinchoninic acid and monovalent copper, and the like.

以上の機能性分子はこれまでに記載した各構成要素と好適に組み合わせて、本発明の効果を妨げずに上述した各種の効果を奏することができる。   The functional molecules described above can be suitably combined with the constituent elements described so far to achieve the various effects described above without impeding the effects of the present invention.

本発明の好ましい態様によれば、本発明に用いるリンカー分子は、上記機能性分子と酸化チタン表面に結合する官能基がさらに別のリンカーを介して結合してなる分子であってもなんら問題はない。   According to a preferred embodiment of the present invention, the linker molecule used in the present invention is a molecule in which the functional molecule and the functional group that binds to the titanium oxide surface are further bonded via another linker. Absent.

本発明の好ましい態様によれば、前記リンカーは、例えば生体分子同士を異なる官能基同士で結合する際に用いられるヘテロバイファンクショナルなクロスリンカーなどが考えられる。リンカーの具体例としては、N−ヒドロキシスクシンイミド、N−[α−マレイミドアセトキシ]スクシンイミドエステル、N−[β−マレイミドプロピルオキシ]スクシンイミドエステル、N−β−マレイミドプロピオン酸、N−[β−マレイミドプロピオン酸]ヒドラジド・TFA、1−エチル−3−[3−ジメチルアミノプロピル]カルボジイミドヒドロクロリド、N−ε−マレイミドカプロン酸、N−[ε−マレイミドカプロン酸]ヒドラジド、N−[ε−マレイミドカプロイルオキシ]スクシンイミドエステル、N−[γ−マレイミドブチリルオキシ]スクシンイミドエステル、N−κ−マレイミドウンデカン酸、N−[κ−マレイミドウンデカン酸]ヒドラジド、スクシンイミジル−4−[N−マレイミドメチル]−シクロヘキサン−1−カルボキシ−[6−アミドカプロエート]、スクシンイミジル6−[3−(2−ピリジルジチオ)−プロピオンアミド]ヘキサノエート、m−マレイミドベンゾイル−N−ヒドロキシスクシンイミドエステル、4−[4−N−マレイミドフェニル]酪酸ヒドラジド・HCl、3−[2−ピリジルジチオ]プロピオニルヒドラジド、N−[p−マレイミドフェニル]イソシアネート、N−スクシンイミジル[4−アジドフェニル]−1,3’−ジチオプロピオネート、N−スクシンイミジル S−アセチルチオアセテート、N−スクシンイミジルS−アセチルチオプロピオネート、スクシンイミジル 3−[ブロモアセトアミド]プロピオネート、N−スクシンイミジル ヨードアセテート、N−スクシンイミジル[4−イオドアセチル]アミノベンゾエート、スクシンイミジル4−[N−マレイミドメチル]−シクロヘキサン−1−カルボキシレート、スクシンイミジル4−[p−マレイミドフェニル]ブチレート、スクシンイミジル6−[(β−マレイミドプロピオンアミド)ヘキサノネート]、4−スクシンイミジルオキシカルボニル−メチル−α[2−ピリジルジチオ]トルエン、N−スクシンイミジル3−[2−ピリジルジチオ]プロピオネート、N−[ε−マレイミドカプロイルオキシ]スルホスクシンイミドエステル、N−[γ−マレイミドブチリルオキシ]スルホスクシンイミドエステル、N−[κ−マレイミドウンデカノイルオキシ]−スルホスクシンイミドエステル、スルホスクシンイミジル−6−[α−メチル−α−(2−ピリジルジチオ)トルアミド]ヘキサノネート、スルホスクシンイミジル6−[3’−(2−ピリジルチチオ)−プロピオンアミド]ヘキサノネート、m−マレイミドベンゾイル−N−ヒドロキシスルホ−スクシンイミドエステル、スルホスクシンイミジル[4−ヨードアセチル]アミノベンゾエート、スルホスクシンイミジル4−[N−マレイミドメチル]−シクロヘキサン−1−カルボキシレート、スルホスクシンイミジル4−[p−マレイミドフェニル]ブチレート、N−[ε−トリフルオロアセチルカプロイルオキシ]スクシンイミドエステル、クロロトリアジン、ジクロロトリアジン、トリクロロトリアジン、スクシンイミジル−4−ヒドラジノニコチネート−アセトンヒドラゾン、C6−スクシンイミジル−4−ヒドラジノニコチネート−アセトンヒドラゾン、スクシンイミジル−4−ヒドラジドテレフタレート−ハイドロクロライド、スクシンイミジル−4−フォルミルベンゾエイト、C6−スクシンイミジル−4−フォルミルベンゾエイト等が挙げられる。また、リンカーはさらに他のリンカー同士が結合されるような複数種類のリンカーから構成されてもよい。以上のリンカーは、これまでに記載した各構成要素と好適に組み合わせることができる。   According to a preferred aspect of the present invention, the linker may be, for example, a heterobifunctional crosslinker used when biomolecules are bonded with different functional groups. Specific examples of the linker include N-hydroxysuccinimide, N- [α-maleimidoacetoxy] succinimide ester, N- [β-maleimidopropyloxy] succinimide ester, N-β-maleimidopropionic acid, N- [β-maleimidopropion Acid] hydrazide.TFA, 1-ethyl-3- [3-dimethylaminopropyl] carbodiimide hydrochloride, N- [epsilon] -maleimidocaproic acid, N-[[epsilon] -maleimidocaproic acid] hydrazide, N-[[epsilon] -maleimidocaproyl Oxy] succinimide ester, N- [γ-maleimidobutyryloxy] succinimide ester, N-κ-maleimidoundecanoic acid, N- [κ-maleimidoundecanoic acid] hydrazide, succinimidyl-4- [N-maleimidomethyl] -cyclohexane- -Carboxy- [6-amidocaproate], succinimidyl 6- [3- (2-pyridyldithio) -propionamido] hexanoate, m-maleimidobenzoyl-N-hydroxysuccinimide ester, 4- [4-N-maleimidophenyl] Butyric acid hydrazide / HCl, 3- [2-pyridyldithio] propionyl hydrazide, N- [p-maleimidophenyl] isocyanate, N-succinimidyl [4-azidophenyl] -1,3′-dithiopropionate, N-succinimidyl S -Acetylthioacetate, N-succinimidyl S-acetylthiopropionate, succinimidyl 3- [bromoacetamido] propionate, N-succinimidyl iodoacetate, N-succinimidyl [4-iodoacetyl] ami Nobenzoate, succinimidyl 4- [N-maleimidomethyl] -cyclohexane-1-carboxylate, succinimidyl 4- [p-maleimidophenyl] butyrate, succinimidyl 6-[(β-maleimidopropionamido) hexanonate], 4-succinimid Diloxycarbonyl-methyl-α [2-pyridyldithio] toluene, N-succinimidyl 3- [2-pyridyldithio] propionate, N- [ε-maleimidocaproyloxy] sulfosuccinimide ester, N- [γ-maleimidobutyryl Oxy] sulfosuccinimide ester, N- [κ-maleimidoundecanoyloxy] -sulfosuccinimide ester, sulfosuccinimidyl-6- [α-methyl-α- (2-pyridyldithio) toluamide] hexano , Sulfosuccinimidyl 6- [3 ′-(2-pyridylthiothio) -propionamide] hexanonate, m-maleimidobenzoyl-N-hydroxysulfo-succinimide ester, sulfosuccinimidyl [4-iodoacetyl] amino Benzoate, sulfosuccinimidyl 4- [N-maleimidomethyl] -cyclohexane-1-carboxylate, sulfosuccinimidyl 4- [p-maleimidophenyl] butyrate, N- [ε-trifluoroacetylcaproyloxy] Succinimide ester, chlorotriazine, dichlorotriazine, trichlorotriazine, succinimidyl-4-hydrazinonicotinate-acetone hydrazone, C6-succinimidyl-4-hydrazinonicotinate-acetone hydrazone, succin Mijiru -4 hydrazide terephthalate - hydrochloride, succinimidyl-4- formyl benzoate, C6- succinimidyl-4- formylphenyl benzoate and the like. Further, the linker may be composed of a plurality of types of linkers such that other linkers are bonded to each other. The above linker can be suitably combined with each component described so far.

本発明の好ましい態様によれば、酸化チタン粒子と水溶性高分子およびまたはリンカー分子との結合に用いられるジオール基としては、エンジオール基であることが好ましく、より好ましくはα−ジオール基である。これらの官能基を用いることで、優れた酸化チタン粒子への結合を実現することができる。   According to a preferred embodiment of the present invention, the diol group used for bonding the titanium oxide particles to the water-soluble polymer and / or the linker molecule is preferably an enediol group, more preferably an α-diol group. . By using these functional groups, excellent bonding to titanium oxide particles can be realized.

本発明の好ましい態様によれば、酸化チタン粒子が、アナターゼ型酸化チタンまたはルチル型酸化チタンであるのが好ましい。紫外線や超音波の照射による高い触媒活性を利用する場合にはアナターゼ型酸化チタンが好ましく、化粧料のように高い屈折率等の性質を利用する場合にはルチル型酸化チタンが好ましい。酸化チタン粒子としてアナターゼ型酸化チタンまたはルチル型酸化チタンを用いることは、これまでに記載した各構成要素と好適に組み合わせることができ、かつ上述した新たな効果を奏することができる。   According to a preferred embodiment of the present invention, the titanium oxide particles are preferably anatase type titanium oxide or rutile type titanium oxide. Anatase-type titanium oxide is preferred when utilizing high catalytic activity by irradiation with ultraviolet rays or ultrasonic waves, and rutile-type titanium oxide is preferred when utilizing properties such as a high refractive index as in cosmetics. The use of anatase-type titanium oxide or rutile-type titanium oxide as the titanium oxide particles can be suitably combined with the constituent elements described so far, and the above-described new effects can be achieved.

本発明の好ましい態様によれば、本発明の膀胱癌治療剤は20〜200nmの粒子径を有し、より好ましくは50〜200nmであり、さらに好ましくは50〜150nmである。この粒径範囲であると、癌腫瘍への到達を目的として患者の体内に投与されると、ドラッグデリバリーシステムのように、Enhanced Permeability and Retention Effect(EPR効果)により癌組織に効率的に到達して蓄積される。そして、上述の通り、400kHz〜20MHzの超音波の照射によりラジカル種の特異的生成が起こる。したがって、超音波の照射により高い効率で癌組織を殺傷することができる。   According to a preferred embodiment of the present invention, the therapeutic agent for bladder cancer of the present invention has a particle size of 20 to 200 nm, more preferably 50 to 200 nm, still more preferably 50 to 150 nm. Within this particle size range, when administered to the body of a patient for the purpose of reaching a cancer tumor, the cancer tissue is efficiently reached by Enhanced Permeability and Retention Effect (EPR effect) like a drug delivery system. Accumulated. And as above-mentioned, the specific production | generation of a radical seed | species occurs by irradiation of an ultrasonic wave of 400 kHz-20 MHz. Therefore, cancer tissue can be killed with high efficiency by ultrasonic irradiation.

本発明の別の好ましい態様によれば、膀胱癌治療剤が50nm未満(例えば数nm)の粒子径を有する場合、見かけ上のサイズを大きくしてEPR効果を得ることもできる。すなわち、50〜150nmの粒子径を有する二次粒子の形態を有するように半導体粒子同士を多官能リンカーで連結する等の方法にて結合されることで、EPR効果により高い癌治療効果を実現することができる。   According to another preferred embodiment of the present invention, when the bladder cancer therapeutic agent has a particle diameter of less than 50 nm (for example, several nm), the apparent size can be increased to obtain the EPR effect. That is, a high cancer treatment effect is realized by the EPR effect by being bonded by a method such as connecting semiconductor particles with a polyfunctional linker so as to have a form of a secondary particle having a particle diameter of 50 to 150 nm. be able to.

本発明において半導体粒子の粒子径は、動的光散乱法により測定することができる。具体的には、粒径分布測定装置(ゼータサイザーナノ、マルバーンインスツルメント社製)を用いて、キュミュラント解析で得られる、Z−average sizeで示される値として得ることができる。   In the present invention, the particle diameter of the semiconductor particles can be measured by a dynamic light scattering method. Specifically, it can be obtained as a value represented by Z-average size obtained by cumulant analysis using a particle size distribution measuring apparatus (Zeta Sizer Nano, manufactured by Malvern Instruments).

本発明の膀胱癌治療剤を上記の粒子径とすることは、これまでに記載した各構成要素と好適に組み合わせることができ、かつ上述した新たな効果を奏することができる。   Making the therapeutic agent for bladder cancer of the present invention to have the above particle diameter can be suitably combined with each of the constituent elements described so far, and the above-described new effect can be achieved.

本発明の膀胱癌治療剤として、単一種類の酸化チタン複合体のみならず、複数種類の半導体粒子の混合物あるいは複合物も包含する。具体例としては、酸化チタン粒子と酸化鉄ナノ粒子との複合物、酸化チタン粒子と白金との複合物、およびシリカ被覆された酸化チタン等が挙げられる。   The therapeutic agent for bladder cancer of the present invention includes not only a single type of titanium oxide composite but also a mixture or composite of multiple types of semiconductor particles. Specific examples include a composite of titanium oxide particles and iron oxide nanoparticles, a composite of titanium oxide particles and platinum, and titanium oxide coated with silica.

本発明の好ましい態様によれば、本発明の膀胱癌治療剤が、溶媒に分散されて分散液の形態とされてなるのが好ましい。これにより、本発明の膀胱癌治療剤を、点滴、注射、塗布等の種々の方法により、患者の体内に効率的に投与する薬剤として用いることができる。分散液の液性は限定されず、pH3〜10の広範囲にわたって高い分散性を実現可能である。なお、体内投与における安全性の観点から、分散液は、pH5〜9であるのが好ましく、より好ましくは5〜8、特に中性の液性を有するのが好ましい。また、本発明の好ましい態様によれば、溶媒は水系溶媒であるのが好ましく、さらに好ましくはpH緩衝液または生理食塩水である。水系溶媒の好ましい塩濃度は2M以下であり、体内投与における安全性の観点から200mM以下がより好ましい。本発明の膀胱癌治療剤は分散体に対して、0.001〜1質量%以下含有されることが好ましく、より好ましくは0.001〜0.1質量%である。この範囲内であれば、投与後、24〜72時間後に患部(腫瘍)に効果的に粒子を蓄積させることが可能となる。すなわち、患部(腫瘍)に粒子濃度が蓄積しやすくなるとともに、血中での粒子の分散性も確保されて凝集隗が形成しにくくなるため、投与後に血管の閉塞などの二次的弊害を招くおそれも無い。   According to a preferred embodiment of the present invention, the bladder cancer therapeutic agent of the present invention is preferably dispersed in a solvent to be in the form of a dispersion. Thereby, the therapeutic agent for bladder cancer of the present invention can be used as a drug that is efficiently administered into a patient's body by various methods such as infusion, injection, and application. The liquid property of the dispersion liquid is not limited, and high dispersibility can be realized over a wide range of pH 3 to 10. From the viewpoint of safety in in vivo administration, the dispersion preferably has a pH of 5 to 9, more preferably 5 to 8, and particularly preferably neutral liquidity. According to a preferred embodiment of the present invention, the solvent is preferably an aqueous solvent, more preferably a pH buffer solution or physiological saline. A preferable salt concentration of the aqueous solvent is 2 M or less, and 200 mM or less is more preferable from the viewpoint of safety in in vivo administration. The therapeutic agent for bladder cancer of the present invention is preferably contained in an amount of 0.001-1% by mass or less, more preferably 0.001-0.1% by mass, based on the dispersion. Within this range, particles can be effectively accumulated in the affected area (tumor) 24 to 72 hours after administration. That is, the concentration of particles tends to accumulate in the affected area (tumor), and the dispersibility of the particles in the blood is ensured to make it difficult to form a coagulation fistula, resulting in secondary adverse effects such as occlusion of blood vessels after administration. There is no fear.

本発明の膀胱癌治療剤は、点滴、注射、塗布等の種々の方法により、患者の体内に投与することができる。特に静脈または皮下による投与経路で用いられる場合は、粒子の大きさによるEPR効果と、血中の滞留性および粒子に結合した抗体と患部に由来する抗原との相互作用を利用して、所謂DDS的な治療により、患者の負担を軽減する観点から好ましい。そして、体内に投与された膀胱癌治療剤は、ドラッグデリバリーシステムのように、癌組織に到達して集積される。   The therapeutic agent for bladder cancer of the present invention can be administered into a patient's body by various methods such as infusion, injection, and application. In particular, when used by intravenous or subcutaneous administration routes, the so-called DDS is utilized by utilizing the EPR effect due to the size of the particles, the retention in the blood, and the interaction between the antibody bound to the particles and the antigen derived from the affected area. It is preferable from the viewpoint of reducing the burden on the patient by an effective treatment. The therapeutic agent for bladder cancer administered into the body reaches the cancer tissue and accumulates like a drug delivery system.

本発明の膀胱癌治療剤は、患部に近い血管や臓器等を経由する投与経路で用いられる場合は、生体内環境での高い分散性および粒子に結合した抗体と患部に由来する抗原との相互作用により、所謂局所DDS的な治療により、患者の負担を軽減する観点から好ましい。そして、体内に投与された膀胱癌治療剤は、ドラッグデリバリーシステムのように、癌組織に到達して集積される。   When the therapeutic agent for bladder cancer of the present invention is used in a route of administration via a blood vessel or organ close to the affected area, the dispersibility between the in vivo environment and the antibody bound to the particles and the antigen derived from the affected area The action is preferable from the viewpoint of reducing the burden on the patient by so-called local DDS treatment. The therapeutic agent for bladder cancer administered into the body reaches the cancer tissue and accumulates like a drug delivery system.

本発明の膀胱癌治療剤を用いて膀胱癌を治療するため、本発明の膀胱癌治療剤を膀胱内注入し、一定の期間の排尿もしくは膀胱内洗浄によって結合しなかった膀胱癌治療剤を除去した後、膀胱癌治療剤が抗原である膀胱癌細胞の表面抗原と結合している状態で、周辺の正常細胞に悪影響を及ぼさない程度の微弱な超音波照射を行うことで、膀胱癌治療剤が集積した局所のみで効果を発揮し、副作用の低減が期待できる。また、この超音波照射において、膀胱表面の広い範囲に照射を行うことで、多発性の膀胱癌に対する治療が可能であり、手術等の治療によって除去しきれない膀胱癌細胞に対しても作用し、再発防止の効果を期待できる。   In order to treat bladder cancer using the bladder cancer therapeutic agent of the present invention, the bladder cancer therapeutic agent of the present invention is injected into the urinary bladder, and the bladder cancer therapeutic agent that has not been bound by urination for a certain period of time or intravesical lavage is removed. After that, the bladder cancer therapeutic agent is irradiated with a weak ultrasonic wave that does not adversely affect the surrounding normal cells in a state in which the bladder cancer therapeutic agent is bound to the surface antigen of the bladder cancer cell as an antigen. It is effective only in the local area where is accumulated, and can be expected to reduce side effects. In addition, this ultrasonic irradiation can treat multiple bladder cancers by irradiating a wide area of the bladder surface, and also acts on bladder cancer cells that cannot be removed by treatment such as surgery. The effect of preventing recurrence can be expected.

本発明の膀胱癌治療剤は、超音波または紫外線の、好ましくは超音波の照射を受け、該照射により細胞毒となることができる。この膀胱癌治療剤は、体内に投与され、超音波照射を受け、該照射により細胞毒を生成することで、細胞を殺傷することができるが、体内に限らず、試験管内においても殺対象である細胞を殺傷することができる。本発明において、殺対象は膀胱癌細胞であるのが好ましい。すなわち、本発明の膀胱癌治療剤によれば、超音波や紫外線の照射により活性化して膀胱癌細胞を殺傷する薬剤として用いることができる。   The therapeutic agent for bladder cancer of the present invention is irradiated with ultrasonic waves or ultraviolet rays, preferably ultrasonic waves, and can be rendered cytotoxic by the irradiation. This therapeutic agent for bladder cancer can be killed by being administered into the body, receiving ultrasound irradiation, and generating cytotoxic cells by the irradiation, but not only in the body but also in a test tube. A cell can be killed. In the present invention, the subject to be killed is preferably bladder cancer cells. That is, the bladder cancer therapeutic agent of the present invention can be used as a drug that is activated by irradiation with ultrasonic waves or ultraviolet rays to kill bladder cancer cells.

本発明の好ましい態様によれば、本発明の膀胱癌治療剤が集積された癌組織に超音波処理が行われる。使用する超音波の周波数は、400kHz〜20MHzが好ましく、より好ましくは600kHz〜10MHz、さらに好ましくは1MHz〜10MHzである。超音波の照射時間は治療対象である癌組織の位置および大きさを考慮して適宜決定されるべきであり、特に限定されない。こうして、患者の癌組織を超音波により高い効率で殺傷して、高い癌治療効果を実現することができる。超音波は生体内の深部に外部より到達させることが可能で、本発明の膀胱癌治療剤と併せて用いることにより、非侵襲の状態で生体内深部に存在するような患部やターゲット部位の治療が実現できる。さらに、患部やターゲット部位に本発明の膀胱癌治療剤が集積することにより、周辺の正常細胞に悪影響を及ぼさない程度の微弱な超音波で本発明の膀胱癌治療剤を集積させた局所のみに作用させることができる。   According to a preferred embodiment of the present invention, ultrasonic treatment is performed on a cancer tissue in which the bladder cancer therapeutic agent of the present invention is accumulated. The frequency of the ultrasonic wave to be used is preferably 400 kHz to 20 MHz, more preferably 600 kHz to 10 MHz, and further preferably 1 MHz to 10 MHz. The ultrasonic irradiation time should be appropriately determined in consideration of the position and size of the cancer tissue to be treated, and is not particularly limited. Thus, the cancer tissue of the patient can be killed with high efficiency by ultrasonic waves, and a high cancer treatment effect can be realized. Ultrasound can reach the deep part in the living body from the outside, and it is used in combination with the bladder cancer therapeutic agent of the present invention to treat an affected part or target site that exists in the deep part of the living body in a non-invasive state. Can be realized. Furthermore, the bladder cancer therapeutic agent of the present invention accumulates on the affected part or target site, so that only the local area where the bladder cancer therapeutic agent of the present invention is accumulated with weak ultrasonic waves that do not adversely affect the surrounding normal cells. Can act.

ところで、これらの半導体粒子が超音波の照射により活性化して細胞を殺傷する効果は、超音波照射によりラジカル種を生成させることにより得ることができる。すなわち、これらの半導体粒子が与える生物的殺傷効果はラジカル種の質的・量的な増加にあり、これらのラジカル種が細胞毒となると考えられる。その理由は以下の通り推察されるが、以下の理由はあくまで仮説であって、本発明は何ら下記説明に限定されるものではない。すなわち、超音波照射のみでは系中には過酸化水素とヒドロキシルラジカルが発生するが、本発明者らの知見によれば、酸化チタンなどの半導体粒子の存在下では、過酸化水素及びヒドロキシルラジカルの生成が促進される。また、これら半導体粒子の存在下、特に酸化チタンの存在下では、スーパーオキサイドアニオンと一重項酸素の生成が促進されるように見受けられる。これらラジカル種の特異的生成は、ナノメートルオーダーの微粒子を用いた場合、超音波照射時の周波数が400kHz〜20MHzの範囲、好ましくは600kHz〜10MHzの範囲、より好ましくは1MHz〜10MHzの範囲で顕著に観察される現象であると考えられる。   By the way, the effect that these semiconductor particles are activated by the irradiation of ultrasonic waves to kill the cells can be obtained by generating radical species by the irradiation of ultrasonic waves. That is, the biological killing effect given by these semiconductor particles is in the qualitative and quantitative increase of radical species, and it is considered that these radical species become cytotoxins. The reason is presumed as follows. However, the following reason is a hypothesis, and the present invention is not limited to the following description. That is, hydrogen peroxide and hydroxyl radicals are generated in the system only by ultrasonic irradiation, but according to the knowledge of the present inventors, hydrogen peroxide and hydroxyl radicals are not present in the presence of semiconductor particles such as titanium oxide. Generation is promoted. In addition, in the presence of these semiconductor particles, particularly in the presence of titanium oxide, it seems that the production of superoxide anion and singlet oxygen is promoted. The specific generation of these radical species, when using nanometer order fine particles, is remarkable when the frequency during ultrasonic irradiation is in the range of 400 kHz to 20 MHz, preferably in the range of 600 kHz to 10 MHz, more preferably in the range of 1 MHz to 10 MHz. It is considered that this phenomenon is observed.

製造方法
本発明の膀胱癌治療剤に用いられる酸化チタン複合体は、カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基から選択される少なくとも1種の官能基を有する水溶性高分子を酸化チタン粒子に結合させることにより、製造することができる。この方法による酸化チタン複合体の製造は、例えば、非プロトン系溶媒中に、酸化チタン粒子と、カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基から選択される少なくとも1種の官能基を有するノニオン性水溶性高分子とを分散させ、得られた分散液を80〜220℃で、例えば1〜16時間、加熱することにより行うことができる。なお、好ましい非プロトン系溶媒の例としては、ジメチルホルムアミド、ジオキサン、およびジメチルスルホキシドが挙げられる。
Production method The titanium oxide complex used in the therapeutic agent for bladder cancer of the present invention is a water-soluble polymer having at least one functional group selected from a carboxyl group, an amino group, a diol group, a salicylic acid group, and a phosphoric acid group. Can be produced by bonding to the titanium oxide particles. The production of the titanium oxide composite by this method is carried out, for example, in an aprotic solvent with at least one functional group selected from titanium oxide particles and a carboxyl group, amino group, diol group, salicylic acid group, and phosphoric acid group. The nonionic water-soluble polymer having a group is dispersed, and the obtained dispersion is heated at 80 to 220 ° C., for example, for 1 to 16 hours. Examples of preferred aprotic solvents include dimethylformamide, dioxane, and dimethyl sulfoxide.

本発明の膀胱癌治療剤は、水溶性高分子により水系溶媒中で分散させた酸化チタン複合体の酸化チタン表面に、カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基の群から選択される少なくともひとつの官能基を介してリンカー分子を結合させ、さらにリンカー分子を介して抗体を修飾した、酸化チタン−抗体複合体にすることにより、製造することができる。この方法による膀胱癌治療剤の製造は、例えば、水溶液中に、酸化チタン複合体と、カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基から選択される少なくとも1種の官能基を有するリンカー分子とを分散させ、例えば0℃〜50℃で1〜16時間加熱し、膜分離等で未結合のリンカー分子を除去後、酸化チタン複合体に結合したリンカー分子の有するアミノ基等の官能基を、例えば1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩等のカルボジイミド剤と反応して活性化後、膜分離等で未反応のカルボジイミド剤を除去し、抗体を混合して例えば0℃〜室温で1〜16時間反応し、膜分離等で未反応の抗体を除去することにより行うことができる。   The therapeutic agent for bladder cancer of the present invention is obtained from the group of carboxyl group, amino group, diol group, salicylic acid group, and phosphoric acid group on the titanium oxide surface of the titanium oxide complex dispersed in an aqueous solvent with a water-soluble polymer. It can be produced by forming a titanium oxide-antibody complex in which a linker molecule is bound via at least one selected functional group and the antibody is further modified via the linker molecule. Production of a bladder cancer therapeutic agent by this method includes, for example, a titanium oxide complex and at least one functional group selected from a carboxyl group, an amino group, a diol group, a salicylic acid group, and a phosphate group in an aqueous solution. For example, by heating at 0 ° C. to 50 ° C. for 1 to 16 hours, removing the unbound linker molecule by membrane separation or the like, and then the amino group or the like of the linker molecule bound to the titanium oxide complex After reacting the functional group with a carbodiimide agent such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and activating the functional group, the unreacted carbodiimide agent is removed by membrane separation or the like, and the antibody is mixed. For example, the reaction can be performed at 0 ° C. to room temperature for 1 to 16 hours, and unreacted antibody is removed by membrane separation or the like.

あるいは、本発明の膀胱癌治療剤は、抗体と、カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基の群から選択される少なくともひとつの官能基を介してリンカー分子を例えば1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩等のカルボジイミド剤と反応して活性化後、例えば0℃〜室温で1〜16時間反応し、膜分離等で未結合のリンカー分子を除去後、さらに水溶性高分子により水系溶媒中で分散させた酸化チタン複合体を混合して、例えば0℃〜室温で1〜16時間反応し、酸化チタン表面に抗体とリンカー分子の複合体を結合し、膜分離等で未反応の抗体を除去することにより行うことができる。   Alternatively, the therapeutic agent for bladder cancer of the present invention may be a linker molecule via an antibody and at least one functional group selected from the group of carboxyl group, amino group, diol group, salicylic acid group, and phosphoric acid group, for example 1- After reacting with a carbodiimide agent such as ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and activating, it reacts, for example, at 0 ° C. to room temperature for 1 to 16 hours to remove unbound linker molecules by membrane separation or the like. After that, a titanium oxide complex dispersed in an aqueous solvent with a water-soluble polymer is further mixed and reacted at, for example, 0 ° C. to room temperature for 1 to 16 hours to bind the antibody / linker molecule complex to the titanium oxide surface. And it can carry out by removing an unreacted antibody by membrane separation etc.

以下に実施例を示す。特に断りのない限り、「%」は質量%を意味する。   Examples are shown below. Unless otherwise specified, “%” means mass%.

例1:ポリエチレングリコールを結合した酸化チタン複合体の作製
チタンテトライソプロポキシド3.6gとイソプロパノール3.6gを混合し、氷冷下で60mlの超純水に滴下して加水分解を行った。滴下後に室温で30分間攪拌した。攪拌後、12N硝酸1mlを滴下して80℃で8時間攪拌を行い、ペプチゼーションした。ペプチゼーション終了後0.45μmのフィルターで濾過し、さらに脱塩カラムPD−10(GEヘルスケアバイオサイエンス製)を用いて溶液交換して固形成分1%の酸性酸化チタンゾルを調製した。この酸化チタンゾルを100ml容のバイアル瓶に入れ、超音波発生器MIDSONIC200(カイジョー製)を用いて200kHzで30分間超音波処理を行った。超音波処理を行った後の平均分散粒経を動的光散乱法により測定した。この測定は、超音波処理を行った後の酸化チタンゾルを12Nの硝酸で1000倍に希釈した後、分散液0.1mlを石英測定セルに仕込み、ゼータサイザーナノZS(シスメックス製)を用いて、溶媒の各種パラメーターを水と同値に設定し、25℃にて行った。その結果、分散粒径は36.4nmであった。蒸発皿を用いて、50℃下で酸化チタンゾル溶液の濃縮を行い、最終的に固形成分20%の酸性酸化チタンゾルを調製した。
Example 1: Production of a titanium oxide composite bonded with polyethylene glycol 3.6 g of titanium tetraisopropoxide and 3.6 g of isopropanol were mixed and hydrolyzed by adding dropwise to 60 ml of ultrapure water under ice cooling. After dropping, the mixture was stirred at room temperature for 30 minutes. After stirring, 1 ml of 12N nitric acid was added dropwise, and the mixture was stirred at 80 ° C. for 8 hours for peptization. After completion of the peptization, the solution was filtered with a 0.45 μm filter, and the solution was exchanged using a desalting column PD-10 (manufactured by GE Healthcare Bioscience) to prepare an acidic titanium oxide sol having a solid content of 1%. This titanium oxide sol was placed in a 100 ml vial and subjected to ultrasonic treatment at 200 kHz for 30 minutes using an ultrasonic generator MIDSONIC 200 (manufactured by Kaijo). The average dispersed particle diameter after sonication was measured by a dynamic light scattering method. In this measurement, the titanium oxide sol after sonication was diluted 1000 times with 12N nitric acid, and then 0.1 ml of the dispersion was charged into a quartz measurement cell, and using a Zetasizer Nano ZS (manufactured by Sysmex), Various parameters of the solvent were set to the same values as water, and the measurement was performed at 25 ° C. As a result, the dispersed particle size was 36.4 nm. Using an evaporating dish, the titanium oxide sol solution was concentrated at 50 ° C. to finally prepare an acidic titanium oxide sol having a solid component of 20%.

次に、ポリオキシエチレン−モノアリル−モノメチルエーテルと無水マレイン酸の共重合体(平均分子量;33659−日本油脂製)1gに水5mlを添加し加水分解後得られた溶液と1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(同仁化学製)を、超純水を用いてそれぞれ濃度が50mg/mlおよび50mMとなるように混合に調整した。調整した溶液に4−アミノサリチル酸(分子量Mn=153.14:MP Biomedicals,Inc.)を濃度50mMになるよう混合して4mlの溶液を得た。この溶液を室温にて72時間振とう撹拌して反応させた。反応後、得られた溶液を透析膜であるスペクトラ/ポア CE 透析用チューブ(分画分子量=3500、Spectrum Laboratories,Inc.)に移して超純水4lに対して室温にて24時間で透析を行った。透析後にすべてナスフラスコに移し替えて一晩凍結乾燥し、得られた粉末に4mlのジメチルホルムアミド(DMF:和光純薬工業製)を添加して混合し、4−アミノサリチル酸結合ポリエチレングリコール溶液とした。   Next, 5 ml of water was added to 1 g of a polyoxyethylene-monoallyl-monomethyl ether / maleic anhydride copolymer (average molecular weight; 33659—manufactured by Nippon Oil & Fats) and the resulting solution and 1-ethyl-3- (3-Dimethylaminopropyl) carbodiimide hydrochloride (manufactured by Dojindo) was mixed with ultrapure water so that the concentrations were 50 mg / ml and 50 mM, respectively. 4-Aminosalicylic acid (molecular weight Mn = 153.14: MP Biomedicals, Inc.) was mixed with the prepared solution to a concentration of 50 mM to obtain 4 ml of solution. This solution was allowed to react with shaking at room temperature for 72 hours. After the reaction, the resulting solution was transferred to a dialysis membrane Spectra / pore CE dialysis tube (fraction molecular weight = 3500, Spectrum Laboratories, Inc.) and dialyzed against 4 l of ultrapure water at room temperature for 24 hours. went. After dialysis, the whole was transferred to an eggplant flask and freeze-dried overnight, and 4 ml of dimethylformamide (DMF: manufactured by Wako Pure Chemical Industries, Ltd.) was added to the obtained powder and mixed to obtain a 4-aminosalicylic acid-bonded polyethylene glycol solution. .

次にDMFを用いて4−アミノサリチル酸結合ポリエチレングリコール溶液が終濃度20(vol/vol)%、先に得られたアナタ−ゼ型二酸化チタンゾルが終濃度で固形成分0.25%となるよう調整し、2.5mlの反応溶液とした。この反応溶液を水熱反応容器のHU−50(三愛科学製)に溶液を移し変え、80℃で6時間加熱反応を行った。反応終了後、反応容器温度が50℃以下になるまで冷却し、エバポレータでDMFを除去した後に、蒸留水1mlを添加してポリエチレングリコールを結合した酸化チタン複合体の分散液とした。さらに、HPLC:AKTA purifier(GEヘルスケアバイオサイエンス製)、カラム:HiPrep 16/60 Sephacryl S−300HR(GEヘルスケアバイオサイエンス製)、移動相:リン酸塩緩衝溶液(pH7.4)、流速:0.3ml/min]に付したところ、素通り画分にUV吸収のピークが確認され、この画分を回収した。この分散液を蒸留水で0.05(wt/vol)%水溶液に希釈して72時間静置後、動的光散乱法による分散粒径およびゼータ電位の確認を、ゼータサイザーナノZSを用いて、ゼータ電位測定セルにポリエチレングリコールを結合した酸化チタン複合体の分散液0.75mlを仕込み、溶媒の各種パラメーターを水と同値に設定し、25℃にて測定した。キュミュラント解析の結果、分散粒径は54.2nmであった。   Next, using DMF, the 4-aminosalicylic acid-bonded polyethylene glycol solution is adjusted so that the final concentration is 20 (vol / vol)%, and the previously obtained anatase-type titanium dioxide sol has a final concentration of 0.25% solid component. The reaction solution was 2.5 ml. The reaction solution was transferred to a hydrothermal reaction vessel HU-50 (manufactured by Sanai Kagaku) and subjected to a heating reaction at 80 ° C. for 6 hours. After completion of the reaction, the reaction vessel was cooled to a temperature of 50 ° C. or lower, and after removing DMF with an evaporator, 1 ml of distilled water was added to prepare a dispersion of a titanium oxide complex bound with polyethylene glycol. Further, HPLC: AKTA purifier (manufactured by GE Healthcare Bioscience), column: HiPrep 16/60 Sephacryl S-300HR (manufactured by GE Healthcare Bioscience), mobile phase: phosphate buffer solution (pH 7.4), flow rate: 0.3 ml / min], a peak of UV absorption was confirmed in the flow-through fraction, and this fraction was collected. This dispersion was diluted with distilled water to a 0.05 (wt / vol)% aqueous solution and allowed to stand for 72 hours, and then the dispersed particle size and zeta potential were confirmed by dynamic light scattering using zeta sizer nano ZS. A zeta potential measurement cell was charged with 0.75 ml of a dispersion of a titanium oxide complex bonded with polyethylene glycol, and various parameters of the solvent were set to the same values as water and measured at 25 ° C. As a result of cumulant analysis, the dispersed particle size was 54.2 nm.

例2:ポリアクリル酸を結合した酸化チタン複合体の作製
例1と同様に、最終的に固形成分20%の酸性酸化チタンゾルを調製した。
Example 2: Production of titanium oxide composite bonded with polyacrylic acid In the same manner as in Example 1, an acidic titanium oxide sol having a solid component of 20% was finally prepared.

この酸性酸化チタンゾル0.6mlをジメチルホルムアミド(DMF)で20mlとなるよう調整して分散させ、平均分子量5000のポリアクリル酸(和光純薬工業製)0.3gを溶解したDMF10mlを添加後、攪拌して混合した。水熱反応容器のHU−50(三愛科学製)に溶液を移し変え、150℃で5時間反応を行った。反応終了後、反応容器温度が50℃以下になるまで反応液を冷却し、反応液に対して2倍量のイソプロパノールを添加した。室温で30分間静置後、2000gにて15min遠心分離により沈殿を回収した。回収した沈殿表面をエタノールで洗浄後、1.5mlの水を加えてポリアクリル酸を結合した酸化チタン複合体の分散液を得た。この分散液を蒸留水で100倍に希釈し、分散粒径およびゼータ電位を動的光散乱法により測定した。この測定は、ゼータサイザーナノZSを用いて、ゼータ電位測定セルにポリアクリル酸を結合した酸化チタン複合体の分散液0.75mlを仕込み、溶媒の各種パラメーターを水と同値に設定し、25℃にて行った。その結果、分散粒径は53.6nm、ゼータ電位は−45.08mVであった。   After 0.6 ml of this acidic titanium oxide sol was adjusted to 20 ml with dimethylformamide (DMF) and dispersed, 10 ml of DMF in which 0.3 g of polyacrylic acid having an average molecular weight of 5000 (manufactured by Wako Pure Chemical Industries) was dissolved was added and stirred. And mixed. The solution was transferred to a hydrothermal reaction vessel HU-50 (manufactured by Sanai Kagaku) and reacted at 150 ° C. for 5 hours. After completion of the reaction, the reaction solution was cooled until the reaction vessel temperature was 50 ° C. or lower, and twice the amount of isopropanol was added to the reaction solution. After standing at room temperature for 30 minutes, the precipitate was collected by centrifugation at 2000 g for 15 min. The recovered precipitate surface was washed with ethanol, and then 1.5 ml of water was added to obtain a dispersion of a titanium oxide complex bonded with polyacrylic acid. This dispersion was diluted 100 times with distilled water, and the dispersed particle size and zeta potential were measured by a dynamic light scattering method. This measurement was performed using a Zeta Sizer Nano ZS, charged with 0.75 ml of a dispersion of a titanium oxide complex bonded with polyacrylic acid in a zeta potential measurement cell, and various parameters of the solvent were set to the same values as water, and 25 ° C. I went there. As a result, the dispersed particle size was 53.6 nm, and the zeta potential was −45.08 mV.

例3:ポリエチレンイミンを結合した酸化チタン複合体の作製
例1と同様に、最終的に固形成分20%の酸性酸化チタンゾルを調製した。
Example 3 Production of Titanium Oxide Composite Bonded with Polyethyleneimine Similar to Example 1, an acidic titanium oxide sol having a solid content of 20% was finally prepared.

得られた酸化チタンゾル3mlを20mlのジメチルホルムアミド(DMF)に分散させ、平均分子量10000のポリエチレンイミン(和光純薬工業製)450mgを溶解したDMF10mlを添加後、攪拌して混合した。水熱反応容器のHU−50(三愛科学製)に溶液を移し変え、150℃で5時間反応を行った。反応終了後、反応容器温度が50℃以下になるまで反応液を冷却し、反応液に対して2倍量のアセトンを添加した。室温で30分間静置後、2000gにて15min遠心分離により沈殿を回収した。回収した沈殿表面をエタノールで洗浄後、1.5mlの水を加えてポリエチレンイミンを結合した酸化チタン複合体の分散液を得た。この分散液を蒸留水で100倍に希釈し、分散粒径およびゼータ電位を動的光散乱法により測定した。この測定は、ゼータサイザーナノZSを用いて、ゼータ電位測定セルにポリエチレンイミンを結合した酸化チタン複合体の分散液0.75mlを仕込み、溶媒の各種パラメーターを水と同値に設定し、25℃にて行った。その結果、分散粒径は57.5nm、ゼータ電位は47.5mVであった。   3 ml of the obtained titanium oxide sol was dispersed in 20 ml of dimethylformamide (DMF), 10 ml of DMF in which 450 mg of polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd.) having an average molecular weight of 10,000 was dissolved was added, and the mixture was stirred and mixed. The solution was transferred to a hydrothermal reaction vessel HU-50 (manufactured by Sanai Kagaku) and reacted at 150 ° C. for 5 hours. After completion of the reaction, the reaction solution was cooled until the reaction vessel temperature became 50 ° C. or lower, and twice the amount of acetone was added to the reaction solution. After standing at room temperature for 30 minutes, the precipitate was collected by centrifugation at 2000 g for 15 min. The recovered precipitate surface was washed with ethanol, and then 1.5 ml of water was added to obtain a dispersion of a titanium oxide complex bonded with polyethyleneimine. This dispersion was diluted 100 times with distilled water, and the dispersed particle size and zeta potential were measured by a dynamic light scattering method. This measurement was performed using a Zetasizer Nano ZS, and a 0.75 ml dispersion of a titanium oxide complex in which polyethylene imine was bound to a zeta potential measurement cell was charged, and various parameters of the solvent were set to the same values as water, and the temperature was adjusted to 25 ° C. I went. As a result, the dispersed particle size was 57.5 nm, and the zeta potential was 47.5 mV.

例4:酸化チタン複合体へのジヒドロキシフェニルプロピオン酸の結合
例1で得られた、酸化チタン複合体とジヒドロキシフェニルプロピオン酸を用いて、超純水中で表1に示す組成で混合し、合計1mlに調製した。それぞれの組成において酸化チタン複合体A〜Cとした。
Example 4: Binding of dihydroxyphenylpropionic acid to titanium oxide composite Using the titanium oxide composite obtained in Example 1 and dihydroxyphenylpropionic acid, they were mixed in ultrapure water with the composition shown in Table 1, and the total Prepared to 1 ml. Titanium oxide composites A to C were used in the respective compositions.

Figure 0005224531
Figure 0005224531

調整した溶液を室温で4時間静置した。反応後の溶液について可視光域における波長の吸収スペクトルを紫外−可視光分光光度計により確認したところ、吸光度の増大が認められたため、ジヒドロキシフェニルプロピオン酸が結合したと考えられた。また、反応前と反応後の溶液をキャピラリ電気泳動にて以下の条件で、フォトダイオードアレイ検出器の吸収波長214nmのピークを確認することによりジヒドロキシフェニルプロピオン酸の変化量を求めた。
・装置:P/ACE MDQ(ベックマンコールター製)
・キャピラリ:フューズドシリカキャピラリ 50μm i.d × 67cm(effective length 50cm)(ベックマンコールター製)
・移動相:50mM ホウ酸緩衝溶液(pH9.0)
・電圧:25kV
・温度:20℃
求めた変化量より、酸化チタン粒子の質量あたり結合したジヒドロキシフェニルプロピオン酸量は表2で表される結果であった。
The prepared solution was allowed to stand at room temperature for 4 hours. When the absorption spectrum of the wavelength in the visible light region of the solution after the reaction was confirmed with an ultraviolet-visible light spectrophotometer, an increase in absorbance was observed, and it was considered that dihydroxyphenylpropionic acid was bound. Further, the amount of change in dihydroxyphenylpropionic acid was determined by confirming the peak at an absorption wavelength of 214 nm of the photodiode array detector under the following conditions by capillary electrophoresis for the solution before and after the reaction.
・ Device: P / ACE MDQ (manufactured by Beckman Coulter)
Capillary: fused silica capillary 50 μm i. d × 67cm (effective length 50cm) (manufactured by Beckman Coulter)
-Mobile phase: 50 mM borate buffer solution (pH 9.0)
・ Voltage: 25kV
・ Temperature: 20 ℃
From the obtained amount of change, the amount of dihydroxyphenylpropionic acid bonded per mass of titanium oxide particles was the result shown in Table 2.

Figure 0005224531
Figure 0005224531

さらに、この溶液1mlに対してバッファー交換用自然落下型カラムNAP−10(GEヘルスケアバイオサイエンス製)を用いて水1.5mlで回収して未反応のジヒドロキシフェニルプロピオン酸を除去した。ジヒドロキシフェニルプロピオン酸の除去はキャピラリ電気泳動にて上記と同様に確認し、フリーのジヒドロキシフェニルプロピオン酸がないことを確認した。これらからジヒドロキシフェニルプロピオン酸を結合した酸化チタン複合体(酸化チタン複合体A〜C)の作製を確認した。   Furthermore, unreacted dihydroxyphenylpropionic acid was removed from 1 ml of this solution with 1.5 ml of water by using a natural fall column NAP-10 (manufactured by GE Healthcare Bioscience) for buffer exchange. Removal of dihydroxyphenylpropionic acid was confirmed by capillary electrophoresis as described above, and it was confirmed that there was no free dihydroxyphenylpropionic acid. From these, production of titanium oxide composites (titanium oxide composites A to C) bonded with dihydroxyphenylpropionic acid was confirmed.

例5:ジヒドロキシフェニルプロピオン酸を結合した酸化チタン複合体への抗EpCAM抗体の結合
例4で得られた、ジヒドロキシフェニルプロピオン酸を結合した酸化チタン複合体のうち、酸化チタン複合体Bの溶液と1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(同仁化学製)を、超純水を用いてそれぞれ濃度が20mg/mlおよび80mMとなるように混合した。混合した溶液を室温にて10分間反応した。脱塩カラムPD−10(GEヘルスケアバイオサイエンス製)を用いて20mM HEPES緩衝溶液(pH7.4)に溶液交換し、酸化チタン濃度にして20mg/mlの粒子の溶液を得た。これと同一の緩衝液で調製した抗抗ヒトEpCAMモノクローナル抗体(マウスIgG:バイオマトリックス研究所製)を3mg/mlになるように添加し、全量で1mlの溶液とした。4℃で24時間反応後、終濃度が0.5Mとなるようエタノールアミンを添加して、さらに4℃で1時間反応した。この溶液を酸化チタン濃度にして1mg/mlに調製し、HPLC:AKTA purifier(GEヘルスケアバイオサイエンス製)、カラム:HiPrep 16/60 Sephacryl S−500HR(GEヘルスケアバイオサイエンス製)、移動相:リン酸緩衝生理食塩水(pH7.4)、流速:0.3ml/min]に1ml付したところ、素通り画分および結合に用いた抗HSAモノクローナル抗体が単体で確認される画分にUV吸収のピークが確認され、これらの画分を回収した。素通り画分は分離された分子の大きさから抗体分子を結合した酸化チタン−抗体複合体を含む溶液だと考えられた。また、抗ヒトEpCAMモノクローナル抗体が単体で確認される画分については、ブラッドフォード法でタンパク質濃度を測定した結果、反応前後で抗体濃度の減少が確認された。以上のことから、ジヒドロキシフェニルプロピオン酸を結合した酸化チタン複合体の、ジヒドロキシフェニルプロピオン酸を介して膀胱癌細胞の表面抗原に対して特異的に結合する抗体分子を結合した、酸化チタン−抗体複合体が作製できることを確認した。
Example 5: Binding of anti-EpCAM antibody to titanium oxide complex bound with dihydroxyphenylpropionic acid Among the titanium oxide complexes bound with dihydroxyphenylpropionic acid obtained in Example 4, a solution of titanium oxide complex B and 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (manufactured by Dojin Chemical) was mixed with ultrapure water so that the concentrations were 20 mg / ml and 80 mM, respectively. The mixed solution was reacted at room temperature for 10 minutes. The solution was exchanged with a 20 mM HEPES buffer solution (pH 7.4) using a desalting column PD-10 (manufactured by GE Healthcare Bioscience) to obtain a solution of particles having a titanium oxide concentration of 20 mg / ml. An anti-anti-human EpCAM monoclonal antibody (mouse IgG: manufactured by Biomatrix Laboratories) prepared with the same buffer was added to a concentration of 3 mg / ml to make a total volume of 1 ml. After the reaction at 4 ° C. for 24 hours, ethanolamine was added so that the final concentration was 0.5 M, and the reaction was further performed at 4 ° C. for 1 hour. This solution was adjusted to a titanium oxide concentration of 1 mg / ml, HPLC: AKTA purifier (manufactured by GE Healthcare Bioscience), column: HiPrep 16/60 Sephacryl S-500HR (manufactured by GE Healthcare Bioscience), mobile phase: When 1 ml of phosphate buffered saline (pH 7.4), flow rate: 0.3 ml / min] was applied, the fraction that passed through and the anti-HSA monoclonal antibody used for binding alone were confirmed to absorb UV. Peaks were confirmed and these fractions were collected. From the size of the separated molecules, the flow-through fraction was considered to be a solution containing a titanium oxide-antibody complex bound with antibody molecules. As for the fraction in which the anti-human EpCAM monoclonal antibody was confirmed alone, the protein concentration was measured by the Bradford method, and as a result, a decrease in the antibody concentration was confirmed before and after the reaction. From the above, the titanium oxide-antibody complex in which the titanium oxide complex bound to dihydroxyphenylpropionic acid is bound to an antibody molecule that specifically binds to the surface antigen of bladder cancer cells via dihydroxyphenylpropionic acid. It was confirmed that the body could be produced.

例6:酸化チタン−抗体複合体への蛍光色素の結合
例5で得られた、酸化チタン−抗体複合体を超純水にて固形成分1%の分散液とした。次に、ドーパミン塩酸塩(分子量Mn=153.178:和光純薬工業製)を200mMとなるよう調整した。調整した溶液と分散液を1:9で混合して1mlとし、室温で4時間結合反応を行った。反応後の溶液について可視光域における波長の吸収スペクトルを紫外−可視光分光光度計により確認したところ、それぞれの溶液について増大が認められたため、ドーパミンが結合したと考えられた。また、反応前と反応後の溶液をキャピラリ電気泳動にて以下の条件で付したところ、フォトダイオードアレイ検出器によって吸収波長214nmのピークを確認することによりドーパミンの変化量を求めた。
・装置:P/ACE MDQ(ベックマンコールター製)
・キャピラリ:フューズドシリカキャピラリ 50μm i.d×67cm(effective length 50cm)(ベックマンコールター製)
・移動相:50mM 酢酸ナトリウム緩衝溶液(pH4.8)
・電圧:25kV
・温度:20℃
求めた変化量よりドーパミンは酸化チタン粒子の質量あたり4.0×10−5 ドーパミン−g/酸化チタン粒子−gであった。このことからリンカー分子全体としては、酸化チタン粒子の質量あたり9.0×10−5 リンカー分子−mol/酸化チタン粒子‐gであった。
Example 6: Binding of fluorescent dye to titanium oxide-antibody complex The titanium oxide-antibody complex obtained in Example 5 was made into a dispersion of 1% solid component with ultrapure water. Next, dopamine hydrochloride (molecular weight Mn = 153.178: manufactured by Wako Pure Chemical Industries, Ltd.) was adjusted to 200 mM. The prepared solution and the dispersion were mixed at 1: 9 to make 1 ml, and a binding reaction was performed at room temperature for 4 hours. When the absorption spectrum of the wavelength in the visible light region of the solution after the reaction was confirmed by an ultraviolet-visible light spectrophotometer, an increase was observed for each solution, so it was considered that dopamine was bound. Further, when the solution before and after the reaction was subjected to capillary electrophoresis under the following conditions, the amount of change in dopamine was determined by confirming a peak at an absorption wavelength of 214 nm with a photodiode array detector.
・ Device: P / ACE MDQ (manufactured by Beckman Coulter)
Capillary: fused silica capillary 50 μm i. d × 67cm (effective length 50cm) (manufactured by Beckman Coulter)
Mobile phase: 50 mM sodium acetate buffer solution (pH 4.8)
・ Voltage: 25kV
・ Temperature: 20 ℃
From the obtained amount of change, dopamine was 4.0 × 10 −5 dopamine-g / titanium oxide particles-g per mass of titanium oxide particles. From this, the linker molecule as a whole was 9.0 × 10 −5 linker molecule-mol / titanium oxide particle-g per mass of titanium oxide particles.

さらに、この溶液1.0mlに対してバッファー交換用自然落下型カラムNAP−10(GEヘルスケアバイオサイエンス製)を用いて水1.5mlで回収して未反応のドーパミンを除去した。ドーパミンの除去はキャピラリ電気泳動にて上記と同様に確認し、フリーのドーパミンがないことを確認した。これらからドーパミンを結合した酸化チタン−抗体複合体の作製を確認した。次にこのドーパミンを結合した酸化チタン−抗体複合体を終濃度で0.3%、またNHS−Rhodamine(ピアース製)を終濃度で1mMとなるように20mMホウ酸緩衝液中で混合調整した。この溶液を4℃、遮光下で24時間静置した。この溶液2.5mlに対してバッファー交換用自然落下型カラムPD−10(GEヘルスケアバイオサイエンス製)を用いて水3.5mlで回収して未反応のNHS−Rhodamineを除去した。NHS−Rhodamineの除去はキャピラリ電気泳動にて上記と同様に確認し、フリーのNHS−Rhodamineがないことを確認した。得られた溶液を蛍光分光光度計にてスペクトル解析を行い、励起波長555nm、蛍光波長575nmで蛍光を示すことを確認した。これらのことから、ドーパミンを結合した酸化チタン−抗体複合体へ、ドーパミンを介して蛍光分子を結合した、蛍光分子結合酸化チタン−抗体複合体の作製を確認した。   Further, 1.0 ml of this solution was recovered with 1.5 ml of water using a natural fall column for buffer exchange NAP-10 (manufactured by GE Healthcare Bioscience) to remove unreacted dopamine. The removal of dopamine was confirmed by capillary electrophoresis as described above, and it was confirmed that there was no free dopamine. From these, production of a titanium oxide-antibody complex bound with dopamine was confirmed. Next, this titanium oxide-antibody complex to which dopamine was bound was mixed and adjusted in a 20 mM borate buffer so that the final concentration was 0.3%, and NHS-Rhodamine (Pierce) was 1 mM. This solution was allowed to stand at 4 ° C. under light shielding for 24 hours. Unreacted NHS-Rhodamine was removed from 2.5 ml of this solution using a natural drop column PD-10 for buffer exchange (manufactured by GE Healthcare Bioscience) with 3.5 ml of water. The removal of NHS-Rhodamine was confirmed by capillary electrophoresis as described above, and it was confirmed that there was no free NHS-Rhodamine. The obtained solution was subjected to spectrum analysis with a fluorescence spectrophotometer, and confirmed to exhibit fluorescence at an excitation wavelength of 555 nm and a fluorescence wavelength of 575 nm. From these facts, production of a fluorescent molecule-bound titanium oxide-antibody complex in which a fluorescent molecule was bound to dopamine-bound titanium oxide-antibody complex via dopamine was confirmed.

例7:酸化チタン複合体の分散性評価
例1で得られた酸化チタン複合体(酸化チタン複合体Dとする)および例4で得られた酸化チタン複合体A〜Cを、それぞれリン酸緩衝生理食塩水に対して、固形成分0.05%になるように添加し、1時間、室温にて静置した。その後、例1と同様にゼータサイザーナノZSを用いて分散粒径およびゼータ電位を動的光散乱法により測定した。結果を表3に示す。酸化チタン複合体A〜Dにおいて、分散粒径およびゼータ電位に大きな変化がないことが確認された。
Example 7: Evaluation of dispersibility of titanium oxide composite The titanium oxide composite obtained in Example 1 (referred to as titanium oxide composite D) and the titanium oxide composites A to C obtained in Example 4 were each phosphate buffered. It added so that it might become 0.05% of solid component with respect to the physiological saline, and it left still at room temperature for 1 hour. Thereafter, in the same manner as in Example 1, the dispersed particle size and the zeta potential were measured by a dynamic light scattering method using Zeta Sizer Nano ZS. The results are shown in Table 3. In the titanium oxide composites A to D, it was confirmed that there was no significant change in the dispersed particle size and the zeta potential.

Figure 0005224531
Figure 0005224531

例8:酸化チタン−抗体複合体の分散性評価
例5で得られた酸化チタン−抗体複合体を、リン酸緩衝生理食塩水に対して、固形成分0.05%になるように添加し、1時間、室温にて静置した。その後、例1と同様にゼータサイザーナノZSを用いて分散粒径およびゼータ電位を動的光散乱法により測定した。その結果、分散粒径は50.4nmでゼータ電位は−7.19mVであり、例7の結果と比べて大きな変化がないことが確認された。
Example 8: Dispersibility evaluation of titanium oxide-antibody complex The titanium oxide-antibody complex obtained in Example 5 was added to a phosphate buffered saline so that the solid component was 0.05%. The mixture was allowed to stand at room temperature for 1 hour. Thereafter, in the same manner as in Example 1, the dispersed particle size and the zeta potential were measured by a dynamic light scattering method using Zeta Sizer Nano ZS. As a result, the dispersed particle size was 50.4 nm and the zeta potential was −7.19 mV, confirming that there was no significant change compared to the result of Example 7.

例9:酸化チタン複合体の超音波照射による一重項酸素生成能の評価
例1で得られた酸化チタン複合体(酸化チタン複合体Dとする)および例4で得られた酸化チタン複合体A〜Cを、それぞれリン酸緩衝生理食塩水に対して、固形成分0.05%になるように調製した。また、コントロールとしてリン酸緩衝生理食塩水のみを調製した。各溶液3mlに対して、一重項酸素の生成を測定する試薬のSinglet Oxygen Sensor Green Reagent(Molecular Probes社)をマニュアルに従い混合して試験溶液とした。超音波照射装置(オージー技研製、ULTRASONIC APPARATUS ES-2:1MHz)を用いて、0.4W/cm2で50% duty cycle運転で3分間超音波を照射し、測定サンプルとして照射前後の溶液を400μlずつ採取した。各測定サンプルについて一重項酸素生成に起因する、Ex=488nm、Em=525nmにおける蛍光強度を蛍光分光光度計(RF−5300PC;島津製作所製)により測定した。その結果は、図2に示される通りであった。図2に示されるように、コントロールと比べて酸化チタン複合体A〜Dは、超音波照射により一重項酸素をより効率的に生成することが確認された。また、酸化チタン粒子の質量あたり結合したリンカー量が多いほど、一重項酸素の生成は抑制されると考えられた。
Example 9: Evaluation of singlet oxygen generation ability of titanium oxide composite by ultrasonic irradiation Titanium oxide composite obtained in Example 1 (referred to as titanium oxide composite D) and titanium oxide composite A obtained in Example 4 -C was prepared so that it might become 0.05% of solid component with respect to each phosphate buffered saline. In addition, only phosphate buffered saline was prepared as a control. Single Oxygen Sensor Green Reagent (Molecular Probes), a reagent for measuring the production of singlet oxygen, was mixed with 3 ml of each solution according to the manual to prepare a test solution. Using an ultrasonic irradiation device (manufactured by OG Giken, ULTRASONIC APPARATUS ES-2: 1 MHz), an ultrasonic wave was irradiated for 3 minutes at 0.4 W / cm 2 in a 50% duty cycle operation, and 400 μl of a solution before and after irradiation was used as a measurement sample. Collected one by one. For each measurement sample, the fluorescence intensity at Ex = 488 nm and Em = 525 nm due to singlet oxygen generation was measured with a fluorescence spectrophotometer (RF-5300PC; manufactured by Shimadzu Corporation). The result was as shown in FIG. As shown in FIG. 2, it was confirmed that the titanium oxide composites A to D generate singlet oxygen more efficiently by ultrasonic irradiation as compared with the control. Further, it was considered that the production of singlet oxygen was suppressed as the amount of linker bonded per mass of titanium oxide particles was increased.

例10:酸化チタン−抗体複合体の抗原結合評価
SPRセンサによる抗原への結合確認のため、SPRセンサ装置(BIACORE1000,BIAcore製)にセンサチップC1(BIAcore製)をセットし、メーカーのマニュアルに従ってEpCAM−Fcキメラタンパク質(R&D SYSTEMS製)の固定化反応を行った。BIAcore amine coupling kit(BIAcore製)に含まれる50μlのNHS−EDC混合溶液を5μl/minで流してセンサチップ表面のカルボキシル基をスクシニル化した後に、10mmol/lの酢酸−酢酸ナトリウム緩衝溶液(pH5.0)に1g/lになるよう溶解したEpCAM−Fcキメラタンパク質の溶液を50μl、流速5μl/minでロードして反応を行った。反応後、BIAcore amine coupling kitに含まれる1mol/lのエタノールアミンを50μl、流速5μl/minでロードして、結合に関与しなかったスクシニル基のブロッキング処理を行った。これによって約0.8ng/mmのEpCAM−Fcキメラタンパク質結合が得られた。次に、例5で得られた酸化チタン−抗体複合体の分散液を0.05(wt/vol)%のに調製したものを流速30μl/minで60μlロードした。センサグラムの反応確認後、100mmol/lのglycine−NaOH緩衝溶液(pH12.0)を30μl/minで30μlロードし、センサからの解離反応を行った。センサグラムの解析はBiomolecular Interaction Analysis(BIA)evaluation software(version 3.5,BIAcore製)を用いて行った。バックグラウンドとして例1で得られた酸化チタン複合体を同様にロードして得た結果を差し引いた。それらの結果は、図3に示される通りであった。これらの結果から酸化チタン−抗体複合体は抗原に対して強く結合することが示された。
Example 10: Evaluation of antigen binding of titanium oxide-antibody complex For confirmation of binding to an antigen by an SPR sensor, a sensor chip C1 (manufactured by BIAcore) is set in an SPR sensor device (BIACORE1000, manufactured by BIAcore), and EpCAM according to the manufacturer's manual -Immobilization reaction of Fc chimeric protein (R & D SYSTEMS) was performed. 50 μl NHS-EDC mixed solution contained in BIAcore amine coupling kit (manufactured by BIAcore) was flowed at 5 μl / min to succinylate carboxyl groups on the surface of the sensor chip, and then 10 mmol / l acetate-sodium acetate buffer solution (pH 5. The reaction was carried out by loading 50 μl of the EpCAM-Fc chimeric protein solution dissolved in 1) to 1 g / l at a flow rate of 5 μl / min. After the reaction, 50 mol of 1 mol / l ethanolamine contained in the BIAcore amine coupling kit was loaded at a flow rate of 5 μl / min to block a succinyl group that was not involved in the binding. This resulted in approximately 0.8 ng / mm 2 of EpCAM-Fc chimeric protein binding. Next, a dispersion of the titanium oxide-antibody complex obtained in Example 5 prepared at 0.05 (wt / vol)% was loaded at 60 μl at a flow rate of 30 μl / min. After confirming the reaction of the sensorgram, 30 μl of 100 mmol / l glycine-NaOH buffer solution (pH 12.0) was loaded at 30 μl / min, and the dissociation reaction from the sensor was performed. Sensorgram analysis was performed using Biomolecular Interaction Analysis (BIA) evaluation software (version 3.5, manufactured by BIAcore). The result obtained by similarly loading the titanium oxide composite obtained in Example 1 as a background was subtracted. The results were as shown in FIG. These results indicate that the titanium oxide-antibody complex binds strongly to the antigen.

例11:酸化チタン複合体へのジヒドロキシフェニルプロピオン酸の結合2
例1で得られた、酸化チタン複合体およびジヒドロキシフェニルプロピオン酸を用いて、1)20mmol/lの酢酸−酢酸ナトリウム緩衝溶液(pH=3.6)、2)20mmol/lのMES緩衝溶液(同仁化学製;pH=6.0)、3)20mmol/lのHEPES緩衝溶液(同仁化学製;pH=8.1)中で、酸化チタン複合体が終濃度2%、またジヒドロキシフェニルプロピオン酸が終濃度で50mmol/lとなるよう混合し、合計0.8mlに調製した。
Example 11: Binding of dihydroxyphenylpropionic acid to a titanium oxide complex 2
Using the titanium oxide complex and dihydroxyphenylpropionic acid obtained in Example 1, 1) 20 mmol / l acetic acid-sodium acetate buffer solution (pH = 3.6), 2) 20 mmol / l MES buffer solution ( Manufactured by Dojindo; pH = 6.0), 3) In a 20 mmol / l HEPES buffer solution (produced by Dojindo; pH = 8.1), the final concentration of titanium oxide complex was 2%, and dihydroxyphenylpropionic acid was added. The final concentration was 50 mmol / l to prepare a total of 0.8 ml.

調製した溶液を40℃で25時間攪拌した。それぞれの溶液について紫外−可視光域(200−600nm)における吸収スペクトルを紫外−可視光分光光度計により確認した。ジヒドロキシフェニルプロピオン酸のみを混合した溶液について、1)20mmol/lの酢酸−酢酸ナトリウム緩衝溶液(pH=3.6)中においては、調整後0時間と比べてほとんど変化がなかったのに対し、2)20mmol/lのMES緩衝溶液(pH=6.0)および3)20mmol/lのHEPES緩衝溶液(pH=8.1)中においては、調整後0時間と比べて吸収スペクトルの変化が確認され、目視によっても薄赤色に変色していることが確認された。これらのことから、ジヒドロキシフェニルプロピオン酸はpH=6.0以上において変化を生じ、不安定であると考えられた。また、酸化チタン複合体およびジヒドロキシフェニルプロピオン酸を混合した溶液について、1)20mmol/lの酢酸−酢酸ナトリウム緩衝溶液(pH=3.6)中においては、調整後0時間と比べて吸収スペクトルの変化が確認され、目視によっても濃茶色に変色していることが確認された。ジヒドロキシフェニルプロピオン酸のみにおいては大きな変化がなかったことから、この変化は酸化チタン複合体にジヒドロキシフェニルプロピオン酸が結合、電荷移動を生じたためと考えられた。   The prepared solution was stirred at 40 ° C. for 25 hours. The absorption spectrum in the ultraviolet-visible light region (200-600 nm) of each solution was confirmed by an ultraviolet-visible light spectrophotometer. Regarding the solution in which only dihydroxyphenylpropionic acid was mixed, in 1) 20 mmol / l acetic acid-sodium acetate buffer solution (pH = 3.6), there was almost no change compared with 0 hour after adjustment, 2) In 20 mmol / l MES buffer solution (pH = 6.0) and 3) 20 mmol / l HEPES buffer solution (pH = 8.1), changes in absorption spectrum were confirmed compared to 0 hours after adjustment. It was confirmed by visual observation that the color changed to light red. From these results, it was considered that dihydroxyphenylpropionic acid is unstable at pH = 6.0 or higher. Moreover, about the solution which mixed the titanium oxide complex and dihydroxyphenylpropionic acid, in 1) 20 mmol / l acetic acid-sodium acetate buffer solution (pH = 3.6), compared with 0 hours after adjustment, the absorption spectrum of The change was confirmed, and it was confirmed by visual observation that the color changed to dark brown. Since there was no significant change in dihydroxyphenylpropionic acid alone, this change was thought to be due to the binding of dihydroxyphenylpropionic acid to the titanium oxide complex and charge transfer.

次に、1)20mmol/lの酢酸−酢酸ナトリウム緩衝溶液(pH=3.6)中において、調整後0時間と25時間攪拌後の溶液をキャピラリ電気泳動にて以下の条件で、フォトダイオードアレイ検出器の吸収波長214nmのピークを確認することによりジヒドロキシフェニルプロピオン酸の変化量を求めた。
・装置:P/ACE MDQ(ベックマンコールター製)
・キャピラリ:フューズドシリカキャピラリ 50μm i.d × 67cm(effective length 50cm)(ベックマンコールター製)
・移動相:50mM ホウ酸緩衝溶液(pH9.0)
・電圧:25kV
・温度:20℃
求めた変化量より、1)20mmol/lの酢酸−酢酸ナトリウム緩衝溶液(pH=3.6)中における酸化チタン粒子の質量あたり結合したジヒドロキシフェニルプロピオン酸量は7.7×10−4 ジヒドロキシフェニルプロピオン酸‐mol/酸化チタン粒子‐gであった。
Next, 1) In the 20 mmol / l acetic acid-sodium acetate buffer solution (pH = 3.6), the solution after stirring for 0 hour and 25 hours after adjustment was subjected to capillary electrophoresis under the following conditions. The amount of change in dihydroxyphenylpropionic acid was determined by confirming a peak at an absorption wavelength of 214 nm of the detector.
・ Device: P / ACE MDQ (manufactured by Beckman Coulter)
Capillary: fused silica capillary 50 μm i. d × 67cm (effective length 50cm) (manufactured by Beckman Coulter)
-Mobile phase: 50 mM borate buffer solution (pH 9.0)
・ Voltage: 25kV
・ Temperature: 20 ℃
From the obtained amount of change, 1) the amount of dihydroxyphenylpropionic acid bound per mass of titanium oxide particles in a 20 mmol / l acetic acid-sodium acetate buffer solution (pH = 3.6) was 7.7 × 10 −4 dihydroxyphenylpropiate. On-acid-mol / titanium oxide particles-g.

例12:超音波照射による細胞殺傷試験
例5で得られた酸化チタン−抗体複合体を、1×10cells/mlのJurkat細胞を含む、10%血清入りRPMI1640培地(Invitrogen製)3mlに1/10量添加して、終濃度0.05%および0%となるように試験溶液を調整した。各試験溶液に、超音波照射装置(オージー技研(株)製、ULTRASONIC APPARATUS ES-2:1MHz)を用いて、15秒間超音波照射(0.5W/cm、50%パルス)を行なった。MTTアッセイ(同仁化学製)でメーカーの手順書に従い細胞数を計測し、照射前の細胞数を細胞生存率100%として、各試験溶液における細胞生存率を算出した。その結果、終濃度0.05%においては細胞生存率78.7%、また、終濃度0%において細胞生存率90.3%となった。これらのことから、酸化チタン−抗体複合体の超音波照射による細胞殺傷効果が確認された。
Example 12: Cell killing test using ultrasonic irradiation The titanium oxide-antibody complex obtained in Example 5 was added to 3 ml of RPMI 1640 medium (manufactured by Invitrogen) containing 10% serum containing 1 × 10 5 cells / ml of Jurkat cells. The test solution was adjusted to a final concentration of 0.05% and 0%. Each test solution was subjected to ultrasonic irradiation (0.5 W / cm 2 , 50% pulse) for 15 seconds using an ultrasonic irradiation device (ULTRASONIC APPARATUS ES-2: 1 MHz, manufactured by OG Giken Co., Ltd.). The number of cells was measured according to the manufacturer's instructions using the MTT assay (manufactured by Dojin Chemical), and the cell viability in each test solution was calculated with the number of cells before irradiation as 100%. As a result, the cell viability was 78.7% at a final concentration of 0.05%, and the cell viability was 90.3% at a final concentration of 0%. From these, the cell killing effect by ultrasonic irradiation of the titanium oxide-antibody complex was confirmed.

例13:酸化チタン複合体へのフェロセンカルボン酸およびドーパミンの結合
フェロセンカルボン酸(和光純薬工業製)および塩酸ドーパミン(和光純薬工業製)を1mMとなるようジメチルホルムアミド(DMF;和光純薬工業製)に溶解した。また、同様にDMFを用いて200mM Benzotriazole−1−yl−oxy−trispyrrolidinophosphonium hexafluorophosphate(PyBop;メルク製)、200mM 1−ヒドロキシベンゾトリアゾール(HoBt;同仁化学製)、20mM N,N−ジイソプロピルエチルアミン(DIEA;和光純薬工業製)をそれぞれ調製した。これらのうち、フェロセンカルボン酸と塩酸ドーパミンは元濃度の1/4、またその他は元濃度の1/10となるよう混合してDMFで20mlに溶液調整した。この混合溶液を緩やかに攪拌しながら、室温で20時間反応を行った。
Example 13: Binding of ferrocenecarboxylic acid and dopamine to titanium oxide complex Dimethylformamide (DMF; Wako Pure Chemical Industries) so that ferrocenecarboxylic acid (manufactured by Wako Pure Chemical Industries) and dopamine hydrochloride (manufactured by Wako Pure Chemical Industries) become 1 mM. Manufactured). Similarly, using DMF, 200 mM Benzotriazole-1-yl-oxy-trispyrrolophosphonium hexafluorophosphate (PyBop; manufactured by Merck), 200 mM 1-hydroxybenzotriazole (HoBt; manufactured by Dojindo), 20 mM N ethylamine, N Wako Pure Chemical Industries) were prepared. Of these, ferrocenecarboxylic acid and dopamine hydrochloride were mixed so as to be 1/4 of the original concentration, and the others were 1/10 of the original concentration, and the solution was adjusted to 20 ml with DMF. The mixed solution was reacted at room temperature for 20 hours while gently stirring.

反応溶液の一部を超純水で10倍に希釈し、この溶液を逆相クロマトグラフィ(HPLCシステム:Prominence(島津製作所製)、カラム:Chromolith RP−18e 100−3mm(メルク製)、移動相:A メタノール(和光純薬工業製)B 0.1%トリフルオロ酢酸水溶液(和光純薬工業製)、流速:2ml/min)を用いて解析した。紫外線検出器で波長210nmに設定し、インジェクション(0.02ml)後、1〜10minにおいてメタノールが100%となるようグラジエント溶出を行った結果、フェロセンカルボン酸と塩酸ドーパミンの複合体と考えられるピークを確認した。また、フェロセンカルボン酸および塩酸ドーパミンそれぞれ単独のピークは検出限界以下であった。これらのことから、フェロセンカルボン酸と塩酸ドーパミンの複合体の生成を確認した。   A part of the reaction solution was diluted 10-fold with ultrapure water, and this solution was subjected to reverse phase chromatography (HPLC system: Prominence (manufactured by Shimadzu Corporation), column: Chromolith RP-18e 100-3 mm (manufactured by Merck), mobile phase: A Analysis was performed using methanol (Wako Pure Chemical Industries) B 0.1% trifluoroacetic acid aqueous solution (Wako Pure Chemical Industries, flow rate: 2 ml / min). As a result of setting the wavelength to 210 nm with an ultraviolet ray detector and performing gradient elution so that methanol becomes 100% in 1 to 10 minutes after injection (0.02 ml), a peak considered to be a complex of ferrocenecarboxylic acid and dopamine hydrochloride was obtained. confirmed. In addition, the single peaks of ferrocenecarboxylic acid and dopamine hydrochloride were below the detection limit. From these facts, formation of a complex of ferrocenecarboxylic acid and dopamine hydrochloride was confirmed.

反応溶液の残りを減圧下で10倍に濃縮し、反応濃縮溶液とした。例1で得られた、酸化チタン複合体を超純水にて固形成分1%に調整し、そこに反応濃縮溶液を1/10量混合して、全量で1mlとした。この混合溶液を緩やかに攪拌しながら、室温で1時間反応を行った。反応後、沈殿成分を遠心分離(1500g、10min)して上澄みを回収し、この溶液1mlに対してバッファー交換用自然落下型カラムNAP−10(GEヘルスケアバイオサイエンス製)を用いて水1.5mlで回収して未反応のフェロセンカルボン酸と塩酸ドーパミンの複合体およびDMFを除去した。この溶液について可視光域(400nm)における波長の吸収スペクトルを紫外−可視光分光光度計(UV1600;島津製作所製)により確認したところ増大が認められたため、フェロセンカルボン酸と塩酸ドーパミンの複合体が結合したと考えられた。これらからフェロセンカルボン酸と塩酸ドーパミンの複合体結合酸化チタン複合体の作製を確認した。   The remainder of the reaction solution was concentrated 10 times under reduced pressure to obtain a reaction concentrated solution. The titanium oxide composite obtained in Example 1 was adjusted to 1% solid component with ultra pure water, and 1/10 amount of the reaction concentrated solution was mixed therewith to make 1 ml in total. The mixed solution was reacted at room temperature for 1 hour while gently stirring. After the reaction, the precipitated component was centrifuged (1500 g, 10 min) to collect the supernatant, and 1 ml of this solution was subjected to water 1. using a natural drop column NAP-10 (manufactured by GE Healthcare Bioscience) for buffer exchange. Collected in 5 ml, the unreacted ferrocenecarboxylic acid-dopamine hydrochloride complex and DMF were removed. The absorption spectrum of the wavelength in the visible light region (400 nm) of this solution was confirmed by an ultraviolet-visible light spectrophotometer (UV1600; manufactured by Shimadzu Corporation), and an increase was observed, so that a complex of ferrocenecarboxylic acid and dopamine hydrochloride was bound. It was thought that it was. From these, preparation of a complex-bound titanium oxide complex of ferrocenecarboxylic acid and dopamine hydrochloride was confirmed.

例14:酸化チタン−抗体複合体へのフェロセンカルボン酸およびドーパミンの結合
例13において、例1で得られた酸化チタン複合体の代わりに、例5で得られた酸化チタン−抗体複合体を用いた以外はまったく同様にしてフェロセンカルボン酸と塩酸ドーパミンの複合体結合酸化チタン−抗体複合体を作製した。
Example 14: Binding of ferrocenecarboxylic acid and dopamine to titanium oxide-antibody complex In Example 13, instead of the titanium oxide complex obtained in Example 1, the titanium oxide-antibody complex obtained in Example 5 was used. Except for the above, a complex-bound titanium oxide-antibody complex of ferrocenecarboxylic acid and dopamine hydrochloride was prepared in the same manner.

例15:フェロセンカルボン酸と塩酸ドーパミンの複合体結合酸化チタン複合体の超音波照射によるヒドロキシラジカル生成能の評価
例13で得られたフェロセンカルボン酸と塩酸ドーパミンの複合体結合酸化チタン複合体(酸化チタン複合体Eとする)を、リン酸緩衝生理食塩水(pH7.4)に対して、固形成分0.05%になるように調製した。また、コントロールとしてリン酸緩衝生理食塩水(pH7.4)のみを用いた。各溶液3mlを用意して試験溶液とした。超音波照射装置(オージー技研製、ULTRASONIC APPARATUS ES-2:1MHz)を用いて、3分間超音波照射(0.4W/cm2、50%パルス)を行い、照射後に各溶液に対して、ヒドロキシラジカルの生成を測定する試薬のヒドロキシフェニルフルオレセイン(HPF、第一化学薬品製)をマニュアルに従い混合し、室温で15分および30分静置、各静置時間における測定サンプルとして照射前後の溶液を400μlずつ採取した。各測定サンプルについてヒドロキシラジカル生成に起因する、Ex=490nm、Em=515nmにおける蛍光強度を蛍光分光光度計(RF−5300PC;島津製作所製)により測定した。その結果は、図4に示される通りであった。図4に示されるように、コントロールと比べて酸化チタン複合体Eは、超音波照射によりヒドロキシラジカルを効率的に生成することが確認された。また、酸化チタン複合体Eは静置時間に伴って蛍光値が増大することから、持続的にヒドロキシラジカルを生成すると考えられた。
Example 15: Evaluation of hydroxy radical-forming ability of ferrocenecarboxylic acid and dopamine hydrochloride complex-bound titanium oxide complex by ultrasonic irradiation Complex-bound titanium oxide complex of ferrocenecarboxylic acid and dopamine hydrochloride obtained in Example 13 (oxidation) Titanium complex E) was prepared such that the solid component was 0.05% with respect to phosphate buffered saline (pH 7.4). Further, only phosphate buffered saline (pH 7.4) was used as a control. 3 ml of each solution was prepared and used as a test solution. Ultrasonic irradiation (0.4 W / cm 2, 50% pulse) is performed for 3 minutes using an ultrasonic irradiation device (manufactured by OG Giken, ULTRASONIC APPARATUS ES-2: 1 MHz). A reagent for measuring the production of hydroxyphenylfluorescein (HPF, manufactured by Daiichi Chemicals) is mixed according to the manual, and allowed to stand at room temperature for 15 minutes and 30 minutes. 400 μl of the solution before and after irradiation as a measurement sample at each standing time Collected. For each measurement sample, the fluorescence intensity at Ex = 490 nm and Em = 515 nm due to the generation of hydroxy radicals was measured with a fluorescence spectrophotometer (RF-5300PC; manufactured by Shimadzu Corporation). The result was as shown in FIG. As shown in FIG. 4, it was confirmed that the titanium oxide complex E efficiently generates hydroxy radicals by ultrasonic irradiation as compared with the control. In addition, it was considered that the titanium oxide complex E generates hydroxy radicals continuously because the fluorescence value increases with the standing time.

例16:ドーパミンを介した酸化チタン複合体への抗体の結合
抗ヒトEpCAMモノクローナル抗体(マウスIgG:バイオマトリックス研究所製)0.1mgをCoupling buffer(pH5.5;Catalog No.153−6054、バイオラッド製)を用いて1.8mlに調製し、そこに25mg/1.2mlの過ヨウ素酸ナトリウム(和光純薬工業製)水溶液を0.2ml加えて室温にて1時間反応後、超純水を加えて2.5mlとした溶液に対してバッファー交換用自然落下型カラムPD−10(GEヘルスケアバイオサイエンス製)を用いて20mM MES緩衝溶液(pH5.5)で3.2ml回収して未反応の過ヨウ素酸ナトリウムを除去し、Amicon Ultra−15(MWCO=5000;ミリポア製)で遠心分離(1500g、15min)して0.7mlに濃縮し、酸化された抗体溶液を得た。また、200mMの塩酸ドーパミン(和光純薬工業製)水溶液0.5mlと70mMのスクシンイミジル−4−ヒドラジノニコチネート−アセトンヒドラゾン(SANH;PIERCE製)水溶液0.1mlを混合し、100mM HEPES緩衝溶液(pH8.1)および超純水で総量1mlに調製し、室温にて1時間反応後、薄層クロマトグラフィーによりSANHとドーパミンの結合を確認、SANHとドーパミンの複合体溶液を得た。これら、酸化された抗体溶液0.7mlとSANHとドーパミンの複合体溶液0.1mlとCoupling buffer(pH5.5;Catalog No.153−6054、バイオラッド製)0.2mlを混合して、4℃にて16時間反応後、バッファー交換用自然落下型カラムPD−10(GEヘルスケアバイオサイエンス製)を用いてPBS緩衝液(リン酸生理食塩水)で溶出し、抗体とSANHとドーパミンの複合体と、未反応のSANHとドーパミンの複合体を除去した。こうして、抗体とSANHとドーパミンの複合体を得た。次に、例1で得られた、5(wt/vol)%の酸化チタン複合体2mlと、抗体とSANHとドーパミンの複合体1mlを混合し、4℃にて16時間反応後、44.5 mm PBCC membrane (MWCO=300000;Catalog No.PBMK04310、ミリポア製)および攪拌式セルModel8050(Catalog No.5122、ミリポア製)を用いて、メーカーのプロトコルに従い10psiで334mlの溶液交換に伴う、未結合の抗体とSANHとドーパミンの複合体除去を行った。このようにして酸化チタン−抗EpCAM抗体複合体粒子の分散液を得た。
Example 16: Binding of antibody to titanium oxide complex via dopamine 0.1 mg of anti-human EpCAM monoclonal antibody (mouse IgG: manufactured by Biomatrix Laboratories) Coupling buffer (pH 5.5; Catalog No. 153-6054, Bio And 25 ml / 1.2 ml of sodium periodate aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and reacted at room temperature for 1 hour, followed by ultrapure water. Was added to a 2.5 ml solution, and 3.2 ml of a 20 mM MES buffer solution (pH 5.5) was recovered using a natural drop column PD-10 (manufactured by GE Healthcare Bioscience) for buffer exchange. Removal of sodium periodate from the reaction, Amicon Ultra-15 (MWCO = 5000; manufactured by Millipore) ) By centrifugation (1500 g, 15 min) and concentrated to 0.7 ml to obtain an oxidized antibody solution. In addition, 0.5 ml of 200 mM aqueous dopamine hydrochloride (manufactured by Wako Pure Chemical Industries) and 0.1 ml of 70 mM succinimidyl-4-hydrazinonicotinate-acetone hydrazone (SANH; manufactured by PIERCE) aqueous solution were mixed, and a 100 mM HEPES buffer solution ( The total amount was adjusted to 1 ml with pH 8.1) and ultrapure water. After reacting at room temperature for 1 hour, the binding of SANH and dopamine was confirmed by thin layer chromatography to obtain a complex solution of SANH and dopamine. These 0.7 ml of the oxidized antibody solution, 0.1 ml of the complex solution of SANH and dopamine and 0.2 ml of Coupling buffer (pH 5.5; Catalog No. 153-6054, manufactured by Bio-Rad) were mixed and mixed at 4 ° C. After reaction for 16 hours, elute with PBS buffer solution (phosphate saline) using PD-10 (GE Healthcare Bioscience), a natural buffer column for buffer exchange, and complex of antibody, SANH and dopamine Then, the unreacted complex of SANH and dopamine was removed. Thus, a complex of the antibody, SANH and dopamine was obtained. Next, 2 ml of the 5 (wt / vol)% titanium oxide complex obtained in Example 1 and 1 ml of the antibody / SANH / dopamine complex were mixed and reacted at 4 ° C. for 16 hours. mm PBCC membrane (MWCO = 300000; Catalog No. PBMK04310, manufactured by Millipore) and stirred cell Model 8050 (Catalog No. 5122, manufactured by Millipore), unbound with a 334 ml solution change at 10 psi according to the manufacturer's protocol The complex of antibody, SANH and dopamine was removed. In this way, a dispersion of titanium oxide-anti-EpCAM antibody complex particles was obtained.

次に、抗体として抗ヒトEpCAMモノクローナル抗体の代わりに抗αフェトプロテイン(抗AFP)抗体(マウスIgG:NB013、日本バイオテスト研究所製)を用いた以外はまったく同様にして、酸化チタン−抗AFP抗体複合体粒子の分散液を得た。   Next, a titanium oxide-anti-AFP antibody was exactly the same except that an anti-alpha fetoprotein (anti-AFP) antibody (mouse IgG: NB013, manufactured by Japan Biotest Laboratories) was used instead of the anti-human EpCAM monoclonal antibody. A dispersion of composite particles was obtained.

例17:酸化チタン−抗体複合体の抗原結合評価
SPRセンサによる抗原への結合確認のため、SPRセンサ装置(BIACORE1000,BIAcore製)にセンサチップC1(BIAcore製)をセットし、メーカーのマニュアルに従ってEpCAM−Fcキメラタンパク質(R&D SYSTEMS製)の固定化反応を行った。移動相にはリン酸緩衝液の混合溶液(10mM リン酸緩衝液(pH7.4)、150mM NaCl、0.05(wt/vol)% Tween20)を用いた。BIAcore amine coupling kit(BIAcore製)に含まれる200μlのNHS−EDC混合溶液を30μl/minで流してセンサチップ表面のカルボキシル基をスクシニル化した後に、90mmol/lの酢酸−酢酸ナトリウム緩衝溶液(pH5.0)に100μg/mlになるよう溶解したEpCAM−Fcキメラタンパク質の溶液を180μl、流速30μl/minでロードして反応を行った。反応後、BIAcore amine coupling kitに含まれる1mol/lのエタノールアミンを150μl、流速30μl/minでロードして、結合に関与しなかったスクシニル基のブロッキング処理を行った。これによって約500RUのレスポンスが得られた。例16で作製した0.01(wt/vol)%の酸化チタン−抗EpCAM抗体複合体粒子の分散液および酸化チタン−抗AFP抗体複合体粒子をそれぞれ流速30μl/minで90μlロードした。センサグラムの反応確認後、100mmol/lのglycine−NaOH緩衝溶液(pH12.0)を30μl/minで100μlロードし、センサからの解離反応を行った。センサグラムの解析はBiomolecular Interaction Analysis(BIA)evaluation software(version 3.5,BIAcore製)を用いて行った。バックグラウンドとして例1で得られた酸化チタン複合体を同様にロードして得た結果を差し引いた。それらの結果、酸化チタン−抗EpCAM抗体複合体粒子では150RU、酸化チタン−抗AFP抗体複合体粒子においては3RUのレスポンスを得た。これらの結果から酸化チタン−抗EpCAM抗体複合体粒子は抗原に対して強く結合することが示された。また、酸化チタン−抗AFP抗体複合体粒子は抗原に結合しなかった。
Example 17: Evaluation of antigen binding of titanium oxide-antibody complex For confirmation of binding to an antigen by an SPR sensor, a sensor chip C1 (manufactured by BIAcore) was set in an SPR sensor device (BIACORE1000, manufactured by BIAcore), and EpCAM according to the manufacturer's manual -Immobilization reaction of Fc chimeric protein (R & D SYSTEMS) was performed. A mixed solution of phosphate buffer (10 mM phosphate buffer (pH 7.4), 150 mM NaCl, 0.05 (wt / vol)% Tween 20) was used as the mobile phase. After 200 μl of NHS-EDC mixed solution contained in BIAcore amine coupling kit (manufactured by BIAcore) was flowed at 30 μl / min to succinylate carboxyl groups on the surface of the sensor chip, 90 mmol / l acetate-sodium acetate buffer solution (pH 5. The reaction was carried out by loading 180 μl of EpCAM-Fc chimeric protein solution dissolved at 100 μg / ml in 0) at a flow rate of 30 μl / min. After the reaction, 1 mol / l ethanolamine contained in the BIAcore amine coupling kit was loaded at 150 μl and a flow rate of 30 μl / min to block succinyl groups that were not involved in binding. As a result, a response of about 500 RU was obtained. A dispersion of 0.01 (wt / vol)% titanium oxide-anti-EpCAM antibody complex particles prepared in Example 16 and titanium oxide-anti-AFP antibody complex particles were loaded at 90 μl at a flow rate of 30 μl / min. After confirming the reaction of the sensorgram, 100 μl of 100 mmol / l glycine-NaOH buffer solution (pH 12.0) was loaded at 30 μl / min, and the dissociation reaction from the sensor was performed. Sensorgram analysis was performed using Biomolecular Interaction Analysis (BIA) evaluation software (version 3.5, manufactured by BIAcore). The result obtained by similarly loading the titanium oxide composite obtained in Example 1 as a background was subtracted. As a result, a response of 150 RU was obtained for the titanium oxide-anti-EpCAM antibody composite particles, and a response of 3 RU was obtained for the titanium oxide-anti-AFP antibody composite particles. From these results, it was shown that the titanium oxide-anti-EpCAM antibody complex particles bound strongly to the antigen. Further, the titanium oxide-anti-AFP antibody complex particles did not bind to the antigen.

例18:酸化チタン−抗体複合体の抗原結合評価(FACS)
酸化チタン−抗体複合体の膀胱癌細胞に対する結合確認のため、フローサイトメロリー(FACS)法を用いて評価を行った。まず対数増殖期のヒト膀胱癌細胞株RT112をPBS+BSA+EDTA混合溶液(PBS緩衝液(リン酸生理食塩水)+0.5(wt/vol)%ウシ血清アルブミン(Invitrogen製)+2mmol/lエチレンジアミン4酢酸(和光純薬工業製))で2×10cellsの細胞数にし、5mlチューブに分注後、遠心分離(1500g、5min、4℃)して上清を除去した。そこに例16で作製した酸化チタン−抗EpCAM抗体複合体粒子の分散液をPBS緩衝液(リン酸生理食塩水)を用いて0.1(wt/vol)%にしたものを1mlを加えて懸濁後、氷上で30min静置した。次に洗浄のためPBS+BSA+EDTA混合溶液を3ml加え、遠心分離(1500g、5min、4℃)して上清を除去した。二次抗体としてBiotinylated anti−mouse IgG(H+L)(Vector製)を1μl加え、氷上で30min静置した。次に洗浄のためPBS+BSA+EDTA混合溶液を3ml加え、遠心分離(1500g、5min、4℃)して上清を除去した。標識のため、Strept Avidine Alexa Fluore−647 conjugate(Invitrogen製)を1μl加え、氷上で30min静置した。次に洗浄のためPBS+BSA+EDTA混合溶液を3ml加え、遠心分離(1500g、5min、4℃)して上清を除去した。この洗浄は2回繰り返した。そして、PBS+BSA+EDTA混合溶液を200μl加えて懸濁し、試験溶液Aとした。
Example 18: Evaluation of antigen binding of titanium oxide-antibody complex (FACS)
In order to confirm the binding of the titanium oxide-antibody complex to bladder cancer cells, evaluation was performed using a flow cytomelloy (FACS) method. First, logarithmically growing human bladder cancer cell line RT112 was mixed with PBS + BSA + EDTA (PBS buffer (phosphate physiological saline) +0.5 (wt / vol)% bovine serum albumin (Invitrogen)) + 2 mmol / l ethylenediaminetetraacetic acid (sum) The number of cells was adjusted to 2 × 10 5 cells by Kojunkaku Kogyo Co., Ltd.), dispensed into a 5 ml tube, and centrifuged (1500 g, 5 min, 4 ° C.) to remove the supernatant. Thereto was added 1 ml of a dispersion of the titanium oxide-anti-EpCAM antibody complex particles prepared in Example 16 and made 0.1 (wt / vol)% using PBS buffer (phosphate physiological saline). After suspension, the mixture was allowed to stand on ice for 30 minutes. Next, 3 ml of PBS + BSA + EDTA mixed solution was added for washing, and the supernatant was removed by centrifugation (1500 g, 5 min, 4 ° C.). As a secondary antibody, 1 μl of Biotinylated anti-mouse IgG (H + L) (manufactured by Vector) was added, and left on ice for 30 min. Next, 3 ml of PBS + BSA + EDTA mixed solution was added for washing, and the supernatant was removed by centrifugation (1500 g, 5 min, 4 ° C.). For labeling, 1 μl of Strept Avidine Alexa Fluore-647 conjugate (manufactured by Invitrogen) was added and allowed to stand on ice for 30 min. Next, 3 ml of PBS + BSA + EDTA mixed solution was added for washing, and the supernatant was removed by centrifugation (1500 g, 5 min, 4 ° C.). This washing was repeated twice. Then, 200 μl of PBS + BSA + EDTA mixed solution was added and suspended to obtain test solution A.

また、対数増殖期のヒト膀胱癌細胞株RT112をPBS+BSA+EDTA混合溶液(で2×10cellsの細胞数にし、5mlチューブに分注後、遠心分離(1500g、5min、4℃)して上清を除去した。そこに抗ヒトEpCAMモノクローナル抗体(マウスIgG:バイオマトリックス研究所製)をPBS緩衝液(リン酸生理食塩水)を用いて0.1mg/mlにしたものを1mlを加えて懸濁後、氷上で30min静置した。次に洗浄のためPBS+BSA+EDTA混合溶液を3ml加え、遠心分離(1500g、5min、4℃)して上清を除去した。標識のため、Zenon Alexa Fluore−647 Mouse IgG1 Labeling kit(Invitrogen製)を用いて、メーカーのプロトコルに従い、溶液を標識した後、最終的にPBS+BSA+EDTA混合溶液200μlに懸濁し、試験溶液Bとした。 Also, logarithmically growing human bladder cancer cell line RT112 was adjusted to a PBS + BSA + EDTA mixed solution (with a cell number of 2 × 10 5 cells), dispensed into a 5 ml tube, and centrifuged (1500 g, 5 min, 4 ° C.) to obtain a supernatant. After suspending 1 ml of an anti-human EpCAM monoclonal antibody (mouse IgG: manufactured by Biomatrix Laboratories) adjusted to 0.1 mg / ml with PBS buffer (phosphate physiological saline), Then, 3 ml of PBS + BSA + EDTA mixed solution was added for washing, and the supernatant was removed by centrifugation (1500 g, 5 min, 4 ° C.) Zenon Alexa Fluore-647 Mouse IgG1 Labeling for labeling kit (manufactured by Invitrogen) The solution was labeled according to Col, and finally suspended in 200 μl of a PBS + BSA + EDTA mixed solution to obtain Test Solution B.

上記で得られた試験溶液A、試験溶液Bおよび対数増殖期のヒト膀胱癌細胞株RT112を2×10cellsの細胞数でPBS+BSA+EDTA混合溶液200μlに懸濁したコントロールを用意し、それぞれFACScaliburフローサイトメーター(ベクトン・ディッキンソン製)を用いてメーカーのプロトコルに従い、励起レーザー633nm、蛍光検出フィルタ650−670nmの設定で検出を行った。その結果を図5に示す。コントロールにおいて蛍光強度の高い細胞群が確認されなかった。一方、試験溶液A、試験溶液Bは同様に蛍光強度の高い細胞群が確認された。これらのことから、酸化チタン−抗EpCAM抗体複合体粒子は抗原を有する膀胱癌細胞に対して強く結合することが示された。 Controls prepared by suspending the test solution A, test solution B and the logarithmically growing human bladder cancer cell line RT112 in 2 × 10 5 cells in 200 μl of PBS + BSA + EDTA mixed solution were prepared, respectively. FACScalibur flow site Detection was performed using a meter (manufactured by Becton Dickinson) according to the manufacturer's protocol, with settings of excitation laser 633 nm and fluorescence detection filter 650-670 nm. The result is shown in FIG. A cell group with high fluorescence intensity was not confirmed in the control. On the other hand, in the test solution A and the test solution B, a cell group having high fluorescence intensity was confirmed. These results indicate that the titanium oxide-anti-EpCAM antibody complex particles bind strongly to bladder cancer cells having antigens.

Claims (16)

酸化チタン粒子の表面に、カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基の群から選択される少なくとも一つの官能基を介して結合されてなる水溶性高分子を備えてなる、酸化チタン複合体と、
該酸化チタン複合体の表面に結合されてなるリンカー分子と、
該リンカー分子を介して結合されてなる、膀胱癌細胞の表面抗原に対して特異的に結合する抗体と
を含んでなり、超音波の照射による触媒活性を有する酸化チタン−抗体複合体である膀胱癌治療剤であって、
前記リンカー分子が、
(1)カルボキシル基、アミノ基、ジオール基、サリチル酸基、およびリン酸基の群から選択される少なくとも一つの官能基を有し、
(2)a)炭素数6〜40の飽和又は不飽和の鎖状炭化水素基、b)置換基を有するか有しない飽和又は不飽和の5〜6員環複素環式基、又はc)置換基を有するか有しない飽和又は不飽和の5〜6員環環状炭化水素基を含んでなる化合物であり、
該官能基を介して前記酸化チタンと結合され、該官能基同士で重合することが無く、
前記膀胱癌治療剤が、膀胱内に注入されて抗原である膀胱癌細胞の表面抗原と結合され、排尿もしくは膀胱内洗浄によって未結合の膀胱癌治療剤が除去されることにより投与され、
その後に膀胱に超音波照射を行う方法において用いられることを特徴とする、膀胱癌治療剤。
It comprises a water-soluble polymer that is bonded to the surface of the titanium oxide particles via at least one functional group selected from the group consisting of a carboxyl group, an amino group, a diol group, a salicylic acid group, and a phosphoric acid group. A titanium oxide composite,
A linker molecule bonded to the surface of the titanium oxide complex;
A bladder that is a titanium oxide-antibody complex comprising an antibody that specifically binds to a surface antigen of bladder cancer cells, which is bound via the linker molecule, and has catalytic activity by irradiation with ultrasonic waves A cancer therapeutic agent,
The linker molecule is
(1) having at least one functional group selected from the group of carboxyl group, amino group, diol group, salicylic acid group, and phosphoric acid group,
(2) a) a saturated or unsaturated chain hydrocarbon group having 6 to 40 carbon atoms, b) a saturated or unsaturated 5- or 6-membered heterocyclic group having or not having a substituent, or c) substitution A compound comprising a saturated or unsaturated 5- or 6-membered cyclic hydrocarbon group with or without a group,
Bonded with the titanium oxide via the functional group, without polymerizing the functional groups,
The bladder cancer therapeutic agent is injected into the bladder and combined with the surface antigen of bladder cancer cells, which is an antigen, and administered by removing unbound bladder cancer therapeutic agent by urination or intravesical washing,
A therapeutic agent for bladder cancer, which is used in a method of subsequently irradiating a bladder with ultrasonic waves.
前記リンカー分子の結合量は前記酸化チタン粒子の質量あたり、1×10−6〜1×10−3mol/酸化チタン粒子‐gであることを特徴とする、請求項1に記載の膀胱癌治療剤。 2. The bladder cancer treatment according to claim 1, wherein the amount of the linker molecule bound is 1 × 10 −6 to 1 × 10 −3 mol / titanium oxide particles-g per mass of the titanium oxide particles. Agent. 前記リンカー分子がカテコール類である、請求項1または2に記載の膀胱癌治療剤。   The therapeutic agent for bladder cancer according to claim 1 or 2, wherein the linker molecule is a catechol. 前記リンカー分子が、ドーパミン、ジヒドロキシフェニルプロピオン酸からなる群から選択される少なくとも一種である、請求項3に記載の膀胱癌治療剤。   The bladder cancer therapeutic agent according to claim 3, wherein the linker molecule is at least one selected from the group consisting of dopamine and dihydroxyphenylpropionic acid. 前記水溶性高分子が重量平均分子量5000〜40000である、請求項1〜4のいずれか1項に記載の膀胱癌治療剤。   The therapeutic agent for bladder cancer according to any one of claims 1 to 4, wherein the water-soluble polymer has a weight average molecular weight of 5000 to 40000. 前記水溶性高分子が、ポリエチレングリコール、ポリアクリル酸、ポリエチレンイミンの群から選択される少なくとも一種を含んでなる、請求項1〜5のいずれか一項に記載の膀胱癌治療剤。   The therapeutic agent for bladder cancer according to any one of claims 1 to 5, wherein the water-soluble polymer comprises at least one selected from the group consisting of polyethylene glycol, polyacrylic acid, and polyethyleneimine. 20〜200nmの粒子径を有する、請求項1〜6のいずれか一項に記載の膀胱癌治療剤。   The bladder cancer therapeutic agent according to any one of claims 1 to 6, which has a particle size of 20 to 200 nm. 前記抗体が、抗EpCAM抗体、抗CD44抗体、および抗EGFレセプター抗体からなる群から選択されるものである、請求項1〜7のいずれか一項に記載の膀胱癌治療剤。   The bladder cancer therapeutic agent according to any one of claims 1 to 7, wherein the antibody is selected from the group consisting of an anti-EpCAM antibody, an anti-CD44 antibody, and an anti-EGF receptor antibody. 前記抗体がモノクローナル抗体である、請求項1〜8のいずれか一項に記載の膀胱癌治療剤。   The therapeutic agent for bladder cancer according to any one of claims 1 to 8, wherein the antibody is a monoclonal antibody. 前記リンカー分子を介してさらに蛍光分子が結合されてなる、請求項1〜9のいずれか一項に記載の膀胱癌治療剤。   The therapeutic agent for bladder cancer according to any one of claims 1 to 9, wherein a fluorescent molecule is further bound via the linker molecule. 前記リンカー分子を介してさらに低原子価遷移金属を含む分子が結合されてなる、請求項1〜10のいずれか一項に記載の膀胱癌治療剤。   The therapeutic agent for bladder cancer according to any one of claims 1 to 10, further comprising a molecule containing a low-valent transition metal bonded through the linker molecule. 請求項1〜11のいずれか一項に記載の膀胱癌治療剤と、該膀胱癌治療剤が分散される溶媒とを含んでなる、分散液。   A dispersion comprising the bladder cancer therapeutic agent according to any one of claims 1 to 11 and a solvent in which the bladder cancer therapeutic agent is dispersed. 前記溶媒が、水系溶媒である、請求項12に記載の分散液。   The dispersion according to claim 12, wherein the solvent is an aqueous solvent. 前記溶媒のpHが5〜8である、請求項12または13に記載の分散液。   The dispersion according to claim 12 or 13, wherein the solvent has a pH of 5 to 8. 前記溶媒が、生理食塩水である、請求項12〜14のいずれか一項に記載の分散液。   The dispersion according to any one of claims 12 to 14, wherein the solvent is physiological saline. 前記膀胱癌治療剤が、0.001〜1質量%含有される、請求項12〜15のいずれか一項に記載の分散液。   The dispersion liquid as described in any one of Claims 12-15 in which the said bladder cancer therapeutic agent contains 0.001-1 mass%.
JP2009027692A 2009-02-09 2009-02-09 Treatment for bladder cancer Expired - Fee Related JP5224531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009027692A JP5224531B2 (en) 2009-02-09 2009-02-09 Treatment for bladder cancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009027692A JP5224531B2 (en) 2009-02-09 2009-02-09 Treatment for bladder cancer

Publications (2)

Publication Number Publication Date
JP2010180192A JP2010180192A (en) 2010-08-19
JP5224531B2 true JP5224531B2 (en) 2013-07-03

Family

ID=42762007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009027692A Expired - Fee Related JP5224531B2 (en) 2009-02-09 2009-02-09 Treatment for bladder cancer

Country Status (1)

Country Link
JP (1) JP5224531B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6218263B2 (en) * 2012-08-29 2017-10-25 学校法人福岡大学 Antitumor agent using water-soluble titania-silica composite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316946A (en) * 2001-04-19 2002-10-31 Japan Science & Technology Corp Method for injecting photocatalyst into living body and particle to be driven into living body and method for producing the particle
US20040022726A1 (en) * 2002-06-03 2004-02-05 Goldenberg David M. Methods and compositions for intravesical therapy of bladder cancer
JP3835700B2 (en) * 2004-03-31 2006-10-18 東陶機器株式会社 Dispersion containing titanium dioxide composite with molecular discrimination
WO2007122956A1 (en) * 2006-03-24 2007-11-01 Toto Ltd. Titanium oxide complex particle, dispersion solution of the particle, and process for production of the particle

Also Published As

Publication number Publication date
JP2010180192A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
Hou et al. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform
Chen et al. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles
Lin et al. Active targeting of nano-photosensitizer delivery systems for photodynamic therapy of cancer stem cells
Dostalova et al. Site-directed conjugation of antibodies to apoferritin nanocarrier for targeted drug delivery to prostate cancer cells
Kogan et al. Peptides and metallic nanoparticles for biomedical applications
JP5815990B2 (en) Composite particle, contrast agent for photoacoustic imaging, and method for producing the composite particle
Chouikrat et al. Non polymeric nanoparticles for photodynamic therapy applications: recent developments
US20110177153A1 (en) targeted nanoparticle drug for magnetic hyperthermia treatment on malignant tumors
WO2007122956A1 (en) Titanium oxide complex particle, dispersion solution of the particle, and process for production of the particle
Zhou et al. Hyaluronic acid-functionalized hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for cancer chemo-photodynamic therapy
Sarkar et al. Micellear gold nanoparticles as delivery vehicles for dual tyrosine kinase inhibitor ZD6474 for metastatic breast cancer treatment
Narsireddy et al. Targeted in vivo photodynamic therapy with epidermal growth factor receptor-specific peptide linked nanoparticles
WO2009144775A1 (en) Anti-tumor agent
Kotagiri et al. Selective pathogen targeting and macrophage evading carbon nanotubes through dextran sulfate coating and PEGylation for photothermal theranostics
WO2010016581A1 (en) Ultrasonic cancer therapy accelerator
Kim et al. A novel therapeutic strategy of multimodal nanoconjugates for state-of-the-art brain tumor phototherapy
JP2009091345A (en) Titanium oxide functional molecule composite particle
Tudisco et al. Comparison between folic acid and gH625 peptide-based functionalization of Fe 3 O 4 magnetic nanoparticles for enhanced cell internalization
Xue et al. Peptide-functionalized hydrogel cubes for active tumor cell targeting
JP6288970B2 (en) Compound and contrast agent for photoacoustic imaging having the compound
Chen et al. Folate-binding protein self-aggregation drives agglomeration of folic acid targeted iron oxide nanoparticles
Chen et al. Facile fabrication of near-infrared-resonant and magnetic resonance imaging-capable nanomediators for photothermal therapy
Achilli et al. Enhanced gold nanoparticle-tumor cell recognition by albumin multilayer coating
Jia et al. ICG-dimeric her2-specific affibody conjugates for tumor imaging and photothermal therapy for her2-positive tumors
JP6132589B2 (en) Particle and contrast agent for optical imaging having the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

R150 Certificate of patent or registration of utility model

Ref document number: 5224531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees