JP5182527B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP5182527B2
JP5182527B2 JP2009253158A JP2009253158A JP5182527B2 JP 5182527 B2 JP5182527 B2 JP 5182527B2 JP 2009253158 A JP2009253158 A JP 2009253158A JP 2009253158 A JP2009253158 A JP 2009253158A JP 5182527 B2 JP5182527 B2 JP 5182527B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
injection
deviation
injection timing
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009253158A
Other languages
Japanese (ja)
Other versions
JP2011099344A (en
Inventor
聡 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2009253158A priority Critical patent/JP5182527B2/en
Publication of JP2011099344A publication Critical patent/JP2011099344A/en
Application granted granted Critical
Publication of JP5182527B2 publication Critical patent/JP5182527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の燃料噴射制御装置であって、特に吸気中の酸素濃度により燃料を最適に噴射する制御技術に関する。   The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to a control technique for optimally injecting fuel according to oxygen concentration in intake air.

従来、筒内直接噴射式内燃機関(例えば、ディーゼルエンジン)は、排気性状、白煙及び燃焼音の低減を目的とし、燃料噴射を主噴射に加え主噴射に先立って少量の燃料を噴射するパイロット噴射を行っている。
主噴射とパイロット噴射のそれぞれの噴射時期は、エンジンの標準運転状態(冷却水温、過給圧、吸気温度等が一定の定常運転)における実験結果より、主噴射燃料の最も良好な燃焼状態が得られる噴射時期となる基本主噴射時期マップと白煙や排気性状の悪化を生じることなく燃焼音を最も良好に低減することのできる噴射時期となる基本パイロット噴射時期マップが決定している。
Conventionally, in-cylinder direct injection internal combustion engines (for example, diesel engines) are pilots that aim to reduce exhaust properties, white smoke, and combustion noise, and inject a small amount of fuel prior to main injection in addition to main injection. The jet is being performed.
The injection timing of main injection and pilot injection is the best combustion state of the main injection fuel based on the experimental results in the standard operating state of the engine (steady operation with constant cooling water temperature, boost pressure, intake air temperature, etc.). The basic main injection timing map that is the injection timing that is generated and the basic pilot injection timing map that is the injection timing at which the combustion noise can be best reduced without causing deterioration of white smoke or exhaust properties are determined.

しかしながら、実際のエンジンでは加減速を繰り返すことにより、EGR装置や過給機の応答遅れが発生し、燃焼室内の燃焼状態が最適な状態から大きくずれることにより、白煙が発生したり燃焼音が悪化したりする問題がある。
この様なことから、例えば、過渡運転に移行したタイミングから定常運転に戻るまでの加速運転区間を2つに分け、酸素濃度或いは酸素量の計測値と定常運転時の目標値との偏差に基づいてそれぞれの区間を判断し、偏差が大きい場合には少ないパイロット噴射量を比較的進角側で噴射するとともに、パイロット噴射と主噴射の噴射間隔を短くして圧縮上死点以前に主噴射を完了させ、また偏差が小さい場合はパイロット噴射量を比較的多くするとともに、パイロット噴射と主噴射の噴射間隔を長くしてパイロット噴射燃料の燃焼を完全に終了させてから主噴射を行うことにより、大幅に加速運転時の燃焼音の悪化を抑制しつつ、排気及び燃費を改善することのできるディーゼルエンジンの燃料噴射制御装置が開発されている(特許文献1)。
However, in an actual engine, repeated acceleration / deceleration causes a delay in the response of the EGR device and the supercharger, and the combustion state in the combustion chamber deviates greatly from the optimum state, resulting in white smoke or combustion noise. There is a problem that gets worse.
For this reason, for example, the acceleration operation interval from the transition to the transient operation to the return to the steady operation is divided into two, and based on the deviation between the measured value of the oxygen concentration or oxygen amount and the target value during the steady operation. If the deviation is large, a small pilot injection amount is injected on the relatively advanced side, and the main injection is performed before the compression top dead center by shortening the injection interval between the pilot injection and the main injection. When the deviation is small, the pilot injection amount is relatively increased, and the injection interval between the pilot injection and the main injection is lengthened to complete the combustion of the pilot injected fuel, and then the main injection is performed. A fuel injection control device for a diesel engine has been developed that can significantly improve the exhaust noise and fuel consumption while suppressing the deterioration of combustion noise during acceleration operation (Patent Document 1).

特開2002−276444号公報JP 2002-276444 A

上記特許文献1のディーゼルエンジンの燃料噴射制御装置では、目標値に対して過渡的に酸素濃度或いは酸素量が不足する燃料リッチ領域では、着火遅れ期間の過度の増大を抑制するために、少ないパイロット噴射を比較的進角側で噴射するとともに、パイロット噴射と主噴射の噴射間隔を短くして圧縮上死点以前に主噴射を完了させている。また、過給圧の立ち上がりに時間を要し、目標値に対して酸素量が不足する燃料リッチ領域では、パイロット噴射量を比較的多くするとともに、パイロット噴射と主噴射の噴射間隔を長くしパイロット噴射燃料の燃焼を完全に終了させてから主噴射を行っている。   In the fuel injection control device of the diesel engine disclosed in Patent Document 1, in a fuel rich region where the oxygen concentration or the oxygen amount is transiently insufficient with respect to the target value, a small number of pilots are used to suppress an excessive increase in the ignition delay period. The injection is performed at a relatively advanced angle side, and the injection interval between the pilot injection and the main injection is shortened to complete the main injection before the compression top dead center. Also, in the fuel rich region where it takes time to raise the boost pressure and the amount of oxygen is insufficient with respect to the target value, the pilot injection amount is made relatively large, and the pilot interval between the pilot injection and the main injection is made longer. The main injection is performed after the combustion of the injected fuel is completely terminated.

しかしながら、過渡運転等の際には、EGRガスと吸入空気の混合割合の変化、或いは、EGRガスと吸入空気の混合割合が同一でもEGRガスの酸素濃度により、EGRガスを含む吸入空気の酸素濃度が薄い状態だけでなく、酸素濃度が濃い状態となって、主噴射の燃焼に影響を与えることがある。
ディーゼルエンジンのような理論空燃比よりはるかに酸素量の多い状態で燃焼する内燃機関では、酸素量の多少の変動より、酸素濃度の濃淡の方が主燃焼の着火へ与える影響が大きいことを発見した。
However, during transient operation, etc., the oxygen concentration of the intake air containing the EGR gas depends on the change in the mixing ratio of the EGR gas and the intake air or the oxygen concentration of the EGR gas even if the mixing ratio of the EGR gas and the intake air is the same. Not only in a thin state but also in a state in which the oxygen concentration is high, it may affect the combustion of the main injection.
In an internal combustion engine that burns in a state where the amount of oxygen is much higher than the stoichiometric air-fuel ratio, such as a diesel engine, it has been found that the concentration of oxygen concentration has a greater influence on the ignition of main combustion than the slight fluctuation of the amount of oxygen did.

この様なことから、EGRガスを含む吸入空気の酸素濃度が濃いことによって、主噴射の着火が定常と異なり燃焼が急峻となり、燃焼騒音が増大し、振動の発生及び排気性状が悪化する可能性がある。
本発明は、この様な問題を解決するためになされたもので、その目的とするところは、EGRガスを含む吸入空気の酸素濃度の濃い状態においても燃料噴射を最適な噴射時期とすることにより、酸素濃度の濃淡に係わらず燃焼音、ドライバビリティの悪化を防止し、排気性状を良好にすることのできる内燃機関の燃料噴射制御装置を提供することにある。
For this reason, the oxygen concentration of the intake air containing the EGR gas is high, so that the ignition of the main injection becomes steep, unlike the steady state, the combustion noise increases, the generation of vibrations, and the exhaust properties may deteriorate. There is.
The present invention has been made to solve such a problem, and the object of the present invention is to make the fuel injection the optimum injection timing even in a state where the oxygen concentration of the intake air containing the EGR gas is high. Another object of the present invention is to provide a fuel injection control device for an internal combustion engine that can prevent deterioration of combustion noise and drivability regardless of the oxygen concentration, and can improve exhaust properties.

上記の目的を達成するために、請求項1の内燃機関の燃料噴射制御装置は、燃料を噴射する主噴射と該主噴射に先立つパイロット噴射とを行い、標準運転状態の主噴射時期とパイロット噴射量とパイロット噴射時期が設定された内燃機関の燃料噴射制御装置において、運転時に吸気通路より燃焼室へ吸入される吸入空気の目標となる酸素濃度を設定する目標酸素濃度設定手段と、前記燃焼室へ吸入される前記吸入空気の実際の酸素濃度から前記目標となる酸素濃度の減算により酸素濃度偏差を算出する酸素濃度偏差算出手段と、前記酸素濃度偏差算出手段算出結果に基づき、前記標準運転状態の主噴射の噴射時期を前記酸素濃度偏差に応じて補正する主噴射時期補正手段と、前記酸素濃度偏差算出手段の算出結果に基づき、前記標準運転状態のパイロット噴射の噴射時期を前記酸素濃度偏差に応じて補正するパイロット噴射時期補正手段と、を備え、前記主噴射時期補正手段は、前記酸素濃度偏差が酸素濃度不足側の閾値である主噴射時期補正判定偏差より小さければ、標準運転状態の主噴射の噴射時期に対して、噴射時期を早く噴射するように主噴射時期を補正し、前記酸素濃度偏差が酸素濃度過剰側の閾値である主噴射時期補正判定偏差より大きければ、該標準運転状態の主噴射の噴射時期に対して、噴射時期を遅く噴射するように主噴射時期を補正し、前記パイロット噴射時期補正手段は、前記酸素濃度偏差が酸素濃度不足側の閾値であるパイロット噴射時期補正判定偏差より小さければ、標準運転状態のパイロット噴射時期に対して、噴射時期を遅く噴射するようにパイロット噴射時期を補正し、前記酸素濃度偏差が酸素濃度過剰側の閾値であるパイロット噴射時期補正判定偏差より大きければ、該標準運転状態のパイロット噴射時期に対して、噴射時期を早く噴射するようにパイロット噴射時期を補正することを特徴とする。 In order to achieve the above object, a fuel injection control device for an internal combustion engine according to claim 1 performs main injection for injecting fuel and pilot injection prior to the main injection, and main injection timing and pilot injection in a standard operation state. In a fuel injection control device for an internal combustion engine in which an amount and a pilot injection timing are set, target oxygen concentration setting means for setting a target oxygen concentration of intake air drawn into the combustion chamber from the intake passage during operation, and the combustion chamber Based on the calculation result of the oxygen concentration deviation calculating means , the oxygen concentration deviation calculating means for calculating the oxygen concentration deviation by subtracting the target oxygen concentration from the actual oxygen concentration of the intake air sucked into the standard operation, and the main injection timing correction means for correcting the injection timing of the state of the main injection to the oxygen concentration deviation, based on the calculation result of the oxygen concentration deviation calculating means, the normal operation like With the pilot injection timing correction means for correcting in accordance with the oxygen concentration deviation injection timing of the pilot injection, and the main injection timing correction means, the main injection timing the oxygen concentration deviation is the threshold value of the oxygen concentration deficient side If smaller than the correction determination deviation, the main injection timing is corrected so that the injection timing is injected earlier than the injection timing of the main injection in the standard operation state, and the oxygen concentration deviation is a threshold value on the oxygen concentration excess side. If it is larger than the timing correction determination deviation, the main injection timing is corrected so as to inject the injection timing later with respect to the injection timing of the main injection in the standard operation state, and the pilot injection timing correction means If the pilot injection timing correction judgment deviation, which is the threshold value on the oxygen concentration deficiency side, is smaller than the pilot injection timing in the standard operation state, the injection timing should be delayed. If the oxygen concentration deviation is larger than the pilot injection timing correction determination deviation which is the threshold value on the oxygen concentration excess side, the injection timing is made to be injected earlier than the pilot injection timing in the standard operation state. and features that you correct the pilot injection timing.

また、請求項の内燃機関の燃料噴射制御装置では、請求項の発明において、前記酸素濃度偏差が酸素濃度不足側の閾値であるパイロット噴射量補正判定偏差より小さければ、標準運転状態のパイロット噴射量に対して、多く燃料を噴射するようにパイロット噴射量を補正し、前記酸素濃度偏差が酸素濃度過剰側の閾値であるパイロット噴射量補正判定偏差より大きければ、該標準運転状態のパイロット噴射量に対して、少なく燃料を噴射するようにパイロット噴射量を補正するパイロット噴射量補正手段を備えることを特徴とする。 Further, in the fuel injection control device for an internal combustion engine according to claim 2 , in the invention of claim 1 , if the oxygen concentration deviation is smaller than a pilot injection amount correction determination deviation which is a threshold value on the oxygen concentration deficient side , the pilot in the standard operation state If the pilot injection amount is corrected so that more fuel is injected with respect to the injection amount, and the oxygen concentration deviation is larger than the pilot injection amount correction determination deviation which is the threshold value on the oxygen concentration excess side , the pilot injection in the standard operation state Pilot injection amount correction means for correcting the pilot injection amount so as to inject the fuel with respect to the amount is provided.

また、請求項の内燃機関の燃料噴射制御装置では、請求項1又は2の発明において、前記酸素濃度偏差が酸素濃度不足側の閾値であるプレ噴射判定偏差より小さい、或いは、該酸素濃度偏差が酸素濃度過剰側の閾値であるプレ噴射判定偏差より大きければ、前記パイロット噴射後であり前記主噴射前に燃料を噴射するプレ噴射を追加し、該プレ噴射の噴射量を決定するプレ噴射量決定手段を備えることを特徴とする。 Further, in the fuel injection control device for an internal combustion engine according to claim 3 , in the invention of claim 1 or 2 , the oxygen concentration deviation is smaller than the pre-injection determination deviation which is a threshold on the oxygen concentration deficient side, or the oxygen concentration deviation. Is larger than a pre-injection determination deviation which is a threshold value on the oxygen concentration excess side , a pre-injection for adding fuel after the pilot injection and before the main injection is added to determine the injection amount of the pre-injection A determining means is provided.

請求項1の発明によれば、燃焼室へ吸入される吸入空気の実際の酸素濃度から目標となる酸素濃度の減算により算出される酸素濃度偏差が酸素濃度不足側の閾値である主噴射時期補正判定偏差より小さければ、標準運転状態の主噴射の噴射時期に対して、噴射時期を早く噴射するように主噴射時期を補正し、酸素濃度偏差が酸素濃度過剰側の閾値である主噴射時期補正判定偏差より大きければ、該標準運転状態の主噴射の噴射時期に対して、噴射時期を遅く噴射するように主噴射時期を補正し、また、酸素濃度偏差が酸素濃度不足側の閾値であるパイロット噴射時期補正判定偏差より小さければ、標準運転状態のパイロット噴射時期に対して、噴射時期を遅く噴射するようにパイロット噴射時期を補正し、酸素濃度偏差が酸素濃度過剰側の閾値であるパイロット噴射時期補正判定偏差より大きければ、該標準運転状態のパイロット噴射時期に対して、噴射時期を早く噴射するようにパイロット噴射時期を補正するようにしている According to the first aspect of the invention , the main injection timing correction in which the oxygen concentration deviation calculated by subtracting the target oxygen concentration from the actual oxygen concentration of the intake air sucked into the combustion chamber is a threshold on the oxygen concentration deficient side. If the deviation is smaller than the judgment deviation, the main injection timing is corrected so that the injection timing is injected earlier than the main injection timing in the normal operation state, and the oxygen concentration deviation is a threshold value on the oxygen concentration excess side. If the deviation is larger than the determination deviation, the main injection timing is corrected so that the injection timing is delayed later than the injection timing of the main injection in the normal operation state, and the pilot whose oxygen concentration deviation is a threshold value on the oxygen concentration deficient side If the injection timing correction judgment deviation is smaller, the pilot injection timing is corrected so that the injection timing is injected later than the pilot injection timing in the normal operation state, and the oxygen concentration deviation is a threshold value on the oxygen concentration excess side. Is greater than the pilot injection timing correction determined deviation is, the pilot injection timing of the normal operation state, and corrects the pilot injection timing so as to inject early injection timing.

これにより酸素濃度が濃い状態では、シリンダ圧力の急峻な圧力上昇を抑制することができ、また、酸素濃度が薄い状態では、着火不良及び燃焼が緩慢になることを抑制することができる。更に、パイロット噴射の燃焼時期を適正にすることができ、主噴射による主燃焼時のシリンダ温度及び圧力を適正にすることができるので、主燃焼の着火と燃焼が急峻や緩慢になることを抑制することができる
従って、過渡時のシリンダ圧力の急峻による燃焼音を低減し、着火を確実できるので未燃ガスの発生を抑制し排気性状を良好にすることができ、且つ、着火不良による振動の発生を抑制することによりドライバビリティの悪化を防止することができる。
As a result, when the oxygen concentration is high, it is possible to suppress an abrupt increase in cylinder pressure, and it is possible to suppress poor ignition and slow combustion when the oxygen concentration is low. Furthermore, the combustion timing of the pilot injection can be made appropriate, and the cylinder temperature and pressure during the main combustion by the main injection can be made appropriate, thereby suppressing the ignition and combustion of the main combustion from becoming steep or slow. Therefore, combustion noise due to steep cylinder pressure during transition can be reduced and ignition can be ensured, so that generation of unburned gas can be suppressed and exhaust properties can be improved, and vibration due to poor ignition can be prevented. By suppressing the occurrence, it is possible to prevent deterioration of drivability.

また、請求項の発明によれば、パイロット噴射量補正手段にて酸素濃度偏差が酸素濃度不足側のパイロット噴射量補正判定偏差より小さければ、標準運転状態のパイロット噴射量に対して燃料を多く噴射するようにパイロット噴射量を補正し、酸素濃度偏差が酸素濃度過剰側のパイロット噴射量補正判定偏差より大きければ、標準運転状態のパイロット噴射量に対して燃料を少なく噴射するようにパイロット噴射量を補正するようにしている。 According to the invention of claim 2 , if the oxygen concentration deviation is smaller than the pilot injection amount correction determination deviation on the oxygen concentration deficient side in the pilot injection amount correcting means, the fuel is increased with respect to the pilot injection amount in the standard operation state. If the pilot injection amount is corrected so as to be injected and the oxygen concentration deviation is larger than the pilot injection amount correction judgment deviation on the oxygen concentration excess side, the pilot injection amount is injected so that the fuel is injected less than the pilot injection amount in the normal operation state. I am trying to correct.

これにより、燃焼室内で適切な燃料量の混合気を作ることができ、主噴射による主燃焼時にシリンダ圧力の急峻な圧力上昇や着火不良を抑制することができる As a result, an air-fuel mixture with an appropriate amount of fuel can be created in the combustion chamber, and a sharp increase in cylinder pressure and poor ignition can be suppressed during main combustion by main injection .

た、請求項5の発明によれば、プレ噴射量決定手段にて酸素濃度偏差が酸素濃度不足側のプレ噴射判定偏差より小さい、或いは、酸素濃度偏差が酸素濃度過剰側のプレ噴射判定偏差より大きければ、パイロット噴射後であり主噴射前に燃料を噴射するプレ噴射を追加するようにしている。 Also, according to the invention of claim 5, the oxygen concentration deviation in the pre-injection quantity determining means pre-injection determination deviation is less than the oxygen concentration deficient side, or the pre-injection determination deviation of the oxygen concentration deviation is oxygen-rich side If larger, a pre-injection for injecting fuel after the pilot injection and before the main injection is added.

これにより、プレ噴射によるプレ燃焼により主噴射による主燃焼の着火を確実にすることができ、未燃ガスの発生及び着火不良による振動を抑えることができるので、ドライバビリティを向上することができる。また、シリンダ圧力の急峻を抑制することができるので、燃焼音を低減することができる。   Thereby, ignition of main combustion by main injection can be ensured by pre-combustion by pre-injection, and vibration due to generation of unburned gas and poor ignition can be suppressed, so that drivability can be improved. In addition, since the steepness of the cylinder pressure can be suppressed, combustion noise can be reduced.

本発明の第1参考例に係る内燃機関の燃料噴射制御装置の概略構成図である。It is a schematic block diagram of the fuel-injection control apparatus of the internal combustion engine which concerns on the 1st reference example of this invention. 本発明の第1参考例に係る内燃機関の燃料噴射制御装置におけるECUの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of ECU in the fuel-injection control apparatus of the internal combustion engine which concerns on the 1st reference example of this invention. 本発明の第1参考例に係る酸素濃度偏差における主噴射時期補正量の特性図である。It is a characteristic view of the main injection timing correction amount in the oxygen concentration deviation according to the first reference example of the present invention. 本発明の第1参考例に係る燃料噴射制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the fuel-injection control which concerns on the 1st reference example of this invention. 本発明の第1参考例に係るクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示すグラフである。It is a graph which shows the change of the injection signal in the crank angle which concerns on the 1st reference example of this invention, a heat release rate, and a cylinder pressure. 本発明の第1参考例に係るクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示すグラフである。It is a graph which shows the change of the injection signal in the crank angle which concerns on the 1st reference example of this invention, a heat release rate, and a cylinder pressure. 本発明の第2参考例に係る内燃機関の燃料噴射制御装置におけるECUの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of ECU in the fuel-injection control apparatus of the internal combustion engine which concerns on the 2nd reference example of this invention. 本発明の第2参考例に係る酸素濃度偏差における追加プレ噴射量の特性図である。It is a characteristic view of the additional pre-injection amount in the oxygen concentration deviation according to the second reference example of the present invention. 本発明の第2参考例に係る燃料噴射制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the fuel-injection control which concerns on the 2nd reference example of this invention. 本発明の第2参考例に係る燃料噴射制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the fuel-injection control which concerns on the 2nd reference example of this invention. 本発明の第2参考例に係るクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示すグラフである。It is a graph which shows the change of the injection signal in the crank angle which concerns on the 2nd reference example of this invention, a heat release rate, and a cylinder pressure. 本発明の第2参考例に係るクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示すグラフである。It is a graph which shows the change of the injection signal in the crank angle which concerns on the 2nd reference example of this invention, a heat release rate, and a cylinder pressure. 本発明の実施例に係る内燃機関の燃料噴射制御装置におけるECUの内部構成を示すブロック図である。It is a block diagram showing the internal structure of an ECU in the fuel injection control apparatus for an internal combustion engine according to the actual施例of the present invention. 本発明の実施例に係る酸素濃度偏差におけるパイロット噴射量補正量の特性図である。It is a characteristic diagram of the pilot injection correction amount in the oxygen concentration deviation of the actual施例of the present invention. 本発明の実施例に係る酸素濃度偏差におけるパイロット噴射時期補正量の特性図である。It is a characteristic diagram of the pilot injection timing correction quantity in the oxygen concentration deviation of the actual施例of the present invention. 本発明の実施例に係る燃料噴射制御の制御ルーチンを示すフローチャートである。It is a flowchart showing a control routine of the fuel injection control according to the actual施例of the present invention. 本発明の実施例に係る燃料噴射制御の制御ルーチンを示すフローチャートである。It is a flowchart showing a control routine of the fuel injection control according to the actual施例of the present invention. 本発明の実施例に係る燃料噴射制御の制御ルーチンを示すフローチャートである。It is a flowchart showing a control routine of the fuel injection control according to the actual施例of the present invention. 本発明の実施例に係るクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示すグラフである。Injection signal at a crank angle of the actual施例of the present invention, is a graph showing a change in heat generation rate and the cylinder pressure. 本発明の実施例に係るクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示すグラフである。Injection signal at a crank angle of the actual施例of the present invention, is a graph showing a change in heat generation rate and the cylinder pressure.

以下、本発明の実施の形態を図面に基づき説明する。
[第1参考例]
図1は、本発明の第1参考例に係る内燃機関の燃料噴射制御装置の概略構成図を示し、図2は、本発明の第1参考例に係る内燃機関の燃料噴射制御装置におけるECUの内部構成を示すブロック図を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Reference Example]
Figure 1 shows a schematic block diagram of a fuel injection control device for an internal combustion engine according to the first exemplary embodiment of the present invention, FIG. 2, the ECU in the fuel injection control apparatus for an internal combustion engine according to the first exemplary embodiment of the present invention The block diagram which shows an internal structure is shown.

以下、本発明の第1参考例の内燃機関の燃料噴射制御装置の構成を説明する。
図1に示すように、エンジン1は多気筒の筒内直接噴射式内燃機関(例えばコモンレール式ディーゼルエンジン)であり、詳しくは、コモンレールに蓄圧された高圧燃料を各気筒の燃料噴射ノズル16に供給し、任意の噴射時期及び噴射量で当該燃料噴射ノズル16から各気筒の燃焼室11内に噴射可能な構成を成している。
Hereinafter, the configuration of the fuel injection control device for the internal combustion engine of the first reference example of the present invention will be described.
As shown in FIG. 1, the engine 1 is a multi-cylinder direct injection type internal combustion engine (for example, a common rail type diesel engine). Specifically, the high pressure fuel accumulated in the common rail is supplied to the fuel injection nozzle 16 of each cylinder. The fuel injection nozzle 16 can inject the fuel into the combustion chamber 11 of each cylinder at an arbitrary injection timing and injection amount.

また、エンジン1の各気筒には上下摺動可能なピストン3が設けられており、当該ピストン3はコンロッド4を介して図示しないクランクシャフトに連結されている。また、クランクシャフトの一端部には図示しないフライホイールが設けられており、当該フライホイールにはクランクシャフトの回転速度を検出するクランク角センサ18が設けられている。   Each cylinder of the engine 1 is provided with a piston 3 that can slide up and down. The piston 3 is connected to a crankshaft (not shown) via a connecting rod 4. Further, a flywheel (not shown) is provided at one end of the crankshaft, and a crank angle sensor 18 for detecting the rotational speed of the crankshaft is provided on the flywheel.

また、燃焼室11には吸気通路9と排気通路13が連通されている。
吸気通路9には、燃焼室11と吸気通路9の連通と遮断を行う吸気弁10が設けられており、排気通路13には、燃焼室11と排気通路13との連通と遮断を行う排気弁12が設けられている。
また、吸気通路9の上流には、新気を吸入する吸気ダクト5、吸入された新気中のゴミを取り除くエアークリーナ6、排気のエネルギを利用し吸入された新気を圧縮するターボチャージャ7の図示しないコンプレッサハウジング、圧縮された新気を冷却するインタークーラ8がそれぞれ連通するように設けられている。
In addition, an intake passage 9 and an exhaust passage 13 are communicated with the combustion chamber 11.
The intake passage 9 is provided with an intake valve 10 for connecting and blocking the combustion chamber 11 and the intake passage 9, and the exhaust passage 13 is an exhaust valve for connecting and blocking the combustion chamber 11 and the exhaust passage 13. 12 is provided.
Further, upstream of the intake passage 9, an intake duct 5 for sucking in fresh air, an air cleaner 6 for removing dust in the sucked fresh air, and a turbocharger 7 for compressing the sucked fresh air using exhaust energy. The compressor housing (not shown) and the intercooler 8 for cooling the compressed fresh air are provided so as to communicate with each other.

また、エアークリーナ6の下流でありインタークーラ8の上流にはエアーフローセンサ19が設けられており、燃焼室11に吸入される吸入空気の圧力を検出するブーストセンサ20、該吸入空気の温度を検出する吸気温度センサ21が吸気通路9内に突出するように設けられている。
また、排気通路13の下流には、上記ターボチャージャ7の排気を導入する図示しないタービンハウジング、通路内に触媒を備えた排気管14が連通するように設けられている。
In addition, an air flow sensor 19 is provided downstream of the air cleaner 6 and upstream of the intercooler 8. The boost sensor 20 detects the pressure of the intake air sucked into the combustion chamber 11, and the temperature of the intake air is adjusted. An intake air temperature sensor 21 to be detected is provided so as to protrude into the intake passage 9.
Further, downstream of the exhaust passage 13, a turbine housing (not shown) for introducing exhaust gas from the turbocharger 7 and an exhaust pipe 14 provided with a catalyst in the passage are provided so as to communicate with each other.

吸気通路9と排気通路13には、それぞれが連通するように排気の一部を吸気へ戻すEGR通路17が設けられており、EGR通路17には、EGR量(排気の流量)を調整するEGRバルブ15が設けられている。
そして、上記EGRバルブ15、燃料噴射ノズル16、クランク角センサ18、エアーフローセンサ19、ブーストセンサ20及び吸気温度センサ21等の各種装置や各種センサ類は、エンジン1の総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)及び中央演算処理装置(CPU)等を含んで構成される電子コントロールユニット(以下、ECUという)2と電気的に接続されており、当該ECU2は各種センサ類からの各情報に基づき各種装置を作動制御する。
The intake passage 9 and the exhaust passage 13 are provided with an EGR passage 17 for returning a part of the exhaust gas to the intake air so as to communicate with each other. The EGR passage 17 is an EGR that adjusts the EGR amount (exhaust flow rate). A valve 15 is provided.
Various devices and various sensors such as the EGR valve 15, the fuel injection nozzle 16, the crank angle sensor 18, the air flow sensor 19, the boost sensor 20, and the intake air temperature sensor 21 perform comprehensive control of the engine 1. And an electronic control unit (hereinafter referred to as ECU) 2 that includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), etc. The ECU 2 controls the operation of various devices based on information from various sensors.

詳しくは、図2を参照すると、本発明の第1参考例に係る内燃機関の燃料噴射制御装置におけるECU2の内部構成を示すブロック図で示されており、以下同図に基づきECU2の入出力関係について説明する。
ECU2の入力側には、燃料噴射ノズル16及びエアーフローセンサ19、ブーストセンサ20と吸気温度センサ21等のセンサ類が電気的に接続されており、これら各種装置及び各種センサ類からの検出情報が入力される。
Specifically, referring to FIG. 2, a block diagram showing an internal configuration of the ECU 2 in the fuel injection control device for an internal combustion engine according to the first reference example of the present invention is shown. Will be described.
Sensors such as a fuel injection nozzle 16, an air flow sensor 19, a boost sensor 20, and an intake air temperature sensor 21 are electrically connected to the input side of the ECU 2, and detection information from these various devices and various sensors is received. Entered.

一方、ECU2の出力側には、EGRバルブ21と燃料噴射ノズル22が電気的に接続されている。
これより、ECU2は、クランク角センサ18、エアーフローセンサ19での検出値を基に、目標酸素濃度設定部(目標酸素濃度設定手段)42、主噴射量・噴射時期設定部43及びパイロット噴射時期・噴射量設定部47にて予め実験にてエンジンが定常運転で最適な運転状態となるよう作成された目標となる吸気酸素濃度マップ、主噴射時期マップ、パイロット噴射量マップ及びパイロット噴射時期マップより現在のエンジン1の運転状況(エンジン回転数、負荷等)から目標酸素濃度、主噴射時期、パイロット噴射量及びパイロット噴射時期を設定する。
On the other hand, an EGR valve 21 and a fuel injection nozzle 22 are electrically connected to the output side of the ECU 2.
Thus, the ECU 2 sets the target oxygen concentration setting unit (target oxygen concentration setting means) 42, the main injection amount / injection timing setting unit 43, and the pilot injection timing based on the values detected by the crank angle sensor 18 and the air flow sensor 19.・ From the target intake oxygen concentration map, main injection timing map, pilot injection amount map, and pilot injection timing map, which are prepared in advance by the injection amount setting unit 47 so that the engine is in an optimum operating state in steady operation. The target oxygen concentration, main injection timing, pilot injection amount, and pilot injection timing are set from the current operating state of the engine 1 (engine speed, load, etc.).

また、エアーフローセンサ19、ブーストセンサ20と吸気温度センサ21の各々の検出値及び燃料噴射量検出部41で検出される燃料噴射ノズル16で噴射される燃料噴射量を基に酸素濃度算出部40にて新気の吸入量、吸気に再循環されるEGR量、再循環されるEGR量中の酸素濃度を算出し、燃焼室11へ吸入される吸入空気の酸素濃度を算出する。   The oxygen concentration calculation unit 40 is based on the detected values of the air flow sensor 19, the boost sensor 20 and the intake air temperature sensor 21 and the fuel injection amount injected by the fuel injection nozzle 16 detected by the fuel injection amount detection unit 41. Then, the intake amount of fresh air, the EGR amount recirculated to the intake air, and the oxygen concentration in the recirculated EGR amount are calculated, and the oxygen concentration of the intake air sucked into the combustion chamber 11 is calculated.

また、酸素濃度偏差算出部(酸素濃度偏差算出手段)44にて上記目標酸素濃度と上記燃焼室11へ吸入される空気の酸素濃度より酸素濃度偏差を算出し、主噴射時期補正部主噴射時期補正手段)45にて該酸素濃度偏差に基づいて上記主噴射時期を補正し、燃料噴射ノズル16へ噴射信号を供給する。
以下、このように構成された本発明の第1参考例に係る内燃機関の燃料噴射制御装置の作用及び効果について詳細に説明する。
An oxygen concentration deviation calculating unit (oxygen concentration deviation calculating means) 44 calculates an oxygen concentration deviation from the target oxygen concentration and the oxygen concentration of the air sucked into the combustion chamber 11, and a main injection timing correction unit main injection timing. The correction means) 45 corrects the main injection timing based on the oxygen concentration deviation, and supplies an injection signal to the fuel injection nozzle 16.
Hereinafter, the operation and effect of the fuel injection control device for an internal combustion engine according to the first reference example of the present invention configured as described above will be described in detail.

図3は、本発明の第1参考例に係る酸素濃度偏差における主噴射時期補正量の特性図であり、横軸は酸素濃度偏差、縦軸は主噴射時期補正量を示す。なお、該特性図は、エンジン回転数等のエンジン運転状況によりそれぞれ設定されている。図4は、ECU2の実行する燃料噴射制御の制御ルーチンを示すフローチャートを示し、図5は、目標酸素濃度に対し酸素濃度が濃い状態でのクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示し、図6は、目標酸素濃度に対し酸素濃度が薄い状態でのクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示す。なお、図5及び図6の横軸はクランク角、縦軸は噴射信号、熱発生率及びシリンダ圧力をそれぞれ示し、太線或いはハッチングありは第1参考例を、細線或いはハッチングなしは従来例を示す。なお、本参考例の説明においては酸素濃度不足側の主噴射時期補正判定偏差を第1の所定酸素濃度偏差、酸素濃度過剰側の主噴射時期補正判定偏差を第2の所定酸素濃度偏差と表す。 FIG. 3 is a characteristic diagram of the main injection timing correction amount in the oxygen concentration deviation according to the first reference example of the present invention, where the horizontal axis represents the oxygen concentration deviation and the vertical axis represents the main injection timing correction amount. The characteristic diagrams are set according to engine operating conditions such as engine speed. FIG. 4 is a flowchart showing a control routine of fuel injection control executed by the ECU 2, and FIG. 5 shows changes in the injection signal, heat generation rate, and cylinder pressure at the crank angle when the oxygen concentration is higher than the target oxygen concentration. FIG. 6 shows changes in the injection signal, the heat generation rate, and the cylinder pressure at the crank angle when the oxygen concentration is lower than the target oxygen concentration. 5 and 6, the horizontal axis indicates the crank angle, the vertical axis indicates the injection signal, the heat generation rate, and the cylinder pressure. The thick line or hatching indicates the first reference example, and the thin line or no hatching indicates the conventional example. . In the description of this reference example, the main injection timing correction determination deviation on the oxygen concentration deficient side is represented as a first predetermined oxygen concentration deviation, and the main injection timing correction determination deviation on the oxygen concentration excess side is represented as a second predetermined oxygen concentration deviation. .

図4に示すように、ステップS10では、目標酸素濃度設定部42にて予め実験にてエンジン1が定常運転で最適な運転状態となるよう作成された目標となる吸気酸素濃度マップよりエンジン1の運転状況から目標酸素濃度Dtを設定する。
ステップS12では、主噴射量・噴射時期設定部43にて予め実験にてエンジン1が最適な運転状態となるよう作成された目標となる主噴射時期マップよりエンジン1の運転状況から主噴射時期を設定する。
As shown in FIG. 4, in step S10, the target oxygen concentration setting unit 42 preliminarily performs an experiment on the engine 1 based on a target intake oxygen concentration map created so that the engine 1 is in an optimum operating state in steady operation. The target oxygen concentration Dt is set from the operating situation.
In step S12, the main injection timing is determined from the operation status of the engine 1 based on the target main injection timing map prepared in advance by the main injection amount / injection timing setting unit 43 so as to bring the engine 1 into an optimum operating state through experiments. Set.

ステップS14では、パイロット噴射量・噴射時期47にて予め実験にてエンジン1が最適な運転状態となるよう作成された目標となるパイロット噴射量マップ及びパイロット噴射時期マップよりエンジン1の運転状況からパイロット噴射量及びパイロット噴射時期を設定する。
ステップS16では、エアーフローセンサ19にて吸気ダクト5より吸入される新気の吸入量である新気吸入量Qaを検出する。
In step S14, the pilot is determined based on the operating state of the engine 1 based on the pilot injection amount map and the pilot injection timing map that are targets that have been prepared in advance so that the engine 1 is in an optimal operating state through experiments at the pilot injection amount / injection timing 47. Set the injection amount and pilot injection timing.
In step S16, the air flow sensor 19 detects a fresh air intake amount Qa which is an intake amount of fresh air drawn from the intake duct 5.

ステップS18では、ブーストセンサ20にて吸気通路9内の燃焼室11に吸入される吸入空気の圧力である吸入空気圧力Piを検出する。
ステップS20では、吸気温度センサ21にて吸気通路9内の燃焼室11に吸入される吸入空気の温度である吸入空気温度Tiを検出する。
ステップS22では、燃料噴射量検出部41にて燃料噴射ノズル16により燃焼室11内に噴射される燃料の量である燃料噴射量Qfを検出する。
In step S <b> 18, the boost sensor 20 detects the intake air pressure Pi that is the pressure of the intake air taken into the combustion chamber 11 in the intake passage 9.
In step S20, the intake air temperature Ti, which is the temperature of the intake air taken into the combustion chamber 11 in the intake passage 9, is detected by the intake temperature sensor 21.
In step S22, the fuel injection amount detection unit 41 detects a fuel injection amount Qf that is the amount of fuel injected into the combustion chamber 11 by the fuel injection nozzle 16.

ステップS24では、酸素濃度算出部40にて新気吸入量Qa、吸入空気圧力Pi及び吸入空気温度Tiより吸気通路9内へ循環されたEGR量Qeを算出する。
ステップS26では、酸素濃度算出部40にて燃料噴射量QfよりEGR量Qe中に含まれる酸素の濃度である酸素濃度Deを算出する。
ステップS28では、酸素濃度算出部40にて新気吸入量Qa、EGR量Qe及び酸素濃度Deより吸気通路9内の燃焼室11へ吸入される空気中の酸素濃度である吸気通路9内酸素濃度Diを算出する。
In step S24, the oxygen concentration calculation unit 40 calculates the EGR amount Qe circulated into the intake passage 9 from the fresh air intake amount Qa, the intake air pressure Pi, and the intake air temperature Ti.
In step S26, the oxygen concentration calculator 40 calculates an oxygen concentration De that is the concentration of oxygen contained in the EGR amount Qe from the fuel injection amount Qf.
In step S28, the oxygen concentration calculation unit 40 uses the fresh air intake amount Qa, the EGR amount Qe, and the oxygen concentration De to determine the oxygen concentration in the intake passage 9 that is the oxygen concentration in the air sucked into the combustion chamber 11 in the intake passage 9. Di is calculated.

ステップS30では、酸素濃度偏差算出部44にて下記式(1)より酸素濃度偏差ΔDを算出する。
酸素濃度偏差ΔD=吸気通路内酸素濃度Di−目標酸素濃度Dt・・・・(1)
ステップS32では、主噴射時期補正部45にて酸素濃度偏差ΔDが第1の所定酸素濃度偏差より小さいか、否かを判別する。判別結果が真(Yes)で第1の所定酸素濃度偏差より小さければ、ステップS36に進み、図3に示す主噴射時期補正量と酸素濃度偏差のグラフに基づき、主噴射の噴射時期を進角側に補正し、当該ルーチンを抜ける。判別結果が偽(No)で第1の所定酸素濃度偏差以上であれば、ステップS34に進む。
In step S30, the oxygen concentration deviation ΔD is calculated by the oxygen concentration deviation calculating unit 44 from the following equation (1).
Oxygen concentration deviation ΔD = Intake passage oxygen concentration Di−Target oxygen concentration Dt (1)
In step S32, the main injection timing correction unit 45 determines whether or not the oxygen concentration deviation ΔD is smaller than the first predetermined oxygen concentration deviation. If the determination result is true (Yes) and smaller than the first predetermined oxygen concentration deviation, the process proceeds to step S36, and the main injection timing is advanced based on the main injection timing correction amount and oxygen concentration deviation graph shown in FIG. And exit from the routine. If the determination result is false (No) and greater than or equal to the first predetermined oxygen concentration deviation, the process proceeds to step S34.

ステップS34では、主噴射時期補正部45にて酸素濃度偏差ΔDが第2の所定酸素濃度偏差より大きいか、否かを判別する。判別結果が真(Yes)で第2の所定酸素濃度偏差より大きければ、ステップS38に進み、図3に示す主噴射時期補正量と酸素濃度偏差のグラフに基づき、主噴射の噴射時期を遅角側に補正し、当該ルーチンを抜ける。判別結果が偽(No)で第2の所定酸素濃度偏差以下であれば、当該ルーチンを抜ける。   In step S34, the main injection timing correction unit 45 determines whether or not the oxygen concentration deviation ΔD is larger than the second predetermined oxygen concentration deviation. If the determination result is true (Yes) and larger than the second predetermined oxygen concentration deviation, the process proceeds to step S38, and the main injection timing is retarded based on the main injection timing correction amount and oxygen concentration deviation graph shown in FIG. And exit from the routine. If the determination result is false (No) and less than or equal to the second predetermined oxygen concentration deviation, the routine is exited.

このように、本発明の第1参考例に係る内燃機関の燃料噴射制御装置によれば、燃焼室11に吸入される吸気の酸素濃度に基づいて、主噴射の噴射時期を進角或いは遅角するようにしている。
これにより、図5に示す通り、燃焼室11へ吸入される空気の酸素濃度が濃い場合には、従来例(細線)と比較し本参考例(実線)では、シリンダ圧力の急峻な圧力上昇を抑制することができる。また、図6に示す通り、燃焼室11へ吸入される空気の酸素濃度が薄い場合には、従来例と比較し本参考例では着火不良及び燃焼が緩慢になることを抑制することができる。
Thus, according to the fuel injection control device for an internal combustion engine according to the first reference example of the present invention, the injection timing of the main injection is advanced or retarded based on the oxygen concentration of the intake air sucked into the combustion chamber 11. Like to do.
As a result, as shown in FIG. 5, when the oxygen concentration of the air sucked into the combustion chamber 11 is high, the cylinder pressure in this reference example (solid line) is sharper than that in the conventional example (thin line). Can be suppressed. Further, as shown in FIG. 6, when the oxygen concentration of the air sucked into the combustion chamber 11 is low, it is possible to suppress the ignition failure and the slow combustion in this reference example as compared with the conventional example.

従って、本発明の第1参考例に係る内燃機関の燃料噴射制御装置によれば、酸素濃度が濃い状態及び酸素濃度が薄い状態において、
(1)過渡時のシリンダ圧力の急峻による燃焼音を低減することができる。
(2)着火を確実できるので未燃ガスの発生を抑制し排気性状を良好にすることができる。
(3)着火不良による振動の発生を抑制することができ、ドライバビリティの悪化を防止することができる。
[第2参考例]
次に、第2参考例について説明する。
Therefore, according to the fuel injection control device for an internal combustion engine according to the first reference example of the present invention, in a state where the oxygen concentration is high and a state where the oxygen concentration is low,
(1) Combustion noise due to steep cylinder pressure during transition can be reduced.
(2) Since ignition can be ensured, generation of unburned gas can be suppressed and exhaust properties can be improved.
(3) Generation of vibration due to poor ignition can be suppressed and drivability can be prevented from deteriorating.
[Second Reference Example]
Next, a second reference example will be described.

図7は、本発明の第2参考例に係る内燃機関の燃料噴射制御装置におけるECUの内部構成を示すブロック図を示している。
図7に示すように第2参考例では、上記第1参考例に対して、プレ噴射量決定部46を追加しており、以下に上記第1参考例と異なる点に付いて説明する。なお、本参考例の説明においては酸素濃度不足側のプレ噴射判定偏差を第3の所定酸素濃度偏差、酸素濃度過剰側のプレ噴射判定偏差を第4の所定酸素濃度偏差と表す。
FIG. 7 is a block diagram showing the internal configuration of the ECU in the internal combustion engine fuel injection control apparatus according to the second reference example of the present invention.
In the second reference example, as shown in FIG. 7, with respect to the first reference example, and to add the pre-injection amount determining unit 46 will be described with the difference from the first reference example points below. In the description of this reference example, the pre-injection determination deviation on the oxygen concentration deficient side is represented as a third predetermined oxygen concentration deviation, and the pre-injection determination deviation on the oxygen concentration excess side is represented as a fourth predetermined oxygen concentration deviation.

ECU102は、酸素濃度偏差算出部44にて目標酸素濃度と燃焼室11へ吸入される空気の酸素濃度より酸素濃度偏差を算出し、主噴射時期補正部45にて該酸素濃度偏差に基づいて主噴射時期を補正し、プレ噴射量決定部(プレ噴射量決定手段)46にて上記酸素濃度偏差に基づき、パイロット噴射後であり主噴射前に微量の燃料を噴射するプレ噴射を追加し、燃料噴射ノズル16へ噴射信号を供給する。   The ECU 102 calculates the oxygen concentration deviation from the target oxygen concentration and the oxygen concentration of the air sucked into the combustion chamber 11 by the oxygen concentration deviation calculating unit 44, and the main injection timing correcting unit 45 calculates the main oxygen concentration based on the oxygen concentration deviation. The injection timing is corrected, and a pre-injection determining unit (pre-injection amount determining means) 46 adds a pre-injection that injects a small amount of fuel after the pilot injection and before the main injection based on the oxygen concentration deviation. An injection signal is supplied to the injection nozzle 16.

以下、このように構成された本発明の第2参考例に係る内燃機関の制御装置の作用及び効果について説明する。
図8は、本発明の第2参考例に係る酸素濃度偏差における追加プレ噴射量の特性図であり、横軸は酸素濃度偏差、縦軸は追加プレ噴射量を示す。なお、該特性図は、エンジン回転数等のエンジン1の運転状況によりそれぞれ設定されている。図9及び図10は、ECU102の実行する燃料噴射制御の制御ルーチンを示すフローチャートを示し、図11は、目標酸素濃度に対し酸素濃度が濃い状態でのクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示し、図12は、目標酸素濃度に対し酸素濃度が薄い状態でのクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示す。なお、図11及び図12の横軸はクランク角、縦軸は噴射信号、熱発生率及びシリンダ圧力をそれぞれ示し、太線或いはハッチングありは第2参考例を、細線或いはハッチングなしは従来例を示す。
The operation and effect of the control apparatus for an internal combustion engine according to the second reference example of the present invention configured as described above will be described below.
FIG. 8 is a characteristic diagram of the additional pre-injection amount in the oxygen concentration deviation according to the second reference example of the present invention, where the horizontal axis represents the oxygen concentration deviation and the vertical axis represents the additional pre-injection amount. The characteristic chart is set according to the operating state of the engine 1 such as the engine speed. 9 and 10 show a flowchart showing a control routine of fuel injection control executed by the ECU 102, and FIG. 11 shows an injection signal, a heat generation rate, and a cylinder at a crank angle when the oxygen concentration is higher than the target oxygen concentration. FIG. 12 shows changes in the injection signal, heat generation rate, and cylinder pressure at the crank angle when the oxygen concentration is lower than the target oxygen concentration. 11 and 12, the horizontal axis indicates the crank angle, the vertical axis indicates the injection signal, the heat generation rate, and the cylinder pressure. The thick line or hatching indicates the second reference example, and the thin line or no hatching indicates the conventional example. .

図9に示すように、ステップS10〜ステップS38では、第1参考例と同様に各設定値及び各検出値より酸素濃度偏差ΔDを算出し、主噴射時期補正部45にて酸素濃度偏差ΔDを基に主噴射時期を進角側或いは遅角側に補正し、ステップS40へ進む。
図10に示すように、ステップS40では、プレ噴射量決定部46にて酸素濃度偏差ΔDが第3の所定酸素濃度偏差より小さいか、否かを判別する。判別結果が真(Yes)で第3の所定酸素濃度偏差より小さければ、ステップS44に進み、図7に示す追加プレ噴射量と酸素濃度偏差のグラフに基づき、プレ噴射を追加し、当該ルーチンを抜ける。判別結果が偽(No)で第3の所定酸素濃度偏差以上であれば、ステップS42に進む。
As shown in FIG. 9, in steps S10 to S38, the oxygen concentration deviation ΔD is calculated from each set value and each detected value as in the first reference example, and the oxygen concentration deviation ΔD is calculated by the main injection timing correction unit 45. Based on this, the main injection timing is corrected to the advance side or the retard side, and the process proceeds to step S40.
As shown in FIG. 10, in step S40, the pre-injection amount determination unit 46 determines whether or not the oxygen concentration deviation ΔD is smaller than the third predetermined oxygen concentration deviation. If the determination result is true (Yes) and is smaller than the third predetermined oxygen concentration deviation, the process proceeds to step S44, pre-injection is added based on the graph of the additional pre-injection amount and oxygen concentration deviation shown in FIG. Exit. If the determination result is false (No) and greater than or equal to the third predetermined oxygen concentration deviation, the process proceeds to step S42.

ステップS42では、プレ噴射量決定部46にて酸素濃度偏差ΔDが第4の所定酸素濃度偏差より大きいか、否かを判別する。判別結果が真(Yes)で第4の所定酸素濃度偏差より大きければ、ステップS44に進み、図8に示す追加プレ噴射量と酸素濃度偏差のグラフに基づき、プレ噴射を追加し、当該ルーチンを抜ける。判別結果が偽(No)で第4の所定酸素濃度偏差以下であれば、当該ルーチンを抜ける。   In step S42, the pre-injection amount determination unit 46 determines whether or not the oxygen concentration deviation ΔD is larger than the fourth predetermined oxygen concentration deviation. If the determination result is true (Yes) and is larger than the fourth predetermined oxygen concentration deviation, the process proceeds to step S44, and the pre-injection is added based on the graph of the additional pre-injection amount and the oxygen concentration deviation shown in FIG. Exit. If the determination result is false (No) and less than or equal to the fourth predetermined oxygen concentration deviation, the routine is exited.

このように、本発明の第2参考例に係る内燃機関の燃料噴射制御装置によれば、燃焼室11に吸入される吸気の酸素濃度に基づいて、主噴射の噴射時期を進角或いは遅角するようにし、パイロット噴射後であり主噴射前に微量の燃料を噴射するプレ噴射を追加している。
これにより、図11に示す通り、燃焼室11へ吸入される空気の酸素濃度が濃い場合には、従来例(細線)と比較し本参考例(実線)では、プレ噴射を追加することにより、主燃焼の着火遅れを強制的に低減し、更に安定してシリンダ圧力の急峻な圧力上昇を抑制することができる。また、図12に示す通り、燃焼室11へ吸入される空気の酸素濃度が薄い場合には、従来例と比較し本参考例では、プレ噴射を追加することにより更に着火不良及び燃焼が緩慢になることを抑制することができるので、更により燃焼を安定させることができる。
Thus, according to the fuel injection control device for an internal combustion engine according to the second reference example of the present invention, the injection timing of the main injection is advanced or retarded based on the oxygen concentration of the intake air sucked into the combustion chamber 11. Thus, a pre-injection for injecting a small amount of fuel after the pilot injection and before the main injection is added.
Thus, as shown in FIG. 11, when the oxygen concentration of the air sucked into the combustion chamber 11 is high, in this reference example (solid line) compared to the conventional example (thin line), by adding pre-injection, It is possible to forcibly reduce the ignition delay of the main combustion, and to suppress a steep increase in the cylinder pressure more stably. Further, as shown in FIG. 12, when the oxygen concentration of the air sucked into the combustion chamber 11 is low, in this reference example, by adding pre-injection, ignition failure and combustion are further slowed down compared to the conventional example. Therefore, combustion can be further stabilized.

従って、本発明の第2参考例に係る内燃機関の燃料噴射制御装置によれば、酸素濃度が濃い状態及び酸素濃度が薄い状態において、
(1)更に過渡時のシリンダ圧力の急峻による燃焼音を低減することができる。
(2)更に着火不良による振動の発生を抑制することができ、ドライバビリティの悪化を防止することができる。
[実施例]
次に、本発明の実施例について説明する。
Therefore, according to the fuel injection control device for an internal combustion engine according to the second reference example of the present invention, in a state where the oxygen concentration is high and a state where the oxygen concentration is low,
(1) Further, combustion noise due to steep cylinder pressure during transition can be reduced.
(2) Further, it is possible to suppress the occurrence of vibration due to poor ignition, and it is possible to prevent deterioration of drivability.
[Real施例]
Next, examples of the present invention will be described.

図13は、本発明の実施例に係る内燃機関の燃料噴射制御装置におけるECUの内部構成を示すブロック図を示している。なお、本実施例の説明においては酸素濃度不足側のパイロット噴射量補正判定偏差を第5の所定酸素濃度偏差、酸素濃度過剰側のパイロット噴射量補正判定偏差を第6の所定酸素濃度偏差、酸素濃度不足側のパイロット噴射時期補正判定偏差を第7の所定酸素濃度偏差、酸素濃度過剰側のパイロット噴射時期補正判定偏差を第8の所定酸素濃度偏差と表す。 Figure 13 is a block diagram showing the internal structure of an ECU in the fuel injection control apparatus for an internal combustion engine according to the actual施例of the present invention. In the description of the present embodiment, the pilot injection amount correction determination deviation on the oxygen concentration deficiency side is the fifth predetermined oxygen concentration deviation, the pilot injection amount correction determination deviation on the oxygen concentration excess side is the sixth predetermined oxygen concentration deviation, oxygen The pilot injection timing correction determination deviation on the insufficient concentration side is represented as a seventh predetermined oxygen concentration deviation, and the pilot injection timing correction determination deviation on the oxygen concentration excess side is represented as an eighth predetermined oxygen concentration deviation.

図13に示すように実施例では、上記第1参考例に対して、パイロット噴射量補正部(パイロット噴射量補正手段)48及びパイロット噴射時期補正部(パイロット噴射時期補正手段)49を追加しており、以下に上記第1参考例と異なる点に付いて説明する。
ECU202は、酸素濃度偏差算出部44にて目標酸素濃度と燃焼室11へ吸入される空気の酸素濃度より酸素濃度偏差を算出し、主噴射時期補正部45にて該酸素濃度偏差に基づいて主噴射時期を補正し、パイロット噴射量補正部48及びパイロット噴射時期補正部49にて上記酸素濃度偏差に基づき、パイロット噴射の噴射量及び噴射時期を補正し、燃料噴射ノズル16へ噴射信号を供給する。
As shown in FIG. 13, in the embodiment, a pilot injection amount correction unit (pilot injection amount correction unit) 48 and a pilot injection timing correction unit (pilot injection timing correction unit) 49 are added to the first reference example. Differences from the first reference example will be described below.
The ECU 202 calculates the oxygen concentration deviation from the target oxygen concentration and the oxygen concentration of the air sucked into the combustion chamber 11 by the oxygen concentration deviation calculating unit 44, and the main injection timing correcting unit 45 calculates the main oxygen concentration based on the oxygen concentration deviation. The injection timing is corrected, the pilot injection amount correction unit 48 and the pilot injection timing correction unit 49 correct the injection amount and injection timing of the pilot injection based on the oxygen concentration deviation, and supply the injection signal to the fuel injection nozzle 16. .

以下、このように構成された本発明の実施例に係る内燃機関の燃料噴射制御装置の作用及び効果について説明する。
図14は、本発明の実施例に係る酸素濃度偏差におけるパイロット噴射量補正量の特性図であり、横軸は酸素濃度偏差、縦軸はパイロット噴射量補正量を示し、図15は、酸素濃度偏差におけるパイロット噴射時期補正量の特性図であり、横軸は酸素濃度偏差、縦軸はパイロット噴射時期補正量を示す。なお、該特性図は、エンジン回転数等のエンジン1の運転状況によりそれぞれ設定されている。図16、図17及び図18は、ECU202の実行する燃料噴射制御の制御ルーチンを示すフローチャートを示す。図19は、目標酸素濃度に対し酸素濃度が濃い状態でのクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示し、図20は、目標酸素濃度に対し酸素濃度が薄い状態でのクランク角における噴射信号、熱発生率及びシリンダ圧力の変化を示す。なお、図19及び図20の横軸はクランク角、縦軸は噴射信号、熱発生率及びシリンダ圧力をそれぞれ示し、太線或いはハッチングありは実施例を、細線或いはハッチングなしは従来例を示す。
Hereinafter, a description of the operation and effect of the fuel injection control apparatus for an internal combustion engine according to the actual施例of the present invention configured this way.
Figure 14 is a characteristic diagram of the pilot injection correction amount in the oxygen concentration deviation of the actual施例of the present invention, the horizontal axis represents the oxygen concentration deviation and the vertical axis represents the pilot injection quantity correction, FIG. 15, the oxygen It is a characteristic view of the pilot injection timing correction amount in the concentration deviation, the horizontal axis indicates the oxygen concentration deviation, and the vertical axis indicates the pilot injection timing correction amount. The characteristic chart is set according to the operating state of the engine 1 such as the engine speed. FIGS. 16, 17 and 18 are flowcharts showing a control routine of fuel injection control executed by the ECU 202. FIG. 19 shows changes in the injection signal, heat generation rate, and cylinder pressure at the crank angle when the oxygen concentration is higher than the target oxygen concentration, and FIG. 20 shows the crank when the oxygen concentration is lower than the target oxygen concentration. The change in injection signal, heat release rate and cylinder pressure at the corners is shown. 19 and 20, the horizontal axis indicates the crank angle, the vertical axis indicates the injection signal, the heat generation rate, and the cylinder pressure. The thick line or hatched indicates the present embodiment, and the thin line or no hatch indicates the conventional example.

図16に示すように、ステップS10〜ステップS38では、第1参考例と同様に各設定値及び各検出値より酸素濃度偏差ΔDを算出し、主噴射時期補正部45にて酸素濃度偏差ΔDを基に主噴射時期を進角側或いは遅角側に補正し、ステップS50へ進む。
図17に示すように、ステップS50では、パイロット噴射量補正部48にて酸素濃度偏差ΔDが第5の所定酸素濃度偏差より小さいか、否かを判別する。判別結果が真(Yes)で第5の所定酸素濃度偏差より小さければ、ステップS54に進み、図14に示すパイロット噴射量補正量と酸素濃度偏差のグラフに基づき、パイロット噴射の噴射量を増量側に補正し、ステップS60に進む。判別結果が偽(No)で第5の所定酸素濃度偏差以上であれば、ステップS52に進む。
As shown in FIG. 16, in steps S10 to S38, the oxygen concentration deviation ΔD is calculated from each set value and each detected value as in the first reference example, and the oxygen concentration deviation ΔD is calculated by the main injection timing correction unit 45. Based on this, the main injection timing is corrected to the advance side or the retard side, and the process proceeds to step S50.
As shown in FIG. 17, in step S50, the pilot injection amount correction unit 48 determines whether or not the oxygen concentration deviation ΔD is smaller than the fifth predetermined oxygen concentration deviation. If the determination result is true (Yes) and smaller than the fifth predetermined oxygen concentration deviation, the process proceeds to step S54, and the pilot injection amount is increased on the increase side based on the pilot injection amount correction amount and oxygen concentration deviation graph shown in FIG. The process proceeds to step S60. If the determination result is false (No) and greater than or equal to the fifth predetermined oxygen concentration deviation, the process proceeds to step S52.

ステップS52では、パイロット噴射量補正部48にて酸素濃度偏差ΔDが第6の所定酸素濃度偏差より大きいか、否かを判別する。判別結果が真(Yes)で第6の所定酸素濃度偏差より大きければ、ステップS56に進み、図14に示すパイロット噴射量補正量と酸素濃度偏差のグラフに基づき、パイロット噴射の噴射量を減量側に補正し、ステップS60に進む。判別結果が偽(No)で第6の所定酸素濃度偏差以下であれば、ステップS60に進む。   In step S52, the pilot injection amount correction unit 48 determines whether or not the oxygen concentration deviation ΔD is larger than a sixth predetermined oxygen concentration deviation. If the determination result is true (Yes) and greater than the sixth predetermined oxygen concentration deviation, the process proceeds to step S56, and the pilot injection amount is reduced on the basis of the pilot injection amount correction amount and oxygen concentration deviation graph shown in FIG. The process proceeds to step S60. If the determination result is false (No) and less than or equal to the sixth predetermined oxygen concentration deviation, the process proceeds to step S60.

図18に示すように、ステップS60では、パイロット噴射時期補正部49にて酸素濃度偏差ΔDが第7の所定酸素濃度偏差より小さいか、否かを判別する。判別結果が真(Yes)で第7の所定酸素濃度偏差より小さければ、ステップS64に進み、図15に示すパイロット噴射時期補正量と酸素濃度偏差のグラフに基づき、パイロット噴射の噴射時期を遅角側に補正し、当該ルーチンを抜ける。判別結果が偽(No)で第7の所定酸素濃度偏差以上であれば、ステップS62に進む。   As shown in FIG. 18, in step S60, the pilot injection timing correction unit 49 determines whether or not the oxygen concentration deviation ΔD is smaller than the seventh predetermined oxygen concentration deviation. If the determination result is true (Yes) and smaller than the seventh predetermined oxygen concentration deviation, the process proceeds to step S64, and the injection timing of pilot injection is retarded based on the pilot injection timing correction amount and oxygen concentration deviation graph shown in FIG. And exit from the routine. If the determination result is false (No) and greater than or equal to the seventh predetermined oxygen concentration deviation, the process proceeds to step S62.

ステップS62では、パイロット噴射時期補正部49にて酸素濃度偏差ΔDが第8の所定酸素濃度偏差より大きいか、否かを判別する。判別結果が真(Yes)で第8の所定酸素濃度偏差より大きければ、ステップS66に進み、図15に示すパイロット噴射時期補正量と酸素濃度偏差のグラフに基づき、パイロット噴射の噴射時期を進角側に補正し、当該ルーチンを抜ける。判別結果が偽(No)で第8の所定酸素濃度偏差以下であれば、当該ルーチンを抜ける。   In step S62, the pilot injection timing correction unit 49 determines whether or not the oxygen concentration deviation ΔD is larger than an eighth predetermined oxygen concentration deviation. If the determination result is true (Yes) and greater than the eighth predetermined oxygen concentration deviation, the process proceeds to step S66, and the pilot injection timing is advanced based on the pilot injection timing correction amount and oxygen concentration deviation graph shown in FIG. And exit from the routine. If the determination result is false (No) and less than or equal to the eighth predetermined oxygen concentration deviation, the routine is exited.

このように、本発明の実施例に係る内燃機関の制御装置によれば、燃焼室11に吸入される吸気の酸素濃度にもとづいて、主噴射の噴射時期を進角或いは遅角するようにし、且つパイロット噴射の噴射量を増量或いは減量し、パイロット噴射の噴射時期を進角或いは遅角するようにしている。
これにより、図19に示す通り、燃焼室11へ吸入される空気の酸素濃度が濃い場合には、従来例(細線)と比較し本実施例(実線)では、主噴射時期を遅角に、パイロット噴射量を減量し、噴射時期を進角することによりシリンダ圧力の急峻な圧力上昇を抑制することができる。また、図20に示す通り、燃焼室11へ吸入される空気の酸素濃度が薄い場合には、従来例と比較し本実施例では、主噴射時期を進角にパイロット噴射量を増量し、噴射時期を遅角することにより着火不良及び燃焼が緩慢になることを抑制することができ、着火および燃焼を安定させることができる。
Thus, according to the control apparatus for an internal combustion engine according to the actual施例of the present invention, based on the oxygen concentration of intake air sucked into the combustion chamber 11, so as to advance or retard the injection timing of the main injection In addition, the injection amount of the pilot injection is increased or decreased, and the injection timing of the pilot injection is advanced or retarded.
Accordingly, as shown in FIG. 19, when the oxygen concentration of the air sucked into the combustion chamber 11 is high, the main injection timing is retarded in this embodiment (solid line) compared to the conventional example (thin line). By reducing the pilot injection amount and advancing the injection timing, it is possible to suppress a sharp increase in cylinder pressure. Further, as shown in FIG. 20, when the oxygen concentration of the air sucked into the combustion chamber 11 is low, in this embodiment, the pilot injection amount is increased with the main injection timing as an advance, compared with the conventional example, and the injection is performed. By retarding the timing, it is possible to suppress poor ignition and slowing of combustion, and to stabilize ignition and combustion.

従って、本発明の実施例に係る内燃機関の燃料噴射制御装置によれば、酸素濃度が濃い状態及び酸素濃度が薄い状態において、
(1)更に過渡時のシリンダ圧力の急峻による燃焼音を低減することができる。
(2)更に着火不良による振動の発生を抑制することができ、ドライバビリティの悪化を防止することができる。
Therefore, according to the fuel injection control apparatus for an internal combustion engine according to the actual施例of the present invention, the oxygen-enriched condition and oxygen concentration in the thin state,
(1) Further, combustion noise due to steep cylinder pressure during transition can be reduced.
(2) Further, it is possible to suppress the occurrence of vibration due to poor ignition, and it is possible to prevent deterioration of drivability.

以上で発明の実施形態の説明を終えるが、本発明の形態は実施形態に限定されるものではない。
例えば、上記実施形態では、エンジン1をコモンレール式ディーゼルエンジンとしているが、これに限定されるものではなく、燃料噴射量及び燃料噴射時期を適宜コントロールできればよい。
また、同様にターボチャージャ7及びインタークーラ8を必ずしも備える必要はない。
また、同様に酸素濃度算出部11にて燃焼室11へ吸入される吸入空気の酸素濃度を算出しているが、これに限定されるものではなく、吸気通路9内へ突出するようにリニアO2センサを設け、吸気通路9内の酸素濃度を検出するようにしてもよい。
Although the description of the embodiment of the invention is finished as above, the embodiment of the present invention is not limited to the embodiment.
For example, in the above embodiment, the engine 1 is a common rail type diesel engine, but the present invention is not limited to this, and it is only necessary to appropriately control the fuel injection amount and the fuel injection timing.
Similarly, the turbocharger 7 and the intercooler 8 are not necessarily provided.
Similarly, the oxygen concentration calculation unit 11 calculates the oxygen concentration of the intake air sucked into the combustion chamber 11. However, the present invention is not limited to this, and the linear O2 protrudes into the intake passage 9. A sensor may be provided to detect the oxygen concentration in the intake passage 9.

また、上記実施形態では、酸素濃度不足側の各酸素濃度偏差をそれぞれ第1、第3、第5、第7の所定酸素濃度偏差と区別したが、これらの一部または全部が同じ値でもよい。
また、同様に酸素濃度過剰側の各酸素濃度偏差をそれぞれ第2、第4、第6、第8の所定酸素濃度偏差と区別したが、これらの一部または全部が同じ値でもよい。
In the above embodiment, each oxygen concentration deviation on the oxygen concentration deficient side is distinguished from each of the first, third, fifth, and seventh predetermined oxygen concentration deviations, but some or all of these may be the same value. .
Similarly, each oxygen concentration deviation on the oxygen concentration excess side is distinguished from the second, fourth, sixth, and eighth predetermined oxygen concentration deviations, respectively, but some or all of these may be the same value.

1 エンジン(内燃機関)
2,102,202 電子コントロールユニット
9 吸気通路
11 燃焼室
13 排気通路
16 燃料噴射ノズル
19 エアーフローセンサ
20 ブーストセンサ
21 吸気温度センサ
40 酸素濃度算出部
41 燃料噴射量検出部
42 目標酸素濃度設定部(目標酸素濃度設定手段)
43 主噴射量・噴射時期設定部
44 酸素濃度偏差算出部(ズレ側判定手段及び酸素濃度偏差算出手段)
45 主噴射時期補正部(主噴射時期補正手段)
46 プレ噴射量決定部(プレ噴射量決定手段)
47 パイロット噴射量・噴射時期設定部
48 パイロット噴射量補正部(パイロット噴射量補正手段)
49 パイロット噴射時期補正部(パイロット噴射時期補正手段)
1 engine (internal combustion engine)
2, 102, 202 Electronic control unit 9 Intake passage 11 Combustion chamber 13 Exhaust passage 16 Fuel injection nozzle 19 Air flow sensor 20 Boost sensor 21 Intake temperature sensor 40 Oxygen concentration calculation unit 41 Fuel injection amount detection unit 42 Target oxygen concentration setting unit ( Target oxygen concentration setting means)
43 Main injection amount / injection timing setting unit 44 Oxygen concentration deviation calculation unit (deviation side determination means and oxygen concentration deviation calculation means)
45 Main injection timing correction unit (Main injection timing correction means)
46 Pre-injection amount determining unit (pre-injection amount determining means)
47 Pilot injection amount / injection timing setting unit 48 Pilot injection amount correcting unit (pilot injection amount correcting means)
49 Pilot injection timing correction unit (pilot injection timing correction means)

Claims (3)

燃料を噴射する主噴射と該主噴射に先立つパイロット噴射とを行い、標準運転状態の主噴射時期とパイロット噴射量とパイロット噴射時期が設定された内燃機関の燃料噴射制御装置において、
運転時に吸気通路より燃焼室へ吸入される吸入空気の目標となる酸素濃度を設定する目標酸素濃度設定手段と、
前記燃焼室へ吸入される前記吸入空気の実際の酸素濃度から前記目標となる酸素濃度の減算により酸素濃度偏差を算出する酸素濃度偏差算出手段と、
前記酸素濃度偏差算出手段算出結果に基づき、前記標準運転状態の主噴射の噴射時期を前記酸素濃度偏差に応じて補正する主噴射時期補正手段と、
前記酸素濃度偏差算出手段の算出結果に基づき、前記標準運転状態のパイロット噴射の噴射時期を前記酸素濃度偏差に応じて補正するパイロット噴射時期補正手段と、を備え、
前記主噴射時期補正手段は、前記酸素濃度偏差が酸素濃度不足側の閾値である主噴射時期補正判定偏差より小さければ、標準運転状態の主噴射の噴射時期に対して、噴射時期を早く噴射するように主噴射時期を補正し、前記酸素濃度偏差が酸素濃度過剰側の閾値である主噴射時期補正判定偏差より大きければ、該標準運転状態の主噴射の噴射時期に対して、噴射時期を遅く噴射するように主噴射時期を補正し、
前記パイロット噴射時期補正手段は、前記酸素濃度偏差が酸素濃度不足側の閾値であるパイロット噴射時期補正判定偏差より小さければ、標準運転状態のパイロット噴射時期に対して、噴射時期を遅く噴射するようにパイロット噴射時期を補正し、前記酸素濃度偏差が酸素濃度過剰側の閾値であるパイロット噴射時期補正判定偏差より大きければ、該標準運転状態のパイロット噴射時期に対して、噴射時期を早く噴射するようにパイロット噴射時期を補正することを特徴とする内燃機関の燃料噴射制御装置。
In a fuel injection control device for an internal combustion engine in which main injection for injecting fuel and pilot injection prior to the main injection are performed, and a main injection timing, a pilot injection amount, and a pilot injection timing in a standard operation state are set,
Target oxygen concentration setting means for setting a target oxygen concentration of intake air that is sucked into the combustion chamber from the intake passage during operation;
Oxygen concentration deviation calculating means for calculating an oxygen concentration deviation by subtracting the target oxygen concentration from the actual oxygen concentration of the intake air sucked into the combustion chamber;
Main injection timing correcting means for correcting the injection timing of the main injection in the standard operation state according to the oxygen concentration deviation based on the calculation result of the oxygen concentration deviation calculating means ;
Pilot injection timing correcting means for correcting the injection timing of pilot injection in the standard operation state according to the oxygen concentration deviation based on the calculation result of the oxygen concentration deviation calculating means ,
If the oxygen concentration deviation is smaller than a main injection timing correction determination deviation which is a threshold value on the oxygen concentration deficient side, the main injection timing correction means injects the injection timing earlier than the injection timing of the main injection in the standard operation state. If the oxygen concentration deviation is larger than the main injection timing correction determination deviation which is a threshold value on the oxygen concentration excess side, the injection timing is delayed with respect to the injection timing of the main injection in the standard operation state. Correct the main injection timing to inject,
If the oxygen concentration deviation is smaller than the pilot injection timing correction determination deviation which is a threshold value on the oxygen concentration deficient side, the pilot injection timing correcting means may inject the injection timing later than the pilot injection timing in the standard operation state. If the pilot injection timing is corrected and the oxygen concentration deviation is larger than the pilot injection timing correction determination deviation which is a threshold value on the oxygen concentration excess side, the injection timing is injected earlier than the pilot injection timing in the standard operation state. the fuel injection control device for an internal combustion engine, characterized that you correct the pilot injection timing.
前記酸素濃度偏差が酸素濃度不足側の閾値であるパイロット噴射量補正判定偏差より小さければ、標準運転状態のパイロット噴射量に対して、多く燃料を噴射するようにパイロット噴射量を補正し、前記酸素濃度偏差が酸素濃度過剰側の閾値であるパイロット噴射量補正判定偏差より大きければ、該標準運転状態のパイロット噴射量に対して、少なく燃料を噴射するようにパイロット噴射量を補正するパイロット噴射量補正手段を備えることを特徴とする、請求項に記載の内燃機関の燃料噴射制御装置。 If the oxygen concentration deviation is smaller than the pilot injection amount correction determination deviation which is a threshold value on the oxygen concentration deficient side , the pilot injection amount is corrected so as to inject more fuel than the pilot injection amount in the standard operation state, and the oxygen If the concentration deviation is larger than the pilot injection amount correction judgment deviation that is the threshold value on the oxygen concentration excess side , the pilot injection amount correction that corrects the pilot injection amount so as to inject less fuel than the pilot injection amount in the standard operation state The fuel injection control device for an internal combustion engine according to claim 1 , further comprising means. 前記酸素濃度偏差が酸素濃度不足側の閾値であるプレ噴射判定偏差より小さい、或いは、該酸素濃度偏差が酸素濃度過剰側の閾値であるプレ噴射判定偏差より大きければ、前記パイロット噴射後であり前記主噴射前に燃料を噴射するプレ噴射を追加し、該プレ噴射の噴射量を決定するプレ噴射量決定手段を備えることを特徴とする、請求項1又は2に記載の内燃機関の燃料噴射制御装置。 If the oxygen concentration deviation is smaller than the pre-injection determination deviation which is the threshold value on the oxygen concentration deficient side, or if the oxygen concentration deviation is larger than the pre-injection determination deviation which is the threshold value on the oxygen concentration excess side, then after the pilot injection, 3. The fuel injection control for an internal combustion engine according to claim 1, further comprising pre-injection amount determining means for adding a pre-injection for injecting fuel before the main injection and determining an injection amount of the pre-injection. apparatus.
JP2009253158A 2009-11-04 2009-11-04 Fuel injection control device for internal combustion engine Expired - Fee Related JP5182527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009253158A JP5182527B2 (en) 2009-11-04 2009-11-04 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253158A JP5182527B2 (en) 2009-11-04 2009-11-04 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011099344A JP2011099344A (en) 2011-05-19
JP5182527B2 true JP5182527B2 (en) 2013-04-17

Family

ID=44190728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253158A Expired - Fee Related JP5182527B2 (en) 2009-11-04 2009-11-04 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5182527B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141807B1 (en) * 2011-08-31 2013-02-13 株式会社豊田自動織機 Combustion control device
GB2497293B (en) * 2011-12-05 2018-01-10 Gm Global Tech Operations Llc Method for operating an internal combustion engine
JP6052190B2 (en) * 2014-01-20 2016-12-27 マツダ株式会社 Fuel injection control device for diesel engine
JP6332071B2 (en) 2015-02-12 2018-05-30 株式会社デンソー Fuel injection control device
JP6583380B2 (en) * 2017-10-12 2019-10-02 マツダ株式会社 Diesel engine control device and control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4337183B2 (en) * 1999-09-29 2009-09-30 マツダ株式会社 Engine control device and engine control device abnormality diagnosis device
JP4238741B2 (en) * 2004-02-20 2009-03-18 トヨタ自動車株式会社 Fuel injection control device for compression ignition internal combustion engine
JP4492192B2 (en) * 2004-04-13 2010-06-30 いすゞ自動車株式会社 diesel engine
JP4793381B2 (en) * 2007-12-07 2011-10-12 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP2009156153A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Fuel injection control system for internal combustion engine

Also Published As

Publication number Publication date
JP2011099344A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
US20150192087A1 (en) Fuel injection control device of diesel engine
JP6052190B2 (en) Fuel injection control device for diesel engine
WO2011099405A1 (en) Fuel injection control device and method for diesel engine
JP4802879B2 (en) Control device for internal combustion engine
JP5182527B2 (en) Fuel injection control device for internal combustion engine
JP2006291971A (en) Fuel injection control device of cylinder injection type internal combustion engine
US20190093592A1 (en) Combustion control device for compression autoignition engine
US8387586B2 (en) Fuel injection control apparatus of internal combustion engine
JP6175773B2 (en) Combustion control device
JP4985680B2 (en) Control device for compression ignition type internal combustion engine
JP3845866B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP5158245B1 (en) Combustion control device
WO2013031380A1 (en) Combustion control apparatus
JP2007303302A (en) Combustion control system for compression ignition type internal combustion engine
JP5075041B2 (en) Fuel injection control device for internal combustion engine
JP3835238B2 (en) Diesel engine control device
JP6603150B2 (en) Fuel injection control device for internal combustion engine
JP2008121494A (en) Controller of internal combustion engine
JP2010031745A (en) Control device of internal combustion engine
JP6283959B2 (en) Engine control device
JP5569552B2 (en) Combustion control device
JP6327477B2 (en) Engine control device
US9995265B2 (en) Control device for internal combustion engine
JP6354958B2 (en) Engine control device
JP6607138B2 (en) Exhaust gas recirculation control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130101

R151 Written notification of patent or utility model registration

Ref document number: 5182527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees