JP5221907B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP5221907B2
JP5221907B2 JP2007202763A JP2007202763A JP5221907B2 JP 5221907 B2 JP5221907 B2 JP 5221907B2 JP 2007202763 A JP2007202763 A JP 2007202763A JP 2007202763 A JP2007202763 A JP 2007202763A JP 5221907 B2 JP5221907 B2 JP 5221907B2
Authority
JP
Japan
Prior art keywords
water level
detection
water
heat source
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007202763A
Other languages
Japanese (ja)
Other versions
JP2009036486A (en
Inventor
吉照 山崎
智明 田邉
将人 堀
尚希 今任
武 望月
靖二 大越
陵太郎 舘山
大輔 久保井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007202763A priority Critical patent/JP5221907B2/en
Publication of JP2009036486A publication Critical patent/JP2009036486A/en
Application granted granted Critical
Publication of JP5221907B2 publication Critical patent/JP5221907B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、複数の熱源機を備えた給湯装置に関する。   The present invention relates to a hot water supply apparatus including a plurality of heat source machines.

圧縮機の吐出冷媒を水熱交換器、減圧器、室外熱交換器に通して圧縮機に戻し水熱交換器を凝縮器として機能させるヒートポンプ式冷凍サイクルを有し、その水熱交換器に水を循環させて温水を作りそれをタンクに貯えながら給湯負荷へ供給する給湯装置がある(例えば特許文献1)。
特開2005―308250号公報
It has a heat pump refrigeration cycle that passes the refrigerant discharged from the compressor through a water heat exchanger, a decompressor, and an outdoor heat exchanger and returns it to the compressor. The water heat exchanger functions as a condenser. There is a hot water supply device that circulates water and makes hot water and supplies it to a hot water supply load while storing it in a tank (for example, Patent Document 1).
JP 2005-308250 A

上記の給湯装置では、給湯負荷への温水供給に支障が生じないよう、常に十分な量の温水をタンクに常に貯えておく必要がある。   In the above hot water supply apparatus, it is necessary to always store a sufficient amount of hot water in the tank so as not to hinder the supply of hot water to the hot water supply load.

この発明は上記の事情を考慮したもので、その目的は、タンク内の水位を常に最適な状態に維持することができて、給湯負荷への温水供給に支障を生じない信頼性にすぐれた給湯装置を提供することである。   The present invention has been made in consideration of the above circumstances, and its purpose is to maintain a water level in the tank at an optimal state at all times, and to provide hot water supply with excellent reliability that does not hinder hot water supply to the hot water supply load. Is to provide a device.

請求項1に係る発明の給湯装置は、温水を作る複数の熱源機と、各熱源機で作られた温水を貯えて給湯負荷へ供給するための開放型タンクと、開放型タンク内の圧力を検知する圧力センサと、圧力センサとの検知圧力に基づき開放型タンク内の水位を検出する水位検出手段と、水位検出手段の検出水位に応じて各熱源機の運転台数を制御する制御手段と、開放型タンクの深さ方向に沿って互いに長さが異なる複数の電極棒を有しこれら電極棒の相互間の液体を通した通電により開放型タンク内の水位を検出する電極棒検出ユニットを備え、制御手段は、電極棒検出ユニットの検出水位が満水で水位検出手段の検出水位が満水でない場合に水位検出手段の検出水位に対する補正値を決定し、以後、その補正値を水位検出手段の検出水位に加えた値を新たな検出水位とする。
A hot water supply apparatus according to a first aspect of the present invention includes a plurality of heat source units for producing hot water, an open type tank for storing hot water produced by each heat source unit and supplying it to a hot water supply load, and pressure in the open type tank. A pressure sensor to detect, a water level detection means for detecting the water level in the open tank based on the detection pressure of the pressure sensor, and a control means for controlling the number of operating heat source units according to the detected water level of the water level detection means, Provided with an electrode rod detection unit that has a plurality of electrode rods of different lengths along the depth direction of the open tank and detects the water level in the open tank by energizing the liquid between the electrode rods. The control means determines a correction value for the detection water level of the water level detection means when the detection water level of the electrode rod detection unit is full and the detection water level of the water level detection means is not full, and thereafter, the correction value is detected by the water level detection means. Added to the water level And as a new detection level.

この発明の給湯装置によれば、タンク内の水位を常に最適な状態に維持することができる。これにより、給湯負荷への温水供給に支障を生じることがなく、信頼性の向上が図れる。   According to the hot water supply apparatus of the present invention, the water level in the tank can always be maintained in an optimum state. Thereby, the hot water supply to the hot water supply load is not hindered, and the reliability can be improved.

[1]以下、この発明の第1の実施形態について図面を参照して説明する。
図1に示すように、複数台の熱源機1が給水側主配管2と給湯側主配管3との間に並列に接続されるとともに、その給水側主配管2および給湯側主配管3との間に密閉型タンク4が接続されている。給水側主配管2は、水源(図示しない)の水を密閉型タンク4および各熱源機1に供給するとともに、密閉型タンク4内の水(または温水)を各熱源機1に導く。給湯側主配管3は、各熱源機1から流出する温水を密閉型タンク4に供給するとともに、密閉型タンク4内の温水を開放型タンク5に供給する。開放型タンク5は、温水配管を介して給湯負荷に接続されている。
[1] A first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a plurality of heat source devices 1 are connected in parallel between a water supply side main pipe 2 and a hot water supply side main pipe 3, and the water supply side main pipe 2 and the hot water supply side main pipe 3 are connected to each other. A sealed tank 4 is connected between them. The water supply side main pipe 2 supplies water from a water source (not shown) to the sealed tank 4 and each heat source unit 1 and guides the water (or hot water) in the sealed tank 4 to each heat source unit 1. The hot water supply side main pipe 3 supplies hot water flowing out from each heat source unit 1 to the sealed tank 4 and supplies hot water in the sealed tank 4 to the open tank 5. The open tank 5 is connected to a hot water supply load via a hot water pipe.

なお、開放型タンク5には内部の水位を検出する手段として後述の電極棒検出ユニット50および圧力センサ51が設けられ、その電極棒検出ユニット50および圧力センサ51が制御ユニット7に接続されている。   The open tank 5 is provided with an electrode bar detection unit 50 and a pressure sensor 51, which will be described later, as means for detecting the internal water level, and the electrode bar detection unit 50 and the pressure sensor 51 are connected to the control unit 7. .

各熱源機1の具体的な構成を図2に示す。
すなわち、圧縮機11から吐出される冷媒が四方弁12を介して水熱交換器13に流れ、その水熱交換器13を経た冷媒が減圧器である膨張弁14、室外熱交換器15、および上記四方弁12を通って圧縮機11に吸込まれる。室外熱交換器15に外気を供給するための室外ファン16がその室外熱交換器15の近傍に設けられている。これら圧縮機11から室外ファン16までの機器により、ヒートポンプ式冷凍サイクルが構成されている。
上記給水側主配管2から第1三方弁22の第1流路の一端に第1配管21が接続され、その第1三方弁22の第1流路および第2流路のそれぞれ他端から上記水熱交換器13の水入口にポンプ24を介して第2配管23が接続されている。さらに、水熱交換器13の水出口から第2三方弁26の第3流路および第4流路のそれぞれ一端に第3配管25が接続され、その第3流路の他端から第1三方弁22の第2流路の一端に第4配管27が接続されている。また、第4配管27の中途部から給湯側主配管3に第5配管28が接続されるとともに、第2三方弁26の第4流路の他端から上記第1配管21に第6配管29が接続されている。これら第1配管21から第6配管29までの部品により、水サイクルが構成されている。
A specific configuration of each heat source unit 1 is shown in FIG.
That is, the refrigerant discharged from the compressor 11 flows to the water heat exchanger 13 via the four-way valve 12, and the refrigerant that has passed through the water heat exchanger 13 is the expansion valve 14, which is a decompressor, the outdoor heat exchanger 15, and The air is sucked into the compressor 11 through the four-way valve 12. An outdoor fan 16 for supplying outside air to the outdoor heat exchanger 15 is provided in the vicinity of the outdoor heat exchanger 15. The equipment from the compressor 11 to the outdoor fan 16 constitutes a heat pump refrigeration cycle.
A first pipe 21 is connected from the water supply side main pipe 2 to one end of the first flow path of the first three-way valve 22, and the first flow path and the second flow path of the first three-way valve 22 are respectively connected from the other ends. A second pipe 23 is connected to the water inlet of the water heat exchanger 13 via a pump 24. Further, a third pipe 25 is connected to one end of each of the third flow path and the fourth flow path of the second three-way valve 26 from the water outlet of the water heat exchanger 13, and the first three-way is connected to the other end of the third flow path. A fourth pipe 27 is connected to one end of the second flow path of the valve 22. The fifth pipe 28 is connected to the hot water supply main pipe 3 from the middle of the fourth pipe 27, and the sixth pipe 29 is connected to the first pipe 21 from the other end of the fourth flow path of the second three-way valve 26. Is connected. A water cycle is constituted by these parts from the first pipe 21 to the sixth pipe 29.

なお、第1三方弁22は選択的な開閉が可能な第1流路および第2流路を有し、第2三方弁26は選択的な開閉が可能な第3流路および第4流路を有している。   The first three-way valve 22 has a first flow path and a second flow path that can be selectively opened and closed, and the second three-way valve 26 is a third flow path and a fourth flow path that can be selectively opened and closed. have.

水熱交換器13に熱交換器温度センサ31が取付けられ、第2配管23における水熱交換器13の水入口近傍に流入側温度センサ32が取付けられ、第3配管25における水熱交換器13の水出口近傍に流出側温度センサ33が取付けられている。熱交換器温度センサ31は、水熱交換器13の温度(凝縮温度)Tc(℃)を検知する。流入側温度センサ32は、水熱交換器13に流入する水(または温水)の温度Twi(℃)を検知する。流出側温度センサ33は、水熱交換器13から流出する温水(または水)の温度Two(℃)を検知する。   A heat exchanger temperature sensor 31 is attached to the water heat exchanger 13, an inflow side temperature sensor 32 is attached in the vicinity of the water inlet of the water heat exchanger 13 in the second pipe 23, and the water heat exchanger 13 in the third pipe 25. An outflow temperature sensor 33 is attached in the vicinity of the water outlet. The heat exchanger temperature sensor 31 detects the temperature (condensation temperature) Tc (° C.) of the water heat exchanger 13. The inflow side temperature sensor 32 detects the temperature Twi (° C.) of water (or hot water) flowing into the water heat exchanger 13. The outflow side temperature sensor 33 detects the temperature Two (° C.) of the hot water (or water) flowing out from the water heat exchanger 13.

圧縮機11と四方弁12との間の高圧側冷媒配管に吐出冷媒温度センサ41および高圧スイッチ42が取付けられ、室外熱交換器15に熱交換器温度センサ43が取付けられている。吐出冷媒温度センサ41は、圧縮機11の吐出冷媒温度Tdを検知する。高圧スイッチ42は、圧縮機11の吐出冷媒圧力(高圧側圧力)Pdの異常上昇時に作動する。熱交換器温度センサ43は、室外熱交換器15の温度(蒸発温度)Te(℃)を検知する。   A discharge refrigerant temperature sensor 41 and a high-pressure switch 42 are attached to the high-pressure side refrigerant pipe between the compressor 11 and the four-way valve 12, and a heat exchanger temperature sensor 43 is attached to the outdoor heat exchanger 15. The discharge refrigerant temperature sensor 41 detects the discharge refrigerant temperature Td of the compressor 11. The high pressure switch 42 is activated when the discharge refrigerant pressure (high pressure side pressure) Pd of the compressor 11 is abnormally increased. The heat exchanger temperature sensor 43 detects the temperature (evaporation temperature) Te (° C.) of the outdoor heat exchanger 15.

このような給湯装置の各熱源機1の外観、開放型タンク5の内部の構成、制御ユニット7の配置などを図3に示す。
まず、開放型タンク5の上部に電極棒検出ユニット50が設けられている。この電極棒検出ユニット50は、開放型タンク5の深さ方向に沿って互いに長さが異なる複数の電極棒50a,50b,…50eを有し、これら電極棒50a,50b,…50eの相互間の液体を通した通電により開放型タンク5内の水位Sa(%)を段階的に検出する。このうち、最短の電極棒50aが満水(100%)検出用、最長の電極棒50eが渇水(0%)検出用となっている。
FIG. 3 shows the appearance of each heat source device 1 of such a hot water supply apparatus, the internal configuration of the open tank 5, the arrangement of the control unit 7, and the like.
First, an electrode bar detection unit 50 is provided on the upper part of the open tank 5. This electrode rod detection unit 50 has a plurality of electrode rods 50a, 50b,... 50e having different lengths along the depth direction of the open-type tank 5, and the electrode rods 50a, 50b,. The water level Sa (%) in the open tank 5 is detected stepwise by energization through the liquid. Among these, the shortest electrode rod 50a is used for detecting full water (100%), and the longest electrode rod 50e is used for detecting drought (0%).

また、開放型タンク5内の下部に、圧力センサ51および温度センサ52が取り付けられている。圧力センサ51は、開放型タンク5内の水の圧力を検知する。温度センサ52は、開放型タンク5内の水の温度を検知する。   A pressure sensor 51 and a temperature sensor 52 are attached to the lower part of the open tank 5. The pressure sensor 51 detects the pressure of water in the open tank 5. The temperature sensor 52 detects the temperature of water in the open tank 5.

さらに、開放型タンク5の側壁に渇水時給水用の緊急給水管9が連通され、その緊急給水管9に二方弁53が設けられている。   Further, an emergency water supply pipe 9 for water supply during drought is communicated with the side wall of the open tank 5, and a two-way valve 53 is provided in the emergency water supply pipe 9.

そして、密閉型タンク4に制御ユニット7が取り付けられ、その制御ユニット7に各熱源機1、操作表示器8、電極棒検出ユニット50、圧力センサ51、温度センサ52が配線接続されている。
制御ユニット7は、主要な機能として、次の(1)〜(4)の手段を有する。
(1)熱源機1の運転開始に際し、ヒートポンプ式冷凍サイクルの運転およびポンプ24の運転を開始し、熱交換器温度センサ31の検知温度Tcまたは流入側温度センサ32の検知温度Twiが設定値に達するまで、第2三方弁26の第3流路を閉じて第4流路を開き、かつ第1三方弁22の第1流路を開いて第2流路を閉じることにより、ポンプ24、水熱交換器13、第3配管25、第2三方弁26の第4流路、第6配管29、第1配管21、第1三方弁22の第1流路を通して水が循環する初期循環回路を形成する第1制御手段。
A control unit 7 is attached to the sealed tank 4, and each heat source unit 1, operation indicator 8, electrode bar detection unit 50, pressure sensor 51, and temperature sensor 52 are connected to the control unit 7 by wiring.
The control unit 7 has the following means (1) to (4) as main functions.
(1) At the start of the operation of the heat source unit 1, the operation of the heat pump refrigeration cycle and the operation of the pump 24 are started, and the detected temperature Tc of the heat exchanger temperature sensor 31 or the detected temperature Twi of the inflow side temperature sensor 32 becomes a set value. Until the second three-way valve 26 is closed and the fourth flow path is opened, and the first three-way valve 22 is opened and the second flow path is closed. An initial circulation circuit in which water circulates through the heat exchanger 13, the third pipe 25, the fourth flow path of the second three-way valve 26, the sixth pipe 29, the first pipe 21, and the first flow path of the first three-way valve 22. 1st control means to form.

(2)上記第1制御手段による初期循環回路の形成後、熱交換器温度センサ31の検知温度Tcまたは流入側温度センサ32の検知温度Twiが設定値を超えると、第1三方弁22の第1流路を開いて第2流路を閉じ、かつ第2三方弁26の第3流路を開いて第4流路を閉じることにより、給水側主配管2の水を第1配管21、第1三方弁22の第1流路、第2配管23、ポンプ24を通して水熱交換器13に送り、その水熱交換器13から流出する温水を第3配管25、第2三方弁26の第3流路、第4配管27、第5配管28を通して給湯側主配管3に送る出湯回路を形成する第2制御手段。   (2) After the initial circuit is formed by the first control means, when the detected temperature Tc of the heat exchanger temperature sensor 31 or the detected temperature Twi of the inflow side temperature sensor 32 exceeds a set value, the first three-way valve 22 By opening one flow path and closing the second flow path, and opening the third flow path of the second three-way valve 26 and closing the fourth flow path, the water in the water supply side main pipe 2 is supplied to the first pipe 21 and the second flow path. The first flow path of the one-way valve 22, the second pipe 23, and the pump 24 are sent to the water heat exchanger 13, and the warm water flowing out of the water heat exchanger 13 is transferred to the third pipe 25 and the third of the second three-way valve 26. Second control means for forming a tapping circuit for sending to the hot water supply side main pipe 3 through the flow path, the fourth pipe 27 and the fifth pipe 28.

(3)圧力センサ51の検知圧力に基づき開放型タンク5内の水位Sb(%)を検出する水位検出手段。この検出は、電極棒検出ユニット50の段階的な検出と異なり、無段階で細かい点に特徴を有している。この水位検出手段の検出水位を、以下、圧力センサ51の検出水位という。   (3) Water level detection means for detecting the water level Sb (%) in the open tank 5 based on the pressure detected by the pressure sensor 51. Unlike the step detection of the electrode rod detection unit 50, this detection is characterized by fine steps without any steps. Hereinafter, the detected water level of the water level detecting means is referred to as a detected water level of the pressure sensor 51.

(4)上記圧力センサ51の検出水位Sb(%)または上記電極棒検出ユニット50の検出水位Sa(%)に応じて各熱源機1の運転台数Nを制御する第3制御手段。   (4) Third control means for controlling the operating number N of each heat source unit 1 according to the detected water level Sb (%) of the pressure sensor 51 or the detected water level Sa (%) of the electrode rod detection unit 50.

つぎに、作用について説明する。
(a)熱源機1の初期循環回路および出湯回路
熱源機1の運転開始に際し、ヒートポンプ式冷凍サイクルの運転およびポンプ24の運転が開始され、図4に示す条件に基づき、熱交換器温度センサ31の検知温度Tcが設定値Tcsに達するまで、または流入側温度センサ32の検知温度Twiが設定値Twisに達するまで、第2三方弁26の第3流路が閉じられて第4流路が開かれ、かつ第1三方弁22の第1流路が開かれて第2流路が閉じられる。これにより、図2に矢印で示すように、ヒートポンプ式冷凍サイクルにおいて、圧縮機11の吐出冷媒が四方弁12、水熱交換器13、膨張弁14、室外熱交換器15、四方弁12を通って圧縮機11に吸込まれる流れが生じて水熱交換器が凝縮器として機能する。水サイクルでは、水がポンプ24、水熱交換器13、第3配管25、第2三方弁26の第4流路、第6配管29、第1配管21、第1三方弁22の第1流路を通って循環する初期循環回路が形成される。
Next, the operation will be described.
(A) The initial circulation circuit and the hot water circuit of the heat source unit 1
When the operation of the heat source unit 1 is started, the operation of the heat pump refrigeration cycle and the operation of the pump 24 are started until the detected temperature Tc of the heat exchanger temperature sensor 31 reaches the set value Tcs based on the conditions shown in FIG. Until the detection temperature Twi of the inflow side temperature sensor 32 reaches the set value Twis, the third flow path of the second three-way valve 26 is closed and the fourth flow path is opened, and the first flow path of the first three-way valve 22 is opened. Is opened and the second flow path is closed. As a result, as shown by arrows in FIG. 2, in the heat pump refrigeration cycle, the refrigerant discharged from the compressor 11 passes through the four-way valve 12, the water heat exchanger 13, the expansion valve 14, the outdoor heat exchanger 15, and the four-way valve 12. Thus, a flow sucked into the compressor 11 is generated, and the water heat exchanger functions as a condenser. In the water cycle, water flows through the pump 24, the water heat exchanger 13, the third pipe 25, the fourth flow path of the second three-way valve 26, the sixth pipe 29, the first pipe 21, and the first flow of the first three-way valve 22. An initial circulation circuit that circulates through the path is formed.

この初期循環回路の形成後、図4に示す条件に基づき、熱交換器温度センサ31の検知温度Tcが設定値Tcsを超えたとき、または流入側温度センサ32の検知温度Twiが設定値Twisを超えたとき、第1三方弁22の第1流路が開かれて第2流路が閉じられ、かつ第2三方弁26の第3流路が開かれて第4流路が閉じられる。これにより、図4に矢印で示すように、給水側主配管2の水が第1配管21、第1三方弁22の第1流路、第2配管23、ポンプ24を通って水熱交換器13に送られ、その水熱交換器13から流出する温水が第3配管25、第2三方弁26の第3流路、第4配管27、第5配管28を通って給湯側主配管3に送られる出湯回路が形成される。   After the initial circulation circuit is formed, based on the conditions shown in FIG. 4, when the detected temperature Tc of the heat exchanger temperature sensor 31 exceeds the set value Tcs, or the detected temperature Twi of the inflow side temperature sensor 32 becomes the set value Twis. When exceeded, the first flow path of the first three-way valve 22 is opened and the second flow path is closed, and the third flow path of the second three-way valve 26 is opened and the fourth flow path is closed. As a result, as shown by arrows in FIG. 4, the water in the water supply side main pipe 2 passes through the first pipe 21, the first flow path of the first three-way valve 22, the second pipe 23, and the pump 24, and the water heat exchanger. The hot water flowing out from the water heat exchanger 13 passes through the third pipe 25, the third flow path of the second three-way valve 26, the fourth pipe 27, and the fifth pipe 28 to the hot water supply side main pipe 3. A feeding hot water circuit is formed.

このように、運転開始時は、先ず初期循環回路を形成して水熱交換器13を温め、水熱交換器13が十分に温まってから給湯側主配管3への出湯を行うことにより、給湯側主配管3を流れる温水の不要な温度低下を回避することができて、十分に温度上昇した高温水が給湯側主配管3を介して密閉型タンク4および開放型タンク5に供給される。   Thus, at the start of operation, an initial circulation circuit is first formed to warm the water heat exchanger 13, and after the water heat exchanger 13 is sufficiently warmed, the hot water is discharged to the hot water supply side main pipe 3, thereby The unnecessary temperature drop of the hot water flowing through the side main pipe 3 can be avoided, and high-temperature water whose temperature has risen sufficiently is supplied to the sealed tank 4 and the open tank 5 through the hot water supply side main pipe 3.

とくに、複数台の熱源機1を備え、その各熱源機1の運転台数を変えることができるので、全体の給湯能力を増大できるとともに、その給湯能力を広範囲で調節することができ
(b)停止中の熱源機1への温水の流入阻止
停止中の熱源機1では、第2三方弁26の第3流路が閉じられて第4流路が開かれ、かつ第1三方弁22の第1流路が開かれて第2流路が閉じられ、給湯回路が解除されて図2の初期循環回路が準備される。これにより、運転中の熱源機1で作られた給湯側主配管3内の温水が停止中の熱源機1の水サイクルに流入することがなくなり、運転中の熱源機1で作られた温水およびその熱エネルギを無駄なく密閉型タンク4および開放型タンク5に供給して貯えることができ、省エネルギ性および信頼性の向上が図れる。
In particular, since a plurality of heat source units 1 are provided and the number of operating heat source units 1 can be changed, the overall hot water supply capacity can be increased and the hot water supply capacity can be adjusted in a wide range. (B) Stop Of inflow of hot water into the heat source unit 1
In the stopped heat source unit 1, the third flow path of the second three-way valve 26 is closed and the fourth flow path is opened, and the first flow path of the first three-way valve 22 is opened and the second flow path is opened. The hot water supply circuit is closed and the initial circulation circuit of FIG. 2 is prepared. As a result, the hot water in the hot water supply side main pipe 3 made by the operating heat source unit 1 does not flow into the water cycle of the stopped heat source unit 1, and the hot water made by the operating heat source unit 1 and The heat energy can be supplied and stored in the sealed tank 4 and the open tank 5 without waste, and energy saving and reliability can be improved.

(c)水位検出および運転台数制御
開放型タンク5に対する水位検出および各熱源機1の運転台数制御について、図6のフローチャートを参照しながら説明する。
開放型タンク5に圧力センサ51が取り付けられていないとき(ステップ101のYES)、あるいは圧力センサ51に何らかの異常があるとき(ステップ101のNO、ステップ102のYES)、電極棒検出ユニット50の検出水位Sa(%)に応じて各熱源機1の運転台数Nが制御される(ステップ103)。すなわち、電極棒検出ユニット50の検出水位Sa(%)と操作表示器8での設定水位St(%)とが比較され、検出水位Sa(%)が設定水位St(%)に達していなければ各熱源機1の運転台数Nが増やされ、検出水位Sa(%)が設定水位St(%)を超えていれば各熱源機1の運転台数Nが減らされ、検出水位Sa(%)が設定水位St(%)とほぼ同じであればそのときの各熱源機1の運転台数Nが維持される。なお、圧力センサ51の異常の有無は、圧力センサ51の出力から判別することができる。また、圧力センサ51に異常があれば、その旨の情報が操作表示器8で表示される。
(C) Water level detection and operation number control
The water level detection for the open tank 5 and the control of the number of operating heat source units 1 will be described with reference to the flowchart of FIG.
When the pressure sensor 51 is not attached to the open tank 5 (YES in step 101), or when there is some abnormality in the pressure sensor 51 (NO in step 101, YES in step 102), detection by the electrode rod detection unit 50 The operating number N of each heat source unit 1 is controlled according to the water level Sa (%) (step 103). That is, the detection water level Sa (%) of the electrode rod detection unit 50 is compared with the set water level St (%) on the operation indicator 8, and if the detected water level Sa (%) does not reach the set water level St (%). The operating number N of each heat source unit 1 is increased, and if the detected water level Sa (%) exceeds the set water level St (%), the operating number N of each heat source unit 1 is decreased and the detected water level Sa (%) is set. If it is substantially the same as the water level St (%), the operating number N of each heat source unit 1 at that time is maintained. The presence or absence of abnormality of the pressure sensor 51 can be determined from the output of the pressure sensor 51. If there is an abnormality in the pressure sensor 51, information to that effect is displayed on the operation indicator 8.

圧力センサ51が取り付けられていて(ステップ101のNO)、その圧力センサ51に異常がなく(ステップ102のNO)、かつ後述する要補正フラグfが“1”でないとき(ステップ104のNO)、しかも電極棒検出ユニット50の検出水位Sa(%)が“満水”で圧力センサ51の検出水位Sb(%)が“満水”でないとき(ステップ106のYES)、各熱源機1の運転台数Nが減らされるとともに(ステップ107)、圧力センサ51の検出水位Sb(%)に誤差が存在するとの判断の下に、その誤差を補償するための補正値ΔSb(%)が演算により決定される(ステップ108)。この決定に伴い、要補正フラグfが“1”にセットされる(ステップ109)。この場合、各熱源機1の運転台数Nが減らされるので、開放型タンク5から温水が溢れ出てしまう不具合を未然に防ぐことができる。   When the pressure sensor 51 is attached (NO in step 101), there is no abnormality in the pressure sensor 51 (NO in step 102), and a correction flag f to be described later is not “1” (NO in step 104). Moreover, when the detection water level Sa (%) of the electrode rod detection unit 50 is “full” and the detection water level Sb (%) of the pressure sensor 51 is not “full” (YES in step 106), the number N of operating heat source devices 1 is In addition, the correction value ΔSb (%) for compensating for the error is determined by calculation based on the determination that the error exists in the detected water level Sb (%) of the pressure sensor 51 (step 107) (step 107). 108). With this determination, the correction required flag f is set to “1” (step 109). In this case, since the operating number N of each heat source unit 1 is reduced, it is possible to prevent a problem that hot water overflows from the open tank 5.

要補正フラグfが“1”のとき(ステップ104のYES)、圧力センサ51の検出水位Sb(%)に補正値ΔSb(%)が加えられる(ステップ105)。以後、補正値ΔSb(%)を加えた値が新たな検出水位Sb(%)と見なされる。   When the correction required flag f is “1” (YES in step 104), the correction value ΔSb (%) is added to the detected water level Sb (%) of the pressure sensor 51 (step 105). Hereinafter, a value obtained by adding the correction value ΔSb (%) is regarded as a new detected water level Sb (%).

電極棒検出ユニット50の検出水位Sa(%)および圧力センサ51の検出水位Sb(%)が共に“満水”の場合も(ステップ106のNO、ステップ110のYES)、各熱源機1の運転台数Nが減らされる(ステップ111)。   Even when the detection water level Sa (%) of the electrode rod detection unit 50 and the detection water level Sb (%) of the pressure sensor 51 are both “full” (NO in step 106, YES in step 110), the number of operating heat source units 1 N is decreased (step 111).

電極棒検出ユニット50の検出水位Sa(%)が“渇水”の場合は(ステップ106のNO、ステップ110のNO、ステップ112のYES)、各熱源機1の運転台数Nが増やされるとともに、緊急給水管9の二方弁53が開かれて開放型タンク5に対する緊急的な給水が行われる(ステップ113)。これにより、開放型タンク5の渇水を直ちに解消することができる。   When the detection water level Sa (%) of the electrode rod detection unit 50 is “drought” (NO in step 106, NO in step 110, YES in step 112), the number of operating units N of each heat source unit 1 is increased and emergency The two-way valve 53 of the water supply pipe 9 is opened, and urgent water supply to the open tank 5 is performed (step 113). Thereby, the drought of the open type tank 5 can be eliminated immediately.

電極棒検出ユニット50の検出水位Sa(%)および圧力センサ51の検出水位Sb(%)が“満水”でなく“渇水”でもないとき(ステップ106のNO、ステップ110のNO、ステップ112のNO)、圧力センサ51の検出水位Sb(%)が温度センサ52の検知温度に応じて補正され(ステップ114)、その補正後の検出水位Sb(%)に応じて各熱源機1の運転台数Nが制御される(ステップ115)。圧力センサ51の検出水位Sb(%)には水温に応じた誤差が生じるため、このような温度補正を行っている。   When the detection water level Sa (%) of the electrode rod detection unit 50 and the detection water level Sb (%) of the pressure sensor 51 are neither “full” nor “drought” (NO in step 106, NO in step 110, NO in step 112) ), The detected water level Sb (%) of the pressure sensor 51 is corrected according to the detected temperature of the temperature sensor 52 (step 114), and the number N of operating each heat source unit 1 is operated according to the corrected detected water level Sb (%). Is controlled (step 115). Since an error corresponding to the water temperature occurs in the detected water level Sb (%) of the pressure sensor 51, such temperature correction is performed.

実際の運転台数制御では、検出水位Sb(%)と設定水位St(%)との差ΔS(%)が求められ、その差ΔS(%)と図7の加熱能力設定条件とが照合される。   In actual operation number control, the difference ΔS (%) between the detected water level Sb (%) and the set water level St (%) is obtained, and the difference ΔS (%) is compared with the heating capacity setting condition of FIG. .

例えば、検出水位Sb(%)が設定水位St(%)より高くて、差ΔS(%)が+1(%)〜+5(%)の範囲では、加熱能力P=50(%)が選定される。検出水位Sb(%)が設定水位St(%)よりさらに高くて、差ΔS(%)が+6(%)〜+10(%)の範囲では、加熱能力P=30(%)が選定される。仮に、各熱源機1の台数が10台であれば、加熱能力P=50(%)は運転台数“5台”に相当し、加熱能力P=30(%)は運転台数“3台”に相当する。   For example, when the detected water level Sb (%) is higher than the set water level St (%) and the difference ΔS (%) is in the range of +1 (%) to +5 (%), the heating capacity P = 50 (%) is selected. . When the detected water level Sb (%) is higher than the set water level St (%) and the difference ΔS (%) is in the range of +6 (%) to +10 (%), the heating capacity P = 30 (%) is selected. If the number of heat source devices 1 is 10, the heating capacity P = 50 (%) corresponds to the operating number “5”, and the heating capacity P = 30 (%) corresponds to the operating number “3”. Equivalent to.

検出水位Sb(%)が設定水位St(%)より低くて、差ΔS(%)が−1(%)〜−5(%)の範囲では、加熱能力P=70(%)が選定される。検出水位Sb(%)が設定水位St(%)よりさらに低くて、差ΔS(%)が−6(%)〜−10(%)の範囲では、加熱能力P=100(%)が選定される。仮に、各熱源機1の台数が10台であれば、加熱能力P=70(%)は運転台数“7台”に相当し、加熱能力P=100(%)は運転台数“10台”に相当する。   When the detected water level Sb (%) is lower than the set water level St (%) and the difference ΔS (%) is in the range of −1 (%) to −5 (%), the heating capacity P = 70 (%) is selected. . When the detected water level Sb (%) is further lower than the set water level St (%) and the difference ΔS (%) is in the range of −6 (%) to −10 (%), the heating capacity P = 100 (%) is selected. The If the number of heat source devices 1 is 10, the heating capacity P = 70 (%) corresponds to the operating number “7 units”, and the heating capacity P = 100 (%) corresponds to the operating number “10 units”. Equivalent to.

なお、運転台数の制御に際しては、各熱源機1の起動順位が運転時間の短い順に逐次に変更設定される。これは、各熱源機1の運転時間を平均化し、ひいては各熱源機1の寿命を向上させるためである。   In the control of the number of operating units, the activation order of the heat source units 1 is sequentially changed and set in the order from the shortest operating time. This is because the operation time of each heat source device 1 is averaged, and as a result, the life of each heat source device 1 is improved.

このように、開放型タンク5内の水位を圧力センサ51によって無段階に細かく検出し、その検出水位Sb(%)に応じて各熱源機1の運転台数Nを制御することにより、開放型タンク5内の水位を常に最適な状態に維持することができる。よって、開放型タンク5から給湯負荷への温水供給に支障を生じることがなく、信頼性の向上が図れる。   As described above, the water level in the open tank 5 is finely detected steplessly by the pressure sensor 51, and the operating number N of each heat source unit 1 is controlled according to the detected water level Sb (%). The water level in 5 can always be maintained in an optimum state. Therefore, the hot water supply from the open tank 5 to the hot water supply load is not hindered, and the reliability can be improved.

圧力センサ51に異常が生じた場合は、電極棒検出ユニット50の検出水位Sa(%)に応じて各熱源機1の運転台数Nを制御するので、安全である。   If an abnormality occurs in the pressure sensor 51, the number N of operating heat source devices 1 is controlled according to the detected water level Sa (%) of the electrode rod detection unit 50, which is safe.

電極棒検出ユニット50の検出水位Sa(%)または圧力センサ51の検出水位Sb(%)が満水の場合は、各熱源機1の運転台数Nを減らすので、開放型タンク5から温水が溢れ出てしまう不具合を未然に防ぐことができる。とくに、電極棒検出ユニット50の検出水位Sa(%)が満水であれば、圧力センサ51の検出水位Sb(%)が満水でなくても、各熱源機1の運転台数Nを減らすので、安全である。しかも、この場合、圧力センサ51の検出水位Sb(%)に誤差が存在するとの判断の下に、その誤差を補償するための補正値ΔSbを決定し、以後、その補正値ΔSbを検出水位Sb(%)に加えるので、圧力センサ51の検出水位Sb(%)に応じた運転台数制御の信頼性が向上する。   When the detection water level Sa (%) of the electrode rod detection unit 50 or the detection water level Sb (%) of the pressure sensor 51 is full, the number N of operating units of each heat source unit 1 is reduced, so that hot water overflows from the open tank 5. Can be prevented in advance. In particular, if the detection water level Sa (%) of the electrode rod detection unit 50 is full, even if the detection water level Sb (%) of the pressure sensor 51 is not full, the operating number N of each heat source unit 1 is reduced. It is. In addition, in this case, based on the determination that an error exists in the detected water level Sb (%) of the pressure sensor 51, a correction value ΔSb for compensating the error is determined, and thereafter, the correction value ΔSb is used as the detected water level Sb. (%), The reliability of the operation number control according to the detected water level Sb (%) of the pressure sensor 51 is improved.

電極棒検出ユニット50の検出水位Sa(%)が渇水の場合は、各熱源機1の運転台数Nを増やすとともに緊急給水管9を開いて給水するので、開放型タンク5の渇水を直ちに解消することができる。この点でも、開放型タンク5から給湯負荷への温水供給に支障を生じることがなく、信頼性はもちろん安全性の向上が図れる。   When the detection water level Sa (%) of the electrode rod detection unit 50 is drought, the number N of operating heat source devices 1 is increased and the emergency water supply pipe 9 is opened to supply water, so that the drought in the open tank 5 is immediately eliminated. be able to. In this respect as well, there is no hindrance to the hot water supply from the open tank 5 to the hot water supply load, and the safety can be improved as well as the reliability.

圧力センサ51の検出水位Sb(%)を温度センサ52の検知温度に応じて補正するようにしているので、この点でも運転台数制御の信頼性が大幅に向上する。   Since the detected water level Sb (%) of the pressure sensor 51 is corrected in accordance with the detected temperature of the temperature sensor 52, the reliability of the operation unit control is greatly improved in this respect as well.

運転台数制御に際し、各熱源機1の起動順位を運転時間が短い順に逐次に変更設定するので、各熱源機1の運転時間が平均化されて、各熱源機1の寿命向上が図れる。   In controlling the number of operating units, the starting order of the heat source units 1 is sequentially changed and set in the order of short operating time, so that the operating time of each heat source unit 1 is averaged and the life of each heat source unit 1 can be improved.

なお、上記実施形態では、開放型タンク5が1つの場合を例に説明したが、図8に示すように、開放型タンク5が複数の場合にも同様に実施できる。この場合、一方の開放型タンク5に電極棒検出ユニット50、圧力センサ51、温度センサ52、および二方弁53が設けられ、他方の開放型タンク5には電極棒検出ユニット50および二方弁53のみ設けられている。開放型タンク5が複数あることにより、給湯負荷の温水使用量が多い場合でも、その使用に十分に対処することができる。また、一方の開放型タンク5が清掃等で使用できない場合でも、他方の開放型タンク5に温水を貯えて給湯負荷への温水供給を続けることができる。   In the above embodiment, the case where there is one open type tank 5 has been described as an example. However, as shown in FIG. In this case, one open tank 5 is provided with an electrode rod detection unit 50, a pressure sensor 51, a temperature sensor 52, and a two-way valve 53, and the other open tank 5 is provided with an electrode rod detection unit 50 and a two-way valve. Only 53 is provided. By having a plurality of open-type tanks 5, even when the amount of hot water used for the hot water supply load is large, it is possible to sufficiently cope with the use. Further, even when one open type tank 5 cannot be used for cleaning or the like, it is possible to store hot water in the other open type tank 5 and continue supplying hot water to the hot water supply load.

その他、この発明は上記実施形態に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。   In addition, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.

一実施形態の構成を示す図。The figure which shows the structure of one Embodiment. 一実施形態における熱源機の具体的な構成および初期循環回路を示す図The figure which shows the specific structure and initial stage circulation circuit of the heat-source equipment in one Embodiment. 一実施形態における各熱源機の外観、開放型タンクの内部の構成、制御ユニットの配置などを示す図。The figure which shows the external appearance of each heat-source machine in one Embodiment, the structure inside an open type tank, arrangement | positioning of a control unit, etc. FIG. 一実施形態における初期循環回路と出湯回路との切換条件を示す図。The figure which shows the switching conditions of the initial stage circulation circuit and the tapping circuit in one Embodiment. 一実施形態における熱源機の出湯回路を示す図。The figure which shows the tapping circuit of the heat-source machine in one Embodiment. 一実施形態の作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action of one Embodiment. 一実施形態における加熱能力設定条件を示す図。The figure which shows the heating capability setting conditions in one Embodiment. 一実施形態の変形例の構成を示す図。The figure which shows the structure of the modification of one Embodiment.

符号の説明Explanation of symbols

1…熱源機、2…給水側主配管、3…給湯側主配管、4…密閉型タンク、5…開放型タンク、7…制御ユニット、8…操作表示器、9…緊急給水管、11…圧縮機、13…水熱交換器、14…膨張弁(減圧器)、15…室外熱交換器、51…圧力センサ、52…温度センサ、53…二方弁   DESCRIPTION OF SYMBOLS 1 ... Heat source machine, 2 ... Water supply side main piping, 3 ... Hot water supply side main piping, 4 ... Sealed tank, 5 ... Open type tank, 7 ... Control unit, 8 ... Operation indicator, 9 ... Emergency water supply pipe, 11 ... Compressor, 13 ... Water heat exchanger, 14 ... Expansion valve (decompressor), 15 ... Outdoor heat exchanger, 51 ... Pressure sensor, 52 ... Temperature sensor, 53 ... Two-way valve

Claims (2)

温水を作る複数の熱源機と、
前記各熱源機で作られた温水を貯えて給湯負荷へ供給するための開放型タンクと、
前記開放型タンク内の圧力を検知する圧力センサと、
前記圧力センサの検知圧力に基づき前記開放型タンク内の水位を検出する水位検出手段と、
前記水位検出手段の検出水位に応じて前記各熱源機の運転台数を制御する制御手段と、
前記開放型タンクの深さ方向に沿って互いに長さが異なる複数の電極棒を有しこれら電極棒の相互間の液体を通した通電により前記開放型タンク内の水位を検出する電極棒検出ユニットを備え、
前記制御手段は、前記電極棒検出ユニットの検出水位が満水で前記水位検出手段の検出水位が満水でない場合に前記水位検出手段の検出水位に対する補正値を決定し、以後、その補正値を前記水位検出手段の検出水位に加えた値を新たな検出水位とする、
ことを特徴とする給湯装置。
Multiple heat source machines that make hot water,
An open tank for storing hot water produced by each of the heat source units and supplying it to a hot water supply load;
A pressure sensor for detecting the pressure in the open tank;
Water level detection means for detecting the water level in the open-type tank based on the detection pressure of the pressure sensor;
Control means for controlling the number of operating each heat source unit according to the detected water level of the water level detection means;
An electrode rod detection unit having a plurality of electrode rods having different lengths along the depth direction of the open tank and detecting the water level in the open tank by energizing the liquid between the electrode rods With
The control means determines a correction value for the detection water level of the water level detection means when the detection water level of the electrode rod detection unit is full and the detection water level of the water level detection means is not full, and thereafter, the correction value is set to the water level. The value added to the detection water level of the detection means is the new detection water level.
A water heater characterized by that.
前記検出ユニットは、前記開放型タンクの深さ方向に沿って互いに長さが異なる複数の電極棒を有しこれら電極棒の相互間の液体を通した通電により前記開放型タンク内の水位を検出する電極棒検出ユニットであり、The detection unit has a plurality of electrode rods having different lengths along the depth direction of the open tank, and detects the water level in the open tank by energizing the liquid between the electrode rods. Electrode rod detection unit
前記制御手段は、前記電極棒検出ユニットの検出水位が満水で前記水位検出手段の検出水位が満水でない場合に前記各熱源機の運転台数を減らすことを特徴とする請求項1に記載の給湯装置。2. The hot water supply apparatus according to claim 1, wherein the control means reduces the number of operating heat source devices when the detection water level of the electrode rod detection unit is full and the detection water level of the water level detection means is not full. .
JP2007202763A 2007-08-03 2007-08-03 Water heater Expired - Fee Related JP5221907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202763A JP5221907B2 (en) 2007-08-03 2007-08-03 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202763A JP5221907B2 (en) 2007-08-03 2007-08-03 Water heater

Publications (2)

Publication Number Publication Date
JP2009036486A JP2009036486A (en) 2009-02-19
JP5221907B2 true JP5221907B2 (en) 2013-06-26

Family

ID=40438553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202763A Expired - Fee Related JP5221907B2 (en) 2007-08-03 2007-08-03 Water heater

Country Status (1)

Country Link
JP (1) JP5221907B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438535B2 (en) * 2010-02-02 2014-03-12 大阪瓦斯株式会社 Hot water storage water heater
JP5880266B2 (en) * 2012-05-09 2016-03-08 三浦工業株式会社 Water heating system
KR101347564B1 (en) 2012-10-11 2014-01-03 이건식 Electric boiler for late-night electricity
JP6237109B2 (en) * 2013-09-13 2017-11-29 三浦工業株式会社 Water heating system
JP2017146032A (en) * 2016-02-18 2017-08-24 三浦工業株式会社 Feedwater heating system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579699A (en) * 1991-09-24 1993-03-30 Sekisui Chem Co Ltd Electric warm water supplying apparatus
JPH0532957U (en) * 1991-09-30 1993-04-30 積水化学工業株式会社 Electric water heater
JP3162517B2 (en) * 1992-11-16 2001-05-08 株式会社ガスター Automatic bath pot and hot water pouring control method
JP2003166750A (en) * 2001-11-30 2003-06-13 Denso Corp Heat-pump type hot water supply device
JP4104592B2 (en) * 2004-12-15 2008-06-18 株式会社デンソー Hot water storage water heater
JP4298666B2 (en) * 2005-02-24 2009-07-22 三菱電機株式会社 Heat pump water heater

Also Published As

Publication number Publication date
JP2009036486A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP6613759B2 (en) Engine-driven air conditioner
JP5221907B2 (en) Water heater
JP2012197956A (en) Heat pump type water heater
JP2013119954A (en) Heat pump hot water heater
JP5226384B2 (en) Hot water storage type hot water supply device and hot water storage type hot water supply and heating device
JP5034367B2 (en) Heat pump water heater
JP2009264715A (en) Heat pump hot water system
JP4872572B2 (en) Hot water storage water heater
JP5068599B2 (en) Water heater
JP2011052873A (en) Heat pump cycle device
JP2016065685A (en) Hybrid hot water supply system
JP2011075200A (en) Heat pump hot water supply apparatus
JP5115283B2 (en) Heat pump type water heater
JP2010236825A (en) Heat pump hot water supply system
JP2009264714A (en) Heat pump hot water system
JP5450466B2 (en) Liquid supply device
JP2007198637A (en) Heat pump type water heater
JP6004177B2 (en) Hot water storage hot water supply system
JP5478521B2 (en) Liquid supply device
JP5349354B2 (en) Hot water storage water heater
JP5068600B2 (en) Water heater
JP2006275343A (en) Hot water supply heating device
JP2007010297A (en) Hot water supply device
JP3371091B2 (en) Heat source equipment control device
JP2009236457A (en) Storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5221907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees