JP5195733B2 - Heat exchanger and refrigeration cycle apparatus equipped with the same - Google Patents

Heat exchanger and refrigeration cycle apparatus equipped with the same Download PDF

Info

Publication number
JP5195733B2
JP5195733B2 JP2009286306A JP2009286306A JP5195733B2 JP 5195733 B2 JP5195733 B2 JP 5195733B2 JP 2009286306 A JP2009286306 A JP 2009286306A JP 2009286306 A JP2009286306 A JP 2009286306A JP 5195733 B2 JP5195733 B2 JP 5195733B2
Authority
JP
Japan
Prior art keywords
heat transfer
flat heat
circular
tube
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009286306A
Other languages
Japanese (ja)
Other versions
JP2011127831A (en
Inventor
厚志 望月
晃 石橋
相武 李
拓也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009286306A priority Critical patent/JP5195733B2/en
Publication of JP2011127831A publication Critical patent/JP2011127831A/en
Application granted granted Critical
Publication of JP5195733B2 publication Critical patent/JP5195733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、熱交換器及びこれを備えた空気調和機や冷凍冷蔵庫などの冷凍サイクル装置に関するものである。   The present invention relates to a heat exchanger and a refrigeration cycle apparatus such as an air conditioner and a refrigerator-freezer provided with the heat exchanger.

従来、例えば空気調和機などの冷凍サイクル装置に搭載される熱交換器として、プレートフィンアンドチューブタイプと呼ばれるものがある(特許文献1、図26参照)。この熱交換器は、上下に延び、対向して配置された一対のヘッダーと、この各ヘッダーに両側が連通し上下に複数段に架設された扁平伝熱管とを備えており、この各伝熱管は熱交換用板状フィンに挿入されている。扁平伝熱管内は冷媒が流れ、冷凍サイクル装置を流れる冷媒が流入する流入管が一方のヘッダーの上方に設けられ、他方のヘッダーの下方には冷媒が流出する流出管が設けられている。流入管から流入した冷媒は、複数段の扁平伝熱管に分岐して流れるうちに、熱交換器外部を流れる空気と熱交換する形態である。板状フィンによって伝熱面積を増加させている。   Conventionally, as a heat exchanger mounted on a refrigeration cycle apparatus such as an air conditioner, there is a so-called plate fin and tube type (see Patent Document 1, FIG. 26). The heat exchanger includes a pair of headers that extend vertically and are arranged to face each other, and flat heat transfer tubes that are connected to each header on both sides and are laid in a plurality of stages in the vertical direction. Is inserted into the plate fin for heat exchange. A refrigerant flows in the flat heat transfer tube, and an inflow pipe into which the refrigerant flowing through the refrigeration cycle apparatus flows is provided above one header, and an outflow pipe from which the refrigerant flows out is provided below the other header. The refrigerant that has flowed in from the inflow pipe is configured to exchange heat with the air flowing outside the heat exchanger while branching into the plurality of flat heat transfer pipes and flowing. The heat transfer area is increased by the plate-like fins.

また、扁平断面の内部に作動流体が流通する複数の流路を設けたU字形状に曲げられた伝熱管と、伝熱管の端部が連通するとともに作動流体の流入管と流出管が接続したヘッダーと、ヘッダー内に設けられ流入管から伝熱管に連通する空間と伝熱管から流出管へ連通する空間とを分離するヘッダー長手方向の第1の縦仕切り板と、隣り合うU字形状の伝熱管間に設けられ、ヘッダー内空間を気体の流れ方向に対して2以上に分離するヘッダー長手方向の第2の縦仕切り板と、U字形状の伝熱管の両端部を隔てる横仕切り板と、を備え、気体の流れ方向に対して対向流又は並向流となる冷媒流れを構成するものがある(特許文献1、図1参照)。   In addition, the heat transfer pipe bent into a U shape provided with a plurality of flow paths through which the working fluid flows inside the flat cross section, the end of the heat transfer pipe communicated, and the inflow pipe and the outflow pipe for the working fluid were connected. A header, a first vertical partition plate in the header longitudinal direction that separates a space that is provided in the header and communicates from the inflow pipe to the heat transfer pipe, and a space that communicates from the heat transfer pipe to the outflow pipe, and an adjacent U-shaped transfer A second vertical partition plate in the header longitudinal direction that is provided between the heat tubes and separates the header inner space into two or more with respect to the gas flow direction; and a horizontal partition plate that separates both ends of the U-shaped heat transfer tube; Which constitutes a refrigerant flow that is a counterflow or a parallel flow with respect to the gas flow direction (see Patent Document 1 and FIG. 1).

また、例えば凝縮器の例で、円管状の接続配管の一端を拡管し、プレス等で押し潰して扁平状に変形させ、扁平伝熱管と圧縮機からの円管状の接続配管を接続する接続部材がある(特許文献2参照)。   Also, for example, in the case of a condenser, one end of a tubular connection pipe is expanded, and is deformed into a flat shape by being crushed by a press or the like, and a connection member that connects the flat heat transfer pipe and the circular connection pipe from the compressor (See Patent Document 2).

特開2003−287390号公報(図1、図26)JP 2003-287390 A (FIGS. 1 and 26) 特開2008−261615号公報(図5)Japanese Patent Laying-Open No. 2008-261615 (FIG. 5)

従来のプレートフィンアンドチューブタイプのように、一対のヘッダーで扁平伝熱管の流路が接続されている熱交換器において、前面から流入する空気に風速分布がある場合、風速が速い部分と、風速が遅い部分できる。風速が速い部分は、風速が遅い部分よりも扁平伝熱管内を流れる冷媒との熱交換が促進されるが、風速の遅い部分は、熱交換量が低下する。このように熱交換器内において、各扁平伝熱管に流れる冷媒と空気との熱交換量が不均一になり、全体として熱交換性能が低下する。さらに熱交換器は一つのヘッダーに多数の扁平伝熱管が接続されているので、例えばこの熱交換器を蒸発器として使用し、流入冷媒がガスと液体の2相流となった場合、重力等の影響で下方側の扁平伝熱管には液体の割合が多い冷媒、上方側の扁平伝熱管にはガスの割合が多い冷媒が流れることになる。このため、各扁平伝熱管を流れる冷媒の状態が上下で異なり、各扁平伝熱管に流れる冷媒と空気との熱交換量が不均一となって、熱交換性能が低下する。即ち、前面から流入する風速分布、又は扁平伝熱管を流れる冷媒状態の不均一により、熱交換器の熱交換性能が低下するという課題があった。   In the heat exchanger where the flow path of the flat heat transfer tube is connected with a pair of headers as in the conventional plate fin and tube type, if the air flowing in from the front has a wind speed distribution, Can be a slow part. In the portion where the wind speed is fast, heat exchange with the refrigerant flowing in the flat heat transfer tube is promoted more than in the portion where the wind speed is slow, but in the portion where the wind speed is slow, the heat exchange amount decreases. Thus, in the heat exchanger, the amount of heat exchange between the refrigerant flowing in each flat heat transfer tube and the air becomes uneven, and the heat exchange performance as a whole decreases. Furthermore, since many flat heat transfer tubes are connected to one header in a heat exchanger, for example, when this heat exchanger is used as an evaporator and the inflowing refrigerant becomes a two-phase flow of gas and liquid, gravity etc. As a result, the refrigerant having a high liquid ratio flows through the flat heat transfer tube on the lower side, and the refrigerant having a high gas ratio flows through the flat heat transfer tube on the upper side. For this reason, the state of the refrigerant flowing through each flat heat transfer tube is different between the upper and lower sides, the amount of heat exchange between the refrigerant flowing through each flat heat transfer tube and the air becomes uneven, and the heat exchange performance decreases. That is, there has been a problem that the heat exchange performance of the heat exchanger is deteriorated due to the wind speed distribution flowing from the front surface or the non-uniformity of the refrigerant state flowing through the flat heat transfer tube.

このように、各扁平伝熱管を流れる冷媒の状態が不均一となるという課題を解決するため、特許文献1の図1のように、ヘッダー内に仕切り板を設け、扁平伝熱管を流れる冷媒の流路を複数持たせる構造がある。その場合、風速分布に対して、扁平伝熱管を流れる冷媒のパスの長さを調整することにより、風速分布に対しての熱交換器性能の低下を防ぐことができる。   Thus, in order to solve the problem that the state of the refrigerant flowing through each flat heat transfer tube becomes uneven, as shown in FIG. 1 of Patent Document 1, a partition plate is provided in the header, and the refrigerant flowing through the flat heat transfer tube There is a structure in which a plurality of flow paths are provided. In that case, by adjusting the length of the path of the refrigerant flowing through the flat heat transfer tube with respect to the wind speed distribution, it is possible to prevent the heat exchanger performance from being deteriorated with respect to the wind speed distribution.

しかしこのようなヘッダー構造は、伝熱管の端部のそれぞれを一括して接続する構成であり、一旦決定されてしまうと決定された冷媒流路を変更するのは困難である。例えば風速分布の発生等で冷媒流路を変更しようとすると、ヘッダーの構造を再設計することになる。即ち、この熱交換器を空気調和機などの冷凍サイクル装置に使用する場合は、製品ごとに異なる仕様のヘッダーが必要となる。その結果、製造が煩雑になり、コスト増となるという課題があった。   However, such a header structure is a configuration in which the ends of the heat transfer tubes are connected together, and it is difficult to change the determined refrigerant flow path once determined. For example, if the refrigerant flow path is changed due to the generation of a wind speed distribution or the like, the header structure is redesigned. That is, when this heat exchanger is used in a refrigeration cycle apparatus such as an air conditioner, a header with different specifications is required for each product. As a result, there is a problem that the manufacturing becomes complicated and the cost increases.

また、扁平伝熱管の端部でヘッダーを用いずに、扁平伝熱管と円管を接続する接続部材(特許文献2)を使用し、U字状に曲げられた円管等で2段の扁平伝熱管同士を接続する構成も可能である。ヘッダーを用いることなく複数段の扁平伝熱管の端部を円管で接続するように構成すると、熱交換器内で複数パスを構成したり、冷媒の流し方の変更が容易になるなど、冷媒流路構成の自由度の向上を図ることができる。   In addition, a connecting member (Patent Document 2) that connects the flat heat transfer tube and the circular tube is used without using a header at the end of the flat heat transfer tube, and a two-stage flat tube is bent into a U-shape. A configuration in which the heat transfer tubes are connected to each other is also possible. If the ends of multiple flat heat transfer tubes are connected by a circular tube without using a header, multiple paths can be configured in the heat exchanger, and the flow of the refrigerant can be easily changed. The degree of freedom of the channel configuration can be improved.

ところが2段の扁平伝熱管を1本の円管で接続する場合、冷媒流量を考慮すると、ある程度以上の径の円管で構成する必要がある。そして、接続する円管をU字状に曲げて2段の扁平伝熱管に接続するのであるが、U字状に曲げる最小半径は曲げる円管の直径に依存する。即ち、段方向の扁平伝熱管の間隔は、円管をU字状にした時の間隔に依存することになり、それほど小さくできない。一方、円管の直径を小さくすると、流路の断面積が減少し、中を流れる冷媒の圧力損失が増大するという課題があった。   However, in the case where two flat heat transfer tubes are connected by a single circular tube, it is necessary to configure the circular tube with a diameter of a certain degree or more in consideration of the refrigerant flow rate. The connecting circular tube is bent in a U shape and connected to a two-stage flat heat transfer tube. The minimum radius of bending in a U shape depends on the diameter of the circular tube to be bent. That is, the interval between the flat heat transfer tubes in the step direction depends on the interval when the circular tube is U-shaped, and cannot be made so small. On the other hand, when the diameter of the circular tube is reduced, there is a problem in that the cross-sectional area of the flow path is reduced, and the pressure loss of the refrigerant flowing therethrough is increased.

また、扁平伝熱管と円管とを接続する接続ジョイントをプレス等で成形する場合、扁平伝熱管と円管の形状の違いが大きいため、変形量を大きくしなければならない。その場合変肉が起こり、肉厚がうすくなってしまったり、変形や割れがおこりやすくなる。そのため、不良率の増加、耐圧の低下の問題が起こってしまうという課題があった。   Further, when the connecting joint that connects the flat heat transfer tube and the circular tube is formed by a press or the like, the difference in shape between the flat heat transfer tube and the circular tube is large, so that the amount of deformation must be increased. In that case, a change in thickness occurs, and the thickness becomes thin, and deformation and cracking easily occur. For this reason, there is a problem that the defect rate increases and the breakdown voltage decreases.

本発明は上記のような問題点を解消するためになされたもので、熱交換器を流れる冷媒の流し方をヘッダーの構成で制限されることなく自由に設定でき、段方向の扁平伝熱管の間隔を小さくでき、小型化又は熱交換量の増加を図ることができる熱交換器を得ることを目的とするものである。
さらに、2段の扁平伝熱管の接続部で、成形時の不良品の増加や耐圧の低下を防止でき、熱交換器の信頼性の向上を図ることを目的とするものである。
また、小型化又は熱交換量の増加を図ることができる熱交換器を備え、信頼性が高く、小型化でき、熱交換性能のよい冷凍サイクル装置を得ることを目的とするものである。
The present invention has been made to solve the above-described problems, and the flow of refrigerant flowing through the heat exchanger can be freely set without being limited by the configuration of the header. It is an object of the present invention to obtain a heat exchanger that can reduce the interval and can be downsized or increase the amount of heat exchange.
Furthermore, it is an object of the present invention to improve the reliability of the heat exchanger by preventing an increase in defective products and a decrease in pressure resistance at the connecting portion of the two-stage flat heat transfer tube.
It is another object of the present invention to provide a refrigeration cycle apparatus that includes a heat exchanger that can be downsized or increase the amount of heat exchange, has high reliability, can be downsized, and has good heat exchange performance.

本発明に係る熱交換器は、互いに所定の間隔をあけて並列し、個々の間を気体が流通する複数の板状フィンと、これら板状フィンを該板状フィンの並列方向に貫通するように設けられ、断面扁平形状、前記板状フィンの並列方向及び前記気体の流通方向のそれぞれに直交する方向に複数段をなす扁平伝熱管と、当該熱交換器の一端側にて、前記複数段をなす前記扁平伝熱管の2段の端部同士を接続する接続部と、を備え、前記扁平伝熱管は、その扁平面が前記複数段をなす方向で対向するように配置されると共に、その内部に前記板状フィンの並列方向に伸びる複数の隔壁によって前記気体の流通方向に並んで設けられ、それぞれに冷媒が流通する4つ以上の複数の扁平伝熱管内流路を有し、前記接続部は、前記気体の流通方向に並ぶ2本もしくは3本のU字状に曲げられた円管と、これら円管の両端部にそれぞれ設けられ前記扁平伝熱管と前記円管とを接続する接続ジョイントとを有し、前記扁平伝熱管内流路の断面積の和と前記円管の流路断面積の和が同程度で、前記円管を介して2段の前記扁平伝熱管接続する構成であって、前記接続ジョイントは、一端部に2本もしくは3本の前記円管のそれぞれをロウ付けにて接合する円管接続部を、他端部には前記扁平伝熱管をロウ付けにて接合する扁平伝熱管接続部を有し、当該接続ジョイントの内部では、前記円管接続部に接続された前記円管の接続端と前記扁平伝熱管接続部に接続された前記扁平伝熱管の接続端との間に、冷媒の流れる方向に前記円管の外径以上の幅を有する空間が形成されているものであるThe heat exchanger according to the present invention is parallel to each other at a predetermined interval, and a plurality of plate-like fins through which gas flows between each other, and the plate-like fins are penetrated in the parallel direction of the plate-like fins. provided, cross-section with a flat shape, a flat heat exchanger tube which forms a plurality of stages in a direction perpendicular to the respective flow direction of the parallel direction and the gas of the plate-like fins at one end of the heat exchanger, the And connecting portions that connect the two-stage ends of the flat heat transfer tubes that form a plurality of stages, and the flat heat transfer tubes are disposed so that the flat surfaces face each other in the direction of the plurality of stages. , Provided in the gas flow direction by a plurality of partitions extending in the parallel direction of the plate-like fins therein, and having four or more flat heat transfer tube flow paths through which the refrigerant flows, the connecting portion is arranged in flow direction of the gas 2 Or a three and round tube bent into a U-shaped, and a connecting joint to connect with each end portion provided the flat heat transfer tube of yen tube and the circular tube, the flattened heat transfer pipe flow in sum and sum comparable flow path cross-sectional area of the circular tube cross-sectional area of the road, a configuration of connecting the flat heat transfer tubes 2 stages via the circular tube, the connecting joint has one end Each of the two or three circular tubes is joined by brazing, and the other end portion has a flat heat transfer tube connecting portion joining the flat heat transfer tubes by brazing, Inside the connection joint, the refrigerant flows in the direction in which the refrigerant flows between the connection end of the circular tube connected to the circular tube connection portion and the connection end of the flat heat transfer tube connected to the flat heat transfer tube connection portion. A space having a width equal to or larger than the outer diameter of the circular pipe is formed .

また、本発明に係る冷凍サイクル装置は、少なくとも、圧縮機、凝縮器、絞り装置、蒸発器を順次配管で接続し、冷媒が循環されると共に、上記の構成の熱交換器前記蒸発器又は凝縮器として用いられるものであるIn the refrigeration cycle apparatus according to the present invention, at least a compressor, a condenser, a throttling device, and an evaporator are sequentially connected by piping so that a refrigerant is circulated, and the heat exchanger having the above-described configuration is the evaporator or It is used as a condenser.

本発明によれば、熱交換器を流れる冷媒の流し方をヘッダーの構成で制限されることなく自由に設定でき、段方向の扁平伝熱管の間隔を小さくでき、同様の熱交換量の場合は小型化を図ることができ、また同様の大きさの場合には熱交換量の増加を図ることができる熱交換器を得ることができる。
さらに、1本の円管の径を小さくでき、接続部の変形量を小さくして、成形時の不良品の増加や耐圧の低下を防止でき、信頼性の高い接続部を有する熱交換器を実現できる。
また、冷凍サイクル装置にこの小型化又は熱交換量の増加を図ることができる熱交換器を備え、信頼性が高く、小型化が可能で、熱交換性能のよい冷凍サイクル装置を得ることができる。
According to the present invention, the flow of the refrigerant flowing through the heat exchanger can be freely set without being limited by the configuration of the header, the interval between the flat heat transfer tubes in the step direction can be reduced, and in the case of a similar amount of heat exchange It is possible to obtain a heat exchanger that can be reduced in size and that can increase the amount of heat exchange in the case of a similar size.
Furthermore , a heat exchanger having a highly reliable connection portion that can reduce the diameter of one circular tube, reduce the deformation amount of the connection portion, prevent an increase in defective products and a decrease in pressure resistance during molding, and has a highly reliable connection portion. realizable.
Further, the refrigeration cycle apparatus is provided with a heat exchanger capable of reducing the size or increasing the amount of heat exchange, and a refrigeration cycle apparatus having high reliability, capable of downsizing, and good heat exchange performance can be obtained. .

本発明の実施の形態1に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路を示す回路構成図である。It is a circuit block diagram which shows the refrigerant circuit of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室内ユニットを示す断面構成図である。It is a section lineblock diagram showing the indoor unit concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る扁平伝熱管を示す断面図である。It is sectional drawing which shows the flat heat exchanger tube which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係り、図1のV−V線における断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 1 according to the first embodiment of the present invention. 本発明の実施の形態1に係り、流入管及び流出管の接続部付近を示す斜視図である。It is a perspective view which concerns on Embodiment 1 of this invention and shows the connection part vicinity of an inflow tube and an outflow tube. 本発明の実施の形態1に係り、比較例の熱交換器を示す斜視図である。It is a perspective view which concerns on Embodiment 1 of this invention and shows the heat exchanger of a comparative example. 本発明の実施の形態1に係る接続ジョイントの比較例を示す上面図(図8(a))、正面図(図8(b))、側面図(図8(c))である。It is a top view (Drawing 8 (a)), a front view (Drawing 8 (b)), and a side view (Drawing 8 (c)) which show a comparative example of a connection joint concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係り、扁平伝熱管の接続部を示す斜視図である。It is a perspective view which concerns on Embodiment 1 of this invention and shows the connection part of a flat heat exchanger tube. 本発明の実施の形態1に係る接続ジョイントを示す斜視図である。It is a perspective view which shows the connection joint which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る接続ジョイントを示す上面図(図11(a))、正面図(図11(b))、側面図(図11(c))である。It is a top view (Drawing 11 (a)), a front view (Drawing 11 (b)), and a side view (Drawing 11 (c)) which show a connection joint concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る熱交換器の扁平伝熱管の段方向の間隔を説明する説明図である。It is explanatory drawing explaining the space | interval of the step direction of the flat heat exchanger tube of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の比較例の前面を示す説明図である。It is explanatory drawing which shows the front surface of the comparative example of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の前面を示す説明図である。It is explanatory drawing which shows the front surface of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の前面を示す説明図である。It is explanatory drawing which shows the front surface of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る扁平伝熱管の接続部を示す斜視図である。It is a perspective view which shows the connection part of the flat heat exchanger tube which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る扁平伝熱管を示す断面図である。It is sectional drawing which shows the flat heat exchanger tube which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る接続部の断面を示す説明図である。It is explanatory drawing which shows the cross section of the connection part which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係り、冷媒温度と空気温度の変化を示すグラフである。It is a graph which concerns on Embodiment 3 of this invention, and shows the change of refrigerant | coolant temperature and air temperature. 本発明の実施の形態3に係り、冷媒温度と空気温度の変化を示すグラフである。It is a graph which concerns on Embodiment 3 of this invention, and shows the change of refrigerant | coolant temperature and air temperature. 本発明の実施の形態3に係る接続部の断面を示す説明図である。It is explanatory drawing which shows the cross section of the connection part which concerns on Embodiment 3 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る熱交換器を示す斜視図、図2は冷凍サイクル装置として例えば空気調和機の冷媒回路を示す回路構成図、図3は室内機の一例を示す断面構成図、図4は本実施の形態に係る扁平形状の伝熱管を示す断面図、図5は図1のV−V線における断面図である。本実施の形態に係る熱交換器20は、一般にプレートフィンアンドチューブタイプと呼ばれるものである。
Embodiment 1 FIG.
1 is a perspective view showing a heat exchanger according to Embodiment 1 of the present invention, FIG. 2 is a circuit configuration diagram showing a refrigerant circuit of an air conditioner, for example, as a refrigeration cycle apparatus, and FIG. 3 shows an example of an indoor unit. 4 is a cross-sectional view showing a flat heat transfer tube according to the present embodiment, and FIG. 5 is a cross-sectional view taken along line VV in FIG. The heat exchanger 20 according to the present embodiment is generally called a plate fin and tube type.

空気調和機や冷凍冷蔵庫などの冷凍サイクル装置に搭載される熱交換器20は、図1に示すように、断面が扁平形状の伝熱管1(以下扁平伝熱管と称す)と板状フィン2で構成される。複数の板状フィン2は、長さ方向(例えばA方向)に互いに所定の間隔をあけて略平行に並列され、個々の板状フィン2の間を気体、例えば室内の空気がD方向に流通する。扁平伝熱管1は板状フィン2のそれぞれを板状フィン2の並列方向(A方向)に貫通するように設けられ、段方向(B方向)に複数段、例えば8段積層される。即ち、扁平伝熱管1は、その扁平面が複数段をなす方向(B方向)で対向するように配置され、板状フィン2の並列方向(A方向)及び気体の流通方向(D方向)のそれぞれに直交する方向(B方向)に複数段をなす。扁平伝熱管1内には、貫通方向(A方向)に冷媒が流通する複数の扁平伝熱管内流路を有する。また、2段づつの扁平伝熱管1の端部同士を接続して冷媒流路を構成するのであるが、扁平伝熱管1の2段の端部同士を接続する接続部18のうちの少なくとも一つの接続部を複数本、例えば2本のU字状に曲げられた円形の伝熱管8(以下円管と称す)を介して接続する。即ち、接続部18は、気体の流通方向(D方向)に並ぶ複数本のU字状に曲げられた円管8を有し、円管8を介して2段の扁平伝熱管1が接続される。図1に示す構成では、2段の扁平伝熱管1を接続する際、接続ジョイント9を介して一方の扁平伝熱管1と円管8が接続され、再び接続ジョイント9を介して円管8と他方の扁平伝熱管1を接続する。本実施の形態では、流入配管3と流出配管4は熱交換器20の一端側に接続され、この一端側での扁平伝熱管1同士の接続にU字状円管8を用いる。また、他端側はU字状に曲げられた扁平伝熱管1aで接続され、流入配管3から流出配管4までの冷媒流路を形成している。また、本実施の形態ではC方向に複数列、例えば2列の熱交換器20a、20bを並設して全体として熱交換器20を構成する。   As shown in FIG. 1, a heat exchanger 20 mounted on a refrigeration cycle apparatus such as an air conditioner or a refrigerator is composed of a heat transfer tube 1 having a flat cross section (hereinafter referred to as a flat heat transfer tube) and a plate-like fin 2. Composed. The plurality of plate-like fins 2 are juxtaposed in parallel in the length direction (for example, the A direction) with a predetermined interval from each other, and gas, for example, indoor air, flows between the individual plate-like fins 2 in the D direction. To do. The flat heat transfer tube 1 is provided so as to penetrate each of the plate-like fins 2 in the parallel direction (A direction) of the plate-like fins 2 and is laminated in a plurality of stages, for example, eight stages in the step direction (B direction). That is, the flat heat transfer tubes 1 are arranged so that the flat surfaces face each other in the direction (B direction) forming a plurality of stages, and the parallel direction (A direction) of the plate-like fins 2 and the gas flow direction (D direction). A plurality of stages are formed in a direction (B direction) orthogonal to each. The flat heat transfer tube 1 has a plurality of flat heat transfer tube flow paths through which the refrigerant flows in the penetration direction (direction A). Further, the ends of the two flat heat transfer tubes 1 are connected to form the refrigerant flow path, but at least one of the connection portions 18 that connect the two end portions of the flat heat transfer tubes 1 to each other. Two connecting portions are connected via a plurality of, for example, two circular heat transfer tubes 8 bent into a U shape (hereinafter referred to as circular tubes). That is, the connecting portion 18 has a plurality of U-shaped bent tubes 8 arranged in the gas flow direction (D direction), and the two-stage flat heat transfer tubes 1 are connected via the circular tubes 8. The In the configuration shown in FIG. 1, when connecting the two-stage flat heat transfer tubes 1, one flat heat transfer tube 1 and the circular tube 8 are connected via the connection joint 9, and again the circular tube 8 is connected via the connection joint 9. The other flat heat transfer tube 1 is connected. In this Embodiment, the inflow piping 3 and the outflow piping 4 are connected to the one end side of the heat exchanger 20, and the U-shaped circular pipe 8 is used for the connection of the flat heat exchanger tubes 1 in this one end side. The other end is connected by a flat heat transfer tube 1a bent in a U-shape to form a refrigerant flow path from the inflow pipe 3 to the outflow pipe 4. In the present embodiment, a plurality of rows, for example, two rows of heat exchangers 20a and 20b are arranged in parallel in the C direction to constitute the heat exchanger 20 as a whole.

図2に示すように、空気調和機は室外ユニット41と室内ユニット42で構成される。室外ユニット41には、圧縮機31、四方弁32、室外熱交換器33、絞り装置34、及び室外送風機35と室外送風機用モータ36が格納される。また、室内ユニット42には、室内熱交換器20、室内送風機37、及び室内送風機用モータ38が格納される。2台の熱交換器のどちらかの片方、又は両方に、図1に示した構成の熱交換器を使用するが、ここでは例えば室内熱交換器に本実施の形態に係る熱交換器20を用いる。室外ユニット41と室内ユニット42間は、冷媒配管39、40によって接続されている。図中、冷媒の流れ方向は、実線の矢印が冷房時、点線の矢印が暖房時であり、四方弁32によって冷媒の流れ方向を切り替える。   As shown in FIG. 2, the air conditioner includes an outdoor unit 41 and an indoor unit 42. The outdoor unit 41 stores a compressor 31, a four-way valve 32, an outdoor heat exchanger 33, an expansion device 34, an outdoor fan 35 and an outdoor fan motor 36. The indoor unit 42 stores the indoor heat exchanger 20, the indoor blower 37, and the indoor blower motor 38. The heat exchanger having the configuration shown in FIG. 1 is used for one or both of the two heat exchangers. Here, for example, the heat exchanger 20 according to the present embodiment is used as an indoor heat exchanger. Use. The outdoor unit 41 and the indoor unit 42 are connected by refrigerant pipes 39 and 40. In the figure, the flow direction of the refrigerant is when the solid arrow is during cooling and the dotted arrow is during heating, and the flow direction of the refrigerant is switched by the four-way valve 32.

この空気調和機で、冷房運転を行う場合について説明する。四方弁32内で実線に示すように冷媒配管が接続され、室内熱交換器20を蒸発器、室外熱交換器33を凝縮器として動作させる。少なくとも圧縮機31、凝縮器33、絞り装置34、蒸発器20が順次配管で接続され、冷媒を循環させることで、冷凍サイクル装置が構成される。この時、冷媒回路の内部を流れる低温低圧のガス冷媒は、圧縮機31で圧縮されて高温高圧のガス冷媒となる。その高温高圧となったガス冷媒は、室外熱交換器33で室外空気と熱交換して冷媒自身は凝縮して高圧低温の液冷媒になり、絞り装置34で断熱膨張して低圧低温の二相冷媒となる。そして、室内熱交換器20で板状フィン2間を流れる室内空気と熱交換して蒸発ガス化し、圧縮機31に戻る。この室内熱交換器20を蒸発器として機能させて冷媒が蒸発することで、室内空気に冷熱を与えて室内が冷房される。また、暖房運転では、四方弁32内で点線のように冷媒配管を接続し、冷媒を点線矢印で示すように循環させる。室内熱交換器20を凝縮器として機能させて冷媒が凝縮することで、室内空気に温熱を与えて室内が暖房される。また、図2には図示していないが、室内ユニット42、室外ユニット41はそれぞれ1つづつ、又は共通に1つの制御装置を備え、圧縮機31の回転数、四方弁32の接続、絞り装置34の開度、送風機35、37のモータ36、38の回転数などを制御する。   A case where the air conditioner performs a cooling operation will be described. As indicated by the solid line in the four-way valve 32, refrigerant piping is connected, and the indoor heat exchanger 20 is operated as an evaporator and the outdoor heat exchanger 33 is operated as a condenser. At least the compressor 31, the condenser 33, the expansion device 34, and the evaporator 20 are sequentially connected by piping, and the refrigerant is circulated to constitute a refrigeration cycle apparatus. At this time, the low-temperature and low-pressure gas refrigerant flowing inside the refrigerant circuit is compressed by the compressor 31 to become a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant exchanges heat with the outdoor air in the outdoor heat exchanger 33, and the refrigerant itself condenses to become a high-pressure and low-temperature liquid refrigerant. Becomes a refrigerant. Then, the indoor heat exchanger 20 exchanges heat with the indoor air flowing between the plate fins 2 to evaporate and return to the compressor 31. The indoor heat exchanger 20 functions as an evaporator and the refrigerant evaporates, so that the indoor air is cooled to cool the room. Further, in the heating operation, the refrigerant pipe is connected in the four-way valve 32 as indicated by the dotted line, and the refrigerant is circulated as indicated by the dotted arrow. By causing the indoor heat exchanger 20 to function as a condenser and condensing the refrigerant, the indoor air is heated by heating the indoor air. Although not shown in FIG. 2, each of the indoor units 42 and the outdoor units 41 includes one control device, or one common control device, the rotational speed of the compressor 31, the connection of the four-way valve 32, and the throttle device. 34, the number of rotations of the motors 36 and 38 of the blowers 35 and 37, and the like are controlled.

室内ユニット42は、図3に示すように、空調される部屋の壁43に設置される。室内ユニット42の上部には、室内空気の吸込口となる吸込グリル44やホコリを除塵する網目状のフィルタ45を配設している。さらに、本実施の形態による熱交換器20を、送風機37の正面側と上部側に、送風機37を囲むように配置している。また、室内ユニット42の前面は前面パネルで覆われ、その下側に吹出口46が開口している。この送風機37は例えば貫流ファンである。図において、実線矢印は冷媒の流入及び流出方向を示し、白抜き矢印Dは空気の流通方向を示し、点線矢印Oは送風機37の回転方向を示している。   The indoor unit 42 is installed on a wall 43 of a room to be air-conditioned, as shown in FIG. A suction grill 44 that serves as a suction port for indoor air and a mesh-like filter 45 that removes dust are disposed on the upper portion of the indoor unit 42. Furthermore, the heat exchanger 20 according to the present embodiment is arranged on the front side and the upper side of the blower 37 so as to surround the blower 37. Moreover, the front surface of the indoor unit 42 is covered with a front panel, and an air outlet 46 is opened below the indoor unit 42. This blower 37 is, for example, a once-through fan. In the figure, solid arrows indicate the refrigerant inflow and outflow directions, white arrows D indicate the air flow direction, and dotted arrows O indicate the rotation direction of the blower 37.

このように構成された室内ユニット42において、運転が開始されると送風機37が点線矢印O方向に回転する。部屋の空気が吸込口44より吸込まれ、フィルタ45でホコリが除去された後、D方向に示すように熱交換器20の板状フィン2間を流れる。熱交換器20には流入配管3から流出配管4までの扁平伝熱管及び円管で形成された冷媒流路内に冷媒が循環している。熱交換器20に流れ込んだ空気は、円管及び扁平伝熱管内を流れる冷媒と熱交換して加熱され暖房、又は冷却され冷房、除湿のいずれかがされ、送風機37へ吸込まれる。その後、送風機37から吹出された気流は風路に誘導され吹出口46へ向かい、吹出口46から部屋へ吹出すことで、室内の空気調和がなされる。   In the indoor unit 42 configured as described above, when the operation is started, the blower 37 rotates in the direction of the dotted arrow O. After the room air is sucked in through the suction port 44 and dust is removed by the filter 45, it flows between the plate-like fins 2 of the heat exchanger 20 as shown in the D direction. In the heat exchanger 20, the refrigerant circulates in a refrigerant flow path formed by a flat heat transfer pipe and a circular pipe from the inflow pipe 3 to the outflow pipe 4. The air that has flowed into the heat exchanger 20 is heated by heat exchange with the refrigerant flowing through the circular tubes and the flat heat transfer tubes, heated, cooled, cooled, or dehumidified, and sucked into the blower 37. Thereafter, the airflow blown out from the blower 37 is guided to the air passage, travels toward the air outlet 46, and blows out from the air outlet 46 into the room, thereby air conditioning the room.

以下、熱交換器20の構成について、さらに詳しく述べる。図4に示すように、扁平伝熱管1は対向する扁平面を有する断面が扁平形状の伝熱管である。扁平伝熱管1内には、板状フィン2の並列方向(A方向)に伸びる複数、例えば7つの隔壁47によって気体の流通するD方向に並ぶ複数、例えば8個の冷媒流路である扁平伝熱管内流路5を有する。8個の扁平伝熱管内流路5は、扁平断面の中に長軸方向(D方向)に例えば1列に設けられている。図5に示す断面では、列方向(C方向)に並んで配置された2つの熱交換器20a、20bを構成する2列の板状フィン2が示されている。1枚の板状フィン2において、扁平伝熱管1の周囲には扁平伝熱管1を固着するためのカラー6が形成される。カラー6と扁平伝熱管1はロウ付け、又は接着材等で接合、あるいは機械的に圧着される。1枚の板状フィン2には、段方向(B方向)の2段の扁平伝熱管1の間に、熱交換性能向上のためスリット部7を有する。具体的には板状フィン2の一部を切り起こしてスリット部7を構成している。なお、扁平伝熱管内流路5は8個に限るものではなく、2〜16個程度で構成される。また、スリット部7は、他の形状でもよく、さらに露付きや着霜の関係上、設けられていない場合もある。この板状フィン2に対して、白抜き矢印Dは気体の流通方向であり、どちら向きに配置されてもよい。白抜き矢印Qは、製造時に板状フィン2の一方から扁平伝熱管1を挿入する方向を示している。このように挿入されることからも扁平伝熱管1の断面形状は適している。   Hereinafter, the configuration of the heat exchanger 20 will be described in more detail. As shown in FIG. 4, the flat heat transfer tube 1 is a heat transfer tube having a flat cross section with an opposing flat surface. In the flat heat transfer tube 1, the flat heat transfer is a plurality of, for example, eight refrigerant channels arranged in the D direction through which gas flows by a plurality of, for example, seven partition walls 47 extending in the parallel direction (A direction) of the plate-like fins 2. It has a heat pipe channel 5. The eight flow channels 5 in the flat heat transfer tube are provided in, for example, one row in the long axis direction (D direction) in the flat cross section. In the cross section shown in FIG. 5, two rows of plate-like fins 2 constituting two heat exchangers 20a and 20b arranged side by side in the row direction (C direction) are shown. In one plate-like fin 2, a collar 6 for fixing the flat heat transfer tube 1 is formed around the flat heat transfer tube 1. The collar 6 and the flat heat transfer tube 1 are joined by brazing, an adhesive, or the like, or mechanically crimped. One plate-like fin 2 has a slit portion 7 between two flat heat transfer tubes 1 in the step direction (B direction) for improving heat exchange performance. Specifically, a part of the plate-like fin 2 is cut and raised to constitute the slit portion 7. In addition, the flow path 5 in a flat heat exchanger tube is not restricted to eight pieces, but is comprised by about 2-16 pieces. Moreover, the slit part 7 may have another shape, and may not be provided due to dew condensation or frost formation. With respect to the plate-like fin 2, a white arrow D is a gas flow direction and may be arranged in either direction. A white arrow Q indicates a direction in which the flat heat transfer tube 1 is inserted from one of the plate-like fins 2 at the time of manufacture. The cross-sectional shape of the flat heat transfer tube 1 is suitable also from being inserted in this way.

図1に示すように、熱交換器20のA方向の一端部は、2本のU字状に曲げられた円管8を気体の流通方向(D方向)に並べて、上段又は下段の扁平伝熱管1に接続する。接続ジョイント9と扁平伝熱管1、U字状円管8は炉中ロウ付け、又は高周波ロウ付け、又はトーチロウ付け等で接合する。また、冷媒の圧力がそれほど高くない場合は、接着剤で接合も可能である。接続ジョイント9はプレス又は切削等により加工する。なお、扁平伝熱管1や円管8の材質は、例えばアルミニウムや銅などで構成される。また、接続ジョイント9の材質も、例えばアルミニウムや銅などで構成される。また、A方向の他端部は、扁平伝熱管1をU字形状に曲げられた扁平伝熱管1aで上段又は下段の扁平伝熱管1と接続する。   As shown in FIG. 1, one end portion in the A direction of the heat exchanger 20 has two U-shaped bent tubes 8 arranged in the gas flow direction (D direction), and the upper or lower flat transmission is arranged. Connect to heat tube 1. The connection joint 9, the flat heat transfer tube 1, and the U-shaped circular tube 8 are joined by brazing in the furnace, high-frequency brazing, or torch brazing. In addition, when the pressure of the refrigerant is not so high, bonding with an adhesive is also possible. The connection joint 9 is processed by pressing or cutting. The material of the flat heat transfer tube 1 and the circular tube 8 is made of, for example, aluminum or copper. The material of the connection joint 9 is also made of, for example, aluminum or copper. The other end in the A direction connects the flat heat transfer tube 1 to the upper or lower flat heat transfer tube 1 with a flat heat transfer tube 1a bent into a U shape.

本実施の形態に係る熱交換器20を蒸発器として動作させるときには、図1に示した1列目のB方向の中央部分に設けた流入配管3から冷媒を流入し、2列目の流出配管4から冷媒を流出する。冷媒は、流入配管3から流出配管4に流れる間に、送風機(図示せず)によってD方向から熱交換器20の前面に送風される熱交換器外部を流れる空気と熱交換する。ここでは、例えば2つの流入配管3から流入し、上半分と下半分の扁平伝熱管1を流れて、2つの流出配管4に流出するという2パスで冷媒が流れる構成を示している。例えば下半分のパスについて詳しく説明すると、一列目の下から4段目の扁平伝熱管1に流入配管3が接続されている。下方の流入配管3から流入した冷媒は、4段目の扁平伝熱管1を図1の図面に向かって右から左へ流れ、左側端部でU字状の扁平伝熱管1aを通って3段目の扁平伝熱管1を左から右へ流れる。右側端部では2本のU字状円管8を通って2段目の扁平伝熱管1を右から左へ流れていく。次に1段目の扁平伝熱管1を通って右側端部に流れてきた冷媒は、2本のU字状円管8を通って2列目の1段目に流れていく。2列目では1段目から4段目まで扁平伝熱管1を流れ、流出配管4から流出する。上半分のパスも同様である。   When operating the heat exchanger 20 according to the present embodiment as an evaporator, the refrigerant flows in from the inflow pipe 3 provided in the central portion in the B direction of the first row shown in FIG. The refrigerant flows out of 4. While the refrigerant flows from the inflow pipe 3 to the outflow pipe 4, the refrigerant exchanges heat with air flowing outside the heat exchanger that is blown from the direction D to the front surface of the heat exchanger 20 by a blower (not shown). Here, for example, a configuration is shown in which the refrigerant flows in two passes, which flows in from two inflow pipes 3, flows through the flat heat transfer tubes 1 in the upper half and the lower half, and flows out to the two outflow pipes 4. For example, the lower half path will be described in detail. The inflow pipe 3 is connected to the flat heat transfer tube 1 in the fourth row from the bottom of the first row. The refrigerant flowing in from the lower inflow pipe 3 flows from the right side to the left side of the fourth-stage flat heat transfer tube 1 toward the drawing in FIG. 1, and passes through the U-shaped flat heat transfer tube 1a at the left end to form three steps. It flows from left to right through the flat heat transfer tube 1 of the eye. At the right end, the second flat heat transfer tube 1 flows from right to left through the two U-shaped circular tubes 8. Next, the refrigerant flowing to the right end through the first flat heat transfer tube 1 flows through the two U-shaped circular tubes 8 to the first row in the second row. In the second row, the flat heat transfer tube 1 flows from the first stage to the fourth stage and flows out from the outflow pipe 4. The same applies to the upper half path.

図6は扁平伝熱管1と流入配管3又は流出配管4を接続ジョイント11で接続する部分を示す斜視図である。複数の冷媒流路を有する扁平伝熱管1と1つの流路で構成される流入配管3又は流出配管4を接続する場合、扁平伝熱管1の流路断面積の和と円管3、4の流路断面積を同程度に構成する。流路断面積を同程度に構成することで、冷媒流路を流れる冷媒の圧力損失が増大することなく、熱交換性能のよい熱交換器が得られる。   FIG. 6 is a perspective view showing a portion where the flat heat transfer tube 1 and the inflow pipe 3 or the outflow pipe 4 are connected by the connection joint 11. When connecting the flat heat transfer tube 1 having a plurality of refrigerant flow paths and the inflow pipe 3 or the outflow pipe 4 formed of one flow path, the sum of the cross-sectional area of the flat heat transfer pipe 1 and the circular tubes 3, 4 The flow path cross-sectional area is configured to the same extent. By configuring the channel cross-sectional areas to be approximately the same, a heat exchanger with good heat exchange performance can be obtained without increasing the pressure loss of the refrigerant flowing through the refrigerant channel.

次に、熱交換器20の一端部において、流入配管3及び流出配管4の上段や下段で、扁平伝熱管1同士の接続部18を、1本のU字状円管10で接続した熱交換器の比較例の構成を図7に示す。このように、扁平伝熱管1の端部で従来装置のような内部で流路が一括して形成されているヘッダーを用いずに、U字状円管10によって2段の扁平伝熱管1の端部同士を接続するような構成にすると、扁平伝熱管1を接続して冷媒流路を構成する際の自由度が増える。例えば、図7では図1の構成と同様、2列の熱交換器20a、20bを接続して冷媒流路を形成しており、2パス有しそれぞれのパスにおける扁平伝熱管1の長さは同じにしている。熱交換する空気流によってはパス数やパスの長さを変更したい場合がある。ヘッダーを用いずに円管10で接続する構成では、U字状円管10及び流入配管3又は流出配管4の接続を変更すれば、実現できる。一例として1パスに変更しようとすれば、例えば、2つの流出配管4を他の接続部18と同様、U字状円管10で接続し、2つの流入配管3の一方を流出配管として用いることで変更可能である。これに対して、従来のようにヘッダーで構成する場合には、ヘッダー自体を再設計して製造しなおす必要があり、煩雑である。即ち、ヘッダーを用いることなく2段の扁平伝熱管1を円管10で接続する構成では、熱交換器20内で複数パスを構成したり、冷媒の流し方の変更が容易になるなど、ヘッダーの構成で制限されることなく冷媒流路構成の自由度の向上を図ることができる。   Next, in one end portion of the heat exchanger 20, heat exchange in which the connecting portions 18 of the flat heat transfer tubes 1 are connected by a single U-shaped circular tube 10 in the upper and lower stages of the inflow pipe 3 and the outflow pipe 4. The configuration of a comparative example of the vessel is shown in FIG. As described above, the U-shaped circular tube 10 is used to form the two-stage flat heat transfer tube 1 without using the header in which the flow path is collectively formed inside the end of the flat heat transfer tube 1 as in the conventional apparatus. If it makes the structure which connects edge parts, the freedom degree at the time of connecting the flat heat exchanger tube 1 and comprising a refrigerant | coolant flow path will increase. For example, in FIG. 7, similarly to the configuration of FIG. 1, two rows of heat exchangers 20a and 20b are connected to form a refrigerant flow path, and there are two paths, and the length of the flat heat transfer tube 1 in each path is It is the same. Depending on the air flow to be heat exchanged, it may be desired to change the number of passes or the length of the passes. The configuration in which the circular pipe 10 is connected without using the header can be realized by changing the connection between the U-shaped circular pipe 10 and the inflow pipe 3 or the outflow pipe 4. As an example, if one path is changed, for example, the two outflow pipes 4 are connected by the U-shaped circular pipe 10 like the other connecting portions 18, and one of the two inflow pipes 3 is used as the outflow pipe. Can be changed. On the other hand, when a header is used as in the prior art, the header itself needs to be redesigned and manufactured again, which is complicated. That is, in the configuration in which the two-stage flat heat transfer tubes 1 are connected by the circular tube 10 without using a header, a plurality of paths are formed in the heat exchanger 20 and the flow of the refrigerant can be easily changed. The degree of freedom of the refrigerant flow path configuration can be improved without being limited by the configuration.

ところが上下段の扁平伝熱管1を1本の円管10で接続する場合、扁平伝熱管1の流路断面積と円管10の流路断面積を同程度として構成すると、ある程度以上の径の円管10で構成する必要がある。接続部18では、接続する円管10をU字状に曲げて2段の扁平伝熱管1に接続するのであるが、U字状に曲げる最小半径は曲げる円管の直径に依存する。図7に示す構成は、熱交換器20の他端側ではU字状の扁平伝熱管1aで接続しており、扁平伝熱管1aをU字状に曲げる最小半径は、一端側の1本の円管10をU字状に曲げる最小半径よりも小さくできる。即ち、熱交換器20の段方向(B方向)の間隔(段ピッチ)は、円管10で接続する一端側の円管10の直径で決定されるので、段方向の扁平伝熱管1間の間隔が大きくなり、熱交換器20全体の大きさ、ここでは(A方向の長さ)×(B方向の長さ)で表される前面面積を大きくしなければならない。また、熱交換器20の前面面積を大きくしない場合には、扁平伝熱管1の段数が少なくなり、熱交換量の低下を招く。
一方、段ピッチを小さくするために円管10の直径を小さくすると、扁平伝熱管1の流路断面積と円管10の流路断面積との差が大きくなり、圧力損失が増大して熱交換効率が低減するという問題がある。
However, when the upper and lower flat heat transfer tubes 1 are connected by a single circular tube 10, if the flow passage cross-sectional area of the flat heat transfer tube 1 and the flow passage cross-sectional area of the circular tube 10 are made similar, It is necessary to configure with a circular tube 10. In the connecting portion 18, the circular tube 10 to be connected is bent in a U shape and connected to the two-stage flat heat transfer tube 1, but the minimum radius to be bent in the U shape depends on the diameter of the circular tube to be bent. In the configuration shown in FIG. 7, the other end of the heat exchanger 20 is connected by a U-shaped flat heat transfer tube 1a, and the minimum radius for bending the flat heat transfer tube 1a into a U-shape is one on one end side. It can be made smaller than the minimum radius for bending the circular tube 10 into a U-shape. That is, the interval (stage pitch) in the step direction (B direction) of the heat exchanger 20 is determined by the diameter of the circular tube 10 on one end side connected by the circular tube 10, and therefore, between the flat heat transfer tubes 1 in the step direction. The interval increases, and the size of the entire heat exchanger 20, here, the front area represented by (length in the A direction) × (length in the B direction) must be increased. Further, when the front area of the heat exchanger 20 is not increased, the number of stages of the flat heat transfer tubes 1 is reduced, leading to a decrease in the amount of heat exchange.
On the other hand, when the diameter of the circular tube 10 is reduced in order to reduce the step pitch, the difference between the flow passage cross-sectional area of the flat heat transfer tube 1 and the flow passage cross-sectional area of the circular tube 10 increases, and the pressure loss increases and heat increases. There is a problem that the exchange efficiency is reduced.

図8は図7の比較例で用いた扁平伝熱管1と1本の円管10とを接続する接続ジョイント12を示す図であり、図8(a)は上面図、図8(b)は正面図、図8(c)は側面図である。接続ジョイント12の一端部には扁平伝熱管1が接続される扁平伝熱管接続部12aを有し、他端部には円管10が接続される円管接続部12bを有する。扁平伝熱管1の流路断面積と円管10の流路断面積を同程度として構成するので、ある程度以上の径の円管10になる。このため、図8(a)の上面図に示す扁平伝熱管1と円管10との幅の差EEや、図8(b)の正面図に示す幅の差FFが大きい。この接続ジョイント12は例えばプレス等で成形するのであるが、この際、扁平伝熱管1と円管10との形状の違いが大きいために変形量を大きくしなければならない。変形量を大きくすると、変肉が起こり、肉厚がうすくなってしまったり、変形や割れが起こりやすくなる。そのため、不良率の増加や耐圧の低下等の問題が起こってしまう。   FIG. 8 is a view showing a connection joint 12 for connecting the flat heat transfer tube 1 and one circular tube 10 used in the comparative example of FIG. 7, FIG. 8 (a) is a top view, and FIG. 8 (b) is a top view. FIG. 8C is a front view, and FIG. One end portion of the connection joint 12 has a flat heat transfer tube connection portion 12a to which the flat heat transfer tube 1 is connected, and the other end portion has a circular tube connection portion 12b to which the circular tube 10 is connected. Since the flow passage cross-sectional area of the flat heat transfer tube 1 and the flow passage cross-sectional area of the circular tube 10 are configured to be approximately the same, the circular tube 10 has a diameter of a certain degree or more. For this reason, the width difference EE between the flat heat transfer tube 1 and the circular tube 10 shown in the top view of FIG. 8A and the width difference FF shown in the front view of FIG. 8B are large. The connection joint 12 is formed by, for example, a press. At this time, since the difference in shape between the flat heat transfer tube 1 and the circular tube 10 is large, the amount of deformation must be increased. When the amount of deformation is increased, thickness change occurs and the thickness becomes thin, and deformation and cracking tend to occur. Therefore, problems such as an increase in defect rate and a decrease in breakdown voltage occur.

以上のように2段の扁平伝熱管1を1本の円管10で接続する構成では、冷媒流路の構成において自由度が向上できるが、製造の不良率や熱交換性能において課題があった。そこで、本実施の形態では、図1に示すように、熱交換器20の一端部の接続部18で、扁平伝熱管1を複数のU字状円管、例えば2本のU字状円管8で接続する構成とした。図9は扁平伝熱管1と複数本例えば2本のU字状円管8を接続ジョイント9で接続する部分を示す斜視図である。また、図10は接続ジョイント9を示す斜視図であり、図10(a)は扁平伝熱管接続部9aから見た斜視図であり、図10(b)は円管接続部9bから見た斜視図である。接続ジョイント9の一端部には扁平伝熱管1が接続される扁平伝熱管接続部9aを有し、他端部にはU字状円管8のそれぞれが接続される円管接続部9bを有する。また、図11は扁平伝熱管1と2本の円管8とを接続する接続ジョイント9を示す図であり、図11(a)は上面図、図11(b)は正面図、図11(c)は側面図である。   As described above, in the configuration in which the two flat heat transfer tubes 1 are connected by the single circular tube 10, the degree of freedom can be improved in the configuration of the refrigerant flow path, but there is a problem in the defective rate of manufacture and the heat exchange performance. . Therefore, in the present embodiment, as shown in FIG. 1, the flat heat transfer tube 1 is replaced with a plurality of U-shaped circular tubes, for example, two U-shaped circular tubes at the connection portion 18 at one end of the heat exchanger 20. 8 is connected. FIG. 9 is a perspective view showing a portion where the flat heat transfer tube 1 and a plurality of, for example, two U-shaped circular tubes 8 are connected by the connection joint 9. 10 is a perspective view showing the connection joint 9, FIG. 10 (a) is a perspective view seen from the flat heat transfer tube connecting portion 9a, and FIG. 10 (b) is a perspective view seen from the circular tube connecting portion 9b. FIG. One end portion of the connection joint 9 has a flat heat transfer tube connection portion 9a to which the flat heat transfer tube 1 is connected, and the other end portion has a circular tube connection portion 9b to which each of the U-shaped circular tubes 8 is connected. . Moreover, FIG. 11 is a figure which shows the connection joint 9 which connects the flat heat exchanger tube 1 and the two circular tubes 8, FIG. 11 (a) is a top view, FIG.11 (b) is a front view, FIG. c) is a side view.

図1に示す構成の扁平伝熱管1、円管8、及び熱交換器20の大きさの一例を以下に示す。
板状フィン2に関しては、並列ピッチ(Fp)=0.001m〜0.002m、板状フィンの厚み(Ft)=0.00009m〜0.00011m、板状フィンの幅(FL)=0.001m〜0.03mである。また、扁平伝熱管1に関しては、扁平伝熱管1の断面の長軸長さ(Dl)=0.01m〜0.02m、扁平伝熱管1の断面の短軸長さ(Ds)=0.002m〜0.005m、扁平伝熱管1の段ピッチは0.005m〜0.03m、扁平伝熱管1内の流路の数は3〜10個で構成した。
なお、上記の寸法に関しては一例であり、上記範囲に限定するものではない。例えば熱交換器20の熱交換性能等に応じて、熱交換器の大きさや冷媒流量が変わったりすると、上記範囲とは異なるものとなる。
An example of the size of the flat heat transfer tube 1, the circular tube 8, and the heat exchanger 20 configured as shown in FIG.
Regarding the plate-like fins 2, the parallel pitch (Fp) = 0.001m to 0.002m, the thickness of the plate-like fins (Ft) = 0.00009m to 0.00011m, and the width of the plate-like fins (FL) = 0.001m. ~ 0.03m. As for the flat heat transfer tube 1, the long axis length (Dl) of the cross section of the flat heat transfer tube 1 is 0.01 m to 0.02 m, and the short axis length (Ds) of the cross section of the flat heat transfer tube 1 is 0.002 m. The step pitch of the flat heat transfer tube 1 is 0.005 m to 0.03 m, and the number of flow paths in the flat heat transfer tube 1 is 3 to 10.
In addition, regarding said dimension, it is an example and is not limited to the said range. For example, when the size of the heat exchanger or the flow rate of the refrigerant changes according to the heat exchange performance of the heat exchanger 20, the above range is different.

本実施の形態では、図1に示すように、熱交換器20の一端部で扁平伝熱管1と2本の円管8を接続することを特徴としている。複数の冷媒流路を有する扁平伝熱管1と2本の円管8を接続する場合、扁平伝熱管1の流路断面積の和と円管8の流路断面積の和を同程度に構成する。流路断面積を同程度に構成することで、冷媒流路を流れる冷媒の圧力損失が増大することなく、熱交換効率のよい熱交換器が得られる。この場合には、2本の円管8を接続するので、ある程度以上の径の円管8になるが、1本の円管10で構成するよりも小さい径で構成できる。このため、図11(a)の上面図に示す扁平伝熱管1と円管8との幅の差Eや、図11(b)の正面図に示す幅の差Fは、図8に示したEEやFFよりも小さくなる。このため、接続ジョイント9を製造する際、接続ジョイント12を製造する場合ほど変形量は大きくならない。大きな変形量のものを製造する場合に比較して、変肉が起こりにくく、割れ等がおこるのを防止できる。そのため、不良率が増加したり、耐圧が低下するのを防ぐことができる。   In the present embodiment, as shown in FIG. 1, the flat heat transfer tube 1 and two circular tubes 8 are connected at one end of the heat exchanger 20. When the flat heat transfer tube 1 having a plurality of refrigerant flow paths and the two circular tubes 8 are connected, the sum of the cross-sectional areas of the flat heat transfer tubes 1 and the sum of the cross-sectional areas of the circular tubes 8 are configured to be approximately the same. To do. By configuring the channel cross-sectional areas to be approximately the same, a heat exchanger with good heat exchange efficiency can be obtained without increasing the pressure loss of the refrigerant flowing through the refrigerant channel. In this case, since the two circular tubes 8 are connected, the circular tube 8 has a diameter of a certain degree or more, but can be configured with a smaller diameter than that of the single circular tube 10. Therefore, the width difference E between the flat heat transfer tube 1 and the circular tube 8 shown in the top view of FIG. 11 (a) and the width difference F shown in the front view of FIG. 11 (b) are shown in FIG. It becomes smaller than EE and FF. For this reason, when manufacturing the connection joint 9, the amount of deformation is not as great as when the connection joint 12 is manufactured. Compared with the case of manufacturing a large amount of deformation, the thickness change is less likely to occur, and cracks and the like can be prevented. Therefore, it is possible to prevent the defect rate from increasing and the breakdown voltage from decreasing.

即ち、複数本の円管8で接続する構成では、接続ジョイント成形時に変形させる量を少なくできるため、肉厚の変化量を少なくでき、割れ等を防ぐことができる。このため、耐圧、腐食等の信頼性を損なうことない。さらに、2段の扁平伝熱管1を接続する接続部18では、接続する円管8の直径を小さくできるため、円管8をU字状に曲げる最小半径を小さくできる。従って、扁平伝熱管1のB方向の段ピッチを小さくできる。一方、円管8の径を小さくすることで冷媒の圧力損失が大きくなるが、2本の円管8を使用することで圧力損失の増加を防止できる。   That is, in the configuration in which a plurality of circular pipes 8 are connected, the amount of deformation at the time of forming the connection joint can be reduced, so that the amount of change in wall thickness can be reduced and cracking can be prevented. For this reason, reliability, such as a pressure | voltage resistant and corrosion, is not impaired. Furthermore, in the connection part 18 that connects the two-stage flat heat transfer tubes 1, the diameter of the circular tube 8 to be connected can be reduced, so that the minimum radius for bending the circular tube 8 into a U shape can be reduced. Therefore, the step pitch in the B direction of the flat heat transfer tube 1 can be reduced. On the other hand, reducing the diameter of the circular tube 8 increases the pressure loss of the refrigerant, but using two circular tubes 8 can prevent an increase in pressure loss.

図12は本実施の形態に係る熱交換器の一部分の構成を示す説明図であり、図12(a)は、本実施の形態による熱交換器に関し、図12(b)は比較例として、上下段の扁平伝熱管1間を1本の円管10で接続したときの一部分の構成を示す説明図である。図中、P、PPは扁平伝熱管1の段方向(B方向)の間隔、R、RRは円管8、10をU字状に曲げた場合の曲げ部の半径を示している。   FIG. 12 is an explanatory diagram showing a configuration of a part of the heat exchanger according to the present embodiment, FIG. 12 (a) relates to the heat exchanger according to the present embodiment, and FIG. 12 (b) is a comparative example. It is explanatory drawing which shows the structure of a part when connecting between the flat heat exchanger tubes 1 of an upper-lower stage with the one circular tube 10. FIG. In the figure, P and PP are intervals in the step direction (B direction) of the flat heat transfer tube 1, and R and RR indicate radii of bent portions when the circular tubes 8 and 10 are bent in a U shape.

例えば、断面扁平形状の長軸(Dl)14mm、短軸(Ds)4mm、扁平管内流路5の数が7個、厚み0.4mmの扁平伝熱管1を使用する場合、その流路と同程度の流路断面積である1本の円管10の内径は約4.4mmとなる。円管の厚さを0.5mmとすると、円管10の外径は5.4mmであるが、簡単にするため、一般的なサイズとして外径6mm、内径5mmとする。一般的に円管をU字状に曲げるときの曲げ半径は外径以上必要であるため、1本の円管10を使用する場合は、段ピッチは外径の2倍として12mm程度となる。そのため扁平伝熱管1の段ピッチを10mmにしたい場合は、外径5mmの円管を使用する必要がある。厚さが同じだとすると、その内径は4mmであり、上記の約4.4mm以下になるので扁平伝熱管1の流路の圧力損失よりも大きな圧力損失の流路断面積となってしまう。円管10の厚さを下げて流路断面積を上げることもできるが、耐圧強度や腐食を考慮すると、それほど円管10の厚さを小さくすることができない。しかし本実施の形態に係る熱交換器20では、2本の外径5mmの円管8のを使用すれば、内径4.4mm以上の流路断面積を得ることができる。このため、扁平伝熱管1の段ピッチを増加することなく、圧力損失が増加するのを防止できる。具体的には、図12(a)、(b)で、同程度の圧力損失になるように冷媒を流す場合、上記の構成例において、図12(a)ではR=5mm、P=10mmとなるが、図12(b)ではRR=6mm、PP=12mmとなる。このように、1本の円管10で接続する場合に比較して、2本の円管8で接続する場合には、扁平伝熱管1の段ピッチをP/PP=10/12=5/6に小さくできる。   For example, in the case of using a flat heat transfer tube 1 having a long axis (Dl) of 14 mm, a short axis (Ds) of 4 mm, a number of channels 5 in the flat tube, and a thickness of 0.4 mm, the same as the flow channel. The inner diameter of one circular pipe 10 having a flow path cross-sectional area of about 4.4 mm is about 4.4 mm. If the thickness of the circular tube is 0.5 mm, the outer diameter of the circular tube 10 is 5.4 mm, but for the sake of simplicity, the general size is an outer diameter of 6 mm and an inner diameter of 5 mm. In general, when a circular pipe is bent into a U shape, the bending radius is required to be equal to or greater than the outer diameter. Therefore, when one circular pipe 10 is used, the step pitch is about 12 mm, which is twice the outer diameter. Therefore, when it is desired to set the step pitch of the flat heat transfer tube 1 to 10 mm, it is necessary to use a circular tube having an outer diameter of 5 mm. If the thicknesses are the same, the inner diameter is 4 mm, which is about 4.4 mm or less, so that the cross-sectional area of the pressure loss is larger than the pressure loss of the flow path of the flat heat transfer tube 1. Although the thickness of the circular pipe 10 can be reduced to increase the cross-sectional area of the flow path, the thickness of the circular pipe 10 cannot be reduced so much in consideration of pressure resistance and corrosion. However, in the heat exchanger 20 according to the present embodiment, if two circular tubes 8 having an outer diameter of 5 mm are used, a channel cross-sectional area having an inner diameter of 4.4 mm or more can be obtained. For this reason, it is possible to prevent the pressure loss from increasing without increasing the step pitch of the flat heat transfer tube 1. Specifically, in FIGS. 12A and 12B, when the refrigerant is flowed so as to have the same pressure loss, in the above configuration example, in FIG. 12A, R = 5 mm and P = 10 mm. However, in FIG. 12B, RR = 6 mm and PP = 12 mm. Thus, compared with the case where it connects with the one circular pipe 10, when connecting with the two circular pipes 8, the step pitch of the flat heat exchanger tube 1 is set to P / PP = 10/12 = 5 / Can be reduced to 6.

図13は、比較例として1本の円管10で扁平伝熱管1を接続した熱交換器20を示す構成図、図14、図15は2本の円管8で扁平伝熱管1を接続した熱交換器20を示す構成図である。図13、図14、図15は、熱交換器20を冷媒と熱交換される空気の流通方向から見た前面の図であり、図13と図14では、熱交換器20の前面面積を同じとして示している。また、図15は段方向(B方向)に図13と同数の扁平伝熱管1を用いた構成である。   FIG. 13 is a block diagram showing a heat exchanger 20 in which the flat heat transfer tube 1 is connected by one circular tube 10 as a comparative example, and FIGS. 14 and 15 show the flat heat transfer tube 1 connected by two circular tubes 8. 1 is a configuration diagram showing a heat exchanger 20. 13, 14, and 15 are front views of the heat exchanger 20 as viewed from the flow direction of the air that exchanges heat with the refrigerant. In FIGS. 13 and 14, the front area of the heat exchanger 20 is the same. As shown. FIG. 15 shows a configuration in which the same number of flat heat transfer tubes 1 as in FIG. 13 are used in the step direction (B direction).

図13では1本の円管10の外径を圧力損失の点から小さくすることができず、扁平伝熱管1の段ピッチは大きくなる。このため、図13で示した所定の前面面積の大きさでは、8段の扁平伝熱管1しか接続することができない。これに対して、図14では12段の扁平伝熱管1を接続できる。図13と図14を比較して明らかな様に、扁平伝熱管1を円管で接続する場合、複数本の円管8で接続すると、同一の前面面積の熱交換器では、圧力損失を増加させることなく、熱交換量を増加でき熱交換性能を向上できる。   In FIG. 13, the outer diameter of one circular tube 10 cannot be reduced from the point of pressure loss, and the step pitch of the flat heat transfer tube 1 is increased. For this reason, only the 8-stage flat heat transfer tube 1 can be connected with the size of the predetermined front surface area shown in FIG. On the other hand, in FIG. 14, the 12-stage flat heat exchanger tube 1 can be connected. As is clear from comparison between FIG. 13 and FIG. 14, when the flat heat transfer tubes 1 are connected by a circular tube, if they are connected by a plurality of circular tubes 8, the heat loss of the same front area increases the pressure loss. Therefore, the heat exchange amount can be increased and the heat exchange performance can be improved.

また、図13と図15を比較して明らかな様に、同一の段数の扁平伝熱管1で構成する熱交換器20では、複数本の円管8で扁平伝熱管1を接続する場合の方が、1本の円管10で接続する場合に比較して、同様の熱交換量とすると、前面面積を小さくできる。即ち、同一本数の扁平伝熱管1であれば、圧力損失を増加させることなく、扁平伝熱管1の段方向(B方向)に小さくできるので、小型化が実現できる。   Further, as apparent from comparison between FIG. 13 and FIG. 15, in the heat exchanger 20 configured by the flat heat transfer tubes 1 having the same number of stages, the case where the flat heat transfer tubes 1 are connected by a plurality of circular tubes 8. However, compared with the case where it connects with the one circular pipe 10, if it is set as the same heat exchange amount, a front surface area can be made small. That is, the same number of flat heat transfer tubes 1 can be reduced in the step direction (B direction) of the flat heat transfer tubes 1 without increasing the pressure loss, so that downsizing can be realized.

以上のように、本実施の形態では、互いに所定の間隔をあけて並列し、個々の間を気体が流通する複数の板状フィン2と、これら板状フィン2を該板状フィン2の並列方向(A方向)に貫通するように設けられ、断面扁平形状の中に板状フィン2の並列方向(A方向)に伸びる複数の隔壁47によって気体の流通方向(D方向)に並ぶ複数の冷媒流路5を有すると共に、板状フィン2の並列方向(A方向)及び気体の流通方向(D方向)のそれぞれに直交する方向(B方向)に複数段をなす扁平伝熱管1と、複数段をなす扁平伝熱管1の2段の端部同士を接続する接続部18と、を備え、扁平伝熱管1は、その扁平面が複数段をなす方向(B方向)で対向するように配置されると共に、接続部18は、気体の流通方向(D方向)に並ぶ複数本のU字状に曲げられた円管8を有し、円管8を介して2段の扁平伝熱管1が接続されることにより、熱交換器20を流れる冷媒の流し方をヘッダーの構成で制限されることなく自由に設定でき、段方向の扁平伝熱管1の間隔を小さくでき、同様の熱交換量の場合は小型化を図ることができ、また同様の大きさの場合には熱交換量の増加を図ることができる熱交換器を得ることができる。
また、2段の扁平伝熱管1の接続部18をU字状に曲げられた複数本の円管8を介して接続することで、1本の円管8の径を小さくでき、接続部18の形状の変形量を小さくして、成形時の不良品の増加や耐圧の低下を防止でき、信頼性の高い接続部18を有する熱交換器20を実現できる。
As described above, in the present embodiment, a plurality of plate-like fins 2 that are arranged in parallel at a predetermined interval and in which gas flows between them, and these plate-like fins 2 are arranged in parallel. A plurality of refrigerants arranged in the direction (A direction) and arranged in the gas flow direction (D direction) by a plurality of partition walls 47 extending in the parallel direction (A direction) of the plate-like fins 2 in a flat cross-sectional shape A flat heat transfer tube 1 having a flow path 5 and a plurality of stages in a direction (B direction) perpendicular to each of the parallel direction (A direction) of the plate-like fins 2 and the gas flow direction (D direction), and a plurality of stages Connecting the two end portions of the flat heat transfer tube 1, and the flat heat transfer tube 1 is arranged so that the flat surfaces face each other in a direction (B direction) in which a plurality of steps are formed. And a plurality of connecting portions 18 arranged in the gas flow direction (D direction). By having a circular tube 8 bent in a U-shape, and connecting the two-stage flat heat transfer tube 1 via the circular tube 8, the flow of the refrigerant flowing through the heat exchanger 20 is limited by the configuration of the header. Can be set freely, the interval between the flat heat transfer tubes 1 in the step direction can be reduced, the size can be reduced in the case of the same heat exchange amount, and the heat exchange amount in the case of the same size It is possible to obtain a heat exchanger that can increase the amount of heat.
Further, by connecting the connecting portions 18 of the two-stage flat heat transfer tubes 1 through a plurality of circular tubes 8 bent in a U shape, the diameter of the single circular tube 8 can be reduced, and the connecting portions 18 can be reduced. By reducing the amount of deformation of the shape, it is possible to prevent an increase in defective products and a decrease in pressure resistance during molding, and it is possible to realize the heat exchanger 20 having the highly reliable connection portion 18.

また、扁平伝熱管内流路5の断面積の和と、複数本の円管8の断面積の和が同程度になるように構成したことにより、圧力損失の増加を防止でき、熱交換効率のよい熱交換器が得られる効果がある。   In addition, since the sum of the cross-sectional areas of the flow channels 5 in the flat heat transfer tubes and the sum of the cross-sectional areas of the plurality of circular tubes 8 are approximately the same, an increase in pressure loss can be prevented, and heat exchange efficiency can be prevented. There is an effect that a good heat exchanger can be obtained.

また、接続部18は、扁平伝熱管1と複数本の円管8とを接続する接続ジョイント9を備え、この接続ジョイント9は、一端部に複数本の円管8のそれぞれを接続する円管接続部9bを有し、他端部に扁平伝熱管1を接続する扁平伝熱管接続部9aを有していることにより、扁平伝熱管1と複数本の円管8のそれぞれを容易に接続できる。さらに扁平伝熱管1の端部と複数本の円管8の端部で形状の違いを小さくできるので、接続ジョイント9の形状の変形量を小さくできる。このため、成形時の不良品の増加や耐圧の低下を防止でき、信頼性の高い接続部18を有する熱交換器20を実現できる。   Moreover, the connection part 18 is provided with the connection joint 9 which connects the flat heat exchanger tube 1 and the multiple circular pipes 8, and this connection joint 9 connects each of the multiple circular pipes 8 to one end part. Each of the flat heat transfer tubes 1 and the plurality of circular tubes 8 can be easily connected by including the flat heat transfer tube connection portion 9a that has the connection portion 9b and connects the flat heat transfer tube 1 to the other end. . Furthermore, since the difference in shape between the ends of the flat heat transfer tubes 1 and the ends of the plurality of circular tubes 8 can be reduced, the amount of deformation of the shape of the connection joint 9 can be reduced. For this reason, an increase in defective products and a decrease in pressure resistance during molding can be prevented, and the heat exchanger 20 having the highly reliable connection portion 18 can be realized.

なお、本実施の形態では扁平伝熱管1が8個の扁平伝熱管内流路5を有するが、これに限定されるものではなく、8個よりも多くても、また8個よりも少なくても、同様の効果を得る。また、複数の扁平伝熱管内流路5が気体の流通方向(D方向)に一列に配置されているが、気体の流通方向(D方向)に並ぶと共に扁平伝熱管1の断面で上下に複数列になるように隔壁が扁平伝熱管1内に形成されていてもよい。また、本実施の形態では、熱交換器20の一端部で、各段の扁平伝熱管1が2本の円管8によって接続されているが、2本よりも多い本数の円管8で接続しても、同様の効果を得る。   In the present embodiment, the flat heat transfer tube 1 has eight flat heat transfer tube flow paths 5, but the present invention is not limited to this, and there may be more than eight or less than eight. The same effect is obtained. Further, the plurality of flat heat transfer tube flow paths 5 are arranged in a row in the gas flow direction (D direction), but are arranged in a row in the gas flow direction (D direction) and are vertically arranged in the cross section of the flat heat transfer tube 1. The partition may be formed in the flat heat transfer tube 1 so as to form a row. In the present embodiment, the flat heat transfer tubes 1 at each stage are connected by two circular tubes 8 at one end of the heat exchanger 20, but are connected by more than two circular tubes 8. However, the same effect is obtained.

また、本実施の形態は流入配管3及び流出配管4の接続に関しては、接続配管数が多くなり冷媒回路が複雑になる可能性があるため、図6に示すような1本の接続配管を使用しているが、複数本の円管で構成してもよい。流入配管3及び流出配管4と扁平伝熱管1を接続する部分において、複数本の円管8が接続できる本実施の形態で示した接続ジョイント9を使用すれば、流入配管3及び流出配管4の接続部においても、成形時の信頼性を向上できる。   Further, in the present embodiment, with respect to the connection of the inflow pipe 3 and the outflow pipe 4, the number of connection pipes is increased and the refrigerant circuit may be complicated. Therefore, one connection pipe as shown in FIG. 6 is used. However, it may be composed of a plurality of circular tubes. If the connection joint 9 shown in the present embodiment that can connect a plurality of circular pipes 8 is used at the portion where the inflow pipe 3 and the outflow pipe 4 are connected to the flat heat transfer pipe 1, the inflow pipe 3 and the outflow pipe 4 Also in the connection portion, the reliability during molding can be improved.

なお、図1の熱交換器20において、空気流の流れ方向Dに対して上流側に位置する冷媒配管を流入配管3とし、下流側に位置する冷媒配管を流出配管4としたが、これに限るものではない。この熱交換器20を蒸発器として使用している場合は、冷媒は空気流に対して上流側から下流側に流れるように配置している。これに対し、暖房運転する場合には、室内熱交換器20は凝縮器、室外熱交換器33は蒸発器として動作する。そして、図1の流出配管4から冷媒を流入させ、流入配管3から流出させるように冷媒を循環させる。このように冷媒の流れを冷房と暖房とで逆に循環するように構成すると、蒸発器と凝縮器を容易に切り替えることができる。実際には図2に示した冷凍サイクルにおいて、四方弁2で流路の接続をを切り替えて、実線矢印で示す冷房運転と、点線矢印で示す暖房運転とを切り替えている。さらに、熱交換器20、33における冷媒の流れ方向を切り替えることで、熱交換器20内の冷媒の温度変化と空気流の温度変化を考慮した場合、冷房運転及び暖房運転共に、空気温度と冷媒温度の温度差を確保できるので、熱交換効率のよい熱交換器を実現できる。   In the heat exchanger 20 of FIG. 1, the refrigerant pipe located on the upstream side with respect to the air flow direction D is the inflow pipe 3, and the refrigerant pipe located on the downstream side is the outflow pipe 4. It is not limited. When this heat exchanger 20 is used as an evaporator, the refrigerant is arranged to flow from the upstream side to the downstream side with respect to the air flow. On the other hand, in the heating operation, the indoor heat exchanger 20 operates as a condenser, and the outdoor heat exchanger 33 operates as an evaporator. Then, the refrigerant is caused to flow in from the outflow pipe 4 in FIG. 1 and is circulated so as to flow out from the inflow pipe 3. Thus, if it comprises so that the flow of a refrigerant | coolant may circulate reversely by cooling and heating, an evaporator and a condenser can be switched easily. In practice, in the refrigeration cycle shown in FIG. 2, the connection of the flow path is switched by the four-way valve 2 to switch between the cooling operation indicated by the solid arrow and the heating operation indicated by the dotted arrow. Further, by switching the flow direction of the refrigerant in the heat exchangers 20 and 33, when considering the temperature change of the refrigerant in the heat exchanger 20 and the temperature change of the air flow, the air temperature and the refrigerant are both in the cooling operation and the heating operation. Since a temperature difference in temperature can be ensured, a heat exchanger with good heat exchange efficiency can be realized.

また、図1の構成では、熱交換器20の一端側で、流入配管3と流出配管4以外の接続部18を2本の円管8で接続しているが、これに限るものではない。気体の流入方向(D方向)に対し冷媒流路を変更する必要がなければ、こちら側の接続部18の数箇所もU字状の扁平伝熱管1aで接続してもよい。B方向の段ピッチを全て同一に構成しなくてもよい場合には、数箇所をU字状の扁平伝熱管1aで接続すると、円管8で接続するよりもさらにB方向の段ピッチの一部分を小さくできるので、同様の熱交換量の場合は小型化を図ることができ、また同様の大きさの場合には熱交換量の増加を図ることができる。   In the configuration of FIG. 1, the connection portion 18 other than the inflow pipe 3 and the outflow pipe 4 is connected by the two circular pipes 8 on one end side of the heat exchanger 20, but is not limited thereto. If it is not necessary to change the refrigerant flow path with respect to the gas inflow direction (D direction), several locations of the connecting portion 18 on this side may be connected by the U-shaped flat heat transfer tube 1a. When not all the step pitches in the B direction need to be configured identically, a portion of the step pitch in the B direction is further increased by connecting several portions with the U-shaped flat heat transfer tubes 1a than connecting with the circular tubes 8. Therefore, when the heat exchange amount is the same, the size can be reduced, and when the heat exchange amount is the same, the heat exchange amount can be increased.

実施の形態2.
実施の形態1では、熱交換器20の一端部に、例えばU字状に曲げてなるU字状円管8を2本備えて、扁平伝熱管1を接続する構成とした。本発明の実施の形態2では、他の構成例について説明する。
Embodiment 2. FIG.
In the first embodiment, one end of the heat exchanger 20 is provided with two U-shaped circular tubes 8 bent into, for example, a U shape, and the flat heat transfer tube 1 is connected. In the second embodiment of the present invention, another configuration example will be described.

図16は本実施の形態に係る熱交換器20を示す斜視図である。図において、図1と同一符号は同一、又は相当部分を示す。図16に示すように、2段の扁平伝熱管1の端部同士を接続する接続部18において、接続ジョイント13によって、複数本の円管として例えば3本のU字状円管8を気体の流通方向(D)方向、即ち扁平伝熱管1の長軸方向に並べて設ける。
図16の構成では、図1のU字状円管8を3本接続したものであり、実施の形態1と同様、熱交換器20内を流れる冷媒の流し方をヘッダーの構成で制限されることなく自由に設定できる。また、圧力損失の増加を防ぐために、扁平伝熱管1の冷媒流路の断面積の和と接続部18の円管8の断面積の和を同程度にする必要があるが、3本の円管8としたことで、1本又は2本の円管で接続部18を構成するよりも、さらに小さな径の円管8で構成できる。従って、段方向(B方向)の扁平伝熱管1の間隔を小さくできる。このため、同様の熱交換量の場合は小型化を図ることができ、また同様の大きさの場合には扁平伝熱管1の段数を多くして、熱交換量の増加を図ることができる。
FIG. 16 is a perspective view showing the heat exchanger 20 according to the present embodiment. In the figure, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. As shown in FIG. 16, in the connection part 18 which connects the edge parts of the flat heat exchanger tube 1 of 2 steps | paragraphs, three U-shaped circular pipes 8 are made into gas of a plurality of circular pipes by the connection joint 13, for example. They are arranged side by side in the flow direction (D), that is, in the long axis direction of the flat heat transfer tube 1.
In the configuration of FIG. 16, three U-shaped circular tubes 8 of FIG. 1 are connected, and the manner of flowing the refrigerant flowing in the heat exchanger 20 is limited by the configuration of the header, as in the first embodiment. It can be set freely without In order to prevent an increase in pressure loss, the sum of the cross-sectional areas of the refrigerant flow paths of the flat heat transfer tubes 1 and the sum of the cross-sectional areas of the circular tubes 8 of the connecting portions 18 need to be approximately the same. Since the tube 8 is used, the circular tube 8 can be configured with a smaller diameter than the connection portion 18 formed by one or two circular tubes. Therefore, the space | interval of the flat heat exchanger tube 1 of a step direction (B direction) can be made small. For this reason, in the case of the same amount of heat exchange, the size can be reduced, and in the case of the same size, the number of stages of the flat heat transfer tube 1 can be increased to increase the amount of heat exchange.

実施の形態1で挙げた例では、2本の円管8で接続する場合、1本の円管8は内径4.4mm程度としたが、本実施の形態のように3本の円管8で接続する場合、1本の円管8は内径3.6mm程度となり、図12で示した扁平伝熱管1の段ピッチPをさらに短くできる。このため、実施の形態1よりも、さらに小型化、又は熱交換性能の向上が可能となる。
また、接続ジョイント13の扁平伝熱管接続部と円管接続部で、接続ジョイント11と比較して、形状の変形量を小さくできる。このため、接続ジョイント13をプレス等で成形する際、変肉、割れ等が起こりにくくなり、不良率、耐圧の低下を防ぐことができ、腐食耐力が向上する。
In the example given in the first embodiment, when two circular pipes 8 are connected, one circular pipe 8 has an inner diameter of about 4.4 mm. However, as in the present embodiment, three circular pipes 8 are used. In this case, one circular tube 8 has an inner diameter of about 3.6 mm, and the step pitch P of the flat heat transfer tube 1 shown in FIG. For this reason, it is possible to further reduce the size or improve the heat exchange performance as compared with the first embodiment.
Further, the flat heat transfer tube connecting portion and the circular tube connecting portion of the connecting joint 13 can reduce the amount of deformation of the shape as compared with the connecting joint 11. For this reason, when the connection joint 13 is formed by a press or the like, it is difficult for thickness change, cracking, and the like to occur, and it is possible to prevent a failure rate and a decrease in pressure resistance, thereby improving corrosion resistance.

また、図16では3本のU字状円管8で接続しているが、4本以上でも同様、扁平伝熱管1の段ピッチを、実施の形態1よりも短くすることができ、さらに小型化、又は熱交換性能の向上が可能となる。さらに接続ジョイントの成形が容易となり、信頼性が向上する。   Further, in FIG. 16, three U-shaped circular tubes 8 are connected, but the step pitch of the flat heat transfer tube 1 can be made shorter than that of the first embodiment, and the size can be further reduced. Or improvement in heat exchange performance. Further, the connection joint can be easily formed, and the reliability is improved.

4本以上の円管で接続部18を構成する際、気体の流通方向に一列にU字状円管を配置してもよいが、他の配置方法も可能である。図17は本実施の形態に係り、円管8を4本で構成した場合の接続部18の一例を示す斜視図である。接続する円管8を扁平伝熱管1の断面の長軸方向に並べるような接続でなく、4本の円管8を環状の束にするような接続形状としたものである。   When the connection portion 18 is constituted by four or more circular tubes, the U-shaped circular tubes may be arranged in a line in the gas flow direction, but other arrangement methods are also possible. FIG. 17 is a perspective view showing an example of the connecting portion 18 according to the present embodiment when the four circular tubes 8 are configured. Instead of connecting the circular tubes 8 to be connected in the major axis direction of the cross section of the flat heat transfer tube 1, the connecting shape is such that the four circular tubes 8 form an annular bundle.

実施の形態1では扁平伝熱管内流路5の並んでいる方向と円管8の並んでいる方向が一致しており、扁平伝熱管内流路5を流れている冷媒がそのまま円管8に流れていく可能性が高い。これに対し、図17のように円管8を環状に接続すると、扁平伝熱管内流路5から流れ出た冷媒が、流れが乱されて混ざった後、それぞれの円管8に流れていく。従って、扁平伝熱管1から流出した冷媒を各円管8にほぼ均等に分配させることができ、分配器の機能を持たせることができる。この場合、扁平伝熱管1の接続ジョイントと分配器が一体化するため、別に分配器を用意する必要がなく、設置スペースを小さくできる利点がある。   In the first embodiment, the direction in which the flat heat transfer pipe flow paths 5 are aligned and the direction in which the circular pipes 8 are aligned are the same, and the refrigerant flowing through the flat heat transfer pipe flow paths 5 remains in the circular pipe 8 as it is. There is a high possibility that it will flow. On the other hand, when the circular pipes 8 are connected in an annular shape as shown in FIG. 17, the refrigerant flowing out from the flow channel 5 in the flat heat transfer pipe flows into the respective circular pipes 8 after the flow is disturbed and mixed. Therefore, the refrigerant that has flowed out of the flat heat transfer tube 1 can be distributed almost evenly to each circular tube 8, and the function of a distributor can be provided. In this case, since the connection joint of the flat heat transfer tube 1 and the distributor are integrated, there is no need to prepare a separate distributor, and there is an advantage that the installation space can be reduced.

図18は、本実施の形態に係る熱交換器20の他の構成例を示す斜視図である。2本のU字状円管8で接続部18を構成し、さらに、上段又は下段の扁平伝熱管1を接続する際、気体の流通方向(D方向)で、上流と下流とを交差するように接続した。このように円管8を交差させることで、気体が流通する方向(D方向)に対して異なる位置の扁平伝熱管内流路5と接続するような構成となる。   FIG. 18 is a perspective view showing another configuration example of the heat exchanger 20 according to the present embodiment. When the connecting portion 18 is constituted by the two U-shaped circular tubes 8 and the upper or lower flat heat transfer tube 1 is connected, the upstream and the downstream are crossed in the gas flow direction (D direction). Connected to. Thus, it becomes a structure which connects with the flow path 5 in the flat heat exchanger tube in a different position with respect to the direction (D direction) where gas distribute | circulates by making the circular pipe 8 cross | intersect.

扁平伝熱管1は、図4に示すように空気流の流れ方向に並設された複数の扁平伝熱管内流路5で構成されているため、熱交換器20を使用する場合、空気流の風上側と風下側で、空気と冷媒との温度差が異なってくる。このため、中を流れる冷媒の状態が複数の扁平伝熱管内流路5で不均一になる。例えば蒸発器として使用する場合は、風上側のほうが温度差があり、熱交換しやすい。即ち、冷媒の乾き度が風下側よりも高くなってそのまま扁平伝熱管1を流れていくと、ガスのみとなり、熱交換しなくなってしまう。凝縮器として使用する場合は、やはり風上側のほうが温度差があり、熱交換しやすい。即ち、冷媒の乾き度が低くなってそのまま扁平伝熱管1を流れていくと、液のみとなり、熱交換しなくなってしまう。そのため熱交換量が低下してしまう。   Since the flat heat transfer tube 1 is composed of a plurality of flat heat transfer tube flow paths 5 arranged in parallel in the air flow direction as shown in FIG. 4, when the heat exchanger 20 is used, the air flow The temperature difference between the air and the refrigerant differs between the windward side and the leeward side. For this reason, the state of the refrigerant flowing inside becomes uneven in the plurality of flat heat transfer tube flow paths 5. For example, when used as an evaporator, there is a temperature difference on the windward side and heat exchange is easier. That is, if the dryness of the refrigerant becomes higher than that on the leeward side and flows through the flat heat transfer tube 1 as it is, only the gas is produced and heat exchange is not performed. When used as a condenser, there is still a temperature difference on the windward side, and heat exchange is easier. That is, when the dryness of the refrigerant is lowered and flows through the flat heat transfer tube 1 as it is, only the liquid is formed and heat exchange is not performed. Therefore, the amount of heat exchange is reduced.

そこで、扁平伝熱管1の風上側の流路から流れた冷媒を次に流す扁平伝熱管1の風下側にながし、扁平伝熱管1の風下側の流路から流れた冷媒を次に流す扁平伝熱管1の風上側に流すように、接続部の円管8を接続する。このように、熱交換器20の一端部で、U字状円管8を交差させるように接続すると、熱交換器20内を流れる冷媒は、熱交換器20の一端部に来たときには常に風上側と風下側の冷媒の流れが入れ替わり、熱交換器20全体で扁平伝熱管1内の冷媒状態が均一になる。このため、扁平伝熱管1に流れる冷媒状態の偏りを防ぎ、熱交換効率の低下を防止して熱交換性能の高い熱交換器を得ることができる。   Therefore, the flat heat transfer that flows from the flow path on the leeward side of the flat heat transfer tube 1 to the leeward side of the flat heat transfer tube 1 that flows next and the flow that flows from the flow path on the leeward side of the flat heat transfer tube 1 flows next. The circular pipe 8 of the connection part is connected so that it flows on the windward side of the heat pipe 1. As described above, when one end of the heat exchanger 20 is connected so that the U-shaped circular tubes 8 intersect each other, the refrigerant flowing in the heat exchanger 20 always flows into the one end of the heat exchanger 20. The refrigerant flow on the upper side and the leeward side are switched, and the state of the refrigerant in the flat heat transfer tube 1 becomes uniform throughout the heat exchanger 20. For this reason, the bias of the refrigerant | coolant state which flows into the flat heat exchanger tube 1 can be prevented, the fall of heat exchange efficiency can be prevented, and a heat exchanger with high heat exchange performance can be obtained.

なお、接続部18では、複数本のU字状円管8を交差して扁平伝熱管1を接続することで、気体の流通方向(D方向)の上流側と下流側とで冷媒を入れ替えて流す。例えば、図16のように接続部18が3本のU字状円管8で構成される場合には、気体の流通方向(D方向)の一番上流側と一番下流側のU字状円管8を交差させ、中央のU字状円管8は、そのまま中央に接続すれば、扁平伝熱管1に流れる冷媒状態の偏りを防ぐことができる。即ち、複数本の円管8のうちの少なくとも2本の円管8が交差して接続することで、扁平伝熱管1に流れる冷媒状態の偏りを防ぐことができる。   In addition, in the connection part 18, the refrigerant | coolant is replaced by the upstream and downstream of the distribution direction (D direction) of gas by crossing the several U-shaped circular pipe 8 and connecting the flat heat exchanger tube 1. FIG. Shed. For example, when the connecting portion 18 is constituted by three U-shaped circular pipes 8 as shown in FIG. 16, the most upstream and the most downstream U-shapes in the gas flow direction (D direction). If the circular tubes 8 are crossed and the central U-shaped circular tube 8 is connected to the center as it is, it is possible to prevent the refrigerant state flowing in the flat heat transfer tube 1 from being biased. In other words, when at least two of the plurality of circular tubes 8 intersect and connect to each other, it is possible to prevent the refrigerant state flowing in the flat heat transfer tube 1 from being biased.

図19は本実施の形態に係り、別の構成例の熱交換器20を示す斜視図である。実施の形態1では、熱交換器20の一端側、例えば流入配管3及び流出配管4を設置する一端側で、扁平伝熱管1を複数本の円管8で接続するように構成した。図19では、熱交換器20の両端側で2段づつの扁平伝熱管1を複数本、例えば2本の円管で接続している。図1のように一端側をU字状にした扁平伝熱管1aで接続する場合には、U字状扁平伝熱管1aで接続されている2段の扁平伝熱管1内の冷媒流路は固定である。これに対し、図19では熱交換器20の両端部で円管8の接続を変更でき、さらに自由度の高い冷媒流路を構成することができる。   FIG. 19 is a perspective view showing a heat exchanger 20 of another configuration example according to the present embodiment. In the first embodiment, the flat heat transfer tube 1 is connected by a plurality of circular tubes 8 on one end side of the heat exchanger 20, for example, one end side where the inflow pipe 3 and the outflow pipe 4 are installed. In FIG. 19, a plurality of, for example, two circular tubes, are connected to the flat heat transfer tubes 1 in two stages on both ends of the heat exchanger 20. When connecting with a flat heat transfer tube 1a whose one end is U-shaped as shown in FIG. 1, the refrigerant flow path in the two-stage flat heat transfer tube 1 connected with the U-shaped flat heat transfer tube 1a is fixed. It is. On the other hand, in FIG. 19, the connection of the circular pipe 8 can be changed at both ends of the heat exchanger 20, and a refrigerant channel with a higher degree of freedom can be configured.

もちろん、図16、図17のどちらの場合においても、図19に示すように熱交換器20の両端部を3本の円管、又は4本の円管で接続する構成としてもよい。一端部のみよりもさらに自由度の高い冷媒流路を構成することができる。
また、図18の構成においても、熱交換器20の両端部を円管8とし、上段又は下段と接続する際、空気流の流入方向(D方向)に対して交差させて接続してもよい。図18の構成では2段毎に空気流の上流側と下流側の冷媒回路が入れ替えられるが、両端部で交差すると、1段毎に空気流の上流側と下流側の冷媒回路が入れ替えられる構成となる。このため、空気流と熱交換する冷媒の温度をさらに均一化でき、さらに熱交換効率を向上できる。
Of course, in either case of FIGS. 16 and 17, both ends of the heat exchanger 20 may be connected by three circular tubes or four circular tubes as shown in FIG. A refrigerant channel having a higher degree of freedom than that of only one end can be configured.
Also in the configuration of FIG. 18, both ends of the heat exchanger 20 may be circular tubes 8, and when connected to the upper stage or the lower stage, they may be connected so as to intersect the inflow direction (D direction) of the air flow. . In the configuration of FIG. 18, the upstream and downstream refrigerant circuits of the air flow are switched every two stages. However, when both ends intersect, the upstream and downstream refrigerant circuits of the air flow are switched for each stage. It becomes. For this reason, the temperature of the refrigerant that exchanges heat with the air flow can be made more uniform, and the heat exchange efficiency can be further improved.

図20は本実施の形態に係る扁平伝熱管1の別の構成を示す断面図である。ここで示した扁平伝熱管1は断面が楔形状で構成している。即ち、短軸方向の長さが、長軸方向の両端部で異なる長さ、ここではH<Gとしたものである。図21は、図20に示す形状の扁平伝熱管1を使用した熱交換器の縦断面図である。図4、図5と同一符号は同一、又は相当部分を示す。   FIG. 20 is a cross-sectional view showing another configuration of the flat heat transfer tube 1 according to the present embodiment. The flat heat transfer tube 1 shown here has a wedge-shaped cross section. That is, the length in the minor axis direction is different at both ends in the major axis direction, here H <G. FIG. 21 is a longitudinal sectional view of a heat exchanger using the flat heat transfer tube 1 having the shape shown in FIG. The same reference numerals as those in FIGS. 4 and 5 indicate the same or corresponding parts.

熱交換器20は、複数、例えば8個の扁平伝熱管内流路5で構成されている楔形状の扁平伝熱管1と、その扁平伝熱管1を板状フィン2に挿入した形状で構成されている。   The heat exchanger 20 is configured by a wedge-shaped flat heat transfer tube 1 configured by a plurality of, for example, eight flow channels 5 in the flat heat transfer tube, and a shape in which the flat heat transfer tube 1 is inserted into the plate-like fins 2. ing.

扁平伝熱管1をこのような楔形状にすることで、製造時に、板状フィン2に矢印Q方向から挿入しやすくなる。複数並べた板状フィン2に楔形状の扁平伝熱管1の短いほうから挿入すれば、挿入しやすい。挿入後、カラー6と扁平伝熱管1とをロウ付け、又は接着剤等で接合、あるいは機械的に圧着する。
このように、扁平伝熱管1を楔形状にすることで、製造時に、板状フィン2に挿入しやすい熱交換器を得ることができ、不良品率が増加するのを防止できる。
なお、図20では、扁平伝熱管1の楔形状の断面で、気体の流通方向(D方向)の上流側の長さGを下流側の長さHよりも長い構成としたが、これに限るものではなく、逆でもよい。
By making the flat heat transfer tube 1 into such a wedge shape, it becomes easy to insert into the plate-like fin 2 from the direction of the arrow Q at the time of manufacture. If the wedge-shaped flat heat transfer tubes 1 are inserted into the plurality of plate-like fins 2 arranged from the short side, the insertion is easy. After the insertion, the collar 6 and the flat heat transfer tube 1 are brazed, joined with an adhesive or the like, or mechanically crimped.
Thus, by making the flat heat transfer tube 1 into a wedge shape, it is possible to obtain a heat exchanger that can be easily inserted into the plate-like fins 2 at the time of manufacture, and it is possible to prevent an increase in the defective product rate.
In FIG. 20, the upstream length G in the gas flow direction (D direction) is longer than the downstream length H in the wedge-shaped cross section of the flat heat transfer tube 1. It is not a thing and may be reversed.

このように断面が楔形状の扁平伝熱管1を使用すると、複数設けた冷媒流路の断面積が複数の扁平伝熱管内流路5で異なる。このため、扁平伝熱管内流路5のそれぞれを流れる冷媒の温度が不均一になり易い。このとき、図18で示したように接続部18で円管8を接続する際、気体の流れ方向(D方向)の風上側と風下側で交差させるように接続し、冷媒の流れる位置を入れ替えるようにすると、熱交換器20全体で冷媒状態が均一化され、さらに効果的である。   When the flat heat transfer tube 1 having a wedge-shaped cross section is used as described above, the cross-sectional areas of the plurality of refrigerant flow paths are different in the plurality of flat heat transfer pipe flow paths 5. For this reason, the temperature of the refrigerant | coolant which flows through each of the flow path 5 in a flat heat exchanger tube tends to become non-uniform | heterogenous. At this time, as shown in FIG. 18, when the circular pipe 8 is connected by the connecting portion 18, the connection is performed so as to intersect the leeward side and the leeward side of the gas flow direction (D direction), and the position where the refrigerant flows is switched. By doing so, the refrigerant state is made uniform in the heat exchanger 20 as a whole, which is more effective.

以上のように、本実施の形態では、接続部18の円管の別の構成について記載したが、実施の形態1と同様、互いに所定の間隔をあけて並列し、個々の間を気体が流通する複数の板状フィン2と、これら板状フィン2を該板状フィン2の並列方向(A方向)に貫通するように設けられ、断面扁平形状の中に板状フィン2の並列方向(A方向)に伸びる複数の隔壁47によって気体の流通する流通方向(D方向)に並ぶ複数の冷媒流路5を有すると共に、板状フィン2の並列方向(A方向)及び気体の流通方向(D方向)のそれぞれに直交する方向(B方向)に複数段をなす扁平伝熱管1と、複数段をなす扁平伝熱管1の2段の端部同士を接続する接続部18と、を備え、扁平伝熱管1は、その扁平面が複数段をなす方向(B方向)で対向するように配置されると共に、接続部18は、気体の流通方向(D方向)に並ぶ複数本のU字状に曲げられた円管8を有し、円管8を介して2段の扁平伝熱管1が接続されることにより、熱交換器20内の冷媒の流し方をヘッダーの構成で制限されることなく自由に設定でき、段方向の扁平伝熱管1の間隔を小さくでき、同様の熱交換量の場合は小型化を図ることができ、また同様の大きさの場合には熱交換量の増加を図ることができる熱交換器を得ることができる効果がある。   As described above, in the present embodiment, another configuration of the circular pipe of the connecting portion 18 has been described. However, as in the first embodiment, the gas flows between each other in parallel with a predetermined interval therebetween. A plurality of plate-like fins 2, and these plate-like fins 2 are provided so as to penetrate the plate-like fins 2 in the parallel direction (A direction). A plurality of refrigerant channels 5 arranged in the flow direction (D direction) through which the gas flows by a plurality of partition walls 47 extending in the direction), and the parallel direction (A direction) of the plate-like fins 2 and the gas flow direction (D direction). ) Each of the flat heat transfer tubes 1 formed in a plurality of stages in a direction (B direction) orthogonal to each of the above and a connection portion 18 that connects two ends of the flat heat transfer tubes 1 formed in a plurality of stages. The heat pipe 1 is opposed in a direction (B direction) in which the flat surfaces form a plurality of steps. The connecting portion 18 has a plurality of U-shaped circular tubes 8 arranged in the gas flow direction (D direction), and the two-stage flat heat transfer tubes are arranged via the circular tubes 8. 1 is connected, the flow of the refrigerant in the heat exchanger 20 can be freely set without being limited by the configuration of the header, the interval between the flat heat transfer tubes 1 in the step direction can be reduced, and the same heat exchange In the case of an amount, the size can be reduced, and in the case of a similar size, there is an effect that a heat exchanger that can increase the amount of heat exchange can be obtained.

また、扁平伝熱管内流路5の断面積の和と、複数本の円管8の断面積の和が同程度になるように構成したことにより、圧力損失の増加を防止でき、熱交換効率のよい熱交換器が得られる効果がある。   In addition, since the sum of the cross-sectional areas of the flow channels 5 in the flat heat transfer tubes and the sum of the cross-sectional areas of the plurality of circular tubes 8 are approximately the same, an increase in pressure loss can be prevented, and heat exchange efficiency can be prevented. There is an effect that a good heat exchanger can be obtained.

また、図17のように、一端部に複数本の円管8のそれぞれを接続する円管接続部を有し、他端部に扁平伝熱管1を接続する扁平伝熱管接続部を有する接続ジョイント14を備え、接続ジョイント14によって扁平伝熱管1と複数本の円管8のそれぞれとを接続することにより、扁平伝熱管1の端部を接続する際、接続を容易にできる。さらに1本の円管8の径を小さくでき、接続ジョイント14の形状の変形量を小さくして、成形時の不良品の増加や耐圧の低下を防止でき、信頼性の高い接続部18を有する熱交換器を実現できる効果がある。   In addition, as shown in FIG. 17, a connection joint having a circular tube connection portion that connects each of the plurality of circular tubes 8 at one end and a flat heat transfer tube connection portion that connects the flat heat transfer tube 1 to the other end. By connecting the flat heat transfer tube 1 and each of the plurality of circular tubes 8 with the connection joint 14, the connection can be facilitated when connecting the end portions of the flat heat transfer tube 1. Furthermore, the diameter of one circular pipe 8 can be reduced, the deformation amount of the shape of the connection joint 14 can be reduced, an increase in defective products and a decrease in pressure resistance can be prevented, and the highly reliable connection portion 18 is provided. There is an effect that a heat exchanger can be realized.

また、2段の扁平伝熱管1を複数本の円管8によって交差させて接続し、気体が流通する方向(D方向)に対して異なる位置の扁平伝熱管内流路5と接続するように構成したことにより、熱交換器20内の冷媒流路構成の自由度を向上でき、さらに熱交換器20を流れる冷媒状態を均一化して熱交換効率を向上できる。   Further, the two-stage flat heat transfer tubes 1 are connected by being intersected by a plurality of circular tubes 8 so as to be connected to the flow channels 5 in the flat heat transfer tubes at different positions with respect to the direction in which the gas flows (D direction). By comprising, the freedom degree of the refrigerant | coolant flow path structure in the heat exchanger 20 can be improved, and also the refrigerant | coolant state which flows through the heat exchanger 20 can be equalize | homogenized, and heat exchange efficiency can be improved.

実施の形態3.
本発明の実施の形態3では、接続ジョイントについて記載する。図22は、本発明の実施の形態3に係る接続ジョイント15を含む接続部18の断面を示す説明図である。実際には図11(c)の中央縦線における断面を示しており、一端部に扁平伝熱管1との接続部15a、他端部に複数本、例えば2本の円管8のそれぞれとの接続部15bを有する。ここでは、扁平伝熱管1は4個の扁平伝熱管内流路5を有するとしている。J1、J2は冷媒の流れ方向を示す。
Embodiment 3 FIG.
In Embodiment 3 of the present invention, a connection joint will be described. FIG. 22 is an explanatory view showing a cross section of the connecting portion 18 including the connecting joint 15 according to Embodiment 3 of the present invention. 11C actually shows a cross section along the central vertical line in FIG. 11C, with one end connected to the flat heat transfer tube 1 15a and the other end connected to a plurality of, for example, two circular tubes 8, respectively. It has the connection part 15b. Here, the flat heat transfer tube 1 is assumed to have four flow channels 5 in the flat heat transfer tube. J1 and J2 indicate the flow direction of the refrigerant.

図22に示すように、接続ジョイント15内部では、扁平伝熱管1の接続端1bと複数本の円管8の接続端8bとの間に、所定の空間16を設けて、扁平伝熱管1と複数本の円管8とを接続する。冷媒は、2本の円管8内を実線の矢印J1の方向に流れ、空間16に流入する。そして、冷媒は、この空間16内で流れが乱されて混合され、扁平伝熱管1に設けた複数の扁平伝熱管内流路5のそれぞれにほぼ均等に流れていく。
逆に、破線の矢印J2の方向に冷媒が流れる場合には、扁平伝熱管1の複数の扁平伝熱管内流路5を流れる冷媒は、空間16に流入する。そして、冷媒は、この空間16内で流れが乱されて混合され、2本の円管8にそれぞれほぼ均等に流れていく。
As shown in FIG. 22, inside the connection joint 15, a predetermined space 16 is provided between the connection end 1 b of the flat heat transfer tube 1 and the connection ends 8 b of the plurality of circular tubes 8, and the flat heat transfer tube 1 A plurality of circular tubes 8 are connected. The refrigerant flows through the two circular tubes 8 in the direction of the solid arrow J1 and flows into the space 16. The refrigerant is mixed with the flow disturbed in the space 16 and flows substantially evenly into each of the plurality of flat heat transfer tube channels 5 provided in the flat heat transfer tube 1.
Conversely, when the refrigerant flows in the direction of the broken line arrow J <b> 2, the refrigerant flowing through the plurality of flat heat transfer tube flow paths 5 of the flat heat transfer tube 1 flows into the space 16. The refrigerant is mixed with the flow disturbed in the space 16 and flows almost evenly into the two circular tubes 8.

このように、接続ジョイント15内で、円管8と扁平伝熱管1との間に空間16を設けることで、複数の扁平伝熱管内流路5又は円管8を流れる冷媒が接続ジョイント15内で混合される。空間16は、冷媒の流れ方向J1、J2において、扁平伝熱管1の接続端1bと複数本の円管8の接続端8bとの間に、所定の幅Lを有する。この幅Lは、例えば接続する円管8の外径以上で構成する。空間16の幅Lは、内部を流れる冷媒の速度、流量などに応じて、最適値は異なるが、冷媒がある程度混合されればよい。   In this way, by providing the space 16 between the circular tube 8 and the flat heat transfer tube 1 in the connection joint 15, the refrigerant flowing through the plurality of flat heat transfer tube flow paths 5 or the circular tubes 8 is contained in the connection joint 15. Mixed in. The space 16 has a predetermined width L between the connection end 1b of the flat heat transfer tube 1 and the connection ends 8b of the plurality of circular tubes 8 in the refrigerant flow directions J1 and J2. For example, the width L is configured to be equal to or larger than the outer diameter of the connected circular tube 8. The width L of the space 16 has an optimum value depending on the speed, flow rate, and the like of the refrigerant flowing inside, but it is sufficient that the refrigerant is mixed to some extent.

図18の円管8を交差する構成で説明したように、空気の流通方向の風上側と風下側で、空気と扁平伝熱管内流路5を流れる冷媒の温度差が異なってくる。冷媒が流入配管3から流出配管4まで流れる間に、例えば風上側を流れる冷媒はそのまま風上側を流れ、風下側を流れる冷媒はそのまま風下側を流れるように固定のままだと、風上側と風下側とで冷媒状態が不均一になって熱交換効率が低下する。図22の構成では、扁平伝熱管1の接続端1bと円管8の接続端8bとの間に空間16を設け、この空間16内で風上側と風下側の冷媒が混合されることで、冷媒状態を均一化でき、熱交換効率の低下を防止できる。   As described in the configuration crossing the circular tubes 8 in FIG. 18, the temperature difference between the air and the refrigerant flowing through the flat heat transfer tube flow path 5 differs between the windward side and the leeward side in the air flow direction. While the refrigerant flows from the inflow pipe 3 to the outflow pipe 4, for example, the refrigerant that flows on the leeward side flows directly on the leeward side, and the refrigerant that flows on the leeward side remains fixed on the leeward side. The refrigerant state becomes uneven between the two sides and the heat exchange efficiency decreases. In the configuration of FIG. 22, a space 16 is provided between the connection end 1 b of the flat heat transfer tube 1 and the connection end 8 b of the circular tube 8, and the refrigerant on the windward side and the leeward side is mixed in this space 16. The refrigerant state can be made uniform, and a decrease in heat exchange efficiency can be prevented.

図23は、熱交換器20を蒸発器として使用した場合の熱交換器20内での空気温度と冷媒温度の変化を示すグラフであり、図24は、熱交換器20を凝縮器として使用した場合の熱交換器20内での空気温度と冷媒温度の変化を示すグラフである。図23、図24において、横軸に熱交換器の入口から出口までの位置を示し、縦軸に温度を示す。図23(a)、図24(a)は空気流に対して冷媒は同じ冷媒流路を流れ、風上側を流れる冷媒は常に風上側を流れ、風下側を流れる冷媒は常に風下側を流れる場合のグラフである。図中、点線曲線は空気温度の変化を示し、実線曲線は扁平後部穴冷媒温度、一点差線曲線は扁平管前部穴冷媒温度である。ここで、扁平管前部穴とは気体の流通方向(D方向)に対して上流側の扁平伝熱管内流路5であり、扁平管後部穴とは空気流に対して下流側の扁平伝熱管内流路5である。図23(a)に示すように、熱交換器20を蒸発器として動作させた場合、扁平管前部穴では熱交換しやすいので、扁平管前部穴冷媒温度は熱交換器出口に流れるに従って、空気温度との温度差が小さくなる。一方、扁平管後部穴では、冷媒と空気温度との温度差が徐々に小さくなる。この現象は、図24(a)に示す凝縮器として動作させた場合にも同様である。このような冷媒状態の不均一が熱交換効率の低下をもたらす。   FIG. 23 is a graph showing changes in air temperature and refrigerant temperature in the heat exchanger 20 when the heat exchanger 20 is used as an evaporator, and FIG. 24 uses the heat exchanger 20 as a condenser. It is a graph which shows the change of the air temperature and refrigerant | coolant temperature in the heat exchanger 20 in a case. 23 and 24, the horizontal axis indicates the position from the inlet to the outlet of the heat exchanger, and the vertical axis indicates the temperature. FIG. 23A and FIG. 24A show the case where the refrigerant flows in the same refrigerant flow path with respect to the air flow, the refrigerant flowing on the leeward side always flows on the leeward side, and the refrigerant flowing on the leeward side always flows on the leeward side. It is a graph of. In the figure, the dotted line curve shows the change in air temperature, the solid line curve is the flat rear hole refrigerant temperature, and the one-point difference curve is the flat tube front hole refrigerant temperature. Here, the flat tube front hole is the flow channel 5 in the flat heat transfer tube upstream of the gas flow direction (D direction), and the flat tube rear hole is the flat flow downstream of the air flow. This is the heat pipe flow path 5. As shown in FIG. 23 (a), when the heat exchanger 20 is operated as an evaporator, heat is easily exchanged in the flat tube front hole, so that the flat tube front hole refrigerant temperature flows to the heat exchanger outlet. The temperature difference from the air temperature becomes small. On the other hand, in the flat tube rear hole, the temperature difference between the refrigerant and the air temperature gradually decreases. This phenomenon is the same when the condenser is operated as shown in FIG. Such non-uniformity of the refrigerant state causes a decrease in heat exchange efficiency.

本実施の形態では、扁平伝熱管1内の空間16で複数の流路の冷媒が混合され、再び扁平伝熱管1に流れていく。例えば図1の構成ではU字状円管8の両端部に接続ジョイントを設ける構成である。即ち、本実施の形態に係る接続ジョイント15を使用すれば、扁平伝熱管1からの冷媒は空間16で混合され、U字状円管8を流れ、再び空間16で混合されて扁平伝熱管1に入る。このため、扁平伝熱管1のそれぞれの扁平伝熱管内流路5には、ほぼ均一な状態の冷媒が流れ、熱交換効率の低下を防止できる。   In the present embodiment, the refrigerant in the plurality of flow paths is mixed in the space 16 in the flat heat transfer tube 1 and flows again into the flat heat transfer tube 1. For example, in the configuration of FIG. 1, connection joints are provided at both ends of the U-shaped circular tube 8. That is, if the connection joint 15 according to the present embodiment is used, the refrigerant from the flat heat transfer tube 1 is mixed in the space 16, flows through the U-shaped circular tube 8, and is mixed again in the space 16 to be flattened heat transfer tube 1. to go into. For this reason, the refrigerant | coolant of a substantially uniform state flows into the flow path 5 in each flat heat exchanger tube of the flat heat exchanger tube 1, and it can prevent the heat exchange efficiency fall.

本実施の形態に係る接続ジョイント15を使用したときの熱交換器20内での空気温度と冷媒温度の変化の様子を図23(b)、図24(b)に示す。図23(b)は蒸発器として動作したとき、図24(b)は凝縮器として動作したときである。扁平伝熱管1を流れる間に、扁平管前部穴冷媒温度と空気温度との温度差が小さくなる。そして、扁平伝熱管1の接続部18で、接続ジョイント15に流入する。この接続ジョイント15の部分(S)で、扁平管前部穴冷媒と扁平管後部穴冷媒とが混合される。このため、熱交換器入口から熱交換器出口までのどの位置においても、扁平管前部穴と扁平管後部穴の両方で、空気温度と冷媒温度の差をある程度保つことができ、熱交換効率が低下するのを防止できる。これは蒸発器として動作した場合(図23(b))でも、凝縮器として動作した場合(図24(b))のどちらにおいても同様である。   FIGS. 23B and 24B show how the air temperature and the refrigerant temperature change in the heat exchanger 20 when the connection joint 15 according to the present embodiment is used. FIG. 23 (b) shows the operation as an evaporator, and FIG. 24 (b) shows the operation as a condenser. While flowing through the flat heat transfer tube 1, the temperature difference between the flat tube front hole refrigerant temperature and the air temperature becomes small. Then, it flows into the connection joint 15 at the connection portion 18 of the flat heat transfer tube 1. In the portion (S) of the connection joint 15, the flat tube front hole refrigerant and the flat tube rear hole refrigerant are mixed. Therefore, at any position from the heat exchanger inlet to the heat exchanger outlet, the difference between the air temperature and the refrigerant temperature can be kept to some extent in both the flat tube front hole and the flat tube rear hole, and the heat exchange efficiency Can be prevented from decreasing. This is the same both when operating as an evaporator (FIG. 23 (b)) and when operating as a condenser (FIG. 24 (b)).

このように、本実施の形態の接続ジョイント15を、図1や図16に示した熱交換器20に使用することで、熱交換効率が高い熱交換器を得ることができる。また、図17や図18に示した構成の熱交換器20に接続ジョイント15を用いれば、より冷媒が混合される効果が増し、より熱交換効率が高い熱交換器を得ることができる。また、熱交換器20がA方向に幅があり、1段の扁平伝熱管1のA方向の長さが長くなってしまう場合は、図19に示したように、流入配管3、流入配管4を設けた端部側と反対の端部側にも、接続ジョイント15を使用して複数本のU字状円管8で接続すればよい。このように構成すれは、扁平伝熱管1の両端部で冷媒が混合されるので、より高い熱交換効率を有する熱交換器を得ることができる。   Thus, by using the connection joint 15 of the present embodiment for the heat exchanger 20 shown in FIGS. 1 and 16, a heat exchanger with high heat exchange efficiency can be obtained. Moreover, if the connection joint 15 is used for the heat exchanger 20 having the configuration shown in FIGS. 17 and 18, the effect of mixing the refrigerant is increased, and a heat exchanger with higher heat exchange efficiency can be obtained. Further, when the heat exchanger 20 has a width in the A direction and the length of the one-stage flat heat transfer tube 1 in the A direction becomes long, as shown in FIG. 19, the inflow pipe 3 and the inflow pipe 4. What is necessary is just to connect with the multiple U-shaped circular pipes 8 using the connection joint 15 also to the edge part side opposite to the edge part side which provided. In this way, since the refrigerant is mixed at both ends of the flat heat transfer tube 1, a heat exchanger having higher heat exchange efficiency can be obtained.

図22に示した接続ジョイント15は、空間16で冷媒が混合される構成のものである。これに対して、接続ジョイント内で冷媒が混合されない構成の接続部18を図25に示す。図25は、本発明の実施の形態3に係り、接続ジョイント17を含む接続部18の断面を示す説明図である。実際には図11(c)の中央縦線における断面を示しており、一端部に扁平伝熱管1との接続部17a、他端部に複数本の円管8のそれぞれとの接続部17bを有し、接続ジョイント17内では、扁平伝熱管1の接続端1bと複数本の円管8の接続端8bとを突き合わせて、扁平伝熱管1と複数、例えば2本の円管8とを接続する。ここでは、扁平伝熱管1は4個の扁平伝熱管内流路5を有するとしている。   The connection joint 15 shown in FIG. 22 has a configuration in which refrigerant is mixed in the space 16. On the other hand, the connection part 18 of the structure in which a refrigerant | coolant is not mixed within a connection joint is shown in FIG. FIG. 25 is an explanatory diagram illustrating a cross section of the connection portion 18 including the connection joint 17 according to the third embodiment of the present invention. 11C actually shows a cross section along the central vertical line in FIG. 11C. One end portion has a connection portion 17a to the flat heat transfer tube 1, and the other end portion has a connection portion 17b to each of the plurality of circular tubes 8. In the connection joint 17, the connection end 1 b of the flat heat transfer tube 1 and the connection ends 8 b of the plurality of circular tubes 8 are abutted to connect the flat heat transfer tube 1 to a plurality of, for example, two circular tubes 8. To do. Here, the flat heat transfer tube 1 is assumed to have four flow channels 5 in the flat heat transfer tube.

接続ジョイント17内部では、扁平伝熱管1の接続端1bと円管8の接続端8bが当接した状態となっている。そのため、実線の矢印J1の方向に円管8から流入した冷媒は、ほとんど混合されることなくそのまま扁平伝熱管1の扁平伝熱管内流路5に流れる。逆に破線の矢印J2の方向に扁平伝熱管1に設けた複数の扁平伝熱管内流路5から冷媒が流入した場合は、同様にそのまま円管8に流れる。図1の構成の熱交換器20を接続ジョイント17によって接続すると、図23(a)、図24(a)に示したように、扁平伝熱管前部穴冷媒温度と空気温度との差が小さくなって、熱交換効率の低下が起りやすい。ところが、図18の構成の熱交換器20を接続ジョイント17で接続すると、接続ジョイント17内では冷媒が混合されないので、U字状円管8の接続の仕方に応じてのみ冷媒状態が制御されることになる。   Inside the connection joint 17, the connection end 1 b of the flat heat transfer tube 1 and the connection end 8 b of the circular tube 8 are in contact with each other. Therefore, the refrigerant that has flowed from the circular tube 8 in the direction of the solid arrow J1 flows into the flat heat transfer tube flow path 5 of the flat heat transfer tube 1 as it is without being mixed. Conversely, when the refrigerant flows from the plurality of flat heat transfer tube flow paths 5 provided in the flat heat transfer tube 1 in the direction of the broken arrow J2, it flows to the circular tube 8 as it is. When the heat exchanger 20 having the configuration of FIG. 1 is connected by the connection joint 17, as shown in FIGS. 23 (a) and 24 (a), the difference between the refrigerant temperature of the flat heat transfer tube front hole and the air temperature is small. Thus, the heat exchange efficiency is likely to decrease. However, when the heat exchanger 20 having the configuration shown in FIG. 18 is connected by the connection joint 17, the refrigerant is not mixed in the connection joint 17, so that the refrigerant state is controlled only in accordance with the connection method of the U-shaped circular tube 8. It will be.

図18の構成では、扁平伝熱管1の風上側の流路から流れた冷媒を次に流す扁平伝熱管1の風下側に流すようにU字状円管8を接続され、扁平伝熱管1の風下側の流路から流れた冷媒を次に流す扁平伝熱管1の風上側に流すようにU字状円管8を接続される。このように、扁平伝熱管1の接続を交差させるなどして、常に気体の流通方向(D方向)における風上側と風下側の冷媒の流れを入れ替えたり、熱交換器20内で各段の扁平伝熱管1の接続の仕方を変えるなど、冷媒配管内での冷媒状態の流れを考慮して、積極的に希望の冷媒流路を構成する場合には接続ジョイント17が有効となる。内部で冷媒がそのまま流れる接続ジョイント17を用いることで、希望の冷媒流路を構成して冷媒流れを制御しやすくできる効果がある。   In the configuration of FIG. 18, a U-shaped circular tube 8 is connected so that the refrigerant flowing from the flow path on the windward side of the flat heat transfer tube 1 flows to the leeward side of the flat heat transfer tube 1 that flows next. A U-shaped circular tube 8 is connected so as to flow the refrigerant flowing from the leeward flow channel to the windward side of the flat heat transfer tube 1 that flows next. In this way, the connection of the flat heat transfer tubes 1 is crossed, so that the flow of the refrigerant on the windward side and the leeward side in the gas flow direction (D direction) is always switched, or the flatness of each stage in the heat exchanger 20 The connection joint 17 is effective when a desired refrigerant flow path is positively configured in consideration of the flow of the refrigerant state in the refrigerant pipe, such as by changing the connection method of the heat transfer tubes 1. By using the connection joint 17 in which the refrigerant flows inside as it is, there is an effect that a desired refrigerant flow path can be configured and the refrigerant flow can be easily controlled.

図22、図25は扁平伝熱管1が4つの扁平伝熱管内流路5を持っている構成としたが、これに限るものではない。4つよりも多い扁平伝熱管内流路5を有する構成でもよく、また3つ以下でもよい。一方、U字状円管8も2本に限るものではなく、2本よりも多くても同様の効果を得る。   22 and 25, the flat heat transfer tube 1 has four flat heat transfer tube flow paths 5, but the present invention is not limited to this. A configuration having more than four flat heat transfer tube flow paths 5 may be used, or three or less. On the other hand, the number of U-shaped circular tubes 8 is not limited to two.

以上のように、この実施の形態では、一端部に複数本の円管8を接続する円管接続部15b、17bを有し、他端部に扁平伝熱管1を接続する扁平伝熱管接続部15a、17aを有する接続ジョイント15、17を備え、接続ジョイント15、17によって扁平伝熱管1と複数本の円管8とを接続するので、製造しやすく、冷媒流路の変更に容易に対応できる構成の熱交換器が得られる。
なお、ここでは接続ジョイント15、17を成形し、扁平伝熱管1と接続ジョイント15、17、及び接続ジョイント15、17と円管8はロウ付け等で固着している。
図25に示すような、扁平伝熱管1の接続端1bと複数本の円管8の接続端8bとを突き合わせた構成では、接続ジョイント17を別体で設けず、扁平伝熱管1の接続端1bと一体に成形することも可能である。例えば、扁平伝熱管1の端部を拡管するなどして、その端部の隔壁が冷媒の流れ方向に所定の幅だけ設けていない状態とし、隔壁をなくした部分に複数本の円管8を挿入し、円管8の接続端8bが扁平伝熱管1内部の隔壁に突き合わされるように固着してもよい。
As described above, in this embodiment, the flat heat transfer tube connection portion having the circular tube connection portions 15b and 17b connecting the plurality of circular tubes 8 at one end portion and connecting the flat heat transfer tube 1 to the other end portion. Since the connection joints 15 and 17 having 15a and 17a are provided and the flat heat transfer tubes 1 and the plurality of circular tubes 8 are connected by the connection joints 15 and 17, it is easy to manufacture and can easily cope with the change of the refrigerant flow path. A heat exchanger with the configuration is obtained.
Here, the connection joints 15 and 17 are formed, and the flat heat transfer tube 1 and the connection joints 15 and 17 and the connection joints 15 and 17 and the circular tube 8 are fixed by brazing or the like.
In the configuration in which the connection end 1b of the flat heat transfer tube 1 and the connection ends 8b of the plurality of circular tubes 8 are abutted as shown in FIG. 25, the connection joint 17 is not provided separately, and the connection end of the flat heat transfer tube 1 is provided. It is also possible to mold integrally with 1b. For example, the end portion of the flat heat transfer tube 1 is expanded so that the partition wall at the end portion is not provided with a predetermined width in the flow direction of the refrigerant, and a plurality of circular tubes 8 are provided in the portion where the partition wall is eliminated. It may be inserted and fixed so that the connection end 8b of the circular tube 8 is abutted against the partition wall inside the flat heat transfer tube 1.

また、本実施の形態によれば、扁平伝熱管1の接続端1bと複数本の円管8の接続端8bとの間に、冷媒の流れる方向に所定の幅Lを有する空間16が形成されていることで、複数本の円管8から流入する冷媒が空間16で混合され、扁平伝熱管1の各流路5にほぼ均等に流れていく。逆に、扁平伝熱管1の各流路5から流出した冷媒が空間16で混合され、接続ジョイント15に接続された複数本の円管8にほぼ均等に冷媒が流れていく。これによって、扁平伝熱管1の気体の流通方向(D方向)で冷媒状態を均一化でき、熱交換効率を高くできる。   In addition, according to the present embodiment, a space 16 having a predetermined width L in the direction in which the refrigerant flows is formed between the connection end 1b of the flat heat transfer tube 1 and the connection ends 8b of the plurality of circular tubes 8. As a result, the refrigerant flowing in from the plurality of circular tubes 8 is mixed in the space 16 and flows almost uniformly into the respective flow paths 5 of the flat heat transfer tube 1. On the contrary, the refrigerant flowing out from each flow path 5 of the flat heat transfer tube 1 is mixed in the space 16, and the refrigerant flows almost evenly into the plurality of circular tubes 8 connected to the connection joint 15. Thereby, a refrigerant | coolant state can be equalize | homogenized by the flow direction (D direction) of the gas of the flat heat exchanger tube 1, and heat exchange efficiency can be made high.

また、扁平伝熱管1の接続端1bと複数本の円管8の接続端8bとが突き合わされて、扁平伝熱管1と複数本の円管8とを接続することで、扁平伝熱管1の複数の扁平伝熱管内流路5の流路ごとに流す冷媒を制御しやすくできるという効果がある。   Further, the connection end 1 b of the flat heat transfer tube 1 and the connection ends 8 b of the plurality of circular tubes 8 are abutted to connect the flat heat transfer tube 1 and the plurality of circular tubes 8, so that the flat heat transfer tube 1 There is an effect that it is possible to easily control the refrigerant flowing for each of the plurality of flow channels 5 in the flat heat transfer tube.

なお、実施の形態1〜実施の形態3のいずれにおいても、1つの熱交換器に2つの流路がある2パスの場合であり、例えば上半分と下半分で1パスづつ構成している。またC方向に2列の熱交換器を重ねて使用している。本発明は、これに限るものではなく、1パスや3パス以上で構成してもよい。また、C方向に1列や、3列以上で構成してもよい。   In any of Embodiments 1 to 3, this is a case of two paths with two flow paths in one heat exchanger. For example, the upper half and the lower half are configured by one path. Two rows of heat exchangers are stacked in the C direction. The present invention is not limited to this, and may be configured with one pass or three or more passes. Moreover, you may comprise in 1 direction in a C direction, or 3 or more rows.

また、実施の形態1〜実施の形態3のいずれにおいても、扁平伝熱管1を接続する接続部ではU字状に曲げられた円管8を用い、近くの扁平伝熱管同士を接続する構成である。例えば、形成する冷媒流路によっては離れた扁平伝熱管同士を接続する場合もあり、この時には両端部が短く中央部分の長いU字状円管となる。   In any of the first to third embodiments, the connection portion connecting the flat heat transfer tubes 1 uses a circular tube 8 bent in a U shape and connects nearby flat heat transfer tubes. is there. For example, depending on the refrigerant flow path to be formed, flat heat transfer tubes that are separated from each other may be connected, and at this time, both ends are short and a U-shaped circular tube having a long central portion is formed.

実施の形態1〜実施の形態3で説明した熱交換器20を図2のような回路構成の空気調和機や冷凍冷蔵庫などの冷凍サイクル装置の蒸発器や凝縮器に用いることで、小型化又は熱交換量の増加を図ることができる熱交換器を備え、信頼性が高く、小型化が可能で、熱交換性能のよい冷凍サイクル装置を得ることができる。   By using the heat exchanger 20 described in the first to third embodiments for an evaporator or a condenser of a refrigeration cycle apparatus such as an air conditioner or a refrigerator with a circuit configuration as shown in FIG. A refrigeration cycle apparatus having a heat exchanger capable of increasing the amount of heat exchange, having high reliability, capable of being downsized, and having good heat exchange performance can be obtained.

また、冷凍サイクル装置に用いる冷媒は、特に限定するものではなく、どのようなものを用いてもよい。例えば、HC冷媒の単一、又はHCを含む混合冷媒、R32、アンモニア、二酸化炭素などを用いると、地球温暖化係数の小さな装置を実現できる。また、冷媒として超臨界状態で放熱するものを用いる場合には、例えば冷房運転の場合には、図2で示した室外熱交換器33は凝縮器の代わりに放熱器として動作する。
また、冷媒と熱交換する気体は、例えば空気としたが、これに限るものではなく、他の気体でもよい。
Moreover, the refrigerant used for the refrigeration cycle apparatus is not particularly limited, and any refrigerant may be used. For example, when a single HC refrigerant or a mixed refrigerant containing HC, R32, ammonia, carbon dioxide, or the like is used, a device with a small global warming potential can be realized. Further, when a refrigerant that radiates heat in a supercritical state is used, for example, in the case of cooling operation, the outdoor heat exchanger 33 shown in FIG. 2 operates as a radiator instead of a condenser.
Moreover, although the gas which heat-exchanges with a refrigerant | coolant was made into air, for example, it is not restricted to this, Other gas may be sufficient.

1 扁平伝熱管
2 板状フィン
3 流入配管
4 流出配管
5 扁平伝熱管内流路
8 U字状円管
9 接続ジョイント
15 接続ジョイント
16 空間
17 接続ジョイント
18 接続部
31 圧縮機
33 熱交換器
34 絞り装置
47 隔壁
A 板状フィンの並列方向
B 段方向
C 列方向
D 気体の流通方向
J1、J2 冷媒の流れ方向
DESCRIPTION OF SYMBOLS 1 Flat heat transfer pipe 2 Plate-shaped fin 3 Inflow piping 4 Outflow piping 5 Flow path in flat heat transfer pipe 8 U-shaped circular pipe 9 Connection joint 15 Connection joint 16 Space 17 Connection joint 18 Connection part 31 Compressor 33 Heat exchanger 34 Restriction Device 47 Bulkhead A Parallel direction of plate fins B Stage direction C Row direction D Gas flow direction J1, J2 Refrigerant flow direction

Claims (3)

互いに所定の間隔をあけて並列し、個々の間を気体が流通する複数の板状フィンと、
これら板状フィンを該板状フィンの並列方向に貫通するように設けられ、断面扁平形状、前記板状フィンの並列方向及び前記気体の流通方向のそれぞれに直交する方向に複数段をなす扁平伝熱管と、
当該熱交換器の一端側にて、前記複数段をなす前記扁平伝熱管の2段の端部同士を接続する接続部と、を備え、
前記扁平伝熱管は、
その扁平面が前記複数段をなす方向で対向するように配置されると共に、その内部に前記板状フィンの並列方向に伸びる複数の隔壁によって前記気体の流通方向に並んで設けられ、それぞれに冷媒が流通する4つ以上の複数の扁平伝熱管内流路を有し、
前記接続部は、
前記気体の流通方向に並ぶ2本もしくは3本のU字状に曲げられた円管と、これら円管の両端部にそれぞれ設けられ前記扁平伝熱管と前記円管とを接続する接続ジョイントとを有し、前記扁平伝熱管内流路の断面積の和と前記円管の流路断面積の和が同程度で、前記円管を介して2段の前記扁平伝熱管接続する構成であって、
前記接続ジョイントは、
一端部に2本もしくは3本の前記円管のそれぞれをロウ付けにて接合する円管接続部を、他端部には前記扁平伝熱管をロウ付けにて接合する扁平伝熱管接続部を有し、当該接続ジョイントの内部では、前記円管接続部に接続された前記円管の接続端と前記扁平伝熱管接続部に接続された前記扁平伝熱管の接続端との間に、冷媒の流れる方向に前記円管の外径以上の幅を有する空間が形成されていることを特徴とする熱交換器。
A plurality of plate-like fins that are arranged in parallel with each other at a predetermined interval and in which gas flows between the individual,
It provided these plate-shaped fins so as to penetrate in parallel direction of the plate-like fin cross section with a flat shape, forming a plurality of stages in a direction perpendicular to the respective flow direction of the parallel direction and the gas of the plate-like fin Flat heat transfer tubes,
A connecting portion that connects two end portions of the flat heat transfer tubes forming the plurality of stages at one end side of the heat exchanger ;
The flat heat transfer tube is
The flat surfaces are arranged so as to face each other in the direction of forming the plurality of steps , and are provided in the gas line in the gas flow direction by a plurality of partition walls extending in the parallel direction of the plate-like fins. Have four or more flat heat transfer tube flow channels,
The connecting portion is
Two or three U-shaped circular tubes arranged in the gas flow direction, and connection joints provided at both ends of the circular tubes for connecting the flat heat transfer tubes and the circular tubes, respectively. has, in the degree sum the flow path cross-sectional area of the circular tube and the sum of the cross-sectional area of the flattened heat transfer pipe passage, a configuration of connecting the flat heat transfer tubes 2 stages via the circular tube And
The connecting joint is
There is a circular tube connection part that joins each of the two or three circular tubes by brazing at one end, and a flat heat transfer tube connection part that joins the flat heat transfer tube by brazing at the other end. In the connection joint, the refrigerant flows between the connection end of the circular tube connected to the circular tube connection portion and the connection end of the flat heat transfer tube connected to the flat heat transfer tube connection portion. A heat exchanger characterized in that a space having a width equal to or larger than the outer diameter of the circular pipe is formed in the direction .
前記接続部の円管が2本の場合には、それら2本の円管が前記気体の流通方向に交差しており、前記接続部の円管が3本の場合では、前記気体の流通方向の最上流側の円管と最下流側の円管とが前記気体の流通方向に交差し、中央の配管はそのまま中央で接続されることを特徴とする請求項1記載の熱交換器。 When there are two circular pipes in the connection part, the two circular pipes intersect the gas flow direction, and when there are three circular pipes in the connection part, the gas flow direction. 2. The heat exchanger according to claim 1, wherein a circular pipe on the most upstream side and a circular pipe on the most downstream side intersect the gas flow direction, and the central pipe is connected at the center as it is. 少なくとも、圧縮機、凝縮器、絞り装置、蒸発器が順次配管で接続され、冷媒が循環されると共に、請求項1又は請求項に記載の熱交換器が前記蒸発器又は前記凝縮器として用いられることを特徴とする冷凍サイクル装置。 At least a compressor, a condenser, a throttling device, and an evaporator are sequentially connected by piping to circulate the refrigerant, and the heat exchanger according to claim 1 or 2 is used as the evaporator or the condenser. A refrigeration cycle apparatus.
JP2009286306A 2009-12-17 2009-12-17 Heat exchanger and refrigeration cycle apparatus equipped with the same Active JP5195733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286306A JP5195733B2 (en) 2009-12-17 2009-12-17 Heat exchanger and refrigeration cycle apparatus equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286306A JP5195733B2 (en) 2009-12-17 2009-12-17 Heat exchanger and refrigeration cycle apparatus equipped with the same

Publications (2)

Publication Number Publication Date
JP2011127831A JP2011127831A (en) 2011-06-30
JP5195733B2 true JP5195733B2 (en) 2013-05-15

Family

ID=44290600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286306A Active JP5195733B2 (en) 2009-12-17 2009-12-17 Heat exchanger and refrigeration cycle apparatus equipped with the same

Country Status (1)

Country Link
JP (1) JP5195733B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160245560A1 (en) * 2013-10-29 2016-08-25 Mitsubishi Electric Corporation Tube fitting, heat exchanger, and air-conditioning apparatus
US11105538B2 (en) * 2015-12-01 2021-08-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP3951301A4 (en) * 2019-03-26 2022-04-13 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9791189B2 (en) 2013-05-08 2017-10-17 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
JP6005268B2 (en) * 2013-05-15 2016-10-12 三菱電機株式会社 Laminated header, heat exchanger, and air conditioner
JP6108964B2 (en) * 2013-05-31 2017-04-05 三菱電機株式会社 Heat exchanger manufacturing method and heat exchanger
JPWO2016059696A1 (en) * 2014-10-16 2017-05-25 三菱電機株式会社 Refrigeration cycle equipment
JP2021167676A (en) * 2018-07-25 2021-10-21 ダイキン工業株式会社 Joint
JP6806187B2 (en) * 2019-06-13 2021-01-06 ダイキン工業株式会社 Heat exchanger
WO2023218621A1 (en) * 2022-05-13 2023-11-16 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
CN116379826B (en) * 2023-06-02 2024-04-16 广东美的暖通设备有限公司 Heat exchange assembly, assembling method thereof, micro-channel heat exchanger and heating ventilation equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761392U (en) * 1980-09-22 1982-04-12
JPS63172871U (en) * 1987-04-30 1988-11-10
JPH01102623U (en) * 1987-12-28 1989-07-11
JPH07125529A (en) * 1993-11-02 1995-05-16 Kansai Pipe Kogyo Kk Manufacture of pipe joint
JP2003166791A (en) * 2001-11-30 2003-06-13 Mitsubishi Heavy Ind Ltd Heat exchanger
JP4055449B2 (en) * 2002-03-27 2008-03-05 三菱電機株式会社 Heat exchanger and air conditioner using the same
JP2007155308A (en) * 2005-11-09 2007-06-21 Fujitsu General Ltd Flow divider and refrigeration cycle device using the same
JP2007162962A (en) * 2005-12-09 2007-06-28 Denso Corp Ejector type refrigerating cycle and branching structure for the same
JP2008261615A (en) * 2007-03-16 2008-10-30 Mitsubishi Electric Corp Heat exchanger, heat exchange device, refrigerator and air conditioner
JP4671985B2 (en) * 2007-04-10 2011-04-20 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160245560A1 (en) * 2013-10-29 2016-08-25 Mitsubishi Electric Corporation Tube fitting, heat exchanger, and air-conditioning apparatus
US11105538B2 (en) * 2015-12-01 2021-08-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP3951301A4 (en) * 2019-03-26 2022-04-13 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device

Also Published As

Publication number Publication date
JP2011127831A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
JP6595125B1 (en) Air conditioner outdoor unit and air conditioner
US9651317B2 (en) Heat exchanger and air conditioner
JP6091641B2 (en) Heat exchanger and air conditioner
US8205470B2 (en) Indoor unit for air conditioner
WO2015025702A1 (en) Heat exchanger, air conditioner, refrigeration cycle device, and method for producing heat exchanger
WO2013160957A1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
EP3156752B1 (en) Heat exchanger
JP2005055108A (en) Heat exchanger
WO2017183180A1 (en) Heat exchanger
JP2007139231A (en) Refrigerator distributor and air conditioner using it
KR20140106493A (en) Air conditioner
CN114641663A (en) Heat exchanger and refrigeration cycle device
WO2019239445A1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP5608478B2 (en) Heat exchanger and air conditioner using the same
JP7292510B2 (en) heat exchangers and air conditioners
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
CN111512099B (en) Heat exchanger and refrigeration cycle device
CN116134282B (en) heat exchanger
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
JP6582373B2 (en) Heat exchanger
JP7305085B1 (en) Heat exchanger and refrigeration cycle equipment
JP7118279B2 (en) HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND AIR CONDITIONER
WO2023032155A1 (en) Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger
WO2021245877A1 (en) Heat exchanger and refrigeration cycle device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5195733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250