JP5203800B2 - Temperature measuring member, temperature measuring device and temperature measuring method - Google Patents

Temperature measuring member, temperature measuring device and temperature measuring method Download PDF

Info

Publication number
JP5203800B2
JP5203800B2 JP2008134296A JP2008134296A JP5203800B2 JP 5203800 B2 JP5203800 B2 JP 5203800B2 JP 2008134296 A JP2008134296 A JP 2008134296A JP 2008134296 A JP2008134296 A JP 2008134296A JP 5203800 B2 JP5203800 B2 JP 5203800B2
Authority
JP
Japan
Prior art keywords
metal thin
temperature
thin film
substrate
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008134296A
Other languages
Japanese (ja)
Other versions
JP2009036755A (en
Inventor
雅夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008134296A priority Critical patent/JP5203800B2/en
Publication of JP2009036755A publication Critical patent/JP2009036755A/en
Application granted granted Critical
Publication of JP5203800B2 publication Critical patent/JP5203800B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、被測温対象物(例えば半導体や液晶の製造分野などにおける基板)が受けた熱履歴のうち最高到達温度を測定するための温度測定部材、温度測定装置および温度測定方法に関するものである。   The present invention relates to a temperature measurement member, a temperature measurement device, and a temperature measurement method for measuring the highest temperature among thermal histories received by an object to be measured (for example, a substrate in the field of manufacturing semiconductors or liquid crystals). is there.

被測温対象物の温度を測定するための測定具として代表的なものは、気体や液体の熱膨張率変化を利用するもの、金属の電気抵抗の温度変化を測定するもの(白金抵抗温度センサ)、半導体特性の温度変化を測定するもの(サーミスタ)、異種合金の接触点で生じる熱起電力を測定するもの(熱電対)、被測温対象物の放射する赤外線の強度を測定するものなどが挙げられる(例えば、特許文献1参照)。また、物質の融点を利用したシール型の温度測定具も市販されている。   Typical measuring tools for measuring the temperature of an object to be measured include those that use changes in the thermal expansion coefficient of gases and liquids, and those that measure changes in the electrical resistance of metals (platinum resistance temperature sensors). ), Measuring temperature change in semiconductor characteristics (thermistor), measuring thermoelectromotive force generated at the contact point of dissimilar alloys (thermocouple), measuring the intensity of infrared rays emitted from the object to be measured, etc. (For example, refer to Patent Document 1). In addition, a seal-type temperature measuring device using the melting point of the substance is also commercially available.

温度測定は様々な場面で行われており、被測温対象物に応じて適切な温度測定具が選択されている。特に、熱電対は多くの分野で精密な温度測定具として利用されている。   Temperature measurement is performed in various scenes, and an appropriate temperature measurement tool is selected according to the object to be measured. In particular, thermocouples are used as precise temperature measuring instruments in many fields.

ところで、半導体や液晶の製造分野においても、温度測定は至るところで行われている。液晶製造分野では基板が主にガラスであるため、ガラスの耐熱温度以下である150〜400℃付近での熱処理が多用されており、半導体製造分野ではそれよりやや高温までの、150℃から600℃程度までの熱処理が多用されている。   By the way, temperature measurement is performed everywhere in the field of manufacturing semiconductors and liquid crystals. Since the substrate is mainly glass in the liquid crystal manufacturing field, heat treatment near 150 to 400 ° C., which is lower than the heat resistant temperature of glass, is frequently used. In the semiconductor manufacturing field, 150 to 600 ° C., which is slightly higher than that. Heat treatment to the extent is frequently used.

ところが、これらの製造分野における生産ライン上では通常、基板が熱処理炉内や加熱成膜装置内を熱履歴を受けながら搬送されていくため、基板の温度を熱電対等で直接測定することは難しく、通常、炉内や装置内の雰囲気の温度を測定することによって、基板の温度の推定を行っている。   However, on the production line in these manufacturing fields, the substrate is usually conveyed while receiving a thermal history in the heat treatment furnace or the heating film forming apparatus, so it is difficult to directly measure the temperature of the substrate with a thermocouple, Usually, the temperature of the substrate is estimated by measuring the temperature of the atmosphere in the furnace or in the apparatus.

もし、基板の温度を直接に正確に測定できれば、プロセスの制御の精度が向上し、製品の高性能化に寄与する。このような事情は半導体や液晶の製造分野に限らず、多くの製造分野で共通に認められる。   If the temperature of the substrate can be measured directly and accurately, the accuracy of process control will be improved, contributing to higher performance of the product. Such a situation is commonly recognized not only in the semiconductor and liquid crystal manufacturing fields but also in many manufacturing fields.

被測温対象物が搬送される(すなわち、連続的に移動する)などして、熱電対など配線を必要とする温度測定具が使用できない場合に、被測温対象物の温度測定を行うことができる温度測定具の一つは、放射温度計などの非接触式温度計である。   Measure the temperature of the object to be measured when the object to be measured cannot be used because the object to be measured is transported (that is, moved continuously), etc. One of the temperature measuring tools that can be used is a non-contact type thermometer such as a radiation thermometer.

しかし、非接触式温度計を用いる場合でも、熱処理炉内を搬送される被測温対象物が受ける熱履歴を測定するためには、非接触式温度計自体も被測温対象物の搬送に合わせて移動させるか、あるいは非接触式温度計を被測温対象物の搬送方向に沿って多数設置する必要があり、設備が複雑化し、設備コストが過大となる問題がある。また、被測温対象物が密閉状態になっている場合には、外部から観察できないため、使用不可能である。   However, even in the case of using a non-contact type thermometer, in order to measure the thermal history received by the temperature-measured object conveyed in the heat treatment furnace, the non-contact type thermometer itself is also used for conveying the temperature-measured object. It is necessary to move them together or to install a large number of non-contact thermometers along the direction in which the object to be measured is transported, resulting in complicated facilities and excessive equipment costs. In addition, when the object to be measured is in a sealed state, it cannot be used from the outside because it cannot be observed from the outside.

配線を必要としない別の温度測定具としては、シール型の温度測定具も挙げられる。シール型の温度測定具は、あらかじめ10℃刻み、あるいは25℃刻み等、所定の到達温度ごとに変色する複数の顔料を、樹脂で挟んでシール状にした温度測定具であり、簡易かつ精度に優れた温度測定具であるが、樹脂部材を含むために250℃以上の高温での測定が難しく、また、材料の溶融現象を利用していることから溶融物質の蒸発を起因とする不純物発生のおそれがあり、不純物による基板の汚染が懸念される環境では使用がためらわれる。   Another temperature measuring tool that does not require wiring is a seal-type temperature measuring tool. The seal-type temperature measuring instrument is a temperature measuring instrument in which a plurality of pigments that change color every predetermined temperature, such as in increments of 10 ° C or in increments of 25 ° C, are sandwiched between resins to form a seal. Although it is an excellent temperature measuring instrument, it is difficult to measure at a high temperature of 250 ° C. or more because it contains a resin member, and it also uses the melting phenomenon of the material, so that impurities are generated due to evaporation of the molten material. The use is hesitant in an environment where there is a risk of contamination of the substrate by impurities.

また、最近、基板内部に温度センサ、ICレコーダ、および電池を組み込んだウエハセンサが開発されている。このウエハセンサを用いれば搬送される基板の熱履歴を計測することができる。しかし、電池や半導体素子を使用するため、この基板で測定できる温度範囲は150℃程度が限界であり、それより高温の温度測定が難しい。   Recently, a wafer sensor incorporating a temperature sensor, an IC recorder, and a battery inside the substrate has been developed. If this wafer sensor is used, the thermal history of the substrate being transferred can be measured. However, since a battery or a semiconductor element is used, the temperature range that can be measured with this substrate is limited to about 150 ° C., and it is difficult to measure a temperature higher than that.

この他、電気的な配線を使用しない最高到達温度を測定する温度測定具として、セラミックの焼結時の体積変化を利用したもの、セラミックの軟化を利用したもの(ゼーゲルコーン)なども利用されているが、これらセラミックを用いた温度測定具で測定しうる温度は800〜1000℃以上の高温用であり、半導体や液晶の製造分野で求められる150〜600℃程度での温度測定には適していない。
特開平9−5166号公報
In addition, temperature measuring tools that measure the maximum temperature without using electrical wiring are also used, such as those that use volume changes during ceramic sintering and those that use ceramic softening (Zeegel cone). However, the temperature that can be measured with a temperature measuring tool using these ceramics is for high temperatures of 800 to 1000 ° C. or higher, and is not suitable for temperature measurement at about 150 to 600 ° C. required in the field of manufacturing semiconductors and liquid crystals. .
JP-A-9-5166

上記従来の温度測定具とこの温度測定具を用いた温度測定方法および温度測定装置では、外部配線が不要で、不純物や粉塵の発生もなく、かつ、低温度から高温度までの広い温度範囲における最高到達温度の測定ができるものがないといった課題を有していた。   In the conventional temperature measuring device and the temperature measuring method and temperature measuring device using this temperature measuring device, no external wiring is required, no impurities or dust is generated, and in a wide temperature range from low temperature to high temperature. There was a problem that there was no one that could measure the maximum temperature reached.

本発明は、上記課題を解決するものであり、外部配線が不要で、不純物や粉塵の発生もなく、かつ、低温度から高温度までの広い温度範囲における最高到達温度の測定ができる温度測定部材、温度測定装置および温度測定方法を提供することを目的とする。   The present invention solves the above-described problems, does not require external wiring, does not generate impurities and dust, and can measure a maximum temperature in a wide temperature range from a low temperature to a high temperature. An object of the present invention is to provide a temperature measuring device and a temperature measuring method.

上記目的を達成するために、本発明の請求項1に記載の発明は、
表面が平滑な基板に、表面が平滑でかつ基板とは異なる熱膨張率を有する金属薄膜を形成した金属薄膜付き基板からなる温度測定部材において、
前記基板の表面あらさRaは、1μm以下であり、
前記金属薄膜の表面あらさRaは、0.5μm以下であり、
前記金属薄膜の膜厚は、10nm以上1000μm以下である温度測定部材である。これにより、任意の熱履歴が付与される測定すべき物体あるいは雰囲気の最高到達温度に基づいて、金属薄膜にその受けた熱履歴を残すことができる。したがって、この熱履歴が残された温度測定部材を用いさえすれば、外部配線が不要で、不純物や粉塵の発生もなく、かつ、低温度から高温度までの広い温度範囲における最高到達温度の測定が可能となる。
In order to achieve the above object, the invention according to claim 1 of the present invention provides:
In the temperature measurement member consisting of a substrate with a metal thin film in which a metal thin film having a smooth surface and a coefficient of thermal expansion different from that of the substrate is formed on a substrate having a smooth surface,
The surface roughness Ra of the substrate is 1 μm or less,
The surface roughness Ra of the metal thin film is 0.5 μm or less,
The metal thin film is a temperature measuring member having a thickness of 10 nm to 1000 μm. Thereby, the received thermal history can be left in the metal thin film based on the highest temperature of the object or atmosphere to be measured to which an arbitrary thermal history is given. Therefore, as long as you use a temperature measurement member that retains this thermal history, there is no need for external wiring, no generation of impurities and dust, and the measurement of the highest temperature achieved in a wide temperature range from low to high temperatures. Is possible.

請求項2に記載の発明は、請求項1に記載の発明において、
前記基板の材料は、シリコン、ガラス、石英、グラファイト、SiC、サファイヤおよび樹脂からなる群から選択されたいずれか1種よりなる。これにより、測定すべき物体あるいは雰囲気の条件に合わせて、最適な温度測定を実現できる温度測定部材を提供可能である。
The invention according to claim 2 is the invention according to claim 1,
The material of the substrate is any one selected from the group consisting of silicon, glass, quartz, graphite, SiC, sapphire, and resin. Accordingly, it is possible to provide a temperature measurement member that can realize optimum temperature measurement according to the condition of the object to be measured or the atmosphere.

請求項3に記載の発明は、請求項1又は2に記載の発明において、
前記金属薄膜の材料は、Mg、Al、Si、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zr、Mo、Ru、Pd、Ag、In、Sn、Hf、Ta、W、Pt、Au、Znからなる群から選択された1種以上よりなる。これにより、測定すべき物体あるいは雰囲気の条件に合わせて、最適な温度測定を実現できる温度測定部材を提供可能である。
The invention according to claim 3 is the invention according to claim 1 or 2,
The material of the metal thin film is Mg, Al, Si, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zr, Mo, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au. And one or more selected from the group consisting of Zn. Accordingly, it is possible to provide a temperature measurement member that can realize optimum temperature measurement according to the condition of the object to be measured or the atmosphere.

請求項4に記載の発明は、請求項1〜3に記載の発明において、
前記金属薄膜の上には、さらに保護膜が形成されている。これにより、測定すべき物体あるいは雰囲気の条件に合わせて、より広範且つ最適な温度測定を実現できる温度測定部材を提供可能である。
The invention according to claim 4 is the invention according to claims 1 to 3,
A protective film is further formed on the metal thin film. Accordingly, it is possible to provide a temperature measurement member that can realize a wider and optimum temperature measurement according to the condition of the object to be measured or the atmosphere.

請求項5に記載の発明は、
熱履歴に伴う物体または雰囲気の最高到達温度を測定するための温度測定装置であって、
(1)表面が平滑な基板に、表面が平滑かつ基板とは異なる熱膨張率を有する金属薄膜を形成した複数の金属薄膜付き基板と、
(2)この複数の金属薄膜付き基板にそれぞれ異なる最高到達温度となる熱履歴が与えられた後に金属薄膜表面に発生した凸部又は凹部の数の面密度を測定するための面密度測定部と、
(3)前記面密度測定部で得られた前記凸部又は凹部の数の面密度の測定値と前記最高到達温度の実測値とに基づいて求められた凸部又は凹部の数の面密度と最高到達温度との関係を示すデータが格納された記憶部と、
(4)前記(2)の面密度測定部で測定される、任意の熱履歴が付与される測定すべき物体または雰囲気の環境にセットされて温度測定部材として用いられる前記(1)の金属薄膜付き基板または前記(1)と同一条件下で得られた金属薄膜付き基板の金属薄膜表面に発生した凸部または凹部の数の面密度と、前記記憶部に格納された前記データと、の関係により、熱履歴が付与された前記測定すべき物体または雰囲気の最高到達温度を求めるための温度算出部と、を備えた構成からなる。これにより、外部配線が不要で、不純物や粉塵の発生もなく、かつ、低温度から高温度までの広い温度範囲における最高到達温度の測定が可能な温度測定装置を実現できる。
The invention described in claim 5
A temperature measuring device for measuring a maximum temperature of an object or atmosphere accompanying a thermal history,
(1) A substrate with a plurality of metal thin films in which a metal thin film having a smooth surface and a thermal expansion coefficient different from that of the substrate is formed on a substrate having a smooth surface;
(2) a surface density measuring unit for measuring the surface density of the number of protrusions or recesses generated on the surface of the metal thin film after the thermal history of different maximum ultimate temperatures is given to the plurality of substrates with metal thin films, ,
(3) The surface density of the number of convex portions or concave portions obtained based on the measured value of the surface density of the number of convex portions or concave portions obtained by the surface density measuring section and the actual measurement value of the maximum temperature reached; A storage unit storing data indicating the relationship with the maximum temperature reached;
(4) The metal thin film of (1) used as a temperature measurement member set in an environment of an object to be measured or an atmosphere to be measured, which is measured by the surface density measuring unit of (2) and given an arbitrary thermal history Relationship between the surface density of the number of convex portions or concave portions generated on the surface of the metal thin film of the substrate with a metal substrate or the substrate with a metal thin film obtained under the same conditions as the above (1), and the data stored in the storage unit And a temperature calculation unit for obtaining the maximum temperature of the object to be measured or the atmosphere to which the thermal history is given. As a result, it is possible to realize a temperature measuring device that does not require external wiring, does not generate impurities and dust, and can measure the maximum temperature achieved in a wide temperature range from a low temperature to a high temperature.

請求項6に記載の発明は、請求項5に記載の発明において、
前記(2)の面密度測定部は、金属薄膜表面に発生した凸部又は凹部の表面形状を顕微鏡により観察し、この表面形状をアナログな画像信号として取り込む表面情報収集部と、この画像信号をデジタル化し画像データを得るためのAD変換部と、この画像データから凸部又は凹部の直径が既定値の範囲に入るもののみカウントし、単位面積当たりの個数に換算する個数算出部とから構成されている。これにより、良好な画像データ出力が得られるため、既存の優れた画像処理手法を用いて対象となる凸部又は凹部の単位面積当たりの個数(面密度)に換算することができる。
The invention according to claim 6 is the invention according to claim 5,
The surface density measuring unit (2) observes the surface shape of the convex portion or the concave portion generated on the surface of the metal thin film with a microscope and captures the surface shape as an analog image signal, It is composed of an AD conversion unit for digitizing and obtaining image data, and a number calculation unit that counts only those whose diameters are within a predetermined range from the image data and converts them to the number per unit area. ing. Thereby, since excellent image data output can be obtained, it can be converted into the number (surface density) per unit area of the convex portions or concave portions to be processed using an existing excellent image processing technique.

請求項7に記載の発明は、請求項6に記載の発明において、
前記既定値は、0.1μm以上30μm以下である。これにより、画像データから金属薄膜表面に発生した凸部又は凹部の面密度を良好に求めることができる。
The invention according to claim 7 is the invention according to claim 6,
The predetermined value is not less than 0.1 μm and not more than 30 μm. Thereby, the surface density of the convex part or the recessed part which generate | occur | produced on the metal thin film surface from image data can be calculated | required favorably.

請求項8に記載の発明は、
熱履歴に伴う物体または雰囲気の最高到達温度を測定する方法において、
(1)表面が平滑な基板に、表面が平滑でかつ基板とは異なる熱膨張率を有する金属薄膜を形成した金属薄膜付き基板を複数準備し、
(2)この複数の金属薄膜付き基板にそれぞれ異なる最高到達温度となる熱履歴を与え、
(3)この熱履歴を与えた後に金属薄膜表面に発生した凸部又は凹部の数の面密度を測定し、
(4)前記凸部又は凹部の数の面密度の測定値と前記最高到達温度の実測値とに基づいて凸部又は凹部の数の面密度と最高到達温度との関係を求めておき、
(5)前記(1)の金属薄膜付き基板または前記(1)と同一条件下で得られた金属薄膜付き基板を温度測定部材として任意の熱履歴が付与される測定すべき物体または雰囲気の環境にセットし、
(6)前記任意の熱履歴が付与され温度測定部材として用いた金属薄膜付き基板の金属薄膜表面に発生した凸部又は凹部の数の面密度を測定し、この測定値と前記(4)で求められた凸部又は凹部の数の面密度と最高到達温度との関係より、熱履歴が付与された前記測定すべき物体または雰囲気の最高到達温度を求めるように構成したものである。これにより、外部配線が不要で、不純物や粉塵の発生もなく、かつ、低温度から高温度までの広い温度範囲における最高到達温度の測定が可能な温度測定方法を実現できる。
The invention according to claim 8 provides:
In the method of measuring the maximum temperature of an object or atmosphere that accompanies thermal history,
(1) preparing a plurality of substrates with a metal thin film in which a metal thin film having a smooth surface and a coefficient of thermal expansion different from that of the substrate is formed on a substrate having a smooth surface;
(2) A thermal history that gives different maximum temperatures to each of the plurality of substrates with metal thin films is given,
(3) Measure the surface density of the number of convex portions or concave portions generated on the surface of the metal thin film after giving this thermal history,
(4) Based on the measured value of the surface density of the number of convex portions or concave portions and the measured value of the maximum reached temperature, the relationship between the surface density of the number of convex portions or concave portions and the maximum reached temperature is obtained,
(5) Environment of the object or atmosphere to be measured to which an arbitrary thermal history is given using the substrate with the metal thin film of (1) or the substrate with the metal thin film obtained under the same conditions as in (1) above as a temperature measurement member Set to
(6) The surface density of the number of convex portions or the number of concave portions generated on the surface of the metal thin film of the substrate with the metal thin film used as the temperature measuring member to which the arbitrary thermal history is given is measured. The maximum reached temperature of the object to be measured or the atmosphere to which the thermal history is given is determined from the relationship between the surface density of the number of protrusions or recesses obtained and the maximum reached temperature. As a result, it is possible to realize a temperature measuring method that does not require external wiring, does not generate impurities and dust, and can measure the highest temperature in a wide temperature range from a low temperature to a high temperature.

請求項9に記載の発明は、請求項8に記載の発明において、
前記(3)および(6)の面密度を測定する工程は、金属薄膜表面に発生した凸部又は凹部の表面形状を顕微鏡により観察し、この表面形状をアナログな画像信号として取り込む工程と、この画像信号をデジタル化し画像データを得る工程と、この画像データから凸部又は凹部の直径が既定値の範囲に入るもののみカウントし、単位面積当たりの個数に換算する工程とから構成されている。これにより、金属薄膜表面に発生した凸部又は凹部の表面形状に合わせて最適な観察手段が利用できるばかりか、これらの観察手段からそれぞれ良好な画像データ出力が得られる。これにより、良好な画像データ出力が得られるため、既存の優れた画像処理手法を用いて対象となる凸部又は凹部の単位面積当たりの個数(面密度)に換算することができる。
The invention according to claim 9 is the invention according to claim 8,
The step of measuring the surface density of (3) and (6) includes a step of observing the surface shape of the convex portion or the concave portion generated on the surface of the metal thin film with a microscope, and taking this surface shape as an analog image signal, It comprises a step of digitizing an image signal to obtain image data, and a step of counting only those in which the diameter of the convex portion or the concave portion falls within a predetermined range from this image data and converting it to the number per unit area. Thereby, not only the optimum observation means can be used in accordance with the surface shape of the convex portion or the concave portion generated on the surface of the metal thin film, but good image data output can be obtained from each of these observation means. Thereby, since excellent image data output can be obtained, it can be converted into the number (surface density) per unit area of the convex portions or concave portions to be processed using an existing excellent image processing technique.

請求項10に記載の発明は、請求項9に記載の発明において、
前記既定値が、0.1μm以上30μm以下である。これにより、画像データから金属薄膜表面に発生した凸部又は凹部の面密度を良好に求めることができる。
The invention according to claim 10 is the invention according to claim 9,
The predetermined value is not less than 0.1 μm and not more than 30 μm. Thereby, the surface density of the convex part or the recessed part which generate | occur | produced on the metal thin film surface from image data can be calculated | required favorably.

請求項11に記載の発明は、請求項8に記載の発明において、
前記(3)および(6)の面密度を測定する工程は、金属薄膜表面に発生した凸部又は凹部に光を照射し、その散乱光を検出しアナログな強度信号として取り込む工程と、この強度信号をデジタル化し強度データを得る工程と、この強度データが既定値の範囲に入るもののみカウントし、単位面積当たりの個数に換算する工程とから構成されている。これにより、顕微鏡等を用いて観察した凸部または凹部の表面形状に関する画像データには基づかない別の温度測定が可能となる。また、上記一連の面密度を測定する工程には、一般のパーティクルカウンター(通称)を用いることができる。
The invention according to claim 11 is the invention according to claim 8,
The step of measuring the surface density of (3) and (6) includes the step of irradiating light on the convex portion or concave portion generated on the surface of the metal thin film, detecting the scattered light, and taking it in as an analog intensity signal, and this intensity. It comprises a step of digitizing a signal to obtain intensity data, and a step of counting only those in which the intensity data falls within a predetermined range and converting it to the number per unit area. Thereby, another temperature measurement which is not based on the image data regarding the surface shape of the convex part or the concave part observed using a microscope or the like becomes possible. Moreover, a general particle counter (common name) can be used for the process of measuring a series of said surface density.

請求項12に記載の発明は、請求項8に記載の発明において、
前記(3)および(6)の面密度を測定する工程は、金属薄膜表面に発生した凸部又は凹部に光を照射し、その反射光を検出しアナログな強度信号として取り込む工程と、この強度信号をデジタル化し強度データを得る工程と、この強度データが既定値の範囲に入るもののみカウントし、単位面積当たりの個数に換算する工程とから構成されている。これにより、顕微鏡等を用いて観察した凸部または凹部の表面形状に関する画像データには基づかない別の温度測定が可能となる。
The invention according to claim 12 is the invention according to claim 8,
The steps (3) and (6) for measuring the surface density include a step of irradiating light on a convex portion or a concave portion generated on the surface of the metal thin film, detecting the reflected light and taking it in as an analog intensity signal, and this intensity. It comprises a step of digitizing a signal to obtain intensity data, and a step of counting only those in which the intensity data falls within a predetermined range and converting it to the number per unit area. Thereby, another temperature measurement which is not based on the image data regarding the surface shape of the convex part or the concave part observed using a microscope or the like becomes possible.

以上のように、本発明は、
表面が平滑な基板に、表面が平滑でかつ基板とは異なる熱膨張率を有する金属薄膜を形成した金属薄膜付き基板からなる温度測定部材において、
前記基板の表面あらさRaは、1μm以下であり、
前記金属薄膜の表面あらさRaは、0.5μm以下であり、
前記金属薄膜の膜厚は、10nm以上1000μm以下である温度測定部材であるため、任意の熱履歴が付与される測定すべき物体あるいは雰囲気の最高到達温度に基づいて、金属薄膜にその受けた熱履歴を残す温度測定部材を提供することができる。したがって、この熱履歴が残された温度測定部材を用いさえすれば、外部配線が不要で、不純物や粉塵の発生もなく、かつ、低温度から高温度までの広い温度範囲における最高到達温度の測定が可能となる。
As described above, the present invention
In the temperature measurement member consisting of a substrate with a metal thin film in which a metal thin film having a smooth surface and a coefficient of thermal expansion different from that of the substrate is formed on a substrate having a smooth surface,
The surface roughness Ra of the substrate is 1 μm or less,
The surface roughness Ra of the metal thin film is 0.5 μm or less,
Since the metal thin film is a temperature measuring member having a thickness of 10 nm or more and 1000 μm or less, the heat received by the metal thin film based on the highest temperature of the object or atmosphere to be measured to which an arbitrary thermal history is given. A temperature measurement member that leaves a history can be provided. Therefore, as long as you use a temperature measurement member that retains this thermal history, there is no need for external wiring, no generation of impurities and dust, and the measurement of the highest temperature achieved in a wide temperature range from low to high temperatures. Is possible.

また、本発明は、
熱履歴に伴う物体または雰囲気の最高到達温度を測定するための温度測定装置であって、
(1)表面が平滑な基板に、表面が平滑かつ基板とは異なる熱膨張率を有する金属薄膜を形成した複数の金属薄膜付き基板と、
(2)この複数の金属薄膜付き基板にそれぞれ異なる最高到達温度となる熱履歴が与えられた後に金属薄膜表面に発生した凸部又は凹部の数の面密度を測定するための面密度測定部と、
(3)前記面密度測定部で得られた前記凸部又は凹部の数の面密度の測定値と前記最高到達温度の実測値とに基づいて求められた凸部又は凹部の数の面密度と最高到達温度との関係を示すデータが格納された記憶部と、
(4)前記(2)の面密度測定部で測定される、任意の熱履歴が付与される測定すべき物体または雰囲気の環境にセットされて温度測定部材として用いられる前記(1)の金属薄膜付き基板または前記(1)と同一条件下で得られた金属薄膜付き基板の金属薄膜表面に発生した凸部または凹部の数の面密度と、前記記憶部に格納された前記データと、の関係により、熱履歴が付与された前記測定すべき物体または雰囲気の最高到達温度を求めるための温度算出部と、を備えた構成であるため、外部配線が不要で、不純物や粉塵の発生もなく、かつ、低温度から高温度までの広い温度範囲における最高到達温度の測定が可能な温度測定装置を提供できる。
The present invention also provides:
A temperature measuring device for measuring a maximum temperature of an object or atmosphere accompanying a thermal history,
(1) A substrate with a plurality of metal thin films in which a metal thin film having a smooth surface and a thermal expansion coefficient different from that of the substrate is formed on a substrate having a smooth surface;
(2) a surface density measuring unit for measuring the surface density of the number of protrusions or recesses generated on the surface of the metal thin film after the thermal history of different maximum ultimate temperatures is given to the plurality of substrates with metal thin films, ,
(3) The surface density of the number of convex portions or concave portions obtained based on the measured value of the surface density of the number of convex portions or concave portions obtained by the surface density measuring section and the actual measurement value of the maximum temperature reached; A storage unit storing data indicating the relationship with the maximum temperature reached;
(4) The metal thin film of (1) used as a temperature measurement member set in an environment of an object to be measured or an atmosphere to be measured, which is measured by the surface density measuring unit of (2) and given an arbitrary thermal history Relationship between the surface density of the number of convex portions or concave portions generated on the surface of the metal thin film of the substrate with a metal substrate or the substrate with a metal thin film obtained under the same conditions as the above (1), and the data stored in the storage unit Therefore, because it has a structure including a temperature calculation unit for obtaining the highest temperature of the object to be measured or atmosphere to which the thermal history is given, no external wiring is required, no impurities or dust is generated, In addition, it is possible to provide a temperature measuring device capable of measuring the highest temperature achieved in a wide temperature range from a low temperature to a high temperature.

また、本発明は、
熱履歴に伴う物体または雰囲気の最高到達温度を測定する方法において、
(1)表面が平滑な基板に、表面が平滑でかつ基板とは異なる熱膨張率を有する金属薄膜を形成した金属薄膜付き基板を複数準備し、
(2)この複数の金属薄膜付き基板にそれぞれ異なる最高到達温度となる熱履歴を与え、
(3)この熱履歴を与えた後に金属薄膜表面に発生した凸部又は凹部の数の面密度を測定し、
(4)前記凸部又は凹部の数の面密度の測定値と前記最高到達温度の実測値とに基づいて凸部又は凹部の数の面密度と最高到達温度との関係を求めておき、
(5)前記(1)の金属薄膜付き基板または前記(1)と同一条件下で得られた金属薄膜付き基板を温度測定部材として任意の熱履歴が付与される測定すべき物体または雰囲気の環境にセットし、
(6)前記任意の熱履歴が付与され温度測定部材として用いた金属薄膜付き基板の金属薄膜表面に発生した凸部又は凹部の数の面密度を測定し、この測定値と前記(4)で求められた凸部又は凹部の数の面密度と最高到達温度との関係より、熱履歴が付与された前記測定すべき物体または雰囲気の最高到達温度を求めるように構成されているため、外部配線が不要で、不純物や粉塵の発生もなく、かつ、低温度から高温度までの広い温度範囲における最高到達温度の測定が可能な温度測定方法を提供できる。
The present invention also provides:
In the method of measuring the maximum temperature of an object or atmosphere that accompanies thermal history,
(1) preparing a plurality of substrates with a metal thin film in which a metal thin film having a smooth surface and a coefficient of thermal expansion different from that of the substrate is formed on a substrate having a smooth surface;
(2) A thermal history that gives different maximum temperatures to each of the plurality of substrates with metal thin films is given,
(3) Measure the surface density of the number of convex portions or concave portions generated on the surface of the metal thin film after giving this thermal history,
(4) Based on the measured value of the surface density of the number of convex portions or concave portions and the measured value of the maximum reached temperature, the relationship between the surface density of the number of convex portions or concave portions and the maximum reached temperature is obtained,
(5) Environment of the object or atmosphere to be measured to which an arbitrary thermal history is given using the substrate with the metal thin film of (1) or the substrate with the metal thin film obtained under the same conditions as in (1) above as a temperature measurement member Set to
(6) The surface density of the number of convex portions or the number of concave portions generated on the surface of the metal thin film of the substrate with the metal thin film used as the temperature measuring member to which the arbitrary thermal history is given is measured. Since it is configured to obtain the maximum temperature of the object to be measured or the atmosphere to which the thermal history is given from the relationship between the surface density of the number of convex portions or concave portions obtained and the maximum temperature, external wiring Is not required, impurities and dust are not generated, and a temperature measuring method capable of measuring the maximum temperature in a wide temperature range from a low temperature to a high temperature can be provided.

以下、本発明について、実施形態を例示しつつ、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail while illustrating embodiments.

(本発明に係る温度測定部材の構成)
本発明に係る温度測定部材は、
表面が平滑な基板に、表面が平滑でかつ基板とは異なる熱膨張率を有する金属薄膜を形成した金属薄膜付き基板からなる温度測定部材において、
前記基板の表面あらさRaは、1μm以下であり、
前記金属薄膜の表面あらさRaは、0.5μm以下であり、
前記金属薄膜の膜厚は、10nm以上1000μm以下であることを特徴とする。
(Configuration of temperature measuring member according to the present invention)
The temperature measuring member according to the present invention is
In the temperature measurement member consisting of a substrate with a metal thin film in which a metal thin film having a smooth surface and a coefficient of thermal expansion different from that of the substrate is formed on a substrate having a smooth surface,
The surface roughness Ra of the substrate is 1 μm or less,
The surface roughness Ra of the metal thin film is 0.5 μm or less,
The metal thin film has a thickness of 10 nm to 1000 μm.

以下に、上記構成に至った理由について詳述する。   Hereinafter, the reason for the above configuration will be described in detail.

一般に知られているように、シリコン基板やガラス基板に蒸着法やスパッタ法あるいはめっき法などによって金属薄膜を形成した基板を加熱すると、基板と金属薄膜の熱膨張率の違いによって金属薄膜に応力が加わる。加熱を始めると、まず、金属薄膜は基板と金属膜の熱膨張率の差に起因した応力に応じて弾性変形する。さらに、温度が高くなって金属薄膜に加わる応力が大きくなり、限界値に達すると金属薄膜は塑性変形を起こすようになる。その際に、金属薄膜の表面に加わる力が圧縮方向であればその表面に凸部としての突起が形成される。逆に、強い引張り方向の力が働けば凹部としての穴が形成されることになる。   As is generally known, when a substrate on which a metal thin film is formed on a silicon substrate or glass substrate by vapor deposition, sputtering, plating, or the like is heated, stress is applied to the metal thin film due to the difference in thermal expansion coefficient between the substrate and the metal thin film. Join. When heating is started, first, the metal thin film is elastically deformed according to the stress caused by the difference in thermal expansion coefficient between the substrate and the metal film. Furthermore, the stress applied to the metal thin film increases as the temperature rises, and when the limit value is reached, the metal thin film undergoes plastic deformation. At this time, if the force applied to the surface of the metal thin film is in the compression direction, protrusions as projections are formed on the surface. Conversely, if a strong pulling force is applied, a hole as a recess is formed.

加熱時に金属薄膜に加わる応力が圧縮応力になるか引張応力になるかは、基板と金属薄膜の組み合わせによって一義的に決まる。例えば、シリコン基板にアルミニウム薄膜を形成した場合には、アルミニウムの方がシリコンより熱膨張率が大きいので、アルミニウム薄膜には圧縮応力が加わり、アルミニウム薄膜の表面には突起が形成される。   Whether the stress applied to the metal thin film during heating is a compressive stress or a tensile stress is uniquely determined by the combination of the substrate and the metal thin film. For example, when an aluminum thin film is formed on a silicon substrate, since aluminum has a higher thermal expansion coefficient than silicon, compressive stress is applied to the aluminum thin film, and protrusions are formed on the surface of the aluminum thin film.

一度、表面に突起が形成されると薄膜の応力は緩和されるために、その後温度を一定値に保持しても突起の個数が増加することはない。さらに温度を上昇させれば、上記熱膨張率の差に起因する圧縮応力が生じ、再び突起が形成される。加熱が終了し、基板が冷却されると薄膜に加わる応力は、通常、加熱時とは逆方向の応力が加わるものの、一度形成された突起が消失して平滑になることはないため、突起は室温に冷却されても残存する。   Once the protrusions are formed on the surface, the stress of the thin film is relieved, so that the number of protrusions does not increase even if the temperature is kept constant thereafter. When the temperature is further increased, a compressive stress due to the difference in thermal expansion coefficient is generated, and the protrusion is formed again. When heating is finished and the substrate is cooled, the stress applied to the thin film is usually applied in the opposite direction to that during heating, but the protrusions once formed do not disappear and become smooth. It remains even after cooling to room temperature.

ここで、上記のような、基板上に金属薄膜を形成したものを温度測定部材として実用的なものとするためには、薄膜表面上に形成された突起の個数が最高到達温度だけに依存して、昇温速度や温度一定での保持時間には依存しないことが望ましい。   Here, in order to make a metal thin film formed on a substrate as described above practical as a temperature measuring member, the number of protrusions formed on the thin film surface depends only on the maximum temperature reached. Therefore, it is desirable not to depend on the heating rate or the holding time at a constant temperature.

ところが、これまで発生する突起の個数が最高到達温度だけに依存して、昇温速度や温度保持時間に依存するかどうかは不明であった。通常、突起の発生状況は成膜条件や基板の種類によって大きく変化すると考えられ、測定されている突起の個数は実験条件によってまちまちであると考えられる。一般的に、金属薄膜中には空孔や不純物に起因した欠陥があり、その欠陥は熱処理によって拡散していくと考えられており、拡散現象は、温度を一定にして長時間保持すれば進行する。このような拡散現象の影響が大きく、熱処理による突起発生にも大きな影響を与える場合には、温度保持するだけでも突起が形成される個数が変化してしまう可能性がある。そのような場合、突起発生現象を温度測定に応用することは難しい。また、上記欠陥の拡散速度が昇温速度と同程度であれば、突起の発生は昇温速度にも大きく依存する可能性もある。   However, it has been unclear whether the number of protrusions generated so far depends only on the maximum temperature reached and on the rate of temperature rise and the temperature holding time. Usually, the occurrence of protrusions is considered to vary greatly depending on the film forming conditions and the type of substrate, and the number of protrusions being measured is considered to vary depending on the experimental conditions. In general, metal thin films have defects due to vacancies and impurities, and it is thought that the defects diffuse by heat treatment. The diffusion phenomenon proceeds if the temperature is kept constant for a long time. To do. When the influence of such a diffusion phenomenon is large and greatly affects the generation of protrusions due to heat treatment, the number of protrusions formed may change even if the temperature is maintained. In such a case, it is difficult to apply the protrusion generation phenomenon to temperature measurement. Further, if the defect diffusion rate is about the same as the heating rate, the generation of protrusions may greatly depend on the heating rate.

そこで、本発明者らは、基板上に形成される金属薄膜の膜質を厳密に制御したものを使用して、加熱によって発生する金属薄膜上の突起の個数を数えることで、この突起形成現象を温度測定に応用できるかどうかについて、以下のような調査を行った。   Therefore, the present inventors have used this in which the film quality of the metal thin film formed on the substrate is strictly controlled, and by counting the number of protrusions on the metal thin film generated by heating, this protrusion formation phenomenon is achieved. The following investigation was conducted to determine whether it could be applied to temperature measurement.

まず、突起の形成速度と昇温速度との関係を詳細に調査した結果、突起形成は時間的に速い現象であり、1分間に1000℃以下の昇温速度であれば、形成される突起の個数は昇温速度にほとんど影響されないことがわかった。つぎに、突起が形成される温度に達した後、温度上昇を止めてその温度に長時間保持した実験を行った結果、一定温度保持中には突起の個数の増加がないこともわかった。このような現象は、基板上に形成される金属薄膜の成膜条件を適切、かつ、厳密に制御することによってはじめて見出された現象である。このように、上記金属薄膜を含む温度測定部材を用いれば、昇温速度や、一定温度保持時間によらず、金属薄膜表面に形成される突起の単位面積当たりの個数と印加された最高到達温度との間には一定の関係が存在しうると考えられる。さらに詳述するならば、金属薄膜の成膜条件が変われば金属薄膜の粒径が変化し、この粒径の大きさが金属薄膜の塑性変形を起こす温度や、加熱中に生成する突起の個数に影響を与える。   First, as a result of investigating the relationship between the formation speed of the protrusions and the heating rate in detail, the protrusion formation is a phenomenon that is temporally fast. If the heating rate is 1000 ° C. or less per minute, It was found that the number was hardly affected by the heating rate. Next, after reaching a temperature at which the protrusions were formed, an experiment was conducted in which the temperature rise was stopped and maintained at that temperature for a long time. As a result, it was found that there was no increase in the number of protrusions while maintaining a constant temperature. Such a phenomenon is a phenomenon found for the first time by controlling the film forming conditions of the metal thin film formed on the substrate appropriately and strictly. As described above, when the temperature measuring member including the metal thin film is used, the number of protrusions formed on the surface of the metal thin film per unit area and the maximum applied temperature regardless of the heating rate and the constant temperature holding time. It is thought that there can be a certain relationship between. More specifically, if the deposition conditions of the metal thin film change, the particle size of the metal thin film changes, and the size of this particle size causes the plastic thin film to deform and the number of protrusions generated during heating. To affect.

さらに、所定の厚さと表面粗さを有する基板とそれと組み合わせる金属薄膜の種類を決め、所定の成膜条件で金属薄膜を成膜すると、一義的にその膜厚と表面あらさが決まることを見出した。また、このようにして準備された温度測定部材を用いると、この温度測定部材に印加された最高到達温度と金属薄膜の表面に形成された凸部または凹部に起因する表面情報(顕微鏡により観察した凸部または凹部の表面形状の画像データ、散乱光の強度、反射光の強度)に基づき、算出された単位面積当たりの個数との間には一定の関係が存在することも見出された。   Furthermore, it was found that when a substrate having a predetermined thickness and surface roughness and the type of metal thin film to be combined therewith were determined and a metal thin film was formed under predetermined film forming conditions, the film thickness and surface roughness were uniquely determined. . In addition, when the temperature measuring member prepared in this way is used, the surface temperature information (observed with a microscope) that is caused by the highest temperature applied to the temperature measuring member and the convex portion or concave portion formed on the surface of the metal thin film. It has also been found that there is a certain relationship between the calculated number per unit area based on the image data of the surface shape of the protrusions or recesses, the intensity of scattered light, and the intensity of reflected light.

以下に、温度測定部材の代表例として、基板としてシリコン基板、金属薄膜としてアルミニウムを採用した場合の成膜条件について、説明する。   Hereinafter, as a representative example of the temperature measuring member, a film forming condition when a silicon substrate is used as the substrate and aluminum is used as the metal thin film will be described.

純アルミニウムの場合、薄膜形成法として抵抗加熱蒸着法やエレクトロンビーム加熱蒸着法がよく使われる。しかし、この方法だと成膜中の熱によってアルミニウムの表面に激しく凹凸が発生し、膜の表面が白濁してしまう。上記温度測定部材を用いた本発明の温度測定方法は、熱処理によって生成する凸部としての突起を観察することが基本になるため、成膜直後のまだ熱履歴を受けない状態で膜の表面が粗面化していることは望ましくない。要するに、膜の表面粗さが小さく、平滑である必要がある。したがって、アルミニウムの成膜には、蒸着法は適さない。   In the case of pure aluminum, a resistance heating vapor deposition method or an electron beam heating vapor deposition method is often used as a thin film forming method. However, with this method, the surface of the aluminum is severely uneven due to heat during film formation, and the film surface becomes cloudy. Since the temperature measuring method of the present invention using the temperature measuring member is based on observing protrusions as convex portions generated by heat treatment, the surface of the film is not yet subjected to thermal history immediately after film formation. Roughening is not desirable. In short, the surface roughness of the film must be small and smooth. Therefore, the vapor deposition method is not suitable for aluminum film formation.

アルミニウム薄膜の表面が平滑になるように成膜するには、低温プロセスでの成膜が必要であり、その方法としてはスパッタリング法が適している。しかし、この方法においても、成膜パワーが高い場合や、成膜時間が長い場合には容易にアルミニウム表面が凹凸化して白濁する。例えば、マグネトロンスパッタリング法において、到達真空度を1.2×10−6Torr、基板ターゲット間距離を50mm、成膜ガスをArとして、成膜ガス圧を10mTorr、成膜パワーを15W/cmで、厚さ0.35mmの基板としてのシリコンウエハー上に厚さ1μmの膜厚のアルミニウム薄膜の成膜を行うと、膜表面は白濁化する。一方で、基板ターゲット間距離を100mm、成膜ガス圧を2mTorr、成膜パワーを2W/cmの条件下で、厚さ0.35mmのシリコンウエハー上に300nmの膜厚のアルミニウム薄膜の成膜を行うと表面が平滑な膜を得ることができる。以上のように、表面が平滑なアルミニウム薄膜を得るためには、低パワー、低温での成膜が要求される。許容できる最大の成膜パワーは10W/cmで、許容できる成膜温度は100℃以下(室温成膜時の温度上昇分)である。 In order to form a film so that the surface of the aluminum thin film becomes smooth, it is necessary to form the film by a low temperature process, and a sputtering method is suitable as the method. However, even in this method, when the film formation power is high or the film formation time is long, the aluminum surface easily becomes uneven and becomes clouded. For example, in magnetron sputtering, the ultimate vacuum is 1.2 × 10 −6 Torr, the distance between substrate targets is 50 mm, the deposition gas is Ar, the deposition gas pressure is 10 mTorr, and the deposition power is 15 W / cm 2 . When an aluminum thin film having a thickness of 1 μm is formed on a silicon wafer as a substrate having a thickness of 0.35 mm, the film surface becomes clouded. On the other hand, an aluminum thin film having a thickness of 300 nm was formed on a 0.35 mm thick silicon wafer under the conditions of a distance between substrate targets of 100 mm, a film forming gas pressure of 2 mTorr, and a film forming power of 2 W / cm 2. By performing the step, a film having a smooth surface can be obtained. As described above, in order to obtain an aluminum thin film having a smooth surface, film formation at low power and low temperature is required. The maximum allowable film forming power is 10 W / cm 2 , and the allowable film forming temperature is 100 ° C. or less (temperature increase at room temperature film forming).

本発明の技術思想に鑑みると、上記シリコン基板とアルミニウム薄膜の組み合わせ以外にも、さまざまものが考えられる。その一例として、以下のものを紹介する。   In view of the technical idea of the present invention, various things other than the combination of the silicon substrate and the aluminum thin film are conceivable. The following is introduced as an example.

基板材料の種類は、シリコン、ガラス、石英、グラファイト、SiC、サファイヤおよび樹脂である。これらの基板の表面あらさは受けた熱履歴により発生する金属薄膜の凹凸よりも平滑であれば良く、また表面あらさが5nm以下の基板は作成が著しく困難であるため、例えば、基板の表面あらさRaは5nm以上1μm以下であればよい。これにより、後に詳述する、測定すべき物体または雰囲気より金属薄膜付き基板からなる温度測定部材が受けた熱履歴によって金属薄膜の表面に形成される凸部または凹部の数を良好に収集することができる。また、測定すべき物体または雰囲気の条件に合わせて、適宜基板材料の種類を選択すれば、最適な温度測定方法を実現できる。   The types of substrate materials are silicon, glass, quartz, graphite, SiC, sapphire, and resin. The surface roughness of these substrates only needs to be smoother than the unevenness of the metal thin film generated by the received heat history, and since it is extremely difficult to produce a substrate with a surface roughness of 5 nm or less, for example, the surface roughness Ra of the substrate May be 5 nm or more and 1 μm or less. This makes it possible to collect well the number of convex portions or concave portions formed on the surface of the metal thin film due to the thermal history received by the temperature measuring member comprising the metal thin film substrate from the object or atmosphere to be measured, which will be described in detail later. Can do. In addition, an optimal temperature measurement method can be realized by appropriately selecting the type of substrate material according to the conditions of the object to be measured or the atmosphere.

金属薄膜材料の種類は、Mg、Al、Si、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zr、Mo、Ru、Pd、Ag、In、Sn、Hf、Ta、W、Pt、Au、Znであり、これらの金属薄膜の膜厚は10nm以上1000μm以下である。表面あらさRaが5nm以下の金属薄膜は作成が著しく困難であるため、金属薄膜の表面あらさRaは5nm以上0.5μm以下である。この膜厚と表面あらさを採用することで、後にも詳述する、測定すべき物体または雰囲気より金属薄膜付き基板からなる温度測定部材が受けた熱履歴によって金属薄膜の表面に形成される凸部または凹部の数を良好に収集することができる。また、測定すべき物体または雰囲気の条件に合わせて、適宜金属薄膜材料の種類を選択すれば、最適な温度測定方法を実現できる。また、金属薄膜材料は、純金属が好ましいが、不純物を含む場合も十分析出が進み、例えば凸部としての突起の形成挙動に影響を与えないのであれば、不純物を含んでもよい。   The types of metal thin film materials are Mg, Al, Si, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zr, Mo, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au Zn, and the thickness of these metal thin films is 10 nm or more and 1000 μm or less. Since it is extremely difficult to produce a metal thin film having a surface roughness Ra of 5 nm or less, the surface roughness Ra of the metal thin film is 5 nm to 0.5 μm. By adopting this film thickness and surface roughness, the convex part formed on the surface of the metal thin film by the thermal history received by the temperature measuring member consisting of the substrate with the metal thin film from the object or atmosphere to be measured, which will be described in detail later. Alternatively, the number of recesses can be collected well. Further, an optimal temperature measurement method can be realized by appropriately selecting the type of metal thin film material according to the conditions of the object to be measured or the atmosphere. The metal thin film material is preferably a pure metal. However, if the metal thin film material contains impurities, the metal film may contain impurities as long as precipitation proceeds sufficiently and does not affect, for example, the formation behavior of protrusions as protrusions.

アルミニウム薄膜以外の成膜条件について、以下に少し説明する。   The film forming conditions other than the aluminum thin film will be described a little below.

銅(Cu)薄膜の場合、銅の酸化膜が厚く成長しやすいため、表面平滑な膜を成膜するには、高真空での低温成膜が必要である。マグネトロンスパッタ法で成膜する場合でも、真空度が悪いと容易に表面が酸化して、凹凸化する。そこで、到達真空度として1×10−7Torr以下が必要となる。シリコン基板上に、800nm厚さで成膜した純銅薄膜の場合、250℃以上で表面の塑性変化が現れ、500℃まで酸化が進行しないため、温度測定部材として使用できる。それ以上の温度だと、酸化が進行しやすく測定が難しい。銅薄膜はアルミニウム薄膜より少し高温かつ高真空雰囲気下での測定に向いている。 In the case of a copper (Cu) thin film, a copper oxide film is thick and easy to grow. Therefore, in order to form a film having a smooth surface, it is necessary to form a low-temperature film in a high vacuum. Even when the film is formed by the magnetron sputtering method, if the degree of vacuum is poor, the surface is easily oxidized and roughened. Therefore, it is necessary that the ultimate vacuum is 1 × 10 −7 Torr or less. In the case of a pure copper thin film formed on a silicon substrate with a thickness of 800 nm, a plastic change of the surface appears at 250 ° C. or higher, and oxidation does not proceed up to 500 ° C., so that it can be used as a temperature measuring member. If the temperature is higher than that, oxidation tends to proceed and measurement is difficult. The copper thin film is suitable for measurement in a slightly higher temperature and high vacuum atmosphere than the aluminum thin film.

錫(Sn)の場合は、スパッタリング法によって低パワーで成膜しても、平滑な膜ができることはない。だが、錫の場合は、加熱によってできる突起は数ミリにも及ぶ巨大なウイスカーになるため、成膜初期の表面がそれほど平滑でなくても、特殊な環境下では突起の計測により温度測定は可能である。例えば、ごみなどの多い環境下での100℃から300℃程度の範囲の測定に向いている。   In the case of tin (Sn), a smooth film cannot be formed even if the film is formed with low power by sputtering. However, in the case of tin, the protrusions that can be heated are huge whiskers that can reach several millimeters, so even if the initial surface of the film is not very smooth, the temperature can be measured by measuring the protrusions in a special environment. It is. For example, it is suitable for measurement in the range of about 100 ° C. to 300 ° C. in an environment with a lot of dust.

亜鉛(Zn)は昇華しやすい金属であるので、加熱中の周辺環境汚染の要因となりうるので、コンタミネーション(汚染)を嫌う高真空化の環境で使用するのはためらわれるが、反対に、鋼板に対する溶融Znめっきなど、Znが大量に使われるプロセス下での使用に向いている。   Zinc (Zn) is a metal that is easily sublimated, so it can cause contamination of the surrounding environment during heating, so it is hesitant to use it in a high vacuum environment that hate contamination (contamination). It is suitable for use under processes where Zn is used in large quantities, such as hot-dip Zn plating.

一般に、融点が低いSn、Zn、インジウム(In)のような金属は低温度(特に、70℃以上200℃以下)の熱履歴を受けた場合の最高到達温度の測定が可能であり、150℃から500℃くらいまでの熱履歴を受けた場合の最高到達温度の測定にはアルミニウム、銅などが適している。また、融点が高いタングステン(W)、タンタル(Ta)などの金属は、さらに高温度(特に、250℃以上700℃以下)の熱履歴を受けた場合の最高到達温度の測定が可能となる。また、上記に記載した金属を適宜組み合わせることによって、さまざまな温度領域に対応した最高到達温度の測定が可能となる。また、銀(Ag)薄膜を選択すれば、基板として樹脂を用いることも可能である。ただし、Agと樹脂との界面では光があたるとAgの酸化と還元が同時に生じて、Agの凝集やAgの樹脂内への侵入が生じるので、それを避ける必要がある。したがって、上述したように、測定すべき物体あるいは雰囲気の条件に合わせて、必要によりこれらのものを適宜選択して用いることが可能である。   In general, metals such as Sn, Zn, and indium (In), which have a low melting point, can measure the maximum temperature when subjected to a thermal history at a low temperature (especially 70 ° C. or more and 200 ° C. or less), and 150 ° C. Aluminum, copper, etc. are suitable for the measurement of the highest temperature achieved when receiving a thermal history up to about 500 ° C. In addition, for metals such as tungsten (W) and tantalum (Ta) having a high melting point, it is possible to measure the maximum temperature achieved when a thermal history at a higher temperature (especially 250 ° C. or higher and 700 ° C. or lower) is received. In addition, by appropriately combining the metals described above, it is possible to measure the maximum temperature reached corresponding to various temperature regions. Further, if a silver (Ag) thin film is selected, a resin can be used as the substrate. However, when light is irradiated at the interface between Ag and the resin, Ag oxidation and reduction occur simultaneously, causing Ag aggregation and Ag intrusion into the resin, which must be avoided. Therefore, as described above, these can be appropriately selected and used as necessary according to the conditions of the object to be measured or the atmosphere.

以上詳細に説明してきた本発明の温度測定部材は、後に詳述するように、測定すべき物体または雰囲気より受けた熱履歴によって金属薄膜の表面に形成される凸部または凹部の数を収集することにより温度を測定する方法に用いられる。しかしながら、この温度測定部材を大気雰囲気中で加熱を行うと、温度測定部材の金属薄膜表面が酸化して、表面状態が著しく変化する場合がある。例えば金属薄膜が銅(Cu)薄膜である場合には、大気雰囲気で加熱すると200℃以上で表面酸化物が形成され始めて、表面酸化物が所望の凹凸上を覆ってしまうため、凹凸の検出が困難となる。このような場合、金属薄膜上に膜厚20nm以上2μm以下の表面保護膜を形成することにより、金属表面の酸化を抑制することができる。表面保護膜としては、所望の温度状態で安定な酸化膜であれば任意のものを使うことができるがAl、SiO、MgO、ZrO、HfO、TiO、Cr、NiO、ZuO、In、Y2Oが簡便である。これらの保護膜は、スパッタ法あるいは蒸着法、などのPVD法によって成膜することができる。この保護膜は、膜厚20nm以下ではピンホールが避けられないため好ましくない。また、膜厚2μm以上では保護膜にわれが発生するため好ましくない。従って、膜厚30nm〜300nmの保護膜が好ましい。 The temperature measuring member of the present invention described in detail above collects the number of convex portions or concave portions formed on the surface of the metal thin film by the thermal history received from the object or atmosphere to be measured, as will be described in detail later. It is used for the method of measuring temperature. However, when this temperature measuring member is heated in an air atmosphere, the surface of the metal thin film of the temperature measuring member may be oxidized and the surface state may change significantly. For example, when the metal thin film is a copper (Cu) thin film, when heated in an air atmosphere, a surface oxide starts to be formed at 200 ° C. or higher, and the surface oxide covers the desired unevenness. It becomes difficult. In such a case, oxidation of the metal surface can be suppressed by forming a surface protective film having a thickness of 20 nm to 2 μm on the metal thin film. As the surface protective film, any oxide film that is stable at a desired temperature state can be used, but Al 2 O 3 , SiO 2 , MgO, ZrO 2 , HfO 2 , TiO 2 , Cr 2 O 3 can be used. NiO, ZuO, In 2 O 3 and Y 2 O 3 are convenient. These protective films can be formed by PVD methods such as sputtering or vapor deposition. This protective film is not preferable if the film thickness is 20 nm or less because pinholes cannot be avoided. Moreover, since a crack generate | occur | produces in a protective film with a film thickness of 2 micrometers or more, it is unpreferable. Therefore, a protective film having a thickness of 30 nm to 300 nm is preferable.

(本発明に係る温度測定装置、温度測定方法)
本発明に係る温度測定装置は、
熱履歴に伴う物体または雰囲気の最高到達温度を測定するための温度測定装置であって、
(1)表面が平滑な基板に、表面が平滑かつ基板とは異なる熱膨張率を有する金属薄膜を形成した複数の金属薄膜付き基板と、
(2)この複数の金属薄膜付き基板にそれぞれ異なる最高到達温度となる熱履歴が与えられた後に金属薄膜表面に発生した凸部又は凹部の数の面密度を測定するための面密度測定部と、
(3)前記面密度測定部で得られた前記凸部又は凹部の数の面密度の測定値と前記最高到達温度の実測値とに基づいて求められた凸部又は凹部の数の面密度と最高到達温度との関係を示すデータが格納された記憶部と、
(4)前記(2)の面密度測定部で測定される、任意の熱履歴が付与される測定すべき物体または雰囲気の環境にセットされて温度測定部材として用いられる前記(1)の金属薄膜付き基板または前記(1)と同一条件下で得られた金属薄膜付き基板の金属薄膜表面に発生した凸部または凹部の数の面密度と、前記記憶部に格納された前記データと、の関係により、熱履歴が付与された前記測定すべき物体または雰囲気の最高到達温度を求めるための温度算出部と、を備えることを特徴とする。
(Temperature measuring device and temperature measuring method according to the present invention)
The temperature measuring device according to the present invention is
A temperature measuring device for measuring a maximum temperature of an object or atmosphere accompanying a thermal history,
(1) A substrate with a plurality of metal thin films in which a metal thin film having a smooth surface and a thermal expansion coefficient different from that of the substrate is formed on a substrate having a smooth surface;
(2) a surface density measuring unit for measuring the surface density of the number of protrusions or recesses generated on the surface of the metal thin film after the thermal history of different maximum ultimate temperatures is given to the plurality of substrates with metal thin films, ,
(3) The surface density of the number of convex portions or concave portions obtained based on the measured value of the surface density of the number of convex portions or concave portions obtained by the surface density measuring section and the actual measurement value of the maximum temperature reached; A storage unit storing data indicating the relationship with the maximum temperature reached;
(4) The metal thin film of (1) used as a temperature measurement member set in an environment of an object to be measured or an atmosphere to be measured, which is measured by the surface density measuring unit of (2) and given an arbitrary thermal history Relationship between the surface density of the number of convex portions or concave portions generated on the surface of the metal thin film of the substrate with a metal substrate or the substrate with a metal thin film obtained under the same conditions as the above (1), and the data stored in the storage unit And a temperature calculation unit for obtaining a maximum temperature of the object or atmosphere to be measured to which a thermal history is given.

また、本発明に係る温度測定方法は、
熱履歴に伴う物体または雰囲気の最高到達温度を測定する方法において、
(1)表面が平滑な基板に、表面が平滑でかつ基板とは異なる熱膨張率を有する金属薄膜を形成した金属薄膜付き基板を複数準備し、
(2)この複数の金属薄膜付き基板にそれぞれ異なる最高到達温度となる熱履歴を与え、
(3)この熱履歴を与えた後に金属薄膜表面に発生した凸部又は凹部の数の面密度を測定し、
(4)前記凸部又は凹部の数の面密度の測定値と前記最高到達温度の実測値とに基づいて凸部又は凹部の数の面密度と最高到達温度との関係を求めておき、
(5)前記(1)の金属薄膜付き基板または前記(1)と同一条件下で得られた金属薄膜付き基板を温度測定部材として任意の熱履歴が付与される測定すべき物体または雰囲気の環境にセットし、
(6)前記任意の熱履歴が付与され温度測定部材として用いた金属薄膜付き基板の金属薄膜表面に発生した凸部又は凹部の数の面密度を測定し、この測定値と前記(4)で求められた凸部又は凹部の数の面密度と最高到達温度との関係より、熱履歴が付与された前記測定すべき物体または雰囲気の最高到達温度を求めることを特徴とする。
Moreover, the temperature measurement method according to the present invention includes:
In the method of measuring the maximum temperature of an object or atmosphere that accompanies thermal history,
(1) preparing a plurality of substrates with a metal thin film in which a metal thin film having a smooth surface and a coefficient of thermal expansion different from that of the substrate is formed on a substrate having a smooth surface;
(2) A thermal history that gives different maximum temperatures to each of the plurality of substrates with metal thin films is given,
(3) Measure the surface density of the number of convex portions or concave portions generated on the surface of the metal thin film after giving this thermal history,
(4) Based on the measured value of the surface density of the number of convex portions or concave portions and the measured value of the maximum reached temperature, the relationship between the surface density of the number of convex portions or concave portions and the maximum reached temperature is obtained,
(5) Environment of the object or atmosphere to be measured to which an arbitrary thermal history is given using the substrate with the metal thin film of (1) or the substrate with the metal thin film obtained under the same conditions as in (1) above as a temperature measurement member Set to
(6) The surface density of the number of convex portions or the number of concave portions generated on the surface of the metal thin film of the substrate with the metal thin film used as the temperature measuring member to which the arbitrary thermal history is given is measured. The maximum attainable temperature of the object or atmosphere to be measured, to which the thermal history is given, is obtained from the relationship between the surface density of the number of protrusions or recesses obtained and the maximum attainable temperature.

以下、この温度測定方法について、基板ターゲット間距離を100mm、成膜ガス圧を2mTorr、成膜パワーを2W/cmの条件下で、厚さ0.35mmのシリコンウエハー上に300nmの膜厚のアルミニウム薄膜が成膜された金属薄膜付き基板を複数準備して、この複数の金属薄膜付き基板を用いて温度測定を実施する場合を例にとって詳細に説明する。 Hereinafter, for this temperature measurement method, a film thickness of 300 nm is formed on a silicon wafer having a thickness of 0.35 mm under the conditions of a distance between substrate targets of 100 mm, a film forming gas pressure of 2 mTorr, and a film forming power of 2 W / cm 2 . A case where a plurality of substrates with metal thin films on which an aluminum thin film is formed is prepared and temperature measurement is performed using the plurality of substrates with metal thin films will be described in detail.

まず、上記複数の金属薄膜付き基板について、最高到達温度とこの温度によって金属薄膜の表面に形成される凸部としての突起の生成個数の関係を以下に詳述する面密度測定部で予め調べる必要がある。また、面密度測定部は、表面情報収集部、AD変換部と個数算出部から構成されている。そこで、上記金属薄膜付き基板を小型の真空熱処理炉の中に入れて、昇温速度5℃/分で所定の温度まで加熱した。加熱後の金属薄膜付き基板の金属薄膜の表面に形成された突起の表面形状を顕微鏡により観察し、この表面形状を表面情報収集部を構成するCCDカメラで取り込みアナログな画像信号を得た。この画像信号をAD変換部としてのIOボードでデジタル化し画像データを得た。次に、この画像データを個数算出部を用いて二値化処理し、既定値範囲の突起の直径(0.3μm以上10μm以下)に該当するもののみ単位面積当たりの個数(以下、面密度と称する)として算出した。その結果、150℃で直径0.3μm以上10μm以下の突起が発生しはじめた。200℃で面密度20×10E9個/mの突起が発生し、300℃で面密度60×10E9個/mの突起が発生した。したがって、この例では最高到達温度(T)と面密度(X×10E9個/m)の間には、下記式(1)の関係が有ることがわかった。 First, regarding the plurality of substrates with metal thin films, it is necessary to examine in advance the area density measuring unit described in detail below the relationship between the maximum temperature reached and the number of protrusions formed as protrusions formed on the surface of the metal thin film at this temperature. There is. Further, the surface density measuring unit includes a surface information collecting unit, an AD converting unit, and a number calculating unit. Therefore, the substrate with the metal thin film was placed in a small vacuum heat treatment furnace and heated to a predetermined temperature at a temperature rising rate of 5 ° C./min. The surface shape of the protrusion formed on the surface of the metal thin film of the substrate with the metal thin film after heating was observed with a microscope, and the surface shape was captured by a CCD camera constituting the surface information collecting unit to obtain an analog image signal. This image signal was digitized by an IO board as an AD conversion unit to obtain image data. Next, this image data is binarized using a number calculation unit, and only the number corresponding to the projection diameter (0.3 μm or more and 10 μm or less) in the predetermined value range (hereinafter referred to as surface density and area density). Calculated). As a result, protrusions having a diameter of 0.3 μm or more and 10 μm or less began to occur at 150 ° C. Protrusions having a surface density of 20 × 10E9 / m 2 were generated at 200 ° C., and protrusions having a surface density of 60 × 10E9 / m 2 were generated at 300 ° C. Therefore, in this example, it was found that there is a relationship of the following formula (1) between the maximum temperature reached (T) and the surface density (X × 10E9 / m 2 ).

T=0.4×X−60(150℃以上300℃以下)―――式(1)   T = 0.4 × X-60 (150 to 300 ° C.)-Formula (1)

また、昇温速度50℃/分、100℃/分でそれぞれ加熱した後、上記同様の手法で最高到達温度(T)と面密度(X×10E9個/m)との関係を求めた結果も上記式(1)と同じであった。また、昇温速度50℃/分で300℃まで加熱した後、そのまま30分保持したものについて、上記関係を調べた結果も上記式(1)と同じであった。また、雰囲気をアルゴンガス中、窒素ガス中、大気中に変えて、上記最高到達温度(T)と面密度(X×10E9個/m)との関係を調べた結果も上記式(1)と同じであった。 Moreover, after heating at a temperature increase rate of 50 ° C./min and 100 ° C./min, respectively, the result of determining the relationship between the maximum temperature reached (T) and the surface density (X × 10E9 / m 2 ) by the same method as above. Was the same as the above formula (1). Further, after heating to 300 ° C. at a rate of temperature increase of 50 ° C./min and holding it for 30 minutes, the result of investigating the above relationship was also the same as the above formula (1). Moreover, the result of examining the relationship between the maximum temperature reached (T) and the surface density (X × 10E9 / m 2 ) by changing the atmosphere into argon gas, nitrogen gas, or air is the above formula (1). Was the same.

次に、基板ターゲット間距離を100mm、成膜ガス圧を5mTorr、成膜パワーを2W/cmの条件下で、厚さ0.35mmのシリコンウエハー上に300nmの膜厚のアルミニウム薄膜が成膜された金属薄膜付き基板を複数準備した。この金属薄膜付き基板を用いて、昇温速度5℃/分で300℃まで加熱した後、上記最高到達温度(T)と面密度(X×10E9個/m)との関係を調べた結果は、式(2)の関係が有ることがわかった。 Next, an aluminum thin film having a thickness of 300 nm is formed on a silicon wafer having a thickness of 0.35 mm under the conditions of a distance between substrate targets of 100 mm, a film forming gas pressure of 5 mTorr, and a film forming power of 2 W / cm 2. A plurality of prepared substrates with metal thin films were prepared. As a result of examining the relationship between the maximum ultimate temperature (T) and the surface density (X × 10E9 / m 2 ) after heating to 300 ° C. at a rate of temperature increase of 5 ° C./min using the substrate with the metal thin film. Was found to have the relationship of equation (2).

T=0.3×−45(150℃以上300℃以下)―――式(2)   T = 0.3 × −45 (150 ° C. or more and 300 ° C. or less)-Formula (2)

次に、基板ターゲット間距離を100mm、成膜ガス圧を5mTorr、成膜パワーを2W/cmの条件下で、厚さ0.35mmのシリコンウエハー上に100nmの膜厚のアルミニウム薄膜が成膜された金属薄膜付き基板を複数準備した。この金属薄膜付き基板を用いて、昇温速度5℃/分で300℃まで加熱した後、上記最高到達温度(T)と面密度(X×10E9個/m)との関係を調べた結果は、式(3)の関係が有ることがわかった。 Next, an aluminum thin film having a thickness of 100 nm is formed on a silicon wafer having a thickness of 0.35 mm under the conditions of a distance between substrate targets of 100 mm, a film forming gas pressure of 5 mTorr, and a film forming power of 2 W / cm 2. A plurality of prepared substrates with metal thin films were prepared. As a result of examining the relationship between the maximum ultimate temperature (T) and the surface density (X × 10E9 / m 2 ) after heating to 300 ° C. at a rate of temperature increase of 5 ° C./min using the substrate with the metal thin film. Was found to have the relationship of equation (3).

T=0.13×X−19.5(150℃以上300℃以下)―――式(3)   T = 0.13 × X-19.5 (150 ° C. or more and 300 ° C. or less)-formula (3)

このように、成膜条件が変わると、突起の生成個数が変わる。したがって、金属薄膜付き基板を構成する材料の種類、寸法、表面あらさや成膜条件は、所定の値となるように厳密に管理しなければならない。しかし、上記管理を守りさえすれば、昇温速度、温度保持の時間や雰囲気ガスに依存せず、最高到達温度(T)と面密度(X×10E9個/m)との間に一定の関係式が成立する。 Thus, when the film formation conditions change, the number of protrusions generated changes. Therefore, the type, dimensions, surface roughness, and film formation conditions of the material constituting the metal thin film-attached substrate must be strictly controlled so as to have predetermined values. However, as long as the above management is observed, it does not depend on the rate of temperature rise, the temperature holding time, or the atmosphere gas, and is constant between the maximum temperature reached (T) and the surface density (X × 10E9 / m 2 ). The relational expression is established.

したがって、上記金属薄膜付き基板について予め求められた最高到達温度(T)と面密度(X×10E9個/m)との関係を示すデータを記憶部としてのメモリーに保存しておけば、以下に説明する処理工程より熱履歴が付与された測定すべき物体あるいは雰囲気の最高到達温度を求めることができる。 Therefore, if the data indicating the relationship between the maximum temperature (T) and the surface density (X × 10E9 / m 2 ) determined in advance for the substrate with the metal thin film is stored in a memory serving as a storage unit, It is possible to obtain the maximum temperature of the object or atmosphere to be measured, to which the thermal history is applied, from the processing steps described in (1).

次の手順として、上記金属薄膜付き基板あるいは上記金属薄膜付き基板と同一条件下で得られた金属薄膜付き基板を温度測定部材として任意の熱履歴が付与される測定すべき物体あるいは雰囲気の環境にセットする。そして、前記任意の熱履歴が付与され温度測定部材として用いた金属薄膜付き基板の金属薄膜表面に発生した突起の数の面密度を上記同様の面密度測定部で測定する。この測定値と上述のメモリーに格納されたデータとの関係より、温度算出部を用いて熱履歴が付与された測定すべき物体あるいは雰囲気の最高到達温度を求めることができる。   As the next procedure, the substrate with metal thin film or the substrate with metal thin film obtained under the same conditions as the substrate with metal thin film is used as a temperature measurement member to be placed in the environment of the object to be measured or the atmosphere to be measured. set. Then, the surface density of the number of protrusions generated on the surface of the metal thin film of the substrate with the metal thin film used as the temperature measuring member to which the arbitrary thermal history is given is measured by the same surface density measuring unit as described above. From the relationship between the measured value and the data stored in the above-described memory, it is possible to obtain the maximum temperature of the object or atmosphere to be measured, to which the thermal history is given, using the temperature calculation unit.

本実施形態においては、基板としてはシリコン、基板上に成膜する金属薄膜としてはアルミニウムに関する例について特に詳細に説明してきたが、必ずしもこれに限定されるものではない。   In the present embodiment, an example in which silicon is used as the substrate and aluminum is used as the metal thin film formed on the substrate has been described in detail. However, the embodiment is not necessarily limited thereto.

上記本発明に係る温度測定部材の構成のところで述べたように、基板とその上に成膜する金属薄膜とのさまざまな組み合わせにより、凸部としての突起または凹部としての穴などに起因する表面情報を用いて、最高到達温度の測定をすることができる。   As described above in the configuration of the temperature measurement member according to the present invention, surface information caused by protrusions as protrusions or holes as recesses by various combinations of a substrate and a metal thin film formed thereon. Can be used to measure the maximum temperature reached.

また、本実施形態においては、金属薄膜の表面に形成された突起に起因する表面情報としての画像信号を光学顕微鏡とCCDカメラから構成された表面情報収集部で取り込む例について説明した。また、IOボードを用いてデジタル化した画像データを個数算出部で二値化処理し、突起についての単位面積当たりの個数(面密度)を求める例について説明したが、必ずしもこれに限定されるものではない。例えば、顕微鏡としては、レーザー顕微鏡を用いることもできる。これにより、直径が0.1μm以上の突起の個数を計測することもできる。また、SEM(走査型電子顕微鏡)のような電子顕微鏡を用いることで、さらに小さい突起や穴を観察し、画像情報として収集することができる。また、表面情報収集部として接触式あらさ計を用いて、直接微小な突起を計測し、そのデータを基に面密度を算出することもできる。この他にも、例えば、金属薄膜の表面に形成された突起に起因する表面情報として、散乱光の強度を収集し、個数算出部で散乱光の強度ついて既定値範囲内のもののみ単位面積当たりの個数として求める装置(いわゆるパーティクルカウンター)を利用することもできる。さらに、表面情報としては、反射光の強度を用いることもできる。この強度を用いれば、パーティクルカウンターで利用されるような原理(例えば、強度ついて既定値範囲内のもののみ単位面積当たりの個数(面密度)として求める)を活用することができる。   Further, in the present embodiment, an example in which an image signal as surface information resulting from protrusions formed on the surface of a metal thin film is captured by a surface information collecting unit configured by an optical microscope and a CCD camera has been described. In addition, although an example has been described in which digitized image data using an IO board is binarized by a number calculation unit to obtain the number of protrusions per unit area (surface density), the present invention is not necessarily limited thereto. is not. For example, a laser microscope can be used as the microscope. Thereby, the number of protrusions having a diameter of 0.1 μm or more can be measured. Further, by using an electron microscope such as an SEM (scanning electron microscope), even smaller protrusions and holes can be observed and collected as image information. In addition, by using a contact-type roughness meter as a surface information collecting unit, it is possible to directly measure minute protrusions and calculate the surface density based on the data. In addition to this, for example, as surface information caused by protrusions formed on the surface of the metal thin film, the intensity of scattered light is collected, and the number calculation unit only determines the intensity of scattered light per unit area within a predetermined range. It is also possible to use a device (so-called particle counter) that obtains the number of particles. Further, the intensity of the reflected light can be used as the surface information. By using this intensity, it is possible to use a principle used in a particle counter (for example, only the intensity within a predetermined value range is obtained as the number per unit area (surface density)).

なお、加熱によって生じる金属薄膜の突起の個数の算出において、凸部(突起)の直径が0.1μm未満の場合には、反射率測定やパーティクルカウンターやレーザー顕微鏡法による検出が困難である。また、凸部の直径が30μmを超える場合には、面内の凸部の分布が均一でないため、微小部分の測定による温度測定が難しくなる。これらの点より、SEMのような電子顕微鏡を用いる場合以外では、直径が0.1μm〜30μmの範囲の凸部を用いて温度測定を行う。なお、巨大な凸部は、おもに加熱温度が所望の測定領域よりも高くなった場合に出現するので、均一で良好な温度測定を行うためには、直径0.3μm〜10μmの凸部または凹部が出現する領域で温度測定することが好ましい。   In the calculation of the number of protrusions of the metal thin film caused by heating, if the diameter of the protrusions (protrusions) is less than 0.1 μm, it is difficult to measure the reflectivity, detect with a particle counter or laser microscopy. Moreover, when the diameter of a convex part exceeds 30 micrometers, since distribution of the convex part in a surface is not uniform, the temperature measurement by the measurement of a micro part becomes difficult. From these points, except when using an electron microscope such as SEM, the temperature is measured using a convex portion having a diameter in the range of 0.1 μm to 30 μm. In addition, since a huge convex part appears mainly when heating temperature becomes higher than a desired measurement area | region, in order to perform uniform and favorable temperature measurement, a convex part or concave part with a diameter of 0.3 micrometer-10 micrometers It is preferable to measure the temperature in the region where appears.

スパッタリング法により、到達真空度を1.2×10−6Torr、基板ターゲット間距離を100mm、成膜中のアルゴンガス圧を2mTorr、成膜パワーを2W/cmの条件下で、厚さ0.35mm、2インチのシリコンウエハー上に300nmの膜厚の純度99.99のアルミニウム薄膜の成膜することで金属薄膜付き基板を作成した。この金属薄膜付き基板を用いて、アルゴン雰囲気中で昇温温度5℃/分で加熱した。加熱後の金属薄膜付き基板の金属薄膜の表面に形成された突起の表面形状を顕微鏡により観察し、この表面形状を表面情報収集部を構成するCCDカメラで取り込みアナログな画像信号を得た。この画像信号をAD変換部としてのIOボードでデジタル化し画像データを得た。次に、この画像データを個数算出部を用いて二値化処理し、既定値範囲の突起の直径(0.3μm以上10μm以下)に該当するもののみ単位面積当たりの個数(面密度)として算出した。その結果、最高到達温度(T)と面密度(X×10E9個/m)の間には、下記式(4)の関係が有ることがわかった。 A thickness of 0 was achieved under the conditions of an ultimate vacuum of 1.2 × 10 −6 Torr, a distance between substrate targets of 100 mm, an argon gas pressure of 2 mTorr, and a deposition power of 2 W / cm 2 by sputtering. A substrate with a metal thin film was prepared by forming an aluminum thin film having a purity of 99.99 with a thickness of 300 nm on a .35 mm, 2-inch silicon wafer. The substrate with the metal thin film was used and heated in an argon atmosphere at a heating temperature of 5 ° C./min. The surface shape of the protrusion formed on the surface of the metal thin film of the substrate with the metal thin film after heating was observed with a microscope, and the surface shape was captured by a CCD camera constituting the surface information collecting unit to obtain an analog image signal. This image signal was digitized by an IO board as an AD conversion unit to obtain image data. Next, this image data is binarized using a number calculating unit, and only those corresponding to the projection diameter (0.3 μm or more and 10 μm or less) within the predetermined value range are calculated as the number per unit area (surface density). did. As a result, it was found that there is a relationship of the following formula (4) between the maximum temperature reached (T) and the surface density (X × 10E9 / m 2 ).

T=0.4×X−60―――式(4)   T = 0.4 × X-60--Formula (4)

上記同様な条件で作成した金属薄膜付き基板からなる温度測定部材を真空熱処理炉に設置して、真空雰囲気中で昇温速度10℃/分、炉内の目標最高温度250℃、保持時間30分に設定して加熱試験を行なった。この時、温度測定部材の温度を熱電対で同時に測定した。その結果、温度測定部材は実際には250℃まで到達した後、3分後に280℃まで達し、その後温度が下がり10分後に250℃で安定した。   A temperature measuring member made of a substrate with a metal thin film prepared under the same conditions as described above is installed in a vacuum heat treatment furnace, and the temperature rising rate is 10 ° C./min in the vacuum atmosphere, the target maximum temperature in the furnace is 250 ° C., and the holding time is 30 minutes. The heating test was conducted with the setting of. At this time, the temperature of the temperature measuring member was simultaneously measured with a thermocouple. As a result, the temperature measuring member actually reached 250 ° C., then reached 280 ° C. after 3 minutes, and then the temperature dropped and stabilized at 250 ° C. after 10 minutes.

加熱試験後の温度測定部材の金属薄膜表面の突起の面密度を上記同様の手段を用いて求めたところ、52×10E−9/mだった。したがって、上記式(4)を用いて温度に換算すると、280℃だった。このときの金属薄膜表面の形状を顕微鏡で観察した結果を図1に示す。 When the surface density of the protrusions on the surface of the metal thin film of the temperature measurement member after the heating test was determined using the same means as described above, it was 52 × 10E-9 / m 2 . Therefore, when converted into temperature using the above formula (4), it was 280 ° C. The result of having observed the shape of the metal thin film surface at this time with the microscope is shown in FIG.

次に、熱履歴が付与された測定すべき物体あるいは雰囲気としての上記真空熱処理炉を用いて、窒素雰囲気で昇温速度10℃/分、目標最高温度250℃、保持時間30分に設定して加熱試験を行なった。この時、温度測定器は250℃まで到達せず、3分後に230℃まで達した後に10分後に200℃で安定した。冷却後の温度測定部材の金属薄膜表面の突起の面密度を上記同様の手段を用いて求めたところ、30×10E−9/mだった。したがって、上記式(4)を用いて温度に換算すると、225℃だった。このように、上記温度測定部材を用いれば、炉内の任意の個所の最高到達温度の測定が可能である。 Next, using the vacuum heat treatment furnace as the object to be measured or atmosphere to which the thermal history is given, the temperature rising rate is set to 10 ° C./min in the nitrogen atmosphere, the target maximum temperature is 250 ° C., and the holding time is set to 30 minutes. A heating test was performed. At this time, the temperature measuring device did not reach 250 ° C., and reached 230 ° C. after 3 minutes and stabilized at 200 ° C. after 10 minutes. When the surface density of the protrusions on the surface of the metal thin film of the temperature measuring member after cooling was determined using the same means as described above, it was 30 × 10E-9 / m 2 . Therefore, when converted into temperature using the above formula (4), it was 225 ° C. Thus, if the said temperature measurement member is used, the measurement of the highest ultimate temperature of the arbitrary locations in a furnace is possible.

実施例1で簡単に記載した最高到達温度の測定方法および温度測定装置について、以下に説明する。図2は、本実施形態における温度測定装置を説明するためのブロック図である。   The method for measuring the maximum temperature and the temperature measuring apparatus described briefly in the first embodiment will be described below. FIG. 2 is a block diagram for explaining the temperature measuring apparatus in the present embodiment.

図2において、1は実施例1に示した測定すべき対象としての真空熱処理炉にセットし熱履歴が付与された金属薄膜付き基板からなる温度測定部材、2は温度測定部材1を支える保持台、3は金属薄膜表面の突起形状を観察するための光学顕微鏡、4は光学顕微鏡3に取付けられ、アナログな画像信号を出力するためのCCDカメラ、5はCCDカメラ4の出力信号をデジタル化し画像データを出力するためのIOボード、6はIOボードが接続された演算処理装置、7はIOボード5から出力されたデジタル化された画像データを二値化処理し、既定値範囲の突起の直径に該当するもののみカウントし、面密度(X×10E9個/m)を算出するための個数算出部、8は金属薄膜付き基板に関して予備実験により予め熱履歴を与え求められた最高到達温度(T)と面密度(X×10E9個/m)に関するデータが格納されている記憶部としてのメモリー、9は測定すべき対象としての真空熱処理炉から熱履歴を受けた温度測定部材1に関して個数算出部7を用いて算出した面密度とメモリー8に格納された上記最高到達温度(T)と面密度(X×10E9個/m)に関するデータとから上記真空熱処理炉の最高到達温度(T)を求めるための温度算出部、10は温度算出部9で求められた温度を表示するための表示部である。 In FIG. 2, reference numeral 1 denotes a temperature measuring member which is set in a vacuum heat treatment furnace as an object to be measured shown in the first embodiment and is provided with a metal thin film substrate to which a thermal history is given, and 2 is a holding base for supporting the temperature measuring member 1. 3 is an optical microscope for observing the shape of protrusions on the surface of the metal thin film, 4 is attached to the optical microscope 3, and is a CCD camera for outputting an analog image signal. 5 is an image obtained by digitizing the output signal of the CCD camera 4. An IO board for outputting data, 6 is an arithmetic processing device to which the IO board is connected, 7 is a binarization process for digitized image data output from the IO board 5, and the diameter of the protrusion in the predetermined value range The number calculating unit for counting only those corresponding to the above, and calculating the surface density (X × 10E9 / m 2 ), 8 is obtained in advance by giving a thermal history by preliminary experiments on the substrate with metal thin film. A memory serving as a storage unit storing data on the maximum temperature (T) and surface density (X × 10E9 / m 2 ), 9 received a thermal history from the vacuum heat treatment furnace to be measured From the surface density calculated by using the number calculating section 7 for the temperature measuring member 1 and the data on the maximum temperature (T) and the surface density (X × 10E9 / m 2 ) stored in the memory 8, the vacuum heat treatment furnace The temperature calculation unit 10 for obtaining the highest temperature (T) of the first display 10 is a display unit for displaying the temperature obtained by the temperature calculation unit 9.

光学顕微鏡3のような手段を用いて、金属薄膜表面の突起形状を観察し、この表面形状をCCDカメラ4によりアナログな画像信号として取り込み、IOボード5によりデジタルな画像データ出力を得るため、画像データ出力は極めて良質である。また、CCDカメラ4、IOボード5と個数算出部7を用いることで、既存の優れた画像処理手法を活用することができる。   Using means such as the optical microscope 3, the projection shape on the surface of the metal thin film is observed, the surface shape is captured as an analog image signal by the CCD camera 4, and digital image data output is obtained by the IO board 5. The data output is very good. In addition, by using the CCD camera 4, the IO board 5 and the number calculation unit 7, an existing excellent image processing method can be utilized.

スパッタリング法により、到達真空度を1.2×10−6Torr、基板ターゲット間距離を100mm、成膜中のアルゴンガス圧を3mTorr、成膜パワーを2.8W/cmの条件下で、厚さ0.625mm、6インチのシリコンウエハー上に300nmの膜厚の純度99.99のアルミニウム薄膜の成膜することで金属薄膜付き基板を作成した。 By sputtering, the ultimate vacuum is 1.2 × 10 −6 Torr, the distance between substrate targets is 100 mm, the argon gas pressure during film formation is 3 mTorr, and the film formation power is 2.8 W / cm 2. A substrate with a metal thin film was prepared by forming an aluminum thin film having a thickness of 300 nm and a purity of 99.99 on a 0.625 mm, 6-inch silicon wafer.

次に、上記金属薄膜付き基板を真空熱処理炉内で熱処理した。その時の昇温速度は5℃/分とし、所定の温度まで上昇させた後、10分間保持した後、自然冷却した。この時、センサレー社製の熱電対付き温度測定ウエハで、上記金属薄膜付き基板の中央部分の温度を測定し、最高到達温度を記録した。また、熱処理後の上記金属薄膜付き基板を構成する金属薄膜の表面に形成された突起数を、トプコン社製のパーティクルカウンターで計測した。ここで、上記ウエハー当たりの突起数(ここでは以下、パーティクル数と称す)とは、直径が1μmのものを6インチウエハの全面に対して測定したものをいう。このようにして求めた上記金属薄膜付き基板の到達温度とパーティクル数を表1に示す。

Figure 0005203800
Next, the substrate with the metal thin film was heat-treated in a vacuum heat treatment furnace. The rate of temperature increase at that time was 5 ° C./min, the temperature was raised to a predetermined temperature, held for 10 minutes, and then naturally cooled. At this time, the temperature of the central portion of the substrate with the metal thin film was measured with a temperature measuring wafer with a thermocouple manufactured by Sensorray Co., Ltd., and the maximum temperature reached was recorded. Further, the number of protrusions formed on the surface of the metal thin film constituting the metal thin film-coated substrate after the heat treatment was measured with a particle counter manufactured by Topcon Corporation. Here, the number of protrusions per wafer (hereinafter referred to as the number of particles) refers to the one having a diameter of 1 μm measured on the entire surface of a 6-inch wafer. Table 1 shows the temperature reached and the number of particles of the substrate with the metal thin film thus obtained.
Figure 0005203800

また、上記基板到達温度とパーティクル数の関係を示した特性図を図3に示す。図3に示す特性図より求まった基板の最高到達温度(T)とパーティクル数(n)との間には、下記式(5)の関係が有ることがわかった。この式(5)で表現されるデータを記憶部に格納しておけば、下記の温度測定アルゴリズムの中で利用できる。   FIG. 3 shows a characteristic diagram showing the relationship between the substrate temperature and the number of particles. It was found from the characteristic diagram shown in FIG. 3 that there is a relationship of the following equation (5) between the maximum temperature (T) of the substrate obtained and the number of particles (n). If the data expressed by the equation (5) is stored in the storage unit, it can be used in the following temperature measurement algorithm.

n = 225×T − 34645―――式(5)   n = 225 × T−34645—the formula (5)

また、上記パーティクルカウンターで求めた6インチウエハ上の金属薄膜の突起の分布と基板の最高到達温度との関係を示す分布図を図4に示す。   FIG. 4 is a distribution diagram showing the relationship between the distribution of the protrusions of the metal thin film on the 6-inch wafer obtained by the particle counter and the maximum temperature reached by the substrate.

上記で説明したパーティクルカウンターは、これまでに説明してきた面密度測定部に相当する。したがって、以降の処理手法や構成には、実施例2で説明した最高到達温度の測定方法および温度測定装置が適用できる。よって、詳細な説明は省略する。   The particle counter described above corresponds to the surface density measurement unit described so far. Therefore, the measuring method and temperature measuring device for the maximum temperature described in the second embodiment can be applied to the subsequent processing methods and configurations. Therefore, detailed description is omitted.

以上のように本発明によると、外部配線が不要で、不純物や粉塵の発生もなく、かつ、低温度から高温度までの広い温度範囲における最高到達温度の測定ができる温度測定部材、温度測定装置および温度測定方法を提供することができる。   As described above, according to the present invention, there is no need for external wiring, no generation of impurities and dust, and a temperature measuring member and a temperature measuring device capable of measuring the maximum temperature in a wide temperature range from low to high temperatures. And a temperature measurement method can be provided.

実施例1における、熱処理後の金属薄膜表面の様子を示す平面図である。It is a top view which shows the mode of the metal thin film surface after heat processing in Example 1. FIG. 実施例2における、温度測定装置を説明するためのブロック図である。It is a block diagram for demonstrating the temperature measuring apparatus in Example 2. FIG. 実施例3における、基板到達温度とパーティクル数の関係を示した特性図である。FIG. 10 is a characteristic diagram showing a relationship between a substrate arrival temperature and the number of particles in Example 3. 実施例3における、金属薄膜の突起の分布と基板の最高到達温度との関係を示す分布図である。In Example 3, it is a distribution map which shows the relationship between distribution of the processus | protrusion of a metal thin film, and the highest ultimate temperature of a board | substrate.

符号の説明Explanation of symbols

1 温度測定部材
2 保持台
3 光学顕微鏡
4 CCDカメラ
5 IOボード
6 演算処理装置
7 個数算出部
8 メモリー
9 温度算出部
10 表示部
DESCRIPTION OF SYMBOLS 1 Temperature measurement member 2 Holding stand 3 Optical microscope 4 CCD camera 5 IO board 6 Arithmetic processing device 7 Number calculation part 8 Memory 9 Temperature calculation part 10 Display part

Claims (12)

表面が平滑な基板に、表面が平滑でかつ基板とは異なる熱膨張率を有する金属薄膜を形成した金属薄膜付き基板からなる温度測定部材において、
前記基板の表面あらさRaは、1μm以下であり、
前記金属薄膜の表面あらさRaは、0.5μm以下であり、
前記金属薄膜の膜厚は、10nm以上1000μm以下である温度測定部材。
In the temperature measurement member consisting of a substrate with a metal thin film in which a metal thin film having a smooth surface and a coefficient of thermal expansion different from that of the substrate is formed on a substrate having a smooth surface,
The surface roughness Ra of the substrate is 1 μm or less,
The surface roughness Ra of the metal thin film is 0.5 μm or less,
The temperature measurement member whose film thickness of the said metal thin film is 10 nm or more and 1000 micrometers or less.
前記基板の材料は、シリコン、ガラス、石英、グラファイト、SiC、サファイヤおよび樹脂からなる群から選択されたいずれか1種よりなる請求項1に記載の温度測定部材。   2. The temperature measuring member according to claim 1, wherein the material of the substrate is any one selected from the group consisting of silicon, glass, quartz, graphite, SiC, sapphire, and resin. 前記金属薄膜の材料は、Mg、Al、Si、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zr、Mo、Ru、Pd、Ag、In、Sn、Hf、Ta、W、Pt、Au、Znからなる群から選択された1種以上よりなる請求項1又は2に記載の温度測定部材。   The material of the metal thin film is Mg, Al, Si, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zr, Mo, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au. The temperature measuring member according to claim 1 or 2, comprising at least one selected from the group consisting of Zn and Zn. 前記金属薄膜の上には、さらに保護膜が形成された請求項1〜3に記載の温度測定部材。   The temperature measuring member according to claim 1, wherein a protective film is further formed on the metal thin film. 熱履歴に伴う物体または雰囲気の最高到達温度を測定するための温度測定装置であって、
(1)表面が平滑な基板に、表面が平滑かつ基板とは異なる熱膨張率を有する金属薄膜を形成した複数の金属薄膜付き基板と、
(2)この複数の金属薄膜付き基板にそれぞれ異なる最高到達温度となる熱履歴が与えられた後に金属薄膜表面に発生した凸部又は凹部の数の面密度を測定するための面密度測定部と、
(3)前記面密度測定部で得られた前記凸部又は凹部の数の面密度の測定値と前記最高到達温度の実測値とに基づいて求められた凸部又は凹部の数の面密度と最高到達温度との関係を示すデータが格納された記憶部と、
(4)前記(2)の面密度測定部で測定される、任意の熱履歴が付与される測定すべき物体または雰囲気の環境にセットされて温度測定部材として用いられる前記(1)の金属薄膜付き基板または前記(1)と同一条件下で得られた金属薄膜付き基板の金属薄膜表面に発生した凸部または凹部の数の面密度と、前記記憶部に格納された前記データと、の関係により、熱履歴が付与された前記測定すべき物体または雰囲気の最高到達温度を求めるための温度算出部と、を備えることを特徴とする温度測定装置。
A temperature measuring device for measuring a maximum temperature of an object or atmosphere accompanying a thermal history,
(1) A substrate with a plurality of metal thin films in which a metal thin film having a smooth surface and a thermal expansion coefficient different from that of the substrate is formed on a substrate having a smooth surface;
(2) a surface density measuring unit for measuring the surface density of the number of protrusions or recesses generated on the surface of the metal thin film after the thermal history of different maximum ultimate temperatures is given to the plurality of substrates with metal thin films, ,
(3) The surface density of the number of convex portions or concave portions obtained based on the measured value of the surface density of the number of convex portions or concave portions obtained by the surface density measuring section and the actual measurement value of the maximum temperature reached; A storage unit storing data indicating the relationship with the maximum temperature reached;
(4) The metal thin film of (1) used as a temperature measurement member set in an environment of an object to be measured or an atmosphere to be measured, which is measured by the surface density measuring unit of (2) and given an arbitrary thermal history Relationship between the surface density of the number of convex portions or concave portions generated on the surface of the metal thin film of the substrate with a metal substrate or the substrate with a metal thin film obtained under the same conditions as the above (1), and the data stored in the storage unit And a temperature calculation unit for obtaining a maximum temperature of the object to be measured or the atmosphere to which the thermal history is given.
前記(2)の面密度測定部は、金属薄膜表面に発生した凸部又は凹部の表面形状を顕微鏡により観察し、この表面形状をアナログな画像信号として取り込む表面情報収集部と、この画像信号をデジタル化し画像データを得るためのAD変換部と、この画像データから凸部又は凹部の直径が既定値の範囲に入るもののみカウントし、単位面積当たりの個数に換算する個数算出部とからなる請求項5に記載の温度測定装置。   The surface density measuring unit (2) observes the surface shape of the convex portion or the concave portion generated on the surface of the metal thin film with a microscope and captures the surface shape as an analog image signal, An AD conversion unit for digitizing and obtaining image data, and a number calculation unit for counting only those whose diameters of convex portions or concave portions fall within a predetermined range from the image data and converting them into a number per unit area Item 6. The temperature measuring device according to Item 5. 前記既定値は、0.1μm以上30μm以下である請求項6に記載の温度測定装置。   The temperature measuring apparatus according to claim 6, wherein the predetermined value is not less than 0.1 μm and not more than 30 μm. 熱履歴に伴う物体または雰囲気の最高到達温度を測定する方法において、
(1)表面が平滑な基板に、表面が平滑でかつ基板とは異なる熱膨張率を有する金属薄膜を形成した金属薄膜付き基板を複数準備し、
(2)この複数の金属薄膜付き基板にそれぞれ異なる最高到達温度となる熱履歴を与え、
(3)この熱履歴を与えた後に金属薄膜表面に発生した凸部又は凹部の数の面密度を測定し、
(4)前記凸部又は凹部の数の面密度の測定値と前記最高到達温度の実測値とに基づいて凸部又は凹部の数の面密度と最高到達温度との関係を求めておき、
(5)前記(1)の金属薄膜付き基板または前記(1)と同一条件下で得られた金属薄膜付き基板を温度測定部材として任意の熱履歴が付与される測定すべき物体または雰囲気の環境にセットし、
(6)前記任意の熱履歴が付与され温度測定部材として用いた金属薄膜付き基板の金属薄膜表面に発生した凸部又は凹部の数の面密度を測定し、この測定値と前記(4)で求められた凸部又は凹部の数の面密度と最高到達温度との関係より、熱履歴が付与された前記測定すべき物体または雰囲気の最高到達温度を求めることを特徴とする温度測定方法。
In the method of measuring the maximum temperature of an object or atmosphere that accompanies thermal history,
(1) preparing a plurality of substrates with a metal thin film in which a metal thin film having a smooth surface and a coefficient of thermal expansion different from that of the substrate is formed on a substrate having a smooth surface;
(2) A thermal history that gives different maximum temperatures to each of the plurality of substrates with metal thin films is given,
(3) Measure the surface density of the number of convex portions or concave portions generated on the surface of the metal thin film after giving this thermal history,
(4) Based on the measured value of the surface density of the number of convex portions or concave portions and the measured value of the maximum reached temperature, the relationship between the surface density of the number of convex portions or concave portions and the maximum reached temperature is obtained,
(5) Environment of the object or atmosphere to be measured to which an arbitrary thermal history is given using the substrate with the metal thin film of (1) or the substrate with the metal thin film obtained under the same conditions as in (1) above as a temperature measurement member Set to
(6) The surface density of the number of convex portions or the number of concave portions generated on the surface of the metal thin film of the substrate with the metal thin film used as the temperature measuring member to which the arbitrary thermal history is given is measured. A temperature measuring method characterized in that a maximum attained temperature of the object or atmosphere to be measured, to which a thermal history is given, is obtained from the relationship between the surface density of the number of obtained protrusions or depressions and the maximum attained temperature.
前記(3)および(6)の面密度を測定する工程は、金属薄膜表面に発生した凸部又は凹部の表面形状を顕微鏡により観察し、この表面形状をアナログな画像信号として取り込む工程と、この画像信号をデジタル化し画像データを得る工程と、この画像データから凸部又は凹部の直径が既定値の範囲に入るもののみカウントし、単位面積当たりの個数に換算する工程とからなる請求項8に記載の温度測定方法。   The step of measuring the surface density of (3) and (6) includes a step of observing the surface shape of the convex portion or the concave portion generated on the surface of the metal thin film with a microscope, and taking this surface shape as an analog image signal, 9. The method according to claim 8, comprising: a step of digitizing an image signal to obtain image data; and a step of counting only those in which the diameter of the convex portion or the concave portion falls within a predetermined range from this image data and converting it into a number per unit area. The temperature measuring method described. 前記既定値が、0.1μm以上30μm以下である請求項9に記載の温度測定方法。   The temperature measurement method according to claim 9, wherein the predetermined value is 0.1 μm or more and 30 μm or less. 前記(3)および(6)の面密度を測定する工程は、金属薄膜表面に発生した凸部又は凹部に光を照射し、その散乱光を検出しアナログな強度信号として取り込む工程と、この強度信号をデジタル化し強度データを得る工程と、この強度データが既定値の範囲に入るもののみカウントし、単位面積当たりの個数に換算する工程とからなる請求項8に記載の温度測定方法。   The step of measuring the surface density of (3) and (6) includes the step of irradiating light on the convex portion or concave portion generated on the surface of the metal thin film, detecting the scattered light, and taking it in as an analog intensity signal, and this intensity. 9. The temperature measuring method according to claim 8, comprising: a step of digitizing a signal to obtain intensity data; and a step of counting only those in which the intensity data falls within a predetermined value range and converting it to a number per unit area. 前記(3)および(6)の面密度を測定する工程は、金属薄膜表面に発生した凸部又は凹部に光を照射し、その反射光を検出しアナログな強度信号として取り込む工程と、この強度信号をデジタル化し強度データを得る工程と、この強度データが既定値の範囲に入るもののみカウントし、単位面積当たりの個数に換算する工程とからなる請求項8に記載の温度測定方法。   The steps (3) and (6) for measuring the surface density include a step of irradiating light on a convex portion or a concave portion generated on the surface of the metal thin film, detecting the reflected light and taking it in as an analog intensity signal, and this intensity. 9. The temperature measuring method according to claim 8, comprising: a step of digitizing a signal to obtain intensity data; and a step of counting only those in which the intensity data falls within a predetermined value range and converting it to a number per unit area.
JP2008134296A 2007-07-09 2008-05-22 Temperature measuring member, temperature measuring device and temperature measuring method Expired - Fee Related JP5203800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134296A JP5203800B2 (en) 2007-07-09 2008-05-22 Temperature measuring member, temperature measuring device and temperature measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007180250 2007-07-09
JP2007180250 2007-07-09
JP2008134296A JP5203800B2 (en) 2007-07-09 2008-05-22 Temperature measuring member, temperature measuring device and temperature measuring method

Publications (2)

Publication Number Publication Date
JP2009036755A JP2009036755A (en) 2009-02-19
JP5203800B2 true JP5203800B2 (en) 2013-06-05

Family

ID=40438785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134296A Expired - Fee Related JP5203800B2 (en) 2007-07-09 2008-05-22 Temperature measuring member, temperature measuring device and temperature measuring method

Country Status (1)

Country Link
JP (1) JP5203800B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374489A (en) * 2014-10-21 2015-02-25 深圳供电局有限公司 Semiconductor point type temperature measurement system
CN110308069B (en) * 2019-08-05 2021-08-03 开封市测控技术有限公司 Temperature compensation method for surface density measuring instrument

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335284A (en) * 1992-06-03 1993-12-17 Sony Corp Temperature measuring device and temperature measuring method using same
JPH0794303A (en) * 1993-05-04 1995-04-07 Kobe Steel Ltd Highly oriented diamond thin- film thermistor
US5474381A (en) * 1993-11-30 1995-12-12 Texas Instruments Incorporated Method for real-time semiconductor wafer temperature measurement based on a surface roughness characteristic of the wafer
JP2565302B2 (en) * 1994-08-31 1996-12-18 日本電気株式会社 Temperature measuring device and manufacturing method thereof
JP3252155B2 (en) * 1999-09-14 2002-01-28 独立行政法人産業技術総合研究所 Thermal diffusivity measurement method by thermoreflectance method

Also Published As

Publication number Publication date
JP2009036755A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
KR101024801B1 (en) Temperature measuring member, temperature measuring apparatus and temperature measuring method
CN109346394B (en) Resist coating on sensor wafer for in situ measurements
US9852829B2 (en) Metal nitride material for thermistor, method for producing same, and film thermistor sensor
CN101344438B (en) Temperature-measuring device, and method for measuring temperature
TWI670384B (en) Metallization for a thin-film component, process for the production thereof and sputtering target
CN104871258B (en) Substrate with transparent electrode and method for producing same
EP2009647A1 (en) Method for fabricating thin film sensor, thin film sensor and thin film sensor module
JP5203800B2 (en) Temperature measuring member, temperature measuring device and temperature measuring method
EP2391581B1 (en) Arrangement and method for measurement of the temperature and of the thickness growth of silicon rods in a silicon deposition reactor
TW202340496A (en) Yttrium-based protective film, method for producing same, and member
US20160187205A1 (en) Metal nitride material for thermistor, method for producing same, and film-type thermistor sensor
Dutta et al. Solid state annealing behavior of aluminum thin films on sapphire
JP4802013B2 (en) Temperature sensor and manufacturing method thereof
Kim et al. High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams
JP2010048618A (en) Method for measuring phase transition conditions of sample to be subjected to phase transition, and measuring apparatus therefor
Kalpana et al. Influence of annealing and thickness on the electrical properties of invar36 thin film for strain gauge applications
Li et al. Effect of AlN/Al 2 O 3 Thin-Film Protective Layer on the High-Temperature Performance of ITO Thin-Film Strain Gauge
WO2019220903A1 (en) Graphite thin film, graphite thin film laminate, and production methods for graphite thin film and graphite thin film laminate
JP6308365B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
Dan et al. Effects of annealing conditions on temperature coefficient of resistance of Pt/AlOx thin-film thermistors
Liu et al. The preliminary exploration on change mechanism of Seebeck coefficient for NiCr/NiSi thin film thermocouple with different thickness
Jooste et al. A study of piezoelectric orthorhombic Ta2O5
JP2007294870A (en) Thin-film sensor, thin-film sensor module, and method for manufacturing the thin-film sensor
Borges et al. The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films
Huang et al. Apparatus for measuring local stress of metallic films, using an array of parallel laser beams during rapid thermal processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Ref document number: 5203800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees