JP5186989B2 - Soft magnetic steel sheet for core and core member - Google Patents

Soft magnetic steel sheet for core and core member Download PDF

Info

Publication number
JP5186989B2
JP5186989B2 JP2008110271A JP2008110271A JP5186989B2 JP 5186989 B2 JP5186989 B2 JP 5186989B2 JP 2008110271 A JP2008110271 A JP 2008110271A JP 2008110271 A JP2008110271 A JP 2008110271A JP 5186989 B2 JP5186989 B2 JP 5186989B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
core
plane
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008110271A
Other languages
Japanese (ja)
Other versions
JP2009256758A (en
Inventor
広明 坂本
徹 稲熊
洋治 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2008110271A priority Critical patent/JP5186989B2/en
Publication of JP2009256758A publication Critical patent/JP2009256758A/en
Application granted granted Critical
Publication of JP5186989B2 publication Critical patent/JP5186989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、打ち抜き加工に起因する磁性劣化が少ないコア用軟磁性鋼板、コア用部材、及びそれらの製造方法に関するものである。   The present invention relates to a soft magnetic steel sheet for a core, a core member, and a method for producing the same, with less magnetic deterioration due to punching.

電動機、発電機、変圧器などのコア用部材として、珪素鋼板を代表とする軟磁性鋼板が用いられている。その磁気特性としては、交番磁界中での磁気的エネルギー損失(鉄損)が少ないこと、実用的な磁界中での磁束密度が高いことが必要とされている。このため、Siなどの合金元素を含有させて鋼の電気抵抗を高めたり、磁化容易方向である体心立方格子の<100>方位を使用磁界方向に集積させたりするなどの方法が有効とされている。   A soft magnetic steel plate represented by a silicon steel plate is used as a core member for an electric motor, a generator, a transformer or the like. As its magnetic characteristics, it is required that the magnetic energy loss (iron loss) in an alternating magnetic field is small and the magnetic flux density in a practical magnetic field is high. For this reason, methods such as increasing the electrical resistance of steel by containing an alloy element such as Si, or integrating the <100> orientation of the body-centered cubic lattice, which is the direction of easy magnetization, in the direction of the magnetic field used are effective. ing.

一方向性電磁鋼板においては、結晶の{110}面が鋼板面に平行で、磁化容易軸である<100>方位が圧延方向に集積した集合組織({110}<100>集合組織)であり、鋼帯を圧延方向に巻き重ねて形成される巻き鉄心を用いる変圧器のコア用部材のように、圧延方向のみに磁束が流れる用途に適する。   In a unidirectional electrical steel sheet, the {110} plane of the crystal is parallel to the steel sheet surface, and the <100> orientation, which is the easy axis of magnetization, is a texture ({110} <100> texture) accumulated in the rolling direction. It is suitable for applications in which magnetic flux flows only in the rolling direction, such as a core member for a transformer using a wound iron core formed by winding a steel strip in the rolling direction.

二方向性電磁鋼板においては、{100}面が鋼板面に平行で、鋼板面内の圧延方向と圧延直角方向に<100>方位が集積した集合組織({100}<100>集合組織)である。このような集合組織を備える鋼板は、圧延方向と圧延直角方向の二方向に優れた磁気特性を示す。   In a bi-directional electrical steel sheet, the {100} plane is parallel to the steel sheet surface, and is a texture ({100} <100> texture) in which the <100> orientation is accumulated in the rolling direction and the rolling direction perpendicular to the steel sheet surface. is there. A steel sheet having such a texture exhibits excellent magnetic properties in two directions, ie, the rolling direction and the direction perpendicular to the rolling direction.

無方向性電磁鋼板においては、結晶の{100}面が鋼板面に平行で、<100>方位が鋼板面内の種々の方向に向いた集合組織({100}<uvw>集合組織)である。このような集合組織を備える鋼板は、鋼板面内のあらゆる方向に優れた磁化特性を示すため、回転機のコア用部材として好適である。   In the non-oriented electrical steel sheet, the {100} plane of the crystal is parallel to the steel sheet surface, and the <100> orientation is a texture ({100} <uvw> texture) oriented in various directions within the steel sheet surface. . A steel plate having such a texture is suitable as a core member of a rotating machine because it exhibits excellent magnetization characteristics in all directions within the steel plate surface.

<111>方位は磁化困難方位であるため、この方位を集積した集合組織の使用は避けられていた。上記一方向性電磁鋼板、二方向性電磁鋼板、無方向性電磁鋼板のいずれも、<111>方位は鋼板面と平行な方向には存在しない。   Since the <111> orientation is a hard magnetization orientation, the use of a texture in which these orientations are accumulated has been avoided. None of the above-mentioned unidirectional electrical steel sheet, bi-directional electrical steel sheet, and non-oriented electrical steel sheet has a <111> orientation in a direction parallel to the steel sheet surface.

特許文献1には、板面に垂直方向に<100>方位が集積した集合組織を有する珪素鋼板が記載されている。特許文献2には、{100}<uvw>集合組織の発達した無方向性電磁鋼板の製造方法が記載されている。特許文献3には、板面垂直方向に<100>方位が高密度に集積した無方向性珪素鋼板の製造方法が記載されている。特許文献4には、{100}面が鋼板面に平行で、低鉄損かつ低磁歪特性を備えた珪素鋼板の製造方法が記載されている。   Patent Document 1 describes a silicon steel sheet having a texture in which <100> orientations are accumulated in a direction perpendicular to the plate surface. Patent Document 2 describes a method for producing a non-oriented electrical steel sheet having a developed {100} <uvw> texture. Patent Document 3 describes a method for producing a non-oriented silicon steel sheet in which <100> orientations are accumulated at a high density in the direction perpendicular to the plate surface. Patent Document 4 describes a method for producing a silicon steel plate having a {100} plane parallel to the steel plate surface and having low iron loss and low magnetostriction characteristics.

電磁鋼板を用いてコア用部材として加工するに際しては、打ち抜き加工処理によって各種形状に加工される。打ち抜き加工時、鋼板には打ち抜き加工歪が生じるので、加工歪部分では磁気特性が劣化してしまう。このような磁気特性の劣化を回復させるため、通常は打ち抜き加工の後に歪取り焼鈍が行われる。低コスト化のために歪取り焼鈍を行わずに打ち抜き加工のままで使用することもあるが、このような場合は磁気特性が低いままで使用することになる。   When processing as a core member using an electromagnetic steel sheet, it is processed into various shapes by a punching process. At the time of the punching process, a punching distortion occurs in the steel sheet, so that the magnetic characteristics are deteriorated at the processing strain part. In order to recover such deterioration of magnetic characteristics, strain relief annealing is usually performed after punching. In some cases, the punching process is used without performing strain relief annealing for cost reduction, but in such a case, the magnetic characteristics are used with a low level.

特許文献5には、Al含有量が6.5質量%以上であって、鋼板面に対するαFe結晶の{222}面集積度が60%以上の高Al含有鋼板が記載されている。Alを3.5質量%以上含有する母材鋼板の表面にAlを付着させ、冷間圧延で加工歪を付与してから拡散熱処理を行って製造する。これにより、従来は困難であったAl含有量6.5質量%以上の高Al鋼板の加工性を向上し、加工を低コストでできるとしている。   Patent Document 5 describes a high Al-containing steel sheet having an Al content of 6.5% by mass or more and a {222} plane integration degree of αFe crystals with respect to the steel sheet surface of 60% or more. It is manufactured by attaching Al to the surface of a base steel sheet containing 3.5% by mass or more of Al and imparting work strain by cold rolling, followed by diffusion heat treatment. Thereby, it is said that the workability of a high Al steel sheet having an Al content of 6.5% by mass or more, which has been difficult in the past, is improved and the processing can be performed at low cost.

特開平2−209455号公報JP-A-2-209455 特開平2−310316号公報Japanese Patent Laid-Open No. 2-310316 特開平5−320768号公報JP-A-5-320768 特開2003−231922号公報JP 2003-231922 A 特開2006−144116号公報JP 2006-144116 A

軟磁性鋼板を用いたコア用部材について、打ち抜き加工後に歪取り焼鈍を行うと、鋼板の表面酸化による磁気特性の劣化や、歪取り焼鈍の工程が入るので製造コストアップの要因となる。従って、打ち抜き加工を行っても加工歪みによる磁気特性の劣化が少ないコア用軟磁性鋼板ができれば、歪取り焼鈍の工程を省略できたり、歪取り焼鈍の処理条件を軽減したりすることができる。   If the core member using the soft magnetic steel sheet is subjected to strain relief annealing after punching, it causes deterioration of magnetic characteristics due to surface oxidation of the steel sheet and a process of strain relief annealing, which causes an increase in manufacturing cost. Accordingly, if a soft magnetic steel sheet for a core that has little deterioration in magnetic properties due to processing strain can be obtained even if punching is performed, the strain relief annealing process can be omitted or the treatment conditions for strain relief annealing can be reduced.

本発明は、打ち抜き加工に起因する磁性劣化が少ないコア用軟磁性鋼板、コア用部材、及びそれらの製造方法を提供することを目的とする。   An object of the present invention is to provide a soft magnetic steel sheet for a core, a core member, and a method for producing the same, with less magnetic deterioration caused by punching.

通常の軟磁性鋼板については、磁化容易方向である体心立方格子の<100>方位を使用磁界方向に集積させることにより、磁気特性の向上を図っている。このような集合組織とすれば、磁化困難方位である<111>方位は、自動的に使用磁界方向から排除されることになる。   For ordinary soft magnetic steel plates, the magnetic properties are improved by integrating the <100> orientation of the body-centered cubic lattice, which is the direction of easy magnetization, in the direction of the magnetic field used. With such a texture, the <111> orientation, which is a difficult magnetization orientation, is automatically excluded from the direction of the magnetic field used.

磁化容易方向である<100>方位を積極的に使用しなくても、磁化困難方位である<111>方位を使用磁界方向から排除しさえすれば、比較的好ましい磁気特性を実現することができる。そして、鋼板面に対する{222}面集積度が高い集合組織とすれば、それによって鋼板面に平行な方向から<111>方位を排除することができる。また、鋼板表面付近における{222}面集積度を高めることにより、打ち抜き加工を行った際に歪が入りがたくなり、歪による磁気特性劣化が少なくなる。そのため、従来の<100>方位を用いた電磁鋼板を打ち抜き加工後に歪取り焼鈍を行わずに製造したコア用部材に比較し、{222}面集積度を上げた電磁鋼板を打ち抜き加工後に歪取り焼鈍を行わずに製造したコア用部材の方が、磁気特性が優れていることが明らかになった。   Even if the <100> orientation, which is the easy magnetization direction, is not actively used, it is possible to realize relatively favorable magnetic characteristics as long as the <111> orientation, which is a difficult magnetization direction, is excluded from the magnetic field direction used. . And if it is set as the texture whose {222} plane integration degree with respect to a steel plate surface is high, the <111> direction can be excluded from the direction parallel to a steel plate surface by it. Further, by increasing the {222} plane integration degree in the vicinity of the steel plate surface, distortion does not easily occur when punching is performed, and deterioration of magnetic characteristics due to distortion is reduced. Therefore, compared to conventional core members manufactured without punching after the punching of the electrical steel sheet using the <100> orientation, the steel sheet with a higher {222} plane integration is punched after punching. It has been clarified that the core member produced without annealing has better magnetic properties.

本発明者らは、低Al含有量の母材鋼板を用い、母材鋼板の表面にAlやSiを付着させ、冷間圧延で加工歪を付与してから拡散熱処理を行って製造することにより、αFe結晶の鋼板面に対する{222}面集積度を高めたコア用軟磁性鋼板を形成できることを見いだした。   The present inventors use a base steel plate having a low Al content, attach Al or Si to the surface of the base steel plate, and apply diffusion heat treatment after applying work strain by cold rolling to produce the base steel plate. The present inventors have found that a soft magnetic steel sheet for core having an increased degree of {222} plane integration with respect to the steel sheet surface of αFe crystal can be formed.

本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下のとおりである
(1)αFe相の鋼板面に対する{222}面集積度が55%以上99%以下である領域において、1.0質量%以上6.5質量%未満のSi、0.5質量%以上1.8質量%以下のAlの一方又は両方を含有し、鋼板面の表面から少なくとも板厚の10%の距離の深さ方向の範囲まで、αFe相の鋼板面に対する{222}面集積度が55%以上99%以下であることを特徴とするコア用軟磁性鋼板。
ここで、αFe相の鋼板面に対する{222}面集積度は、MoKα線によるX線回折法で得られる、試料表面に対して平行なFeのα結晶11面{110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442}の積分強度を測定し、その測定値それぞれをランダム方位である試料の理論積分強度で除した後、以下の式(1)で求めたものである。
{222}面集積度
=[{i(222)/I(222)}/Σ{i(hkl)/I(hkl)}]×100 … (1)
ただし、記号は以下の通りである。
i(hkl):測定した試料における{hkl}面の実測積分強度
I(hkl):ランダム方位をもつ試料における{hkl}面の理論積分強度
Σ :αFe結晶11面についての和
(2)板厚が0.03mm以上1.5mm未満であることを特徴とする(1)に記載のコア用軟磁性鋼板。
)上記(1)又は(2)に記載のコア用軟磁性鋼板を打ち抜き加工されてなることを特徴とするコア用部材。
This invention is made | formed based on the said knowledge, The place made into the summary is as follows .
(1 ) In a region where the degree of {222} plane integration with respect to the steel sheet surface of the αFe phase is 55% or more and 99% or less, 1.0 mass% or more and less than 6.5 mass% Si 2 , 0.5 mass% or more, and 1. The degree of {222} plane integration with respect to the steel sheet surface of the αFe phase is 55%, containing one or both of 8% by mass or less of Al and from the surface of the steel sheet surface to the range in the depth direction at a distance of at least 10% of the sheet thickness. A soft magnetic steel sheet for a core, characterized by being 99% or less.
Here, the {222} plane integration degree with respect to the steel sheet surface of the αFe phase is obtained by the X-ray diffraction method using MoKα rays, and the 11 α plane of Fe crystal {110}, {200}, {200}, { 211}, {310}, {222}, {321}, {411}, {420}, {332}, {521}, {442}, and the measured values are random orientations. After dividing by the theoretical integrated intensity of the sample, it is obtained by the following formula (1).
{222} plane integration degree
= [{I (222) / I (222)} / Σ {i (hkl) / I (hkl)}] × 100 (1)
However, the symbols are as follows.
i (hkl): Measured integrated intensity of {hkl} plane in the measured sample
I (hkl): Theoretical integral intensity of the {hkl} plane in a sample with a random orientation
Σ: Sum of 11 faces of αFe crystal
(2 ) The soft magnetic steel sheet for core according to (1) , wherein the plate thickness is 0.03 mm or more and less than 1.5 mm.
( 3 ) A core member obtained by punching the core soft magnetic steel sheet according to (1) or (2) .

本発明のコア用軟磁性鋼板は、鋼板表面付近のαFe相の{222}面集積度を55%以上と高めることにより、打ち抜き加工後に歪取り焼鈍を行うことなく、良好な磁気特性を有するコア用部材とすることができる。   The soft magnetic steel sheet for core of the present invention has a core having good magnetic characteristics without increasing the {222} plane integration degree of the αFe phase near the steel sheet surface to 55% or more without performing strain relief annealing after punching. It can be used as a member.

本発明は、磁束が通るコア用部材への打ち抜き加工に供されるコア用軟磁性鋼板、前記コア用軟磁性鋼板が打ち抜き加工されたコア用部材、及びそれらの製造方法を対象とする。   The present invention is directed to a core soft magnetic steel sheet that is subjected to punching into a core member through which magnetic flux passes, a core member in which the core soft magnetic steel sheet is punched, and methods for manufacturing the same.

軟磁性鋼板とは、鋼板の磁化方向が、印加された外部磁界の方向に容易に追従することができ(磁化する)、印加された外部磁界を取り去ると磁化方向が元のランダムな方向に容易に戻る(磁化がなくなる)材料であるを意味する。   Soft magnetic steel sheet means that the magnetization direction of the steel sheet can easily follow the direction of the applied external magnetic field (magnetize), and when the applied external magnetic field is removed, the magnetization direction is easily returned to the original random direction. It means that the material returns to (no magnetization).

αFe相結晶の{222}面が鋼板面に平行になると、磁化困難方位である<111>方位の1つは鋼板面に垂直となり、その他の<111>方位についても鋼板面に平行となることはない。従って、αFe相の鋼板面に対する{222}面集積度を高めることにより、磁化困難方位である<111>方位が使用磁界方向に存在する比率を低減することができる。これにより、磁化容易方向である<100>方位を使用磁界方向に集積させなくても、比較的好ましい磁気特性が実現できることがわかった。   When the {222} plane of the αFe phase crystal is parallel to the steel plate surface, one of the <111> orientations, which is the difficult magnetization direction, is perpendicular to the steel plate surface, and the other <111> orientations are also parallel to the steel plate surface. There is no. Therefore, by increasing the degree of {222} plane integration with respect to the steel sheet surface of the αFe phase, it is possible to reduce the ratio of the <111> orientation, which is a hard magnetization orientation, in the working magnetic field direction. Thus, it was found that relatively preferable magnetic characteristics can be realized without integrating the <100> orientation, which is the easy magnetization direction, in the direction of the magnetic field used.

また、鋼板表面付近における{222}面集積度を高めることにより、打ち抜き加工を行った際に歪が入り難くなり、歪による磁気特性劣化が少なくなる。そのため、従来の<100>方位を用いた電磁鋼板を打ち抜き加工後に歪取り焼鈍を行わずに製造したコア用部材に比較し、{222}面集積度を上げた電磁鋼板を打ち抜き加工後に歪取り焼鈍を行わずに製造したコア用部材の方が、磁気特性が優れていることが明らかになった。   Further, by increasing the degree of {222} plane integration in the vicinity of the steel sheet surface, it becomes difficult for distortion to occur when punching is performed, and magnetic property deterioration due to distortion is reduced. Therefore, compared to conventional core members manufactured without punching after the punching of the electrical steel sheet using the <100> orientation, the steel sheet with a higher {222} plane integration is punched after punching. It has been clarified that the core member produced without annealing has better magnetic properties.

αFe相の鋼板面に対する{222}面集積度が55%以上であれば、<111>方位の排除による磁気特性の改善効果を享受することができるとともに、打ち抜き加工時に歪が入るのを抑制でき、磁気特性の劣化防止を十分に図ることができる。一方、{222}面集積度が99%を越えても、前記磁気特性の劣化防止効果の向上は飽和し、製造の困難性も伴うので、上限を99%とする。   If the {222} plane integration degree with respect to the steel sheet surface of the αFe phase is 55% or more, it is possible to enjoy the effect of improving the magnetic properties by eliminating the <111> orientation, and to suppress the occurrence of distortion during punching. Therefore, it is possible to sufficiently prevent the deterioration of magnetic characteristics. On the other hand, even if the {222} plane integration degree exceeds 99%, the improvement in the effect of preventing deterioration of the magnetic characteristics is saturated and the manufacturing is difficult, so the upper limit is made 99%.

{222}面集積度の向上は、板厚方向の全体で実現されていてもよいが、鋼板の表面付近のみの{222}面集積度を高めることによっても本発明の効果を享受することができる。励磁周波数が高くなるに従い、表皮効果によって、磁束は鋼板の表面のみに流れ、板厚中心までは入らなくなる。少なくとも磁束が入り込む領域において{222}面が高集積化していれば、打ち抜き加工による磁気特性の劣化防止についての本発明の効果は発現する。鋼板表面から少なくとも板厚の10%距離の範囲まで{222}面集積度を高めておけば、本発明の効果を発揮することができる。また、表面から上記範囲内の{222}面集積度を高めておくことにより、打ち抜き加工でせん断変形を受けた際においても、磁束が流れる表面付近は{222}面集積度が高いので歪が入ることがなく、磁気特性の劣化が見られない。使用周波数が高周波の場合であって、磁束が入り込む深さが板厚の10%よりも浅い場合であっても、{222}高集積化の範囲は板厚の少なくとも10%以上であることが必要である。通常の磁気コアでは鋼板の両面から磁束が入り込むため、鋼板の両面において{222}面が高集積化していることが望ましい。前記55%以上に{222}高集積化している範囲が、鋼板面の表面から板厚の10%未満の距離では、打ち抜き加工した後、磁気特性に大きく影響する歪は入り、磁気特性の劣化防止効果が不十分となる。   The improvement in {222} plane integration degree may be realized in the entire plate thickness direction, but the effect of the present invention can also be enjoyed by increasing the {222} plane integration degree only in the vicinity of the surface of the steel sheet. it can. As the excitation frequency increases, due to the skin effect, the magnetic flux flows only on the surface of the steel sheet and does not enter the center of the plate thickness. If the {222} plane is highly integrated at least in the region where the magnetic flux enters, the effect of the present invention for preventing the deterioration of the magnetic characteristics due to the punching process is exhibited. The effect of the present invention can be exhibited if the {222} plane integration degree is increased from the steel plate surface to at least a 10% distance range of the plate thickness. Also, by increasing the {222} plane integration degree within the above range from the surface, even when subjected to shear deformation by punching, the vicinity of the surface where the magnetic flux flows is high because the {222} plane integration degree is high. There is no entry and no deterioration of the magnetic properties is observed. Even when the operating frequency is a high frequency and the depth at which the magnetic flux enters is shallower than 10% of the plate thickness, the range of {222} high integration may be at least 10% or more of the plate thickness. is necessary. In a normal magnetic core, since magnetic flux enters from both sides of the steel plate, it is desirable that the {222} plane is highly integrated on both sides of the steel plate. If the range where {222} is highly integrated to 55% or more is less than 10% of the plate thickness from the surface of the steel plate, after punching, distortion that greatly affects the magnetic properties enters, and the magnetic properties deteriorate. The prevention effect is insufficient.

ここで面集積度の測定は、MoKα線によるX線回折法で行うことができる。αFe相の{222}面集積度は以下のように求める。試料表面に対して平行なFeのα結晶11面{110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442}の積分強度を測定し、その測定値それぞれをランダム方位である試料の理論積分強度で除した後、{200}強度の比率を百分率で求めた。{222}強度比率は以下の式(1)で表される。
{222}面集積度
=[{i(222)/I(222)}/Σ{i(hkl)/I(hkl)}]×100 … (1)
ただし、記号は以下の通りである。
i(hkl):測定した試料における{hkl}面の実測積分強度
I(hkl):ランダム方位をもつ試料における{hkl}面の理論積分強度
Σ :αFe結晶11面についての和
Here, the measurement of the degree of surface integration can be performed by an X-ray diffraction method using MoKα rays. The {222} plane integration degree of the αFe phase is obtained as follows. 11 α-faces of Fe crystal parallel to the sample surface {110}, {200}, {211}, {310}, {222}, {321}, {411}, {420}, {332}, { 521} and {442} were measured, and each of the measured values was divided by the theoretical integrated intensity of a sample having a random orientation, and then the ratio of {200} intensity was obtained as a percentage. The {222} strength ratio is represented by the following formula (1).
{222} plane integration degree = [{i (222) / I (222)} / Σ {i (hkl) / I (hkl)}] × 100 (1)
However, the symbols are as follows.
i (hkl): Measured integrated intensity of {hkl} plane in the measured sample I (hkl): Theoretical integrated intensity of {hkl} plane in the sample with random orientation Σ: Sum of the αFe crystal 11 plane

本発明の軟磁性鋼板において、{222}面集積度が板厚方向に変化する場合、鋼板の最表面における{222}面集積度が最も高く、板厚中心部に近づくにつれて{222}面集積度が低くなる傾向がある。従って、鋼板表面から板厚の10%の距離においてαFe相の鋼板面に対する{222}面集積度を測定し、その位置で面集積度が55%以上であれば、鋼板表面から少なくとも板厚の10%の距離の範囲まで、αFe相の鋼板面に対する{222}面集積度が55%以上であると判断することができる。鋼板表面から板厚の10%の距離における上記X線回折測定は、前記10%の距離まで鋼板を研磨して行う。   In the soft magnetic steel sheet of the present invention, when the {222} plane integration degree changes in the sheet thickness direction, the {222} plane integration degree is the highest on the outermost surface of the steel sheet, and the {222} plane integration is closer to the center of the sheet thickness. Tend to be low. Therefore, when the {222} plane integration degree with respect to the steel sheet surface of the αFe phase is measured at a distance of 10% of the plate thickness from the steel sheet surface, and the surface integration degree is 55% or more at that position, at least the plate thickness from the steel sheet surface It can be determined that the {222} plane integration degree with respect to the steel sheet surface of the αFe phase is 55% or more up to a distance range of 10%. The X-ray diffraction measurement at a distance of 10% of the sheet thickness from the steel sheet surface is performed by polishing the steel sheet to the distance of 10%.

本発明のコア用軟磁性鋼板は、上記のようにαFe相の{222}面集積度を高めることによって、打ち抜き加工しても磁気特性の劣化を抑制できるという優れた特性を実現しているので、αFe相を主体とする結晶組成であると好ましい。αFe相を主体とするとは、αFe相が体積率で95%以上であればよい。αFe相に加え、セメンタイト、パーライト、γFe相などを有することができる。αFe相のみで構成される鋼板を用いても良い。   Since the soft magnetic steel sheet for core of the present invention increases the {222} plane integration degree of the αFe phase as described above, it realizes the excellent characteristic that the deterioration of magnetic characteristics can be suppressed even if punching is performed. The crystal composition is mainly composed of an αFe phase. The main component of the αFe phase is that the αFe phase is 95% or more by volume. In addition to the αFe phase, it can have cementite, pearlite, γFe phase and the like. A steel plate composed only of the αFe phase may be used.

本発明のコア用軟磁性鋼板は、αFe相の鋼板面に対する{222}面集積度が55%以上99%以下である領域におけるSi含有量が、Si:1.0質量%以上6.5質量%未満を含有するとより好ましい。Siは、鋼板の電気抵抗を高める作用と磁歪定数を低下させる作用がある。Si含有量が、1.0質量%以上であれば、Si含有による前記効果を発揮させることができ、渦電流がより少なく、鉄損がより少ない軟磁性鋼板とすることができる。Si含有量が、2.5質量%以上であると更により好ましい。一方、Si含有量が、高すぎると飽和磁束密度が低下してしまう場合があるが、Si含有量が、6.5質量%未満であればこのような問題は発生しない。   In the soft magnetic steel sheet for core of the present invention, the Si content in the region where the {222} plane integration degree with respect to the steel sheet surface of the αFe phase is 55% or more and 99% or less is Si: 1.0% by mass or more and 6.5% by mass. It is more preferable to contain less than%. Si has the effect of increasing the electrical resistance of the steel sheet and the effect of reducing the magnetostriction constant. If Si content is 1.0 mass% or more, the said effect by Si content can be exhibited, and it can be set as a soft magnetic steel plate with less eddy current and less iron loss. It is still more preferable that Si content is 2.5 mass% or more. On the other hand, if the Si content is too high, the saturation magnetic flux density may decrease, but such a problem does not occur if the Si content is less than 6.5% by mass.

本発明のコア用軟磁性鋼板は、αFe相の鋼板面に対する{222}面集積度が55%以上99%以下である領域において、0.5質量%以上3.0質量%未満のAlを含有するとより好ましい。Alもまた、鋼板の電気抵抗を高める効果があり、前記範囲のAlが前記領域内に存在すると、渦電流損がより少なく、鉄損がより少ない軟磁性鋼板とすることができる。前記Alの含有量が0.5質量%未満では、前記鉄損の低減効果が少ない。前記Alの含有量が3.0質量%以上では、鋼板の電気抵抗は更に高くなるが、飽和磁束密度が低くなり過ぎる場合がある。   The soft magnetic steel sheet for core of the present invention contains 0.5% by mass or more and less than 3.0% by mass of Al in a region where the {222} plane integration degree with respect to the αFe phase steel sheet surface is 55% or more and 99% or less. It is more preferable. Al also has the effect of increasing the electrical resistance of the steel sheet. When Al in the above range exists in the region, a soft magnetic steel sheet with less eddy current loss and less iron loss can be obtained. When the Al content is less than 0.5% by mass, the effect of reducing the iron loss is small. When the Al content is 3.0% by mass or more, the electrical resistance of the steel sheet is further increased, but the saturation magnetic flux density may be too low.

上記本発明のコア用軟磁性鋼板は、磁束が通るコア用部材への打ち抜き加工に供されることを特徴とするコア用軟磁性鋼板である。打ち抜き加工を行っても、鋼板に歪が入り難くなり、その後の歪取り焼鈍を行わなくても、コア用部材として用いることができる。   The core soft magnetic steel sheet of the present invention is a core soft magnetic steel sheet characterized by being subjected to a punching process to a core member through which a magnetic flux passes. Even if the punching process is performed, the steel sheet is less likely to be strained and can be used as a core member without subsequent strain relief annealing.

αFe相の鋼板面に対する{222}面集積度が55%以上である本発明のコア用軟磁性鋼板は、以下のようにして製造することができる。即ち、低Al含有量の母材鋼板を用い、母材鋼板の表面にAlやSiを付着させ、冷間圧延で加工歪を付与してから拡散熱処理を行って製造することにより、αFe結晶の鋼板面に対する{222}面集積度を高めたコア用軟磁性鋼板を形成できる。母材鋼板表面に付着したAlは、拡散熱処理の結果として鋼板の表面から鋼板内に拡散する。ここで、鋼板の{222}面集積度を本発明の範囲である55%以上とするためには、拡散後における鋼板内のαFe相の鋼板面に対する{222}面集積度が、55%以上99%以下である領域におけるAl含有量が0.5質量%以上であると更によい。Alは、上述のように磁気特性に影響するとともに、αFe相の配向化にも影響する。よって、前記Al含有量が0.5質量%未満では、前記{222}面集積度を高くし難い場合がある。一方、鋼板のAl含有量が3.0質量%以上となると、{222}面集積度の向上効果は飽和する傾向である一方、上述のように飽和磁束密度が低下してしまう場合がある。   The soft magnetic steel sheet for core of the present invention having a {222} plane integration degree of 55% or more with respect to the steel sheet surface of the αFe phase can be manufactured as follows. That is, by using a base steel plate having a low Al content, attaching Al or Si to the surface of the base steel plate, applying processing strain by cold rolling, and then performing diffusion heat treatment to produce αFe crystal It is possible to form a soft magnetic steel sheet for a core with an increased degree of {222} plane integration with respect to the steel sheet surface. Al adhering to the base steel plate surface diffuses from the surface of the steel plate into the steel plate as a result of the diffusion heat treatment. Here, in order to make the {222} plane integration degree of the steel sheet 55% or more which is the range of the present invention, the {222} plane integration degree with respect to the steel sheet surface of the αFe phase in the steel sheet after diffusion is 55% or more. More preferably, the Al content in the region of 99% or less is 0.5% by mass or more. Al affects the magnetic properties as described above, and also affects the orientation of the αFe phase. Therefore, when the Al content is less than 0.5% by mass, it may be difficult to increase the {222} plane integration degree. On the other hand, when the Al content of the steel sheet is 3.0% by mass or more, the effect of improving the {222} plane integration degree tends to be saturated, while the saturation magnetic flux density may decrease as described above.

本発明のコア用軟磁性鋼板において、SiとAl以外の成分含有量の好ましい範囲は以下のとおりである。   In the soft magnetic steel sheet for core of the present invention, the preferred ranges of the component contents other than Si and Al are as follows.

Cは、使用中における磁気時効を抑えるために0.05質量%以下がより好ましい。Mnは、5質量%を越えると飽和磁束密度が低下する場合があるため5質量%以下がより好ましい。Sは、非金属介在物を生成させる元素であるため0.01質量%以下がより好ましい。   C is more preferably 0.05% by mass or less in order to suppress magnetic aging during use. If Mn exceeds 5% by mass, the saturation magnetic flux density may be lowered, so that it is more preferably 5% by mass or less. Since S is an element that generates non-metallic inclusions, it is more preferably 0.01% by mass or less.

本発明のコア用軟磁性鋼板は、板厚が0.03mm以上1.5mm未満であると好ましい。板厚が薄すぎると、軟磁性鋼板から製造したコア用部材を磁気コアに積層する場合に手間がかかり生産性が悪くなる場合があるが、0.03mm以上であれば生産性を阻害することがない。また、板厚が厚くなると渦電流が大きくなって鉄損が増加してしまう場合があるが、1.5mm未満であればより良好な磁気特性とすることができる。   The core soft magnetic steel sheet of the present invention preferably has a thickness of 0.03 mm or more and less than 1.5 mm. If the plate thickness is too thin, it may take time and labor when laminating the core member manufactured from the soft magnetic steel plate to the magnetic core, but if it is 0.03 mm or more, the productivity is hindered. There is no. Further, when the plate thickness is increased, the eddy current may increase and the iron loss may increase. However, if the plate thickness is less than 1.5 mm, better magnetic characteristics can be obtained.

本発明の打ち抜き加工されたコア用部材は、上記本発明のコア用軟磁性鋼板を用いていると好ましい。鋼板表面から少なくとも板厚の10%の距離の範囲まで、αFe相の鋼板面に対する{222}面集積度が55%以上99%以下であることから、磁化困難方位を使用磁界方向に含まないので磁気特性が良好であり、また打ち抜き加工時に歪が入り難いので歪取り焼鈍を行わずに使用することが可能である。   The punched core member of the present invention preferably uses the core soft magnetic steel sheet of the present invention. Since the degree of {222} plane integration with respect to the steel sheet surface of the αFe phase is 55% or more and 99% or less from the surface of the steel sheet to at least a distance of 10% of the plate thickness, the magnetization difficult direction is not included in the used magnetic field direction. Since the magnetic properties are good and it is difficult for distortion to occur during punching, it can be used without performing strain relief annealing.

次に本発明のコア用軟磁性鋼板の製造方法、コア用部材の製造方法について説明する。   Next, the manufacturing method of the soft magnetic steel sheet for cores of the present invention and the manufacturing method of the core members will be described.

本発明のコア用軟磁性鋼板は、板厚が10mm以下の母材鋼板を準備し、該母材鋼板の表面にAlとSiの一方又は両方を主成分とする金属からなる第二層を付着させ、第二層を付着させた母材鋼板を冷間圧延し、その後熱処理によって再結晶させて製造することができる。前記軟磁性鋼板を、さらに打ち抜き加工することによって本発明のコア用部材を製造する。   The core soft magnetic steel sheet of the present invention is a base steel sheet having a thickness of 10 mm or less, and a second layer made of a metal mainly composed of one or both of Al and Si is attached to the surface of the base steel sheet. The base steel plate to which the second layer is attached can be cold-rolled and then recrystallized by heat treatment. The core member of the present invention is manufactured by further punching the soft magnetic steel sheet.

AlとSiの一方又は両方を主成分とする金属からなる第二層を鋼板に付着させ、そのまま冷間圧延を施し、その後に熱処理で鋼板の組織を再結晶させることによって{222}面集積度が向上する。この{222}面集積度が向上する現象は、冷間圧延の際に鋼中に形成される特別な転位組織によって発現されるものである。熱処理により該転位組織から{222}面集合組織を発達させるような再結晶核が発生するようになるのである。「AlとSiの一方又は両方を主成分とする」とは、第二層中のAlとSiの合計含有量が90質量%以上であることを意味する。AlとSi以外に、Fe、Co、Cu、Cr、Ga、Hf、Hg、In、Mn、Mo、Nb、Ni、Pb、Pd、Pt、Sb、Sn、Ta、Ti、V、W、Zn、Zrのうち1つ以上の元素及びその他不可避不純物を含有していてもよい。   A second layer made of a metal mainly composed of one or both of Al and Si is attached to a steel sheet, subjected to cold rolling as it is, and then recrystallized by heat treatment to obtain a {222} plane integration degree. Will improve. This phenomenon of improving the {222} plane integration degree is manifested by a special dislocation structure formed in the steel during cold rolling. Recrystallization nuclei that develop {222} plane texture from the dislocation structure are generated by the heat treatment. “Mainly comprising one or both of Al and Si” means that the total content of Al and Si in the second layer is 90% by mass or more. In addition to Al and Si, Fe, Co, Cu, Cr, Ga, Hf, Hg, In, Mn, Mo, Nb, Ni, Pb, Pd, Pt, Sb, Sn, Ta, Ti, V, W, Zn, One or more elements of Zr and other inevitable impurities may be contained.

さらに、再結晶後の鋼板のαFe相の鋼板面に対する{222}面集積度が55%以上99%以下である領域におけるAl含有量が3.0質量%未満となるような成分系であると上記再結晶核の発生頻度が高くなる傾向にあり、結果としてより高い{222}面集積度を有する鋼板が得られるようになる。第二層を付着させる前の母材鋼板の板厚全体平均でのAl含有量を3.0質量%未満とすることにより、再結晶後の鋼板のαFe相の鋼板面に対する{222}面集積度が55%以上99%以下である領域におけるAl含有量が3.0質量%未満である鋼板を製造できる。前記Al含有量が2.5%以下であればAlの拡散がより起こり易くなるため、前記鋼板の製造がより容易にできる。母材鋼板のAl濃度が3.0質量%以上である場合には、Alを主成分とした第二層を付着させて{222}を高集積化させたとしても、αFe相の鋼板面に対する{222}面集積度が55%以上99%以下である領域のAl含有量が3.0質量%以上になってしまうため、飽和磁束密度が低下してしまう場合がある。   Furthermore, the component system is such that the Al content in the region where the {222} plane integration degree with respect to the αFe phase steel plate surface of the steel plate after recrystallization is 55% or more and 99% or less is less than 3.0% by mass. The occurrence frequency of the recrystallization nuclei tends to increase, and as a result, a steel plate having a higher {222} plane integration degree can be obtained. By setting the Al content in the overall thickness of the base steel plate before the second layer is attached to less than 3.0% by mass, the {222} plane integration degree with respect to the αFe phase steel plate surface of the steel plate after recrystallization is reduced. A steel sheet having an Al content of less than 3.0% by mass in the region of 55% or more and 99% or less can be manufactured. If the Al content is 2.5% or less, Al diffusion is more likely to occur, and thus the steel sheet can be manufactured more easily. When the Al concentration of the base steel plate is 3.0% by mass or more, {222} is highly integrated by adhering a second layer containing Al as a main component. } Since the Al content in the region where the surface integration degree is 55% or more and 99% or less is 3.0% by mass or more, the saturation magnetic flux density may be lowered.

母材鋼板への第二層の付着方法は、溶融めっき、電解めっき、粉末塗布、ドライプロセスなどの方法から選択することができる。   The method of attaching the second layer to the base steel plate can be selected from methods such as hot dipping, electrolytic plating, powder coating, and dry process.

本発明では冷間圧延前に母材に付着させる第二層の厚みのより望ましい範囲は両側の面の合計で0.05μm以上1000μm以下である。鋼板と第二層が合金化している場合には、合金化している厚みは第二層の厚みに含める。また、両面に第二層が付着している場合には両面の厚みの合計である。第二層の厚みが0.05μm未満であると、{222}面集積度が低くなり、本発明の範囲に入らなくなる可能性が高まるため、0.05μm以上が好ましい。1000μm超の場合にも、{222}面集積度が低くなり、本発明の範囲に入らなくなる可能性が高まるため、1000μm以下が好ましい。   In the present invention, a more desirable range of the thickness of the second layer attached to the base material before cold rolling is 0.05 μm or more and 1000 μm or less in total on both sides. When the steel sheet and the second layer are alloyed, the alloyed thickness is included in the thickness of the second layer. Moreover, when the 2nd layer has adhered to both surfaces, it is the sum total of the thickness of both surfaces. When the thickness of the second layer is less than 0.05 μm, the {222} plane integration degree is lowered, and the possibility of not falling within the scope of the present invention is increased, so 0.05 μm or more is preferable. Even when it exceeds 1000 μm, the {222} plane integration degree is lowered, and the possibility of not being within the scope of the present invention is increased, so 1000 μm or less is preferable.

母材鋼板の板厚は、10mm以下とする。母材鋼板の板厚が10mmを超えると、{222}面集積度が低下してしまう。また、母材鋼板の板厚は、0.05mm以上がより好ましい。板厚が0.05mm未満では、冷間圧延で十分な圧下率を確保できない場合がある。   The thickness of the base steel plate is 10 mm or less. When the thickness of the base material steel plate exceeds 10 mm, the {222} plane integration degree decreases. Further, the thickness of the base steel plate is more preferably 0.05 mm or more. If the plate thickness is less than 0.05 mm, a sufficient rolling reduction may not be ensured by cold rolling.

さらに第二層を付着した母材鋼板に冷間圧延を施す。圧延率(圧下率)は30%以上95%以下が望ましい。圧延率が低すぎると、熱処理工程後に得られる鋼板の{222}面集積度が十分に得られない場合があるが、30%以上であれば十分な{222}面集積度を容易に得ることができる。圧延率が95%超では{222}面集積度の増加は飽和し、圧延コストが増加することになるので、工業的メリットが低下する場合がある。冷間圧延では歪エネルギーの蓄積が高くなるため、その後の熱処理工程における再結晶が効果的に進行する。   Further, cold rolling is performed on the base steel sheet to which the second layer is attached. The rolling rate (rolling rate) is preferably 30% or more and 95% or less. If the rolling rate is too low, the {222} plane integration degree of the steel sheet obtained after the heat treatment step may not be sufficiently obtained, but if it is 30% or more, a sufficient {222} plane integration degree can be easily obtained. Can do. If the rolling rate exceeds 95%, the increase in {222} plane integration is saturated, and the rolling cost increases, so that the industrial merit may be lowered. In cold rolling, the accumulation of strain energy increases, so recrystallization in the subsequent heat treatment process effectively proceeds.

冷間圧延後の工程において熱処理を施す。Al、Siを主成分とする金属からなる第二層が母材鋼板表面に付着し、その状態で圧延を行い、さらに熱処理によって再結晶させた結果として、鋼板の結晶組織が高い面集積度となる。第二層に含まれている元素が鋼中に拡散することによって、より高い{222}面集積度が得られる傾向もあり、かつ、高温耐酸化性や機械的特性も向上する。   Heat treatment is performed in the process after cold rolling. As a result of the second layer made of a metal mainly composed of Al and Si being attached to the surface of the base steel plate, rolling in that state, and recrystallizing by heat treatment, the steel structure has a high degree of surface integration. Become. When the elements contained in the second layer are diffused in the steel, a higher {222} plane integration degree tends to be obtained, and high-temperature oxidation resistance and mechanical properties are also improved.

鋼板の組織を再結晶させる目的を担う熱処理工程は、真空雰囲気、Ar雰囲気、H2雰囲気、ヘリウム雰囲気といった非酸化性雰囲気で行うことができる。この際、熱処理温度は600℃以上1200℃以下とすると好ましい。600℃未満であると{222}面集積度は低く、本発明の範囲には到達できない場合がある。また、600〜1000℃の温度範囲であれば熱処理時間は30秒以上が望ましい。温度が1000℃以下であり熱処理時間が30秒未満であると、{222}面集積度は低く、本発明の範囲には到達できない場合がある。熱処理温度が1000℃超であると、熱処理時間の制限はなく高い{222}面密度が得られる。特に1000℃超であると30秒以下の熱処理時間であっても{222}面集積度は容易に増加させられる。なお、熱処理温度が1200℃超であると熱処理設備費用が高くなり、工業的メリットが薄れる場合がある。 The heat treatment process for the purpose of recrystallizing the structure of the steel sheet can be performed in a non-oxidizing atmosphere such as a vacuum atmosphere, an Ar atmosphere, an H 2 atmosphere, or a helium atmosphere. At this time, the heat treatment temperature is preferably 600 ° C. or more and 1200 ° C. or less. If it is lower than 600 ° C., the {222} plane integration degree is low, and the range of the present invention may not be reached. Moreover, if it is a temperature range of 600-1000 degreeC, 30 second or more is desirable for heat processing time. If the temperature is 1000 ° C. or less and the heat treatment time is less than 30 seconds, the {222} plane integration degree is low, and the range of the present invention may not be reached. When the heat treatment temperature is higher than 1000 ° C., there is no limitation on the heat treatment time, and a high {222} surface density can be obtained. In particular, if it exceeds 1000 ° C., the {222} plane integration degree can be easily increased even if the heat treatment time is 30 seconds or less. If the heat treatment temperature is higher than 1200 ° C., the heat treatment equipment cost increases, and the industrial merit may be reduced.

次に、熱処理時の好ましい昇温速度は1℃/分以上1000℃/分以下である。昇温速度を1000℃/分以下にすると、より高い{222}面集積度が容易に得られるようになる。また、1℃/分以上にすると生産性が格段に向上できる。従って、昇温速度の好ましい範囲は1℃/分以上1000℃/分以下である。   Next, a preferable temperature increase rate during the heat treatment is 1 ° C./min or more and 1000 ° C./min or less. When the rate of temperature rise is 1000 ° C./min or less, a higher {222} plane integration degree can be easily obtained. Further, when the temperature is 1 ° C./min or more, productivity can be remarkably improved. Therefore, the preferable range of the temperature rising rate is 1 ° C./min or more and 1000 ° C./min or less.

上記熱処理の条件において、熱処理温度を高く、熱処理時間を長くすることにより、第二層として付着したAl、Siを軟磁性鋼板の板厚全体にわたって均一に拡散することができる。一方、熱処理温度を低く、熱処理時間を短くすることにより、第二層として付着したAl、Siを軟磁性鋼板の板厚全体に均一に拡散させず、表面付近では第二層成分が高く、板厚中心部では第二層成分が低い状態とすることができる。{222}高集積化領域である鋼板表面から深さ方向への範囲は、第二層成分が拡散した領域の深さによって定まるので、第二層成分を拡散させる領域を制御することにより、{222}高集積化領域の板厚方向範囲を制御することが可能である。   Under the above heat treatment conditions, by increasing the heat treatment temperature and lengthening the heat treatment time, Al and Si adhering as the second layer can be uniformly diffused over the entire thickness of the soft magnetic steel sheet. On the other hand, by lowering the heat treatment temperature and shortening the heat treatment time, Al and Si adhering as the second layer are not uniformly diffused throughout the thickness of the soft magnetic steel sheet, and the second layer component is high near the surface. In the thickness center portion, the second layer component can be in a low state. The range in the depth direction from the steel sheet surface, which is the {222} highly integrated region, is determined by the depth of the region where the second layer component is diffused, so by controlling the region where the second layer component is diffused, { 222} It is possible to control the range in the thickness direction of the highly integrated region.

第二層を付着する母材鋼板として、純鉄あるいはIF鋼(Interstitial atom free steel)を用いると好ましい。ここで言う純鉄とは、工業的に生産される比較的純度の高い鉄であって、純度が99.9%以上のものを意味する。IF鋼とは、鋼の深絞り性向上を主目的として、鋼中のC濃度を極低炭レベルまで低減し、TiやNbを添加して鋼中のC、Nを析出物の形で固定し、固溶の浸入型元素のほとんど存在しない極低炭Alキルド鋼を意味する。   It is preferable to use pure iron or IF steel (Interstitial atom free steel) as the base material steel plate to which the second layer is adhered. Pure iron as used herein means iron of relatively high purity that is industrially produced and has a purity of 99.9% or more. IF steel is mainly aimed at improving the deep drawability of steel, reducing the C concentration in the steel to an extremely low carbon level, and adding Ti and Nb to fix C and N in the form of precipitates. In addition, it means an extremely low-carbon Al killed steel having almost no solid solution intrusive element.

母材鋼板の具体的な好ましい成分範囲は以下のとおりである。   Specific preferred component ranges of the base steel plate are as follows.

Cは、0.05質量%以下であり、Siは、6.5質量%未満であり、Mnは、5質量%以下であり、Pは、0.05質量%以下であり、Sは、0.01質量%以下である。   C is 0.05% by mass or less, Si is less than 6.5% by mass, Mn is 5% by mass or less, P is 0.05% by mass or less, and S is 0.01% by mass or less.

さらに優れた本発明の効果を発現させるためには、第二層を付着させる前の母材鋼板に予備熱処理を施すと良い。この予備熱処理は、母材鋼板の製造過程で蓄積された転位構造を再配列させるもので、再結晶を起こさせることが望ましいが、必ずしも再結晶を起こさせる必要はない。   In order to exhibit the further excellent effect of the present invention, it is preferable to perform preliminary heat treatment on the base steel plate before the second layer is deposited. This preliminary heat treatment rearranges the dislocation structure accumulated in the manufacturing process of the base steel sheet, and it is desirable to cause recrystallization, but it is not always necessary to cause recrystallization.

ここで、望ましい予備熱処理温度は、700℃以上1100℃以下である。700℃未満であると、より優れた本発明の効果を得るための転位組織の変化が起こりにくい。1100℃超にすると、鋼板表面に好ましくない酸化皮膜が形成され、その後の第二層の付着および、冷間圧延に悪影響を及ぼす場合があるため1100℃以下が好ましい。この予備熱処理の雰囲気は、真空中、不活性ガス雰囲気中、水素雰囲気中、弱酸化性雰囲気中のどの条件においても、上述した効果を得ることができるが、予備熱処理後の第二層の付着および、その後の冷間圧延に悪影響を及ぼすような鋼板表面の酸化膜を形成しない条件が求められる。予備熱処理の時間は特別限定する必要はないが、鋼板の製造性等を考慮すると数秒(3〜5秒)から数時間(3〜5時間)以内が適当である。   Here, a desirable preliminary heat treatment temperature is 700 ° C. or higher and 1100 ° C. or lower. When the temperature is lower than 700 ° C., a change in the dislocation structure is less likely to obtain a better effect of the present invention. If it exceeds 1100 ° C., an unfavorable oxide film is formed on the surface of the steel sheet, and the subsequent adhesion of the second layer and cold rolling may be adversely affected. The pre-heat treatment atmosphere can obtain the above-described effect under any conditions in a vacuum, an inert gas atmosphere, a hydrogen atmosphere, or a weakly oxidizing atmosphere. And the conditions which do not form the oxide film of the steel plate surface which has a bad influence on subsequent cold rolling are calculated | required. The time for the preliminary heat treatment does not need to be specifically limited. However, considering the manufacturability of the steel sheet, the time is preferably from several seconds (3 to 5 seconds) to several hours (3 to 5 hours).

母材鋼板の両側の表面に第二層を付着させ、母材鋼板を冷間圧延し、その後熱処理によって再結晶させてコア用軟磁性鋼板を製造した。このコア用軟磁性鋼板をさらに打ち抜き加工することによってコア用部材を製造した。打ち抜き加工については、外径30mm、内径10mmのリング状に打ち抜いてコア用部材とした。   A second layer was adhered to the surfaces on both sides of the base steel plate, the base steel plate was cold-rolled, and then recrystallized by heat treatment to produce a soft magnetic steel plate for the core. The core member was manufactured by further punching the core soft magnetic steel sheet. For the punching process, a core member was punched into a ring shape having an outer diameter of 30 mm and an inner diameter of 10 mm.

αFe相の{222}面集積度の評価は、前述のMoKα線によるX線回折で行った。面集積度を評価する板厚方向の深さ位置については、以下の各実施例毎に記載したとおりである。   Evaluation of the {222} plane integration degree of the αFe phase was performed by X-ray diffraction using the MoKα ray. The depth position in the plate thickness direction for evaluating the surface integration degree is as described for each of the following examples.

コア用部材の磁気特性については、リング状に打ち抜いて製造したコア用部材を積層して全体厚みを5mmとして磁気コアとした。この磁気コアに一次コイル、二次コイルを巻き回し、磁束密度0.05T、周波数20kHzの条件で鉄損を測定した。このあと、このリング状に積層した磁気コアについて、アルゴン雰囲気中で600℃、30分の歪取り焼鈍を行い、焼鈍後に上記と同じ条件で同様に鉄損を測定した。上記採用した磁化条件では、磁束は鋼板表面から約0.040mm深さまで入り込む。   Regarding the magnetic properties of the core member, the core member manufactured by punching into a ring shape was laminated to obtain a magnetic core having a total thickness of 5 mm. A primary coil and a secondary coil were wound around the magnetic core, and the iron loss was measured under the conditions of a magnetic flux density of 0.05 T and a frequency of 20 kHz. Thereafter, the magnetic core laminated in this ring shape was subjected to strain relief annealing at 600 ° C. for 30 minutes in an argon atmosphere, and after the annealing, the iron loss was measured in the same manner under the same conditions as described above. Under the magnetization conditions adopted above, the magnetic flux penetrates from the steel sheet surface to a depth of about 0.040 mm.

(実施例1)
母材鋼板として、Fe:99.9質量%、残部不可避不純物を含有し、板厚1.2mmの純鉄鋼板を用いた。母材鋼板の表面に付着する第二層として、30質量%Al−70質量%Si合金を溶融めっきによって所定厚みに付着した。その後、板厚0.60mmまで冷間圧延を行い、さらに熱処理を行った。熱処理は、10-5Torr(1.33×10-3Pa)真空中雰囲気、1000℃の条件とし、水準毎に熱処理時間を変化させ、{222}高集積化領域の深さを変化させた。熱処理の昇温速度は100℃/分とした。水準毎の{222}高集積化領域におけるAl、Si濃度を一定とするため、{222}高集積化領域深さの目標に応じて第二層の厚みを変化させた。
Example 1
As a base steel plate, a pure iron steel plate having a thickness of 1.2 mm and containing Fe: 99.9% by mass and the remaining inevitable impurities was used. As a second layer adhering to the surface of the base steel plate, 30 mass% Al-70 mass% Si alloy was adhered to a predetermined thickness by hot dipping. Thereafter, cold rolling was performed to a plate thickness of 0.60 mm, followed by heat treatment. The heat treatment was performed under conditions of 10 −5 Torr (1.33 × 10 −3 Pa) vacuum atmosphere and 1000 ° C., changing the heat treatment time for each level, and changing the depth of the {222} highly integrated region. . The heating rate of the heat treatment was 100 ° C./min. In order to make the Al and Si concentrations in the {222} highly integrated region constant for each level, the thickness of the second layer was changed according to the target of the {222} highly integrated region depth.

熱処理後の軟磁性鋼板の深さ方向におけるAlとSiの成分分布を、EPMA(Electron Probe Micro-Analysis)ライン分析によって評価した。最表面のAl濃度ASと板厚中央部のAl濃度ACに基づき、
Al濃度=0.1×(AS−AC)+AC
よりもAl濃度が高い領域をAl拡散領域とした。そして、Al拡散領域深さに基づき、表面から10〜20μmづつ研磨除去しながらX線回折を行って{222}集積化領域深さを測定した。表1に記載した{222}集積度は、{222}集積化領域のほぼ中央の位置における値である。
The component distribution of Al and Si in the depth direction of the soft magnetic steel sheet after the heat treatment was evaluated by EPMA (Electron Probe Micro-Analysis) line analysis. Based on the Al concentration A S on the outermost surface and the Al concentration A C at the center of the plate thickness,
Al concentration = 0.1 × (A S −A C ) + A C
A region having an Al concentration higher than that of the Al diffusion region was used. Then, based on the Al diffusion region depth, the {222} integrated region depth was measured by performing X-ray diffraction while polishing and removing from the surface by 10 to 20 μm. The {222} integration degree described in Table 1 is a value at a substantially central position of the {222} integration region.

{222}集積化領域のSi濃度とAl濃度については、それぞれ、{222}集積化領域内における平均値として計算した。   The Si concentration and Al concentration in the {222} integrated region were calculated as average values in the {222} integrated region, respectively.

比較例1は、本発明例の{222}集積化領域におけるSi濃度とAl濃度にほぼ等しいSi、Al含有量であり、Si、Al以外の成分についても本発明例とほぼ同等の成分を有するインゴットを溶製し、熱延と冷間圧延によって0.60mmの鋼板とし、熱処理のみ本発明例と同じ熱処理を行った。   Comparative Example 1 has Si and Al contents substantially equal to the Si concentration and Al concentration in the {222} integrated region of the present invention example, and the components other than Si and Al have almost the same components as the present invention example. The ingot was melted to form a 0.60 mm steel plate by hot rolling and cold rolling, and only the heat treatment was performed as in the present invention.

比較例2は、第二層の付着厚みを薄くすることにより、熱処理後の{222}集積化領域深さを本発明範囲より浅くしたものであり、その他の条件は本発明例と同様とした。   In Comparative Example 2, the {222} integrated region depth after the heat treatment was made shallower than the scope of the present invention by reducing the thickness of the second layer, and the other conditions were the same as in the present invention. .

表1に、各水準毎の製造条件、評価結果を示す。表1の{222}集積化領域深さ(片面)は、上述のように、鋼板の板厚方向に研磨しながらX線回折法で{222}集積度を測定して行き、{222}集積していない、或いは{222}集積度が55%未満となった距離(深さ)を示している。表1の{222}集積化領域深さの板厚割合(片面)は、板厚に対する、前記{222}集積化領域深さ(片面)の割合である。   Table 1 shows manufacturing conditions and evaluation results for each level. The {222} integration region depth (single side) in Table 1 is measured by {222} integration by X-ray diffraction while polishing in the plate thickness direction of the steel sheet as described above, and {222} integration Or the distance (depth) at which the {222} integration degree is less than 55%. The thickness ratio (single side) of {222} integration region depth in Table 1 is the ratio of the {222} integration region depth (single side) to the plate thickness.

Figure 0005186989
Figure 0005186989

本発明例3〜8はいずれも、{222}集積領域深さ、{222}面集積度が本発明範囲に入っており、打ち抜き加工をしても鉄損が低く、打ち抜き加工の歪による鉄損低下が抑制されているものと考えられる。前記鋼板を焼鈍しても、打ち抜き加工後の鉄損とほぼ同じであることから、そもそも加工による歪みが入っていないので、歪み取りの前記焼鈍をしても鉄損に変化がないと解釈できる。   In each of Invention Examples 3 to 8, the {222} integration region depth and the {222} plane integration degree are within the scope of the present invention, and the iron loss is low even when punching is performed. It is thought that loss reduction is suppressed. Even if the steel sheet is annealed, it is almost the same as the iron loss after punching, so there is no distortion caused by the process. .

比較例1は、第二層を付着させずに製造したために{222}面集積度が低く、打ち抜き加工後の鉄損が高いものであった。これは、打ち抜き加工で歪みが入り、鉄損が上がっていると考えられる。焼鈍後の鉄損が大きく低下していることから、焼鈍によって歪みがとれるので、前記鉄損の低下が見られるものである。即ち、打ち抜き加工で歪みが入り、鉄損が高くなるものである。また、鉄損値も、本発明例に比較して高いものであった。これは、磁化困難方位である<111>方位が鋼板に平行な面から排除されていないためと考えられる。   Since the comparative example 1 was manufactured without attaching the second layer, the {222} plane integration degree was low, and the iron loss after punching was high. This is thought to be due to distortion caused by punching and an increase in iron loss. Since the iron loss after annealing is greatly reduced, the strain is removed by annealing, so that the iron loss is reduced. That is, the punching process is distorted and the iron loss is increased. Also, the iron loss value was higher than that of the examples of the present invention. This is presumably because the <111> orientation, which is a difficult magnetization orientation, is not excluded from the plane parallel to the steel plate.

比較例2は、{222}集積領域深さが本発明範囲の10%から外れており、打ち抜き加工後の鉄損がまだ高いものであった。これは、前記と同様に、打ち抜き加工で歪みが入り、鉄損が上がっていると考えられる。前記と同様に、焼鈍後の鉄損が大きく低下していることから、焼鈍によって歪みがとれるので、前記鉄損の低下が見られるものである。即ち、打ち抜き加工で歪みが入り、鉄損が高くなるものである。また、焼鈍後の鉄損値も本発明例に比較して高かった。これは、磁化困難方位である<111>方位が磁化領域の鋼板に平行な面から十分に排除されていないためと考えられる。   In Comparative Example 2, the {222} accumulation region depth was out of 10% of the range of the present invention, and the iron loss after punching was still high. As in the above, it is considered that the punching process is distorted and the iron loss is increased. Similarly to the above, since the iron loss after annealing is greatly reduced, the distortion can be removed by annealing, so that the iron loss is reduced. That is, the punching process is distorted and the iron loss is increased. Moreover, the iron loss value after annealing was higher than that of the examples of the present invention. This is probably because the <111> orientation, which is a difficult magnetization orientation, is not sufficiently excluded from the plane parallel to the steel plate in the magnetization region.

(実施例2)
母材鋼板として、Fe:99.9質量%、残部不可避不純物を含有し、板厚0.5mmの純鉄鋼板を用いた。母材鋼板の表面に付着する第二層として、(100−Y)%Si−Y%Al合金を溶融めっきによって所定厚みに付着した。Yの値を水準毎に変化させた。その後、板厚0.150mmまで冷間圧延を行い、さらに熱処理を行った。熱処理は、10-5Torr(1.33×10-3Pa)真空中雰囲気、1000℃×2時間の条件とし、板厚中心部まで{222}高集積化領域とした。熱処理昇温速度は10℃/分とした。鋼板のAl濃度、Si濃度を板厚の表面と中心部において測定した。その結果、両者とも板厚方向に均一に拡散していた。Al濃度とSi濃度を所定の濃度とするため、第二層の厚みを変化させた。
(Example 2)
As a base steel plate, a pure steel plate having a thickness of 0.5 mm and containing Fe: 99.9% by mass and the remaining inevitable impurities was used. As a second layer attached to the surface of the base steel plate, a (100-Y)% Si—Y% Al alloy was attached to a predetermined thickness by hot dipping. The value of Y was changed for each level. Thereafter, cold rolling was performed to a plate thickness of 0.150 mm, followed by heat treatment. The heat treatment was carried out under the conditions of 10 −5 Torr (1.33 × 10 −3 Pa) vacuum atmosphere, 1000 ° C. × 2 hours, and a {222} highly integrated region up to the center of the plate thickness. The heat treatment temperature rising rate was 10 ° C./min. The Al concentration and Si concentration of the steel plate were measured at the surface and the center of the plate thickness. As a result, both diffused uniformly in the thickness direction. In order to set the Al concentration and the Si concentration to predetermined concentrations, the thickness of the second layer was changed.

{222}面集積度は、板厚表面(鋼板面の表面から板厚の10%の距離)と板厚中心部の2ヶ所で測定した。表2における表面の{222}集積度及び板厚中心の{222}集積度は、それぞれ、前記2ヶ所の{222}面集積度に対応する。   The {222} plane integration degree was measured at two locations, the plate thickness surface (distance of 10% of the plate thickness from the surface of the steel plate surface) and the plate thickness center portion. In Table 2, the {222} integration degree of the surface and the {222} integration degree at the center of the plate thickness respectively correspond to the {222} surface integration degree of the two locations.

Figure 0005186989
Figure 0005186989

本発明例、比較例いずれも、{222}集積領域は板厚の中心部まで及んでいた。   In both the inventive examples and the comparative examples, the {222} accumulation region extends to the center of the plate thickness.

本発明例12〜22はいずれも、{222}面集積度が本発明範囲に入っており、打ち抜き加工後でも鉄損が低いものであり、歪み取り焼鈍をしても鉄損は殆ど変化しないものであった。即ち、打ち抜き加工をしても歪みが入り難いものである。前記発明例の中でも、軟磁性鋼板にSiが含有され、Si濃度が本発明の好ましい範囲であると、鉄損がより低い値となった。また、前記発明例の中でも、軟磁性鋼板にAlが含有され、Al濃度が本発明の好ましい範囲であると、鉄損がより低い値となった。 In each of Invention Examples 12 to 22 , the {222} plane integration degree is within the scope of the present invention, and the iron loss is low even after punching, and the iron loss hardly changes even after strain relief annealing. It was a thing. That is, even if punching is performed, distortion hardly occurs. Among the above invention examples, when the soft magnetic steel sheet contains Si and the Si concentration is within the preferable range of the present invention, the iron loss becomes a lower value. Further, among the above-described invention examples, when the soft magnetic steel sheet contains Al and the Al concentration is within the preferable range of the present invention, the iron loss becomes a lower value.

比較例11は、表面、板厚中心部のいずれも、{222}面集積度が本発明の下限を外れている。その結果、打ち抜き後の鉄損が本発明例と比較して高い値となった。表面の{222}面集積度が低すぎるので、打ち抜き加工時に入る歪量が多くなったためと考えられる。   In Comparative Example 11, the {222} plane integration degree is outside the lower limit of the present invention in both the surface and the plate thickness center portion. As a result, the iron loss after punching was higher than that of the inventive example. This is probably because the {222} plane integration degree on the surface is too low, and the amount of strain entering during the punching process is increased.

前記発明例の各試料をB−H直流磁化測定装置を用いて飽和磁束密度を測定した結果、全ての試料がコア用軟磁性鋼板として使用できる飽和磁束密度を有しているが、Al濃度が3.0質量%超である本発明例16、及びSi濃度が6.5%超である本発明例21では、飽和磁束密度が他の試料よりも約5%低下していた。   As a result of measuring the saturation magnetic flux density of each sample of the invention example using a BH direct current magnetization measuring device, all the samples have a saturation magnetic flux density that can be used as a soft magnetic steel sheet for core, but the Al concentration is In Inventive Example 16 in which the content exceeds 3.0% by mass and Inventive Example 21 in which the Si concentration exceeds 6.5%, the saturation magnetic flux density is reduced by about 5% as compared with the other samples.

Claims (3)

αFe相の鋼板面に対する{222}面集積度が55%以上99%以下である領域において、1.0質量%以上6.5質量%未満のSi、0.5質量%以上1.8質量%以下のAlの一方又は両方を含有し、鋼板面の表面から少なくとも板厚の10%の距離の深さ方向の範囲まで、αFe相の鋼板面に対する{222}面集積度が55%以上99%以下であることを特徴とするコア用軟磁性鋼板。
ここで、αFe相の鋼板面に対する{222}面集積度は、MoKα線によるX線回折法で得られる、試料表面に対して平行なFeのα結晶11面{110}、{200}、{211}、{310}、{222}、{321}、{411}、{420}、{332}、{521}、{442}の積分強度を測定し、その測定値それぞれをランダム方位である試料の理論積分強度で除した後、以下の式(1)で求めたものである。
{222}面集積度
=[{i(222)/I(222)}/Σ{i(hkl)/I(hkl)}]×100 … (1)
ただし、記号は以下の通りである。
i(hkl):測定した試料における{hkl}面の実測積分強度
I(hkl):ランダム方位をもつ試料における{hkl}面の理論積分強度
Σ :αFe結晶11面についての和
In the region where the degree of {222} plane integration with respect to the steel sheet surface of the αFe phase is 55% or more and 99% or less, 1.0 mass% or more and less than 6.5 mass% Si 2 , 0.5 mass% or more and 1.8 mass% or less. One or both of the following Al is contained, and the {222} plane integration degree with respect to the steel sheet surface of the αFe phase is 55% or more and 99% from the surface of the steel sheet surface to the range in the depth direction at a distance of at least 10% of the sheet thickness. A soft magnetic steel sheet for a core, characterized in that:
Here, the {222} plane integration degree with respect to the steel sheet surface of the αFe phase is obtained by the X-ray diffraction method using MoKα rays, and the 11 α plane of Fe crystal {110}, {200}, {200}, { 211}, {310}, {222}, {321}, {411}, {420}, {332}, {521}, {442}, and the measured values are random orientations. After dividing by the theoretical integrated intensity of the sample, it is obtained by the following formula (1).
{222} plane integration degree
= [{I (222) / I (222)} / Σ {i (hkl) / I (hkl)}] × 100 (1)
However, the symbols are as follows.
i (hkl): Measured integrated intensity of {hkl} plane in the measured sample
I (hkl): Theoretical integral intensity of the {hkl} plane in a sample with a random orientation
Σ: Sum of 11 faces of αFe crystal
板厚が0.03mm以上1.5mm未満であることを特徴とする請求項1に記載のコア用軟磁性鋼板。 The soft magnetic steel sheet for core according to claim 1, wherein the plate thickness is 0.03 mm or more and less than 1.5 mm. 請求項1又は2に記載のコア用軟磁性鋼板を打ち抜き加工されてなることを特徴とするコア用部材。 A core member obtained by stamping the soft magnetic steel sheet for core according to claim 1 or 2 .
JP2008110271A 2008-04-21 2008-04-21 Soft magnetic steel sheet for core and core member Expired - Fee Related JP5186989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110271A JP5186989B2 (en) 2008-04-21 2008-04-21 Soft magnetic steel sheet for core and core member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110271A JP5186989B2 (en) 2008-04-21 2008-04-21 Soft magnetic steel sheet for core and core member

Publications (2)

Publication Number Publication Date
JP2009256758A JP2009256758A (en) 2009-11-05
JP5186989B2 true JP5186989B2 (en) 2013-04-24

Family

ID=41384536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110271A Expired - Fee Related JP5186989B2 (en) 2008-04-21 2008-04-21 Soft magnetic steel sheet for core and core member

Country Status (1)

Country Link
JP (1) JP5186989B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729296B2 (en) 2010-12-29 2014-05-20 Ecolab Usa Inc. Generation of peroxycarboxylic acids at alkaline pH, and their use as textile bleaching and antimicrobial agents
US8846107B2 (en) 2010-12-29 2014-09-30 Ecolab Usa Inc. In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof
US8889900B2 (en) 2010-12-29 2014-11-18 Ecolab Usa Inc. Sugar ester peracid on site generator and formulator
US9321664B2 (en) 2011-12-20 2016-04-26 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
US9518013B2 (en) 2014-12-18 2016-12-13 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US11260040B2 (en) 2018-06-15 2022-03-01 Ecolab Usa Inc. On site generated performic acid compositions for teat treatment

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104228187B (en) * 2009-10-28 2016-10-26 新日铁住金株式会社 Fe system metallic plate and manufacture method thereof
JP5648335B2 (en) * 2010-06-17 2015-01-07 新日鐵住金株式会社 Fe-based metal plate with partially controlled crystal orientation
JP5615727B2 (en) * 2011-01-21 2014-10-29 株式会社神戸製鋼所 Soft magnetic steel parts for DC
RU2550448C1 (en) * 2011-04-27 2015-05-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Iron based metal plate and method of its manufacturing
JP5472198B2 (en) * 2011-04-28 2014-04-16 新日鐵住金株式会社 Method for producing Fe-based metal plate having high {110} plane integration or {222} plane integration
JP5724727B2 (en) * 2011-04-28 2015-05-27 新日鐵住金株式会社 Method for producing Fe-based metal plate having high degree of {200} plane integration
JP5867713B2 (en) 2012-01-27 2016-02-24 Jfeスチール株式会社 Electrical steel sheet
JP6303301B2 (en) * 2013-06-26 2018-04-04 新日鐵住金株式会社 Fe-based metal plate and manufacturing method thereof
JP6464750B2 (en) * 2015-01-06 2019-02-06 新日鐵住金株式会社 Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
JP6464753B2 (en) * 2015-01-09 2019-02-06 新日鐵住金株式会社 Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
DE102015218439A1 (en) * 2015-09-25 2017-03-30 Robert Bosch Gmbh In its core losses reduced part and process for its preparation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131916A (en) * 1976-04-28 1977-11-05 Matsushita Electric Ind Co Ltd Production of f#-s#-al alloy sheet
JP2540946B2 (en) * 1989-06-30 1996-10-09 日本鋼管株式会社 Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same
JP3017236B2 (en) * 1990-02-03 2000-03-06 日新製鋼株式会社 Method for producing Fe-Al alloy soft magnetic sheet having excellent magnetic properties
JP3017237B2 (en) * 1990-02-03 2000-03-06 日新製鋼株式会社 Method for producing Fe-Si-Al alloy soft magnetic thin plate
JP2560580B2 (en) * 1991-09-10 1996-12-04 日本鋼管株式会社 Method for manufacturing high silicon steel sheet having high magnetic permeability
CN101541993B (en) * 2006-11-21 2012-12-26 新日本制铁株式会社 Steel plate having high gathering degree of {222} plane and process for production thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9192909B2 (en) 2010-12-29 2015-11-24 Ecolab USA, Inc. Sugar ester peracid on site generator and formulator
US9365509B2 (en) 2010-12-29 2016-06-14 Ecolab Usa Inc. Continuous on-line adjustable disinfectant/sanitizer/bleach generator
US8858895B2 (en) 2010-12-29 2014-10-14 Ecolab Usa Inc. Continuous on-line adjustable disinfectant/sanitizer/bleach generator
US8877254B2 (en) 2010-12-29 2014-11-04 Ecolab Usa Inc. In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof
US8889900B2 (en) 2010-12-29 2014-11-18 Ecolab Usa Inc. Sugar ester peracid on site generator and formulator
US8933263B2 (en) 2010-12-29 2015-01-13 Ecolab Usa Inc. Water temperature as a means of controlling kinetics of onsite generated peracids
US8846107B2 (en) 2010-12-29 2014-09-30 Ecolab Usa Inc. In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof
US11311011B2 (en) 2010-12-29 2022-04-26 Ecolab Usa Inc. Continuous on-line adjustable disinfectant/sanitizer/bleach generator
US10244751B2 (en) 2010-12-29 2019-04-02 Ecolab Usa Inc. Water temperature as a means of controlling kinetics of onsite generated peracids
US10477862B2 (en) 2010-12-29 2019-11-19 Ecolab Usa Inc. In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof
US9763442B2 (en) 2010-12-29 2017-09-19 Ecolab Usa Inc. In situ generation of peroxycarboxylic acids at alkaline pH, and methods of use thereof
US9861101B2 (en) 2010-12-29 2018-01-09 Ecolab Usa Inc. Continuous on-line adjustable disinfectant/sanitizer/bleach generator
US8729296B2 (en) 2010-12-29 2014-05-20 Ecolab Usa Inc. Generation of peroxycarboxylic acids at alkaline pH, and their use as textile bleaching and antimicrobial agents
US10010075B2 (en) 2010-12-29 2018-07-03 Ecolab Usa Inc. Water temperature as a means of controlling kinetics of onsite generated peracids
US10201156B2 (en) 2010-12-29 2019-02-12 Ecolab Usa Inc. Continuous on-line adjustable disinfectant/sanitizer/bleach generator
US9902627B2 (en) 2011-12-20 2018-02-27 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
US9321664B2 (en) 2011-12-20 2016-04-26 Ecolab Usa Inc. Stable percarboxylic acid compositions and uses thereof
US11180385B2 (en) 2012-10-05 2021-11-23 Ecolab USA, Inc. Stable percarboxylic acid compositions and uses thereof
US10433547B2 (en) 2014-12-18 2019-10-08 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US9518013B2 (en) 2014-12-18 2016-12-13 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US10542751B2 (en) 2014-12-18 2020-01-28 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US10709131B2 (en) 2014-12-18 2020-07-14 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US10834924B2 (en) 2014-12-18 2020-11-17 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US11684067B2 (en) 2014-12-18 2023-06-27 Ecolab Usa Inc. Generation of peroxyformic acid through polyhydric alcohol formate
US11260040B2 (en) 2018-06-15 2022-03-01 Ecolab Usa Inc. On site generated performic acid compositions for teat treatment
US11771673B2 (en) 2018-06-15 2023-10-03 Ecolab Usa Inc. On site generated performic acid compositions for teat treatment

Also Published As

Publication number Publication date
JP2009256758A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5186989B2 (en) Soft magnetic steel sheet for core and core member
KR101463368B1 (en) Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME
JP4616935B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2018135414A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
JP2018066033A (en) Nonoriented electromagnetic steel sheet
JP6623533B2 (en) Fe-based metal plate
JP6481288B2 (en) Fe-based metal plate with excellent magnetic properties
JPWO2021065555A1 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5724727B2 (en) Method for producing Fe-based metal plate having high degree of {200} plane integration
JP4972767B2 (en) Method for producing high silicon steel sheet
JP5613134B2 (en) Rotor core for permanent magnet motor
JP2012214888A (en) Fe-BASED METAL PLATE AND METHOD OF MANUFACTURING THE SAME
JP6048282B2 (en) Electrical steel sheet
JP6405632B2 (en) Fe-based metal plate and manufacturing method thereof
JP5560923B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
JP4835346B2 (en) Steel sheet and manufacturing method thereof
JP6464750B2 (en) Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
JP6221406B2 (en) Fe-based metal plate and manufacturing method thereof
TWI675113B (en) Multilayer electromagnetic steel sheet
WO2022210895A1 (en) Rotating electric machine, set of iron core of stator and iron core of rotor, method for manufacturing rotating electric machine, method for manufacturing non-oriented electrical steel sheet for stator and non-oriented electrical steel sheet for rotor, method for manufacturing stator and rotor, and set of non-oriented electrical steel sheets
JP6519725B1 (en) Multi-layered electromagnetic steel sheet
JP4844314B2 (en) Steel sheet and manufacturing method thereof
JP6613589B2 (en) High strength, high magnetic flux density Fe-based metal plate and method for producing the same
JP6464753B2 (en) Soft magnetic Fe-based metal plate having a plurality of crystal orientation layers and manufacturing method thereof
JP2005226126A (en) Vibration-proofing alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5186989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees