JP5182154B2 - Optical communication system - Google Patents

Optical communication system Download PDF

Info

Publication number
JP5182154B2
JP5182154B2 JP2009049216A JP2009049216A JP5182154B2 JP 5182154 B2 JP5182154 B2 JP 5182154B2 JP 2009049216 A JP2009049216 A JP 2009049216A JP 2009049216 A JP2009049216 A JP 2009049216A JP 5182154 B2 JP5182154 B2 JP 5182154B2
Authority
JP
Japan
Prior art keywords
optical
signal
polarization
continuous light
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009049216A
Other languages
Japanese (ja)
Other versions
JP2010206473A (en
Inventor
逸郎 森田
英憲 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2009049216A priority Critical patent/JP5182154B2/en
Publication of JP2010206473A publication Critical patent/JP2010206473A/en
Application granted granted Critical
Publication of JP5182154B2 publication Critical patent/JP5182154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、直接受信方式を使用する光通信システムにおいて、光搬送波の偏波面が回転することにより生じるフェージングを低減するための技術に関する。   The present invention relates to a technique for reducing fading caused by rotation of a polarization plane of an optical carrier wave in an optical communication system using a direct reception system.

直交周波数分割多重(OFDM)技術は、送信データを複数のサブキャリアを用いて並列に伝送する方式であり、各サブキャリアのシンボルレートが比較的低くなるためシンボル間干渉に強く、デジタル地上波放送や、無線LAN(Local Aera Network)システムで既に使用されており、光通信システムへの適用についても検討されている(例えば、非特許文献1、参照。)。   Orthogonal frequency division multiplexing (OFDM) technology is a method of transmitting transmission data in parallel using a plurality of subcarriers. Since the symbol rate of each subcarrier is relatively low, it is resistant to intersymbol interference, and digital terrestrial broadcasting In addition, it is already used in a wireless local area network (LAN) system, and its application to an optical communication system is also being studied (for example, see Non-Patent Document 1).

光OFDM通信は、光受信装置における処理によりコヒーレント方式と直接受信方式に分類することができる。コヒーレント方式とは、光受信装置に局発光源を設け、局発光と受信光信号を干渉させた信号をフォトダイードで電気信号に変換する方式であり、直接受信方式とは、光受信装置のフォトダイオードが受信光信号を電気信号に直接変換、より詳しくは、受信光信号中の光搬送波と情報に対応する光信号の干渉信号を電気信号に変換する方式である。   Optical OFDM communication can be classified into a coherent system and a direct reception system by processing in the optical receiver. The coherent method is a method in which a local light source is provided in the optical receiving device, and a signal obtained by interfering the local light and the received optical signal is converted into an electric signal by a photo diode. The direct receiving method is a photodiode of the optical receiving device. In this method, the received optical signal is directly converted into an electrical signal, and more specifically, the optical carrier wave in the received optical signal and the interference signal of the optical signal corresponding to information are converted into an electrical signal.

コヒーレント方式は、直接受信方式に比べ、信号対雑音比等の信号特性の点で優れているが、局発光と受信光信号を干渉させるための部品に加え、光受信装置における偏波制御が必要となるため装置コストは高くなる。このため、長距離伝送を必要としない光通信システムにおいては、装置コストの低い直接受信方式が有利となる。   The coherent method is superior to the direct reception method in terms of signal characteristics such as signal-to-noise ratio, but it requires polarization control in the optical receiver in addition to components that cause interference between the local light and the received optical signal. Therefore, the device cost is increased. For this reason, in an optical communication system that does not require long-distance transmission, a direct reception method with low apparatus cost is advantageous.

直接受信方式において、光送信装置は、光搬送波50をOFDM信号で変調することで、図5(a)に示す様に、光搬送波50と、情報に対応する側波帯である光OFDM信号51を含む光信号を出力する。光OFDM信号51は、光搬送波50を変調した結果生じたものであるため、その偏波面は光搬送波50の偏波面と一致している。しかしながら、光伝送路の偏波モード分散の影響等により、光受信装置が受信する光信号に含まれる光搬送波50の偏波面と光OFDM信号51の偏波面は、図5(b)に示す様に、ずれが生じることになる。さらに、光伝送路の偏波モード分散は時間と共に変化するため、光搬送波50の偏波面と、光OFDM信号51の偏波面とのずれも時間と共に変動することになる。   In the direct reception system, the optical transmission apparatus modulates the optical carrier 50 with the OFDM signal, so that the optical carrier 50 and the optical OFDM signal 51 that is a sideband corresponding to the information, as shown in FIG. The optical signal containing is output. Since the optical OFDM signal 51 is generated as a result of modulating the optical carrier wave 50, its polarization plane coincides with the polarization plane of the optical carrier wave 50. However, due to the influence of the polarization mode dispersion of the optical transmission line, the polarization plane of the optical carrier 50 and the polarization plane of the optical OFDM signal 51 included in the optical signal received by the optical receiver are as shown in FIG. Therefore, a deviation occurs. Furthermore, since the polarization mode dispersion of the optical transmission line changes with time, the deviation between the polarization plane of the optical carrier 50 and the polarization plane of the optical OFDM signal 51 also varies with time.

ここで、直接受信方式において、光受信装置のフォトダイオードにより電気信号に変換されるのは、光OFDM信号51と、光搬送波50の、光OFDM信号51の偏波方向成分との干渉信号である。つまり、光搬送波50の偏波面と光OFDM信号51の偏波面のずれが時間と共に変動することは、光OFDM信号51の偏波面を基準とした場合、干渉相手である光搬送波50の振幅が時間と共に変動することと等価であり、これは得られる電気信号のフェージングを誘発し、結果、安定した信号特性が得られないという問題がある。   Here, in the direct reception method, an interference signal between the optical OFDM signal 51 and the polarization direction component of the optical OFDM signal 51 of the optical carrier 50 is converted into an electric signal by the photodiode of the optical receiver. . That is, the deviation between the polarization plane of the optical carrier 50 and the polarization plane of the optical OFDM signal 51 varies with time. When the polarization plane of the optical OFDM signal 51 is used as a reference, the amplitude of the optical carrier 50 that is the interference partner is the time. In other words, this causes the fading of the electric signal to be obtained, resulting in a problem that stable signal characteristics cannot be obtained.

このため、光受信装置において偏波分離器により信号を2分岐し、それぞれを個別に電気信号に変換した後、受信信号を合成することでフェージングの影響を避ける構成が提案されている(例えば、非特許文献2、参照。)   For this reason, a configuration has been proposed in which the signal is split into two by a polarization separator in the optical receiver, each of which is individually converted into an electrical signal, and then the received signal is combined to avoid the influence of fading (for example, (See Non-Patent Document 2)

Arthur James Lowery、et al.、“Orthogonal−frequency−division multiplexing for dispersion compensation of long−haul optical systems”、2006 Optical Society of America、OPTICS EXPRESS 2079、Vol.14 No.6、2006年3月Arthur James Lowry, et al. , “Orthogonal-frequency-division multiplexing for dispersal compensation of long-haul optical systems”, 2006 Optical Society of America ETS E No. 14 6, March 2006 Markus Mayrock、et al.、“PMD Tolerant Direct−Detection Optical OFDM System”、ECOC 2007、8.2.5、2007年9月Markus Mayrock, et al. "PMD Tolerant Direct-Detection Optical OFDM System", ECOC 2007, 8.2.5, September 2007.

しかしながら、非特許文献2等に記載の従来技術では、分岐後のそれぞれの経路に対して光電気変換処理や復調処理を行わなければならず、構成が複雑で高コストとなってしまう。さらに、非特許文献2の従来技術では、偏波分離器への入力光信号の光搬送波の偏波面を制御する必要があるが、偏波面は時間と共に変化すため、その変化に追随する偏波制御が必要となり、その実現は難しい。   However, in the prior art described in Non-Patent Document 2, etc., photoelectric conversion processing and demodulation processing have to be performed for each route after branching, resulting in a complicated configuration and high cost. Further, in the prior art of Non-Patent Document 2, it is necessary to control the polarization plane of the optical carrier wave of the input optical signal to the polarization separator. However, since the polarization plane changes with time, the polarization that follows the change. Control is required, and its realization is difficult.

したがって、本発明は、直接受信方式を使用した光通信システムにおいて、光搬送波の偏波面が、情報を搬送している光信号の偏波面に対して回転することにより生じるフェージングを、従来技術と比較して、簡易に、かつ、低コストで抑制する光通信システムを提供することを目的とする。   Therefore, the present invention compares fading caused by rotation of the polarization plane of an optical carrier with respect to the polarization plane of an optical signal carrying information, in an optical communication system using a direct reception method. An object of the present invention is to provide an optical communication system that can be suppressed easily and at low cost.

本発明における光通信システムによれば、
光送信装置と、光送信装置から受信する受信光信号を、直接受信方式により電気信号に変換する光受信装置とを備えている光通信システムであって、光送信装置は、第1の光搬送波、第1の光搬送波と同一周波数で偏波面が直交する第2の光搬送波及び第1の光搬送波と同一偏波面の側波帯信号を含む光信号を送信することを特徴とする。
According to the optical communication system of the present invention,
An optical communication system comprising an optical transmission device and an optical reception device that converts a received optical signal received from the optical transmission device into an electrical signal by a direct reception method, wherein the optical transmission device is a first optical carrier wave. An optical signal including a second optical carrier wave having the same frequency as that of the first optical carrier wave and a sideband signal having the same polarization plane as that of the first optical carrier wave is transmitted.

本発明における光通信システムの他の形態によれば、
光送信装置は、連続光を第1の連続光と第2の連続光に分岐する分波手段と、第1の連続光を変調する変調手段と、変調手段の出力光信号及び第2の連続光を入力とし、一方の偏波面を90度だけ回転させて他方の光信号と合波して出力する偏波合成手段とを備えていることも好ましい。
According to another aspect of the optical communication system of the present invention,
The optical transmission device includes a demultiplexing unit that branches the continuous light into a first continuous light and a second continuous light, a modulation unit that modulates the first continuous light, an output optical signal of the modulation unit, and a second continuous light. It is also preferable to include polarization combining means for receiving light, rotating one polarization plane by 90 degrees, and combining and outputting the other optical signal.

本発明における光通信システムの他の形態によれば、
光送信装置は、連続光を生成する光源と、連続光の偏波の第1の方向の成分を変調し、第1の方向とは直交する第2の方向の成分は変調しない変調手段とを備えており、前記連続光の偏波の方向は、第1の方向に対して45度となるように設定されていることも好ましい。
According to another aspect of the optical communication system of the present invention,
An optical transmission device includes a light source that generates continuous light, and a modulation unit that modulates a component in a first direction of polarization of the continuous light and does not modulate a component in a second direction orthogonal to the first direction. The polarization direction of the continuous light is preferably set to be 45 degrees with respect to the first direction.

同一周波数で、偏波面が直交する2つの光搬送波を含む光信号を生成して送信することで、光受信装置側において特別な処理を施すことなくフェージングを抑制することが可能になる。   By generating and transmitting an optical signal including two optical carriers whose polarization planes are orthogonal at the same frequency, fading can be suppressed without performing special processing on the optical receiver side.

本発明による光送信装置の構成図である。It is a block diagram of the optical transmitter by this invention. 本発明による光送信装置の各部が出力する光信号の光スペクトラムの概略を示す図である。It is a figure which shows the outline of the optical spectrum of the optical signal which each part of the optical transmitter by this invention outputs. 本発明による光通信システムを説明する図である。It is a figure explaining the optical communication system by this invention. 本発明による光通信システムの他の実施形態を説明する図である。It is a figure explaining other embodiment of the optical communication system by this invention. 直接受信方式における問題点を説明する図である。It is a figure explaining the problem in a direct reception system.

本発明を実施するための形態について、以下では図面を用いて詳細に説明する。   EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated in detail below using drawing.

図1は、本発明による光送信装置の構成図である。図1によると、光送信装置は、光源1と、分波器2と、光変調器3と、偏波合成器4とを備えている。光源1は、連続光を生成して出力し、分波器2は、この連続光を2分岐して、それぞれの出力端子から出力する。光変調器3は、分波器2の一方の出力信号をOFDM変調された電気信号で変調を行う変調器である。図1に示す様に、分波器2の他方の出力信号と、変調器3で変調された信号は、それぞれ、偏波合成器4に入力され、偏波合成器4は、一方の入力信号の偏波面を90度だけ回転させた後、偏波面を変化させない他方の入力信号と合波して出力する。   FIG. 1 is a configuration diagram of an optical transmission apparatus according to the present invention. According to FIG. 1, the optical transmission apparatus includes a light source 1, a duplexer 2, an optical modulator 3, and a polarization beam combiner 4. The light source 1 generates and outputs continuous light, and the duplexer 2 divides the continuous light into two and outputs it from the respective output terminals. The optical modulator 3 is a modulator that modulates one output signal of the duplexer 2 with an electrical signal that has been subjected to OFDM modulation. As shown in FIG. 1, the other output signal of the duplexer 2 and the signal modulated by the modulator 3 are respectively input to a polarization beam combiner 4, and the polarization beam combiner 4 receives one input signal. Is rotated by 90 degrees, and then combined with the other input signal that does not change the polarization plane and output.

図2に、図1の分波器2、光変調器3及び偏波合成器4が出力する光信号の光スペクトラムの概略をそれぞれ示す。図2(a)は、光変調器3の出力信号の光スペクトラムであり、符号60は光搬送波、符号62は、光OFDM信号である。なお、図2(a)に示す様に、本実施形態において、送信データに対応する光OFDM信号62は、光搬送波60のいずれかの側、本実施形態においては周波数の高い側、にのみ存在し、光搬送波60との間には所定の未使用帯域を設けている。つまり、光OFDM信号62は、未使用帯域に等しい周波数より高い周波数のサブキャリアのみを使用している。   FIG. 2 schematically shows the optical spectrum of the optical signal output from the duplexer 2, the optical modulator 3 and the polarization beam combiner 4 in FIG. FIG. 2A shows an optical spectrum of the output signal of the optical modulator 3. Reference numeral 60 is an optical carrier wave, and reference numeral 62 is an optical OFDM signal. As shown in FIG. 2A, in the present embodiment, the optical OFDM signal 62 corresponding to the transmission data exists only on either side of the optical carrier wave 60, in this embodiment, on the higher frequency side. A predetermined unused band is provided between the optical carrier 60 and the optical carrier 60. That is, the optical OFDM signal 62 uses only subcarriers having a frequency higher than the frequency equal to the unused band.

図2(b)は、分波器2から偏波合成器4に直接入力される光信号のスペクトラムであり、連続光に対応する光搬送波61のみを含んでいる。なお、光搬送波60及び61は、同じ光源1からの連続光を分岐したものであるため、偏波合成器4の前の段階において、光搬送波60、61及び光OFDM信号62の偏波面は一致している。   FIG. 2B shows a spectrum of an optical signal directly input from the duplexer 2 to the polarization beam combiner 4 and includes only the optical carrier 61 corresponding to continuous light. Since the optical carriers 60 and 61 are obtained by branching continuous light from the same light source 1, the polarization planes of the optical carriers 60 and 61 and the optical OFDM signal 62 are one in the stage before the polarization beam combiner 4. I'm doing it.

偏波合成器4は、一方の入力信号の偏波面を90度だけ回転させて他方の入力信号と合波するため、偏波合成器4の出力信号の光スペクトラムは図2(c)に示す様に、偏波面が一致している光搬送波60及び光OFDM信号62と、これら光信号の偏波面と直交する偏波面を有する光搬送波61を含むものとなる。   Since the polarization beam combiner 4 rotates the polarization plane of one input signal by 90 degrees and combines it with the other input signal, the optical spectrum of the output signal of the polarization beam combiner 4 is shown in FIG. Similarly, the optical carrier 60 and the optical OFDM signal 62 whose polarization planes coincide with each other, and the optical carrier 61 having a polarization plane orthogonal to the polarization planes of these optical signals are included.

本発明による光送信装置は、図2(c)に示す光スペクトラムを持つ光信号を光伝送路に送信するが、この光信号は光伝送路において偏波モード分散の影響を受けるため、光受信装置の位置においては、光搬送波60と光OFDM信号62の偏波面には時間と共に変動するずれが生じる。しかしながら、本発明においては、光搬送波60に直交する光搬送波61を送信側にて追加して送信を行っているため、偏波面が回転することにより生じる各光搬送波の光OFDM信号62の偏波方向の成分の変動は、光搬送波61のみを使用する場合より小さくなり、よって、偏波面の回転量が変動することにより生じるフェージングを抑制することができる。   The optical transmission apparatus according to the present invention transmits an optical signal having the optical spectrum shown in FIG. 2C to the optical transmission line. Since this optical signal is affected by the polarization mode dispersion in the optical transmission line, the optical reception is performed. At the position of the apparatus, a shift that varies with time occurs in the polarization planes of the optical carrier 60 and the optical OFDM signal 62. However, in the present invention, since transmission is performed by adding an optical carrier 61 orthogonal to the optical carrier 60 on the transmission side, the polarization of the optical OFDM signal 62 of each optical carrier generated when the polarization plane rotates. The fluctuation of the direction component is smaller than when only the optical carrier wave 61 is used, and therefore fading caused by fluctuation of the rotation amount of the polarization plane can be suppressed.

図3は、本発明によりフェージングを抑制できることを説明する図である。図3において、符号70は光OFDM信号62の偏波面の方向であり、偏波モード分散により、受信装置の位置において、光搬送波60と光OFDM信号62の偏波面にはθの角度差が生じている。光搬送波60及び61の光伝送路中での伝送損失はほぼ同一であるため、光搬送波60及び61の振幅を共にAとすると、光搬送波60の、光OFDM信号62と干渉して電気信号への変換に寄与する成分は、|Acosθ|であり、光搬送波61の、光OFDM信号62と干渉して電気信号への変換に寄与する成分は、|Asinθ|である。|Acosθ|と|Asinθ|は、互いに相補的、つまり、一方が小さいときには他方が大きくなり、一方が小さいときには他方が大きくなる関係にあるため、フェージングが抑制される。   FIG. 3 is a diagram for explaining that fading can be suppressed according to the present invention. In FIG. 3, reference numeral 70 denotes the direction of the polarization plane of the optical OFDM signal 62. Due to polarization mode dispersion, an angle difference of θ occurs between the polarization planes of the optical carrier 60 and the optical OFDM signal 62 at the position of the receiving apparatus. ing. Since the transmission losses in the optical transmission lines of the optical carriers 60 and 61 are almost the same, if both the amplitudes of the optical carriers 60 and 61 are A, the optical carrier 60 interferes with the optical OFDM signal 62 and becomes an electric signal. The component that contributes to the conversion is | A cos θ |, and the component that interferes with the optical OFDM signal 62 of the optical carrier 61 and contributes to the conversion to the electrical signal is | A sin θ |. | A cos θ | and | A sin θ | are complementary to each other, that is, when one is small, the other is large, and when one is small, the other is large, so that fading is suppressed.

以上、送信側において、同一周波数で、偏波面が直交する2つの光搬送波を含む光信号を生成して送信することで、光受信装置側において特別な処理を施すことなくフェージングを抑制することが可能になる。本発明による光送信装置に追加する光部品は、分波器2及び偏波合成器4のみであり、従来技術の様に複雑な偏波面の制御を行う必要はなく、よって、コストを増大させることなくフェージングを抑制することが可能になる。   As described above, fading can be suppressed without performing any special processing on the optical receiving device side by generating and transmitting an optical signal including two optical carriers whose polarization planes are orthogonal at the same frequency on the transmitting side. It becomes possible. The optical components added to the optical transmitter according to the present invention are only the duplexer 2 and the polarization synthesizer 4, so that it is not necessary to control the complicated polarization plane as in the prior art, thus increasing the cost. Without fading.

続いて、本発明の他の実施形態について、図4を用いて説明する。光変調器として主に使用されるLiNbO光変調器には基準偏波面71が存在し、LiNbO光変調器は、入力される連続光73のうち、その基準偏波面71に一致した成分のみを変調し、基準偏波面に直交する偏波面72方向の成分については変調することなく出力する。図4に示す様に、連続光73の偏波面を光変調器の基準偏波面に対して45度に設定することで、図2(c)と同じ光スペクトラムを持つ光信号が生成され、よって、上述したのと同じくフェージングを抑制することができる。 Next, another embodiment of the present invention will be described with reference to FIG. A LiNbO 3 optical modulator mainly used as an optical modulator has a reference polarization plane 71, and the LiNbO 3 optical modulator has only a component that matches the reference polarization plane 71 in the input continuous light 73. And the component in the direction of polarization plane 72 orthogonal to the reference polarization plane is output without modulation. As shown in FIG. 4, by setting the polarization plane of the continuous light 73 to 45 degrees with respect to the reference polarization plane of the optical modulator, an optical signal having the same optical spectrum as in FIG. As described above, fading can be suppressed.

1 光源
2 分波器
3 光変調器
4 偏波合成器
50、60、61 光搬送波
51、62 光OFDM信号
70 光OFDM信号の偏波面
71 変調器の基準偏波面
72 変調器の基準偏波面に直交する偏波面
73 連続光の偏波面
DESCRIPTION OF SYMBOLS 1 Light source 2 Demultiplexer 3 Optical modulator 4 Polarization combiner 50, 60, 61 Optical carrier 51, 62 Optical OFDM signal 70 Polarization plane of optical OFDM signal 71 Reference polarization plane of modulator 72 Reference polarization plane of modulator Orthogonal polarization plane 73 Polarization plane of continuous light

Claims (3)

光送信装置と、
光送信装置から受信する受信光信号を、直接受信方式により電気信号に変換する光受信装置と、
を備えている光通信システムであって、
光送信装置は、
第1の光搬送波、第1の光搬送波と同一周波数で偏波面が直交する第2の光搬送波及び第1の光搬送波と同一偏波面の側波帯信号を含む光信号を送信
光受信装置は、1つの受信装置を備え、位相変調から強度変調への変換を行わない、
光通信システム。
An optical transmitter;
An optical receiver that converts a received optical signal received from the optical transmitter into an electrical signal by a direct reception method;
An optical communication system comprising:
The optical transmitter
Transmits the optical signal including a first optical carrier, the first second optical carrier and the first sideband signal of the optical carrier of the same polarization plane of polarization in the optical carrier of the same frequency are orthogonal,
The optical receiver includes one receiver and does not perform conversion from phase modulation to intensity modulation.
Optical communication system.
光送信装置は、
連続光を第1の連続光と第2の連続光に分岐する分波手段と、
第1の連続光を変調する変調手段と、
変調手段の出力光信号及び第2の連続光を入力とし、一方の偏波面を90度だけ回転させて他方の光信号と合波して出力する偏波合成手段と、
を備えている請求項1に記載の光通信システム。
The optical transmitter
Branching means for branching continuous light into first continuous light and second continuous light;
Modulation means for modulating the first continuous light;
A polarization beam combining means that receives the output optical signal of the modulation means and the second continuous light as input, rotates one polarization plane by 90 degrees, and combines and outputs the other optical signal;
The optical communication system according to claim 1, comprising:
光送信装置は、
連続光を生成する光源と、
連続光の偏波の第1の方向の成分を変調し、第1の方向とは直交する第2の方向の成分は変調しない変調手段と、
を備えており、
前記連続光の偏波の方向は、第1の方向に対して45度となるように設定されている、
請求項1に記載の光通信システム。
The optical transmitter
A light source that generates continuous light;
Modulation means for modulating the component in the first direction of the polarization of the continuous light and not modulating the component in the second direction orthogonal to the first direction;
With
The direction of polarization of the continuous light is set to be 45 degrees with respect to the first direction.
The optical communication system according to claim 1.
JP2009049216A 2009-03-03 2009-03-03 Optical communication system Expired - Fee Related JP5182154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049216A JP5182154B2 (en) 2009-03-03 2009-03-03 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049216A JP5182154B2 (en) 2009-03-03 2009-03-03 Optical communication system

Publications (2)

Publication Number Publication Date
JP2010206473A JP2010206473A (en) 2010-09-16
JP5182154B2 true JP5182154B2 (en) 2013-04-10

Family

ID=42967516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049216A Expired - Fee Related JP5182154B2 (en) 2009-03-03 2009-03-03 Optical communication system

Country Status (1)

Country Link
JP (1) JP5182154B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070360A (en) * 2013-09-27 2015-04-13 沖電気工業株式会社 Receiver, station side terminal, subscriber side terminal, optical network, and coherent communication method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8808043D0 (en) * 1988-04-06 1988-05-25 British Telecomm Methods & apparatus for transmitting information
JPH0923193A (en) * 1995-07-05 1997-01-21 Nippon Telegr & Teleph Corp <Ntt> Optical signal transmitter
JP2003338805A (en) * 2002-03-15 2003-11-28 Kddi Submarine Cable Systems Inc Optical transmission system, optical transmitter and methods thereof
JP3829198B2 (en) * 2003-12-01 2006-10-04 独立行政法人情報通信研究機構 Optical transmission method and system
US8718490B2 (en) * 2007-10-03 2014-05-06 Nec Laboratories America, Inc. Coherent optical orthogonal frequency division multiplexing (OFDM) reception using self optical carrier extraction

Also Published As

Publication number Publication date
JP2010206473A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US8437638B2 (en) Optical modulation circuit and optical transmission system
US8989571B2 (en) In-band supervisory data modulation using complementary power modulation
US8761600B2 (en) In-band supervisory data modulation
JP5916611B2 (en) Digital coherent detection of multicarrier optical signals
EP2461498B1 (en) Optical transmitter and optical transmitter unit
US9853739B2 (en) Optical transmitter and method for controlling bias of optical modulator
CN103067091A (en) Optical transmitter, optical transmission method, and optical transmission/reception system
JP5583788B2 (en) Optical communication system, optical transmitter and transponder
JP4905951B2 (en) Optical modulation circuit and optical transmission system
WO2018198873A1 (en) Optical transmission method and optical transmission device
JP4730560B2 (en) Optical transmission system, optical transmission method, and optical transmitter
US10763970B2 (en) Encoding for optical transmission
JP5182154B2 (en) Optical communication system
US8995843B2 (en) Multicarrier based optical signal transmitting apparatus and optical signal receiving apparatus
JP6191595B2 (en) Optical communication system, optical transmission apparatus, optical communication method, and optical transmission method
JP5189528B2 (en) Optical transmitter and optical communication system
JP2008206063A (en) Optical transmission device and method
JP5235721B2 (en) Optical transmitter, optical receiver, and optical communication system
JP6363933B2 (en) Optical transmitter / receiver, optical receiver, and optical transmitter / receiver method
US20150244467A1 (en) Optical transmission device and optical reception device
JP2008271072A (en) Light ssb transmitter
Klymash et al. Fiber optic telecommunication system with the use of modulation D8PSK
Boro et al. Spectrally Efficient SSB Optical OFDM Signal Using Balanced Detection
JP2007036785A (en) Optical transmission system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees