JP5176855B2 - Folded panel structure and building structure - Google Patents

Folded panel structure and building structure Download PDF

Info

Publication number
JP5176855B2
JP5176855B2 JP2008263555A JP2008263555A JP5176855B2 JP 5176855 B2 JP5176855 B2 JP 5176855B2 JP 2008263555 A JP2008263555 A JP 2008263555A JP 2008263555 A JP2008263555 A JP 2008263555A JP 5176855 B2 JP5176855 B2 JP 5176855B2
Authority
JP
Japan
Prior art keywords
folded plate
panel structure
peak
cross
folded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008263555A
Other languages
Japanese (ja)
Other versions
JP2010090650A (en
Inventor
信孝 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008263555A priority Critical patent/JP5176855B2/en
Publication of JP2010090650A publication Critical patent/JP2010090650A/en
Application granted granted Critical
Publication of JP5176855B2 publication Critical patent/JP5176855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Panels For Use In Building Construction (AREA)

Description

本発明は、デッキプレートやサイディング等に代表される、断面凹凸状に屈曲形成された折板に枠材を接合した、壁、屋根、床等を構成する建築構造用の折板パネル構造、ならびにこれを用いた建築構造物に関する。   The present invention is a folded plate panel structure for a building structure that constitutes a wall, a roof, a floor, and the like, in which a frame material is joined to a folded plate that is bent and formed into a concavo-convex shape, represented by a deck plate, siding, and the like, and It relates to a building structure using this.

従来から、デッキプレートやサイディングをはじめとする波板や折板は、柱・梁・母屋・胴縁などの枠材に接合され、自重や積雪や積載物等による鉛直荷重、風圧力など、板面に対して直交するような面外荷重に抵抗する構造材として利用されている。   Conventionally, corrugated plates and folded plates, including deck plates and siding, are joined to frame materials such as columns, beams, purlins, trunk edges, etc., and plates such as vertical loads due to their own weight, snow, and loads, wind pressure, etc. It is used as a structural material that resists out-of-plane loads that are orthogonal to the surface.

一方、近年では、特許文献1、2、非特許文献1、2にみられるように、波板や折板を枠材に接合した折板パネル構造を、面内せん断力に抵抗させ、耐震壁や耐震屋根のような構造材として利用する技術も提案されている。
特開2006−037586号公報 特開2006−037628号公報 財団法人 日本建築総合試験所 「建築技術性能証明評価概要報告書」 GBRC性能証明第06−20号、2007年 Hesham S. Essa, Robert Tremblay, and Colin A. Rogers “Behavior of Roof Deck Diaphragms under Quasistatic Cyclic Loading”,1666/JOURNAL OF STRUCTURAL ENGINEERING ASCE / DECEMBER 2003
On the other hand, in recent years, as seen in Patent Documents 1 and 2 and Non-Patent Documents 1 and 2, a folded plate panel structure in which corrugated plates and folded plates are joined to a frame material is made to resist in-plane shear force, and a seismic wall Techniques have also been proposed for use as structural materials such as roofs and earthquake resistant roofs.
JP 2006-037566 A JP 2006-037628 A Japan Architectural Comprehensive Testing Laboratory “Summary Report on Building Technology Performance Certification Evaluation” GBRC Performance Certification No. 06-20, 2007 Hesham S. Essa, Robert Tremblay, and Colin A. Rogers “Behavior of Roof Deck Diaphragms under Quasistatic Cyclic Loading”, 1666 / JOURNAL OF STRUCTURAL ENGINEERING ASCE / DECEMBER 2003

しかしながら、これら特許文献1、2並びに非特許文献1の開示技術では、折板パネルを面内せん断力に対するエネルギー吸収構造として利用する上で、パネルを構成する板要素のほぼ全面をせん断降伏させることでエネルギー吸収しているため、せん断降伏した後の板要素の剛性低下に起因しパネルの全体座屈が誘起される傾向にあり、比較的小さな変形域で急激に荷重が低下し、十分な変形性能を確保し難いという課題がある。   However, in the disclosed technologies of Patent Documents 1 and 2 and Non-Patent Document 1, when the folded plate panel is used as an energy absorbing structure against the in-plane shear force, almost all of the plate elements constituting the panel are shear yielded. As the energy is absorbed, the overall panel buckling tends to be induced due to a decrease in the stiffness of the plate element after the shear yielding. There is a problem that it is difficult to ensure performance.

また、非特許文献2の開示技術では、折板パネルを面内せん断力に対するエネルギー吸収構造として利用する上で、パネル周囲と枠材を接合する接合部で、折板を局所的に破壊させることでエネルギー吸収している。このため、変形性能を確保できるものの、繰返し力を受けると、接合部の局所破壊部分に滑り挙動が発生し、結果的にパネル構造全体としてスリップ性状を示すことになる。その結果、繰り返し力を受けた場合におけるせん断力−せん断変形の関係において履歴曲線で囲まれる面積が狭小化してしまい、エネルギー吸収性能が低下するという課題がある。   In addition, in the disclosed technique of Non-Patent Document 2, when the folded plate panel is used as an energy absorbing structure against in-plane shearing force, the folded plate is locally broken at the joining portion that joins the frame periphery and the frame material. Is absorbing energy. For this reason, although deformation performance can be ensured, when a repeated force is applied, slip behavior occurs in the locally fractured portion of the joint, and as a result, the entire panel structure exhibits slip properties. As a result, there is a problem that the area surrounded by the hysteresis curve is narrowed in the relationship between shearing force and shearing deformation when receiving a repeated force, and the energy absorption performance is reduced.

そこで本発明は、上述した課題に鑑みて案出されたものであり、その目的とするところは、急激な荷重低下や、繰返し力に対するスリップ性状のない、安定したエネルギー吸収性能を示す折板パネル構造ならびにこれを用いた建築構造物を提供することにある。   Accordingly, the present invention has been devised in view of the above-described problems, and the object of the present invention is a folded plate panel that exhibits stable energy absorption performance without a sudden load drop or slip property against repeated force. It is to provide a structure and a building structure using the same.

請求項1に記載の折板パネル構造は、上フランジとその両端のウェブからなる山部と下フランジからなる谷部とが所定間隔で屈曲形成された折板に枠材を接合した折板パネル構造において、上記谷部のみが上記枠材に接合・固定され谷部の幅方向で谷部の浮き上がりが防止され、上記山部は、山部軸方向と略直交方向に可動とされ、上記折板パネル構造に対して面内せん断力が負荷された場合に、上記谷部と上記枠材との接合部を上記折板よりも先行降伏させることなく、上記山部をその可動方向に歪ませることにより、上記面内せん断力に対してエネルギー吸収させることを特徴とする。 The folded plate panel structure according to claim 1, wherein a frame member is joined to a folded plate in which an upper flange, a crest composed of webs at both ends thereof , and a trough formed from a lower flange are bent at predetermined intervals. in the structure, only the valleys is bonded and fixed to the frame member, is prevented valleys floating in the width direction of the valley, the peak portions is movable in the crest portion axially substantially perpendicular direction, When an in-plane shear force is applied to the folded plate panel structure , the peak portion is moved in the movable direction without causing the junction between the valley portion and the frame material to yield before the folded plate. By being distorted, energy is absorbed with respect to the in-plane shear force.

請求項2に記載の折板パネル構造は、上記山部の断面が、略長方形状で構成されていることを特徴とする。   The folded plate panel structure according to claim 2 is characterized in that a cross section of the peak portion is formed in a substantially rectangular shape.

請求項3に記載の折板パネル構造は、上記山部の断面が、下底の辺長に対する上の辺長の比が0.6以上、1.0未満である略台形状で構成されていることを特徴とする。 Folded plate panel of claim 3, the cross section of the ridges is, the ratio of the side length of the upper bottom for the side length of the lower base than 0.6, consists of a substantially trapezoidal shape is less than 1.0 It is characterized by.

請求項4に記載の折板パネル構造は、請求項1〜3のうち何れか1項記載の折板パネル構造において、上記山部の断面が、上記山部軸方向の両端部から、上記山部軸方向の中央部にかけて、断面寸法を漸減させたことを特徴とする。   The folded plate panel structure according to a fourth aspect is the folded plate panel structure according to any one of the first to third aspects, wherein a cross section of the peak portion is from the both ends in the peak portion axial direction. It is characterized in that the cross-sectional dimension is gradually reduced toward the central part in the axial direction.

請求項5に記載の折板パネル構造は、請求項1〜4のうち何れか1項記載の折板パネル構造において、少なくとも上記山部軸方向の端部において、上記谷部および上記山部を形成する面のうち少なくとも1面に、リブが形成されていることを特徴とする。   The folded plate panel structure according to claim 5 is the folded plate panel structure according to any one of claims 1 to 4, wherein at least the end portion in the peak portion axial direction includes the valley portion and the peak portion. A rib is formed on at least one of the surfaces to be formed.

請求項6に記載の折板パネル構造は、請求項1〜5のうち何れか1項記載の折板パネル構造において、少なくとも上記山部軸方向の端部において、上記山部の内側には、粘弾塑性体が設置されたことを特徴とする。   The folded plate panel structure according to claim 6 is the folded plate panel structure according to any one of claims 1 to 5, at least at an end portion in the peak portion axial direction, It is characterized in that a viscoelastic plastic body is installed.

請求項7に記載の建築構造物は、請求項1〜6のうち何れか1項記載の折板パネル構造を壁パネルに用いたことを特徴とする。   The building structure according to claim 7 is characterized in that the folded plate panel structure according to any one of claims 1 to 6 is used for a wall panel.

請求項8に記載の建築構造物は、請求項1〜6のうち何れか1項記載の折板パネル構造を屋根パネルに用いたことを特徴とする。   The building structure according to claim 8 is characterized in that the folded plate panel structure according to any one of claims 1 to 6 is used for a roof panel.

請求項9に記載の建築構造物は、請求項1〜6のうち何れか1項記載の折板パネル構造を床パネルに用いたことを特徴とする。   The building structure according to claim 9 is characterized in that the folded plate panel structure according to any one of claims 1 to 6 is used for a floor panel.

上述した構成からなる本発明によれば、折板パネル構造に対して面内せん断力が負荷された場合に、山部を山部軸方向と略直交方向に歪ませることにより、折板を構成する板要素の主に曲げ変形による弾塑性歪みエネルギー、および、折板の山部の内側に設置された粘弾塑性体の粘弾塑性歪みエネルギーにより、負荷される面内せん断力に対してエネルギー吸収させることができる。   According to the present invention having the above-described configuration, when an in-plane shear force is applied to the folded plate panel structure, the folded plate is configured by distorting the crest in a direction substantially perpendicular to the crest axial direction. Energy for the in-plane shear force applied by the elastic deformation energy of the plate element mainly due to bending deformation and the viscoelastic plastic strain energy of the viscoelastic plastic body installed inside the crest of the folded plate Can be absorbed.

これにより、板要素をせん断降伏させる場合の急激な荷重低下、パネル周囲の枠材との接合部を局所破壊させる場合のスリップ性状、を起こすことなく、安定したエネルギー吸収性能を発揮する折板パネル構造ならびにこれを用いた建築構造物を提供することが可能となる。   As a result, a folded plate panel that exhibits stable energy absorption performance without causing a sudden load drop when shearing and yielding the plate element, and slip properties when the joint with the frame material around the panel is locally destroyed. It becomes possible to provide a structure and a building structure using the same.

以下、本発明を実施するための最良の形態として、山部と谷部とが屈曲形成された折板に枠材を接合した折板パネル構造について、図面を参照しながら詳細に説明をする。   Hereinafter, as a best mode for carrying out the present invention, a folded plate panel structure in which a frame member is joined to a folded plate in which peaks and valleys are bent will be described in detail with reference to the drawings.

本発明を適用した折板パネル構造は、壁、屋根、床等を構成する建築構造物等に適用される。この折板パネル構造1は、例えば、図1(a)に示すように、壁、屋根、床等の一部を構成する枠材2と、この枠材2に接合された折板3とを備えている。   The folded plate panel structure to which the present invention is applied is applied to a building structure that constitutes a wall, a roof, a floor, and the like. As shown in FIG. 1A, for example, the folded plate panel structure 1 includes a frame member 2 that constitutes a part of a wall, a roof, a floor, and the like, and a folded plate 3 joined to the frame member 2. I have.

枠材2は、溝形等の薄板軽量形鋼、軽量形鋼、H形鋼、角形鋼管、円形鋼管、鋼板、木材、鉄筋コンクリート、鉄骨鉄筋コンクリート等で構成される、柱、梁、母屋、胴縁、せ
ん断力伝達部材等の枠材である。なお、図1において、枠材2は、略矩形状として図示している。
The frame material 2 is a thin plate lightweight shape steel such as a groove shape, lightweight shape steel, H shape steel, square steel tube, round steel tube, steel plate, wood, reinforced concrete, steel reinforced concrete, etc., pillar, beam, purlin, trunk edge A frame material such as a shearing force transmission member. In FIG. 1, the frame member 2 is illustrated as a substantially rectangular shape.

図1(b)は、この図1(a)におけるA−A´断面を示している。折板3は、山部31と谷部32とが所定間隔で屈曲形成されている。即ち、この折板パネル構造1は、水平な上フランジ91および下フランジ92と、この上フランジ91および下フランジ92の間に形成されているウェブ93とが形成されるように折板を折り曲げることにより、上述した山部31と谷部32とが形成される。ちなみに、この折板3は、鋼板をロール成形やプレス成形などにより折り曲げ加工することにより作製される。   FIG. 1B shows an AA ′ cross section in FIG. The folded plate 3 is formed by bending a crest 31 and a trough 32 at a predetermined interval. That is, the folded plate panel structure 1 bends the folded plate so that the horizontal upper flange 91 and the lower flange 92 and the web 93 formed between the upper flange 91 and the lower flange 92 are formed. Thus, the above-described peak portion 31 and valley portion 32 are formed. Incidentally, the folded plate 3 is produced by bending a steel plate by roll forming or press forming.

谷部32は、枠材2に接合されている。この谷部32における枠材2への接合は、例えばドリルねじ、ボルト、ビス、鋲、リベット、スポット溶接、連続溶接、接着等を利用して行われるが、図1においては、ドリルねじ35を利用した例を示している。ここで、谷部32を形成する下フランジ92はその幅方向両端の近傍において枠材2に接合されており、谷部32の枠材2からの浮き上がりが防止されている。   The trough 32 is joined to the frame member 2. The trough 32 is joined to the frame member 2 using, for example, a drill screw, bolt, screw, scissors, rivet, spot welding, continuous welding, adhesion, etc. In FIG. An example is shown. Here, the lower flange 92 forming the valley portion 32 is joined to the frame member 2 in the vicinity of both ends in the width direction, and the floating of the valley portion 32 from the frame member 2 is prevented.

本発明の技術的特徴の一つとしては、谷部32のみ、すなわち下フランジ92を枠材2に接合し固定することで、山部31を形成する上フランジ91およびウェブ93を山部軸方向と略直交する両矢印B-B´方向に可動としていることである。   As one of the technical features of the present invention, only the valley portion 32, that is, the lower flange 92 is joined and fixed to the frame member 2, so that the upper flange 91 and the web 93 that form the peak portion 31 are in the peak portion axial direction. It is movable in the direction of a double arrow BB ′ that is substantially perpendicular to the line.

ここで、本発明を適用した折板パネル構造1の動作およびエネルギー吸収の機構について説明をする。図2(a)は、図1(a)に示すように、地震等によって面内せん断力Qが折板パネル構造1に負荷された場合において、図1の点線で囲まれる領域Dにおける折板3および枠材2の拡大平面図である。また図2(b)は、図2におけるE−E´断面図を、更に図2(c)は、図2(a)におけるF−F´断面図を示している。   Here, the operation and energy absorption mechanism of the folded plate panel structure 1 to which the present invention is applied will be described. FIG. 2A shows a folded plate in a region D surrounded by a dotted line in FIG. 1 when an in-plane shearing force Q is applied to the folded plate panel structure 1 due to an earthquake or the like, as shown in FIG. 3 and an enlarged plan view of the frame member 2. FIG. 2B is a cross-sectional view taken along line EE ′ in FIG. 2, and FIG. 2C is a cross-sectional view taken along line FF ′ in FIG. 2A.

この折板3における領域Dについて着目した場合、面内せん断力Qが図2(a)に示す矢印Qの向き、すなわちE−E´断面側でB方向、F−F´断面側でB´方向に負荷された場合、山部31は、E−E´断面側でB´方向、F−F´断面側でB方向に、それぞれ逆向きに倒れ込むように、山部31の軸方向と略直交方向に歪む変形を起こす。これとは逆に、面内せん断力QがE−E´断面側でB´方向、F−F´断面側でB方向に負荷された場合には、山部31は、E−E´断面側でB方向、F−F´断面側でB´方向に倒れ込む。   When attention is paid to the region D in the folded plate 3, the in-plane shearing force Q is in the direction indicated by the arrow Q shown in FIG. 2A, that is, the B direction on the EE ′ cross section side and the B ′ on the FF ′ cross section side. When the load is applied in the direction, the peak 31 is substantially the same as the axial direction of the peak 31 so that the peak 31 falls in the opposite direction in the B ′ direction on the EE ′ cross section side and in the B direction on the FF ′ cross section side. Causes deformation that distorts in the orthogonal direction. On the contrary, when the in-plane shearing force Q is applied in the B ′ direction on the EE ′ cross section side and in the B direction on the FF ′ cross section side, the peak portion 31 has an EE ′ cross section. It collapses in the B direction on the side and in the B ′ direction on the FF ′ cross section side.

このように山部31が歪む変形状態にある場合、折板3を構成する板要素には面外方向への曲げ変形が生じる。この曲げ変形は、屈曲形成された折板3の稜線部、さらにその稜線部においては山部31の軸方向の端部に向かうほど大きくなる傾向にある。山部31の歪み変形の進展に伴い、上述した板要素の曲げ変形が大きくなる領域から板要素が曲げ降伏していき、これにより弾塑性的なエネルギー吸収性能を発揮する。   Thus, when the peak part 31 exists in the deformation | transformation state which distorts, the bending deformation to an out-of-plane direction arises in the plate element which comprises the folded plate 3. FIG. This bending deformation tends to become larger toward the ridgeline portion of the bent plate 3 formed by bending, and further toward the end portion in the axial direction of the peak portion 31 in the ridgeline portion. With the progress of the strain deformation of the peak portion 31, the plate element bends and yields from the region where the bending deformation of the plate element becomes large, thereby exhibiting elastoplastic energy absorption performance.

なお、地震力等の繰返し力に対しては、山部31はB方向およびB´方向に交互に歪み、それに応じて上述した板要素の曲げ変形が大きくなる領域で、正負交互の曲げ変形による曲げ降伏が起こり、繰返し力に対するエネルギー吸収性能を発揮し、折板パネル構造1は作用する面内せん断力Qに対して、安定した履歴性能を発揮することができる。   For repetitive forces such as seismic forces, the peaks 31 are alternately distorted in the B direction and the B ′ direction, and the bending deformation of the plate elements described above is correspondingly increased. Bending yield occurs and exhibits energy absorption performance against repetitive force, and the folded panel structure 1 can exhibit stable hysteresis performance against the in-plane shearing force Q acting.

本発明において、山部31の断面Cの形状は、略長方形状で構成されている。山部31の断面Cを略長方形状とした場合、面内せん断力Qが作用すると、断面Cは長方形から平行四辺形状に円滑に変形するため、山部31を山部軸方向に対して直交方向に歪ませることが可能となり、歪みエネルギー吸収を効果的に実現することが可能となる。   In the present invention, the shape of the cross section C of the peak portion 31 is substantially rectangular. When the cross section C of the ridge 31 is substantially rectangular, when the in-plane shearing force Q is applied, the cross section C is smoothly deformed from a rectangle to a parallelogram, and therefore the ridge 31 is orthogonal to the ridge axis direction. It is possible to distort in the direction, and it is possible to effectively realize strain energy absorption.

仮にこの山部31の断面Cを略三角形状とした場合、三角形トラスが形成されるのと同等の作用が生じ、面内せん断力Qが作用しても断面Cはほとんど歪むことがないまま、トラスの圧縮力負担側で座屈が発生してしまうため、山部31の断面が歪むことによるエネルギー吸収はほとんど期待することができない。   If the cross-section C of the peak 31 is substantially triangular, an effect equivalent to the formation of a triangular truss is produced, and the cross-section C remains almost distorted even when an in-plane shear force Q is applied. Since buckling occurs at the compressive force bearing side of the truss, energy absorption due to distortion of the cross section of the peak 31 can hardly be expected.

なお、本発明において、ドリルネジ35の本数や径等、すなわち折板3と枠材2の接合部の強度については、面内せん断力Qが生じたときに、折板パネル構造1がエネルギー吸収する際の荷重域において、接合部が折板3よりも先行降伏しないように設計することで、接合部の局所破壊に伴うスリップ性状を回避することができる。また、同様に、折板パネル構造1がエネルギー吸収する際の荷重域において、折板パネルの全体座屈、局部座屈、せん断降伏、の各モードで先行降伏しないように、本発明の範囲内で、パネル形状を設計しておけば、座屈等に伴う急激な荷重低下や変形性能の低下を回避することができる。   In the present invention, regarding the number and diameter of the drill screws 35, that is, the strength of the joint between the folded plate 3 and the frame member 2, the folded plate panel structure 1 absorbs energy when an in-plane shear force Q is generated. By designing the joint portion so that it does not yield ahead of the folded plate 3 in the load region at that time, it is possible to avoid the slip property accompanying the local fracture of the joint portion. Similarly, in the load range when the folded plate panel structure 1 absorbs energy, it is within the scope of the present invention so that it does not yield in the buckling panel overall buckling mode, local buckling mode, and shear yielding mode. Thus, if the panel shape is designed, it is possible to avoid a sudden load drop or a drop in deformation performance due to buckling or the like.

図3は、本発明を適用した折板パネル構造1において、山部31の断面Cの形状が略台形状となるように構成した例を示しており、図3(a)は、その平面図を、図3(b)は、G−G´断面図である。山部31の断面Cについて、上底の辺長をt11とし、下底の辺長をt12としたとき、t11/t12が0.6以上、1.0未満としている。t11/t12が0.6未満では、山部31の断面Cを略三角形状にしたのと同等の作用が生じ、山部31を歪ませることができず、歪みエネルギーの吸収を十分に行うことができないためである。   FIG. 3 shows an example in which the shape of the cross section C of the peak portion 31 is substantially trapezoidal in the folded plate panel structure 1 to which the present invention is applied, and FIG. 3 (a) is a plan view thereof. FIG. 3B is a cross-sectional view taken along the line GG ′. With respect to the cross section C of the peak portion 31, when the side length of the upper base is t11 and the side length of the lower base is t12, t11 / t12 is 0.6 or more and less than 1.0. When t11 / t12 is less than 0.6, an action equivalent to that of the cross section C of the peak portion 31 having a substantially triangular shape occurs, the peak portion 31 cannot be distorted, and strain energy is sufficiently absorbed. This is because they cannot.

このように山部31の断面Cの形状が略台形状となるように構成し、しかもt11/t12を0.6以上とすることにより、後述するように、面内せん断力Qに対し、山部31を山部直交方向に歪ませることが可能となり、歪みエネルギー吸収を実現することが可能となる。断面Cを台形とする場合は、長方形の場合に比べて、断面が歪み難くなり変形性能が低下する傾向にあるが、剛性と耐力を向上できるという特性を得ることができる。   In this way, the shape of the cross section C of the peak portion 31 is configured to be substantially trapezoidal, and the t11 / t12 is set to 0.6 or more, so that the peak with respect to the in-plane shear force Q as described later. The part 31 can be distorted in the direction perpendicular to the peak, and strain energy absorption can be realized. In the case where the cross section C is trapezoidal, the cross section is less likely to be distorted and the deformation performance tends to be lower than in the case of a rectangular shape, but it is possible to obtain characteristics that rigidity and proof stress can be improved.

折板パネル構造1においては、折板3の谷部32および山部31を形成する上フランジ91、下フランジ92、ウェブ93のうち少なくとも1面に、図4(a),(b)に示すようにリブ25が形成されていてもよい。リブ25は、例えば、プレス成形等により、山部軸方向と略直交する方向に配されている。リブ25を設けることにより、山部31が歪む変形に伴い、谷部32および山部31を形成する面に局所的に作用する曲げ、せん断、圧縮に対する局部的な座屈抵抗を向上させることができ、折板パネル構造1のエネルギー吸収性能を更に向上させることが可能となる。なお、リブ25の本数やサイズ、径や長さ、形状、向き、配置する領域範囲は、谷部32および山部31を形成する面に対する局所的な作用力(曲げ、せん断、圧縮)に応じて、適宜設計すれば良い。   In the folded plate panel structure 1, at least one of the upper flange 91, the lower flange 92, and the web 93 forming the valley portion 32 and the crest portion 31 of the folded plate 3 is shown in FIGS. 4 (a) and 4 (b). In this way, the rib 25 may be formed. The ribs 25 are arranged in a direction substantially orthogonal to the mountain axis direction, for example, by press molding or the like. By providing the rib 25, it is possible to improve local buckling resistance against bending, shearing, and compression acting locally on the surfaces forming the valley 32 and the mountain 31 with the deformation of the mountain 31. It is possible to further improve the energy absorption performance of the folded plate panel structure 1. The number, size, diameter, length, shape, orientation, and area range of the ribs 25 depend on the local acting force (bending, shearing, compression) on the surfaces forming the valleys 32 and the peaks 31. Therefore, it may be designed as appropriate.

図5、6は、山部31について、山部軸方向の両端部から、山部軸方向の中央部にかけて、断面寸法を漸減させた例を示している。図5(a)は、かかる実施形態における山部31および谷部32の平面図を、また図5(b)は、その側断面図を示している。また図6(a)は、図5中I−I´断面図を、更に図6(b)は、図5中J−J´断面図を示している。なお、このような形状からなる山部31並びに谷部32は、プレス加工等により成形することができる。   5 and 6 show an example in which the cross-sectional dimension of the peak portion 31 is gradually reduced from both end portions in the peak portion axial direction to the central portion in the peak portion axial direction. FIG. 5A shows a plan view of the peak 31 and the valley 32 in this embodiment, and FIG. 5B shows a side sectional view thereof. 6A shows a cross-sectional view taken along the line II ′ in FIG. 5, and FIG. 6B shows a cross-sectional view taken along the line JJ ′ in FIG. In addition, the peak part 31 and the trough part 32 which consist of such a shape can be shape | molded by press work etc.

図2に示すように、面内せん断力Qが負荷された場合に、山部軸方向と略直交方向へ山部31が倒れ込む変形量は、山部軸方向の両端部の領域21において最も大きく、山部軸方向の中央部の領域22近傍に近づくにつれ小さくなり、山部31が倒れ込む変形の向きが逆転する山部軸方向の中央部において変形はほとんど生じないこととなる。   As shown in FIG. 2, when the in-plane shear force Q is applied, the amount of deformation in which the peak 31 falls down in a direction substantially orthogonal to the peak axis direction is the largest in the regions 21 at both ends in the peak axis direction. The deformation becomes smaller as it approaches the vicinity of the region 22 in the central portion in the ridge axial direction, and almost no deformation occurs in the central portion in the ridge axial direction where the direction of deformation in which the ridge 31 falls is reversed.

山部軸方向の全長にわたって山部の断面寸法を均一とした場合において、山部31が倒
れ込む変形量が大きな山部軸方向の両端部では、折板3を構成する板要素の面外曲げによる歪み(特に屈曲形成された稜線部近傍の曲率)も大きく、稜線部近傍の曲げ降伏が進展する。しかし、山部軸方向の中央部に近づくにつれ、山部31が倒れ込む変形量は小さくなり、折板を構成する板要素の面外曲げによる歪み(特に屈曲形成された稜線部近傍の曲率)も漸減していき、稜線部近傍の曲げ降伏の進展の程度も漸減していく傾向にある。すなわち、エネルギー吸収に寄与するのは、主に山部軸方向の両端部の領域となる傾向にある。
When the cross-sectional dimension of the peak portion is made uniform over the entire length in the peak portion axial direction, at the both end portions in the peak portion axial direction where the peak portion 31 collapses is large, due to out-of-plane bending of the plate elements constituting the folded plate 3 The strain (particularly the curvature in the vicinity of the bent ridge portion) is also large, and the bending yield in the vicinity of the ridge portion progresses. However, as it approaches the central portion in the axial direction of the peak portion, the amount of deformation by which the peak portion 31 falls is reduced, and distortion due to out-of-plane bending of the plate element constituting the folded plate (particularly the curvature near the bent ridge line portion) is also caused. It gradually decreases, and the degree of progress of bending yield in the vicinity of the ridge line portion also tends to gradually decrease. In other words, the energy absorption tends to be mainly in the regions at both ends in the mountain axis direction.

これに対し、山部軸方向の両端部から、山部軸方向の中央部にかけて、断面寸法を漸減させた場合においては、山部軸方向の中央部に近づくのに伴う山部31が倒れ込む変形量の減少にあわせ、山部31の高さおよび幅(いずれか一方でも良い)の寸法も低減させているので、山部軸方向の中央部に近づいても、折板を構成する板要素の面外曲げによる歪み(特に屈曲形成された稜線部近傍の曲率)を進展させることができる。これにより、山部軸方向の両端部の領域のみならず、中央部に近づいた領域もエネルギー吸収に寄与させることととなり、結果的に、折板パネル構造1としてのエネルギー吸収効率を高めることができる。   On the other hand, when the cross-sectional dimension is gradually reduced from the both end portions in the peak portion axial direction to the central portion in the peak portion axial direction, the peak portion 31 is collapsed as it approaches the central portion in the peak portion axial direction. As the amount decreases, the height and width (either one of them) of the peak portion 31 are also reduced. Therefore, even if the central portion of the peak portion axial direction is approached, Distortion due to out-of-plane bending (particularly the curvature in the vicinity of a bent ridge line portion) can be developed. Thereby, not only the area | region of the both ends of a mountain part axial direction but the area | region which approached the center part will also contribute to energy absorption, and, as a result, the energy absorption efficiency as the folded-plate structure 1 can be improved. it can.

また、断面寸法を漸減させることで、山部31が倒れ込む変形に対する剛性と耐力を向上させることができるので、折板パネル構造1としての剛性と耐力も高めることができる。   Moreover, since the rigidity and proof stress with respect to the deformation | transformation into which the peak part 31 falls can be improved by reducing a cross-sectional dimension gradually, the rigidity and proof stress as the folded-panel structure 1 can also be improved.

図7は、薄板軽量形鋼を枠材に用いた壁パネルを想定したものであり、折板パネル構造1における折板3の枠材2に対するより具体的な取付け例を示している。この枠材2は、フランジ11a、11bとウェブ12とからなるリップ付溝形鋼で構成される枠材2aと、フランジ13a、13bとウェブ14とからなる溝形鋼で構成される枠材2bにより構成される。枠材2aは、折板3の山部軸方向と直交方向となるように、また枠材2bは、折板3の山部軸方向と平行となるように、折板3の周囲に配置されている。枠材2aには、柱としての鉛直荷重支持の機能を持たせることもでき、設計によっては、リップ付溝形鋼を複数本組み合わせたもの等を利用することもできる。枠材2a、2bからなる枠材2に対して、折板3は、枠材2aにおけるフランジ11aの外側に取り付けられる。このときも同様に折板3における谷部32の両端近傍がフランジ11aに対して例えばドリルねじ等により接合され、山部31の上端は可動な状態とされている。すなわち、この図7に示す取付け例では、折板3を枠材2の外側に取り付ける形態を示している   FIG. 7 assumes a wall panel using a thin lightweight steel plate as a frame member, and shows a more specific example of attachment of the folded plate 3 to the frame member 2 in the folded plate panel structure 1. The frame member 2 includes a frame member 2a made of a lip-shaped grooved steel made of flanges 11a, 11b and a web 12, and a frame member 2b made of a grooved steel made of flanges 13a, 13b and a web 14. Consists of. The frame member 2a is arranged around the folded plate 3 so that the frame member 2a is perpendicular to the mountain axis direction of the folded plate 3 and the frame member 2b is parallel to the mountain axis direction of the folded plate 3. ing. The frame member 2a can have a function of supporting a vertical load as a column, and depending on the design, a combination of a plurality of lip-shaped channel steels can be used. The folded plate 3 is attached to the outer side of the flange 11a in the frame member 2a with respect to the frame member 2 composed of the frame members 2a and 2b. At this time as well, the vicinity of both ends of the valley portion 32 in the folded plate 3 is joined to the flange 11a by, for example, a drill screw or the like, and the upper end of the peak portion 31 is movable. That is, in the attachment example shown in FIG. 7, the folded plate 3 is attached to the outside of the frame member 2.

図8の取付け例では、フランジ11a、11bとウェブ12とからなる溝形鋼で構成される枠材2aと、フランジ13a、13bとウェブ14とからなる溝形鋼で構成される枠材2bにより構成される枠体に折板3を接合する例を示している。ここでは、枠材2a、2bからなる枠材2に対して、折板3は、谷部32をフランジ11bの内側に取り付けられる。すなわち、この図8に示す取付け例では、折板3を枠材2の内側に取り付ける形態を示している。折板3を枠材2の内側に収めることで、壁パネルとしての厚みを抑えることができる。   In the mounting example of FIG. 8, the frame material 2 a composed of a grooved steel composed of flanges 11 a, 11 b and a web 12, and the frame material 2 b composed of a grooved steel composed of flanges 13 a, 13 b and a web 14. The example which joins the folding plate 3 to the frame comprised is shown. Here, the folded plate 3 is attached to the inner side of the flange 11b with respect to the frame member 2 composed of the frame members 2a and 2b. That is, in the attachment example shown in FIG. 8, the folded plate 3 is attached to the inside of the frame member 2. By accommodating the folded plate 3 inside the frame member 2, the thickness as a wall panel can be suppressed.

この図7、8の形態においても、山部31は可動であり、山部軸方向と略直交方向に歪むことで、面内せん断力に対するエネルギー吸収の効果を奏することは勿論である。   7 and 8, the peak portion 31 is movable and, of course, has an effect of absorbing energy with respect to the in-plane shear force by being distorted in a direction substantially perpendicular to the peak portion axial direction.

図9は、立設された柱17間において梁18が架設されてなる建築構造物5に折板3を設ける構成を示している。柱17にはプレート20が、また梁18にはプレート19が取り付けられている。プレート19、20は、それぞれ鋼板等が適用され、柱17や梁18から折板3にせん断力を伝達する部材として機能する。折板3は、その谷部32のみがプレート19、20に接合されている。この谷部32とプレート19、20との接合は溶接
等により行われ、接合部51が谷部32において形成される。プレート19、20は、それぞれ柱17、梁18の構造種別(鉄骨造、木造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造 等)に応じて、溶接、ボルト、スタッド等の手段により、柱17、梁18に取り付けられる。
FIG. 9 shows a configuration in which the folded plate 3 is provided on the building structure 5 in which the beams 18 are installed between the upright columns 17. A plate 20 is attached to the column 17, and a plate 19 is attached to the beam 18. Each of the plates 19 and 20 is made of a steel plate or the like, and functions as a member that transmits a shearing force from the column 17 or the beam 18 to the folded plate 3. The folded plate 3 is bonded to the plates 19 and 20 only at the valleys 32. The valley portion 32 and the plates 19 and 20 are joined by welding or the like, and the joint portion 51 is formed in the valley portion 32. The plates 19 and 20 are attached to the columns 17 and 18 by means of welding, bolts, studs, etc., depending on the structure type of the columns 17 and 18 (steel structure, wooden structure, reinforced concrete structure, steel reinforced concrete structure, etc.). It is done.

図10は、立設された柱17間において梁18が架設されてなる建築構造物5に折板3を設ける他の例を示している。梁18間には形鋼61が架け渡されている。また、この梁18に沿って形鋼62が取り付けられてなり、形鋼62の両端は、形鋼61に接合されている。折板3は、その谷部32のみが形鋼61、62に接合されている。この谷部32と形鋼61、62との接合は、溶接等により行われ、接合部51がこの谷部32において形成される。形鋼61、62は、それぞれ柱17、梁18の構造種別(鉄骨造、木造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造 等)に応じて、溶接、ボルト、スタッド等の手段により、柱17、梁18に取り付けられる。なお、形鋼61、62としては、H形鋼以外のその他の断面形状の形鋼であってもよい。   FIG. 10 shows another example in which the folded plate 3 is provided on the building structure 5 in which the beams 18 are installed between the upright columns 17. A section steel 61 is bridged between the beams 18. Further, a shape steel 62 is attached along the beam 18, and both ends of the shape steel 62 are joined to the shape steel 61. In the folded plate 3, only the valley portion 32 is joined to the shape steels 61 and 62. The valley portion 32 and the section steels 61 and 62 are joined by welding or the like, and the junction portion 51 is formed in the valley portion 32. The shaped steels 61 and 62 are respectively connected to the columns 17 and 18 by means of welding, bolts, studs, etc., depending on the structure type of the columns 17 and 18 (steel structure, wooden structure, reinforced concrete structure, steel reinforced concrete structure, etc.). It is attached. The section steels 61 and 62 may be a section steel having a cross-sectional shape other than the H-section steel.

この図9、10の形態においても、山部31は可動であり、山部軸方向と略直交方向に歪むことで、面内せん断力に対するエネルギー吸収の効果を奏することは勿論である。   9 and 10, the peak portion 31 is movable, and it is a matter of course that the effect of energy absorption with respect to the in-plane shear force is exhibited by being distorted in a direction substantially orthogonal to the peak portion axial direction.

なお、図7〜10の実施例において、折板3は一体成形されたものとして示しているが、例えば、山部軸方向と直交方向において、複数に分割されたものでも良い。分割された折板間の継ぎ目、また、山部軸方向と直交方向の縁と枠材との取り合い部については、互いに接合することを基本とするが、接合しない仕様とすることもできる。   In addition, in the Example of FIGS. 7-10, although the folded plate 3 is shown as what was integrally molded, for example, what was divided | segmented into plurality in the direction orthogonal to the peak part axial direction may be sufficient. The joint between the divided folded plates and the joint portion between the edge in the direction orthogonal to the peak portion axial direction and the frame material are basically joined to each other, but can also be set so as not to be joined.

また、図11は、山部31の内側に、粘弾塑性体65を設置した例である。粘弾塑性体65を設置することにより、風圧等による僅かな揺れに対してもエネルギー吸収性能を発揮することが可能となる。また地震等の大きな揺れに対しては、この粘弾塑性体65の粘弾塑性変形でエネルギー吸収するとともに、上述した山部31の歪みによるエネルギー吸収を発揮させることが可能となる。このため、粘弾塑性体65を山部31の内側に設置することにより、負荷される面内せん断力Qの大小を問わず、エネルギー吸収性能を確保することができる。   FIG. 11 is an example in which a viscoelastic plastic body 65 is installed inside the peak portion 31. By installing the viscoelastic plastic body 65, it is possible to exhibit energy absorption performance even for slight shaking due to wind pressure or the like. Further, for a large shake such as an earthquake, it is possible to absorb energy by the viscoelastic plastic deformation of the viscoelastic plastic body 65 and to exhibit the energy absorption due to the distortion of the mountain portion 31 described above. For this reason, the energy absorption performance can be ensured by installing the viscoelastic plastic body 65 inside the peak portion 31 regardless of the magnitude of the applied in-plane shear force Q.

以下、上述した本発明に係る折板パネル構造について、面内せん断力Qの負荷に対するエネルギー吸収性能を実験検証した結果について、説明をする。   Hereinafter, the results of experimental verification of the energy absorption performance with respect to the load of the in-plane shear force Q will be described for the above-described folded plate panel structure according to the present invention.

図12には、山部31の断面形状を略長方形状とした折板パネル構造120の例を示す。この例では、図12(b)に示すように、山部31の幅を40mm(t11=t12=40mm)、高さHを20mmとしている。折板3の板厚は0.55mm、素材降伏点は341Mpaである。折板3の枠材2に対する接合方法としては、谷部32に接合金物121を当接させ、ボルト122に張力導入して摩擦接合として固定した。   In FIG. 12, the example of the folded-panel structure 120 which made the cross-sectional shape of the peak part 31 substantially rectangular shape is shown. In this example, as shown in FIG. 12B, the width of the crest 31 is 40 mm (t11 = t12 = 40 mm), and the height H is 20 mm. The thickness of the folded plate 3 is 0.55 mm, and the material yield point is 341 Mpa. As a method for joining the folded plate 3 to the frame member 2, a joining metal piece 121 was brought into contact with the trough portion 32, and tension was introduced into the bolt 122 to fix it as a friction joining.

図13には、山部31の断面形状を略台形状とした折板パネル構造130の例を示す。この例では、図13(b)に示すように、上底の辺長t11=25mm、下底の辺長t12=40mm、山部31の高さHを20mmとしている。折板3の板厚、素材降伏点、枠材2との接合については、図12の例と同様である。   In FIG. 13, the example of the folded-panel structure 130 which made the cross-sectional shape of the peak part 31 substantially trapezoid shape is shown. In this example, as shown in FIG. 13B, the side length t11 of the upper base is 25 mm, the side length t12 of the lower base is 40 mm, and the height H of the peak 31 is 20 mm. The thickness of the folded plate 3, the material yield point, and the joining with the frame material 2 are the same as in the example of FIG. 12.

折板パネル構造120、130それぞれの性能確認に向けた実験を行い、ここでは、面内せん断力Q(kN)を繰り返し負荷した際のせん断変形角γ(rad)を測定した。   An experiment for confirming the performance of each of the folded plate panel structures 120 and 130 was conducted. Here, the shear deformation angle γ (rad) when the in-plane shear force Q (kN) was repeatedly applied was measured.

図14は、断面を略長方形状とした折板パネル構造120の実験結果であり、面内せん断力Qとせん断変形角γとの関係を示している。図示するようにγ=0.0125の変形領域まで紡錘形状の安定した履歴性状を示している。その後は、板要素の局所的な座屈発生に伴い、若干の荷重低下とスリップ性状を示している。 FIG. 14 shows the experimental results of the folded plate panel structure 120 having a substantially rectangular cross section, and shows the relationship between the in-plane shear force Q and the shear deformation angle γ. As shown in the figure, a stable hysteresis characteristic of a spindle shape is shown up to a deformation region of γ = 0.0125 . Thereafter, with the occurrence of local buckling of the plate element, a slight load reduction and slip properties are shown.

図15は、断面を略台形状とした折板パネル構造130の実験結果であり、面内せん断力Qとせん断変形角γとの関係を示している。図示するようにγ=0.01程度の変形領域まで紡錘形状の安定した履歴性状を示している。その後は、板要素の局所的な座屈発生に伴い、若干の荷重低下とスリップ性状を示している。図14の略長方形状の断面のものと比べると、安定した履歴性状を確保できる変形領域は若干狭まるものの、初期剛性と耐力については向上していることが分かる。 FIG. 15 is an experimental result of the folded plate panel structure 130 having a substantially trapezoidal cross section, and shows the relationship between the in-plane shear force Q and the shear deformation angle γ. As shown in the figure, a stable hysteresis characteristic of a spindle shape is shown up to a deformation region of about γ = 0.01 . Thereafter, with the occurrence of local buckling of the plate element, a slight load reduction and slip properties are shown. Compared with the substantially rectangular cross-section of FIG. 14, the deformation region capable of ensuring stable hysteresis is slightly narrowed, but the initial rigidity and proof stress are improved.

なお、図14の断面を略長方形状とした場合、また、図15の断面を略台形状とした場合ともに、山部軸方向の端部近傍で、板要素の局所的な座屈が発生することで、若干の荷重低下とスリップ性状を示しているが、図4に示すようなリブの設置により局所座屈を抑制することで、荷重低下とスリップ性状のない安定した履歴性状となる変形領域を拡大することができる。   In addition, when the cross section of FIG. 14 is made into a substantially rectangular shape, and when the cross section of FIG. 15 is made into a substantially trapezoid shape, local buckling of the plate element occurs in the vicinity of the end portion in the mountain axis direction. 4 shows a slight load drop and slip properties, but by suppressing local buckling by installing ribs as shown in FIG. 4, the deformation region becomes a stable hysteresis property without load drop and slip properties. Can be enlarged.

また、略台形状の上底の辺長t11と下底の辺長t12の比率に対する数値限定についても、図12〜13に示す実験実施例と同様の検討に基づくものである。板厚が0.4mm、素材降伏点が286Mpaの折板を用い、高さHを20mm、下底の辺長t12を40mmの一定値とし、上底の辺長t11を、40mm、25mm、15mm、0mmと変化(t11/t12を1.0から0まで変化)させた場合の実験結果を図16に示す。ここから、山部の断面が歪まないt11=0mmの三角形状の断面では初期剛性と耐力が高いものの、弾性的な挙動から急激に荷重低下するため、変形性能が確保できないことが分かる。これに対し、上底の辺長t11を大きくするにつれ、最大耐力点の変形値が大きくなるととともに、荷重低下を起こすまでの変形性能が向上することが分かる。また、最大耐力点からの荷重低下の程度も、上底の辺長t11を大きくするにつれ、徐々に緩やかになっている。上底の辺長t11と下底の辺長t12の比率に対する数値限定「t11/t12が0.6以上、1.0未満」は、t11=25mm(t11/t12≒0.6)において、荷重低下を起こすまでに、建築構造物における変形制限のクライテリアの一つであるγ=0.005程度の変形性能を確保するという実験結果を踏まえて定めたものである。   The numerical limitation on the ratio between the side length t11 of the upper base and the side length t12 of the lower base is also based on the same examination as in the experimental example shown in FIGS. Using a folded plate with a plate thickness of 0.4 mm and a material yield point of 286 Mpa, the height H is 20 mm, the lower base side length t12 is a constant value of 40 mm, and the upper base side length t11 is 40 mm, 25 mm, 15 mm. FIG. 16 shows the experimental results in the case of changing to 0 mm (t11 / t12 is changed from 1.0 to 0). From this, it can be seen that the triangular cross section of t11 = 0 mm where the cross section of the peak portion is not distorted has high initial rigidity and proof stress, but the load is drastically reduced due to its elastic behavior, so that deformation performance cannot be ensured. On the other hand, as the side length t11 of the upper base is increased, the deformation value of the maximum proof stress increases, and the deformation performance until the load decreases is improved. In addition, the degree of load reduction from the maximum proof stress is gradually reduced as the side length t11 of the upper base is increased. The numerical limitation on the ratio of the side length t11 of the upper base to the side length t12 of the lower base “t11 / t12 is 0.6 or more and less than 1.0” is the load at t11 = 25 mm (t11 / t12≈0.6). It is determined based on the experimental results of securing a deformation performance of about γ = 0.005, which is one of the criteria for deformation limitation in a building structure, before the decrease occurs.

なお、本発明の実施例では、建築構造物の壁パネルを対象に例示したが、屋根パネル、床パネルに適用する場合も、本発明に含まれる。   In addition, in the Example of this invention, although the wall panel of the building structure was illustrated as object, when applied to a roof panel and a floor panel, it is contained in this invention.

その他、本発明を実施するための構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。   In addition, although the structure, method, etc. for implementing this invention are disclosed by the above description, this invention is not limited to this. That is, the invention has been illustrated and described with particular reference to certain specific embodiments, but without departing from the spirit and scope of the invention, Various modifications can be made by those skilled in the art in terms of material, quantity, and other detailed configurations.

従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。   Therefore, the description limiting the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such is included in this invention.

本発明を適用した折板パネル構造の構成を示す図である。It is a figure which shows the structure of the folded-panel structure to which this invention is applied. 図1の点線で囲まれる領域Dにおける折板の拡大平面図である。It is an enlarged plan view of the folded plate in the area | region D enclosed with the dotted line of FIG. 本発明を適用した折板パネル構造における、山部の断面Cの形状が台形となるように構成した例を示す図である。It is a figure which shows the example comprised so that the shape of the cross section C of the peak part may become a trapezoid in the folded-panel structure to which this invention is applied. 谷部および山部の面にリブを形成させた例を示す図である。It is a figure which shows the example in which the rib was formed in the surface of a trough part and a peak part. 山部軸方向の両端部から山部軸方向の中央部にかけて、山部の断面寸法を漸減させた例を示す図である。It is a figure which shows the example which reduced gradually the cross-sectional dimension of the peak part from the both ends of the peak part axial direction to the center part of the peak part axial direction. (a)は、図5中I−I´断面図、(b)は、図5中J−J´断面図である。(a) is II 'sectional drawing in FIG. 5, (b) is JJ' sectional drawing in FIG. 本発明を適用した折板パネル構造における折板の枠材に対する取付け例を示す図である。It is a figure which shows the example of attachment with respect to the frame material of the folded plate in the folded plate panel structure to which this invention is applied. 本発明を適用した折板パネル構造における折板の枠材に対する取付け例を示す図である。It is a figure which shows the example of attachment with respect to the frame material of the folded plate in the folded plate panel structure to which this invention is applied. 本発明を適用した折板パネル構造における折板の枠材に対する取付け例を示す図であるIt is a figure which shows the example of attachment with respect to the frame material of the folded plate in the folded plate panel structure to which this invention is applied. 本発明を適用した折板パネル構造における折板の枠材に対する取付け例を示す図であるIt is a figure which shows the example of attachment with respect to the frame material of the folded plate in the folded plate panel structure to which this invention is applied. 山部の内側に粘弾塑性体を設置した例を示す図である。It is a figure which shows the example which installed the viscoelastic plastic body inside the mountain part. 山部における断面の形状を略長方形状とした折板パネル構造の実験例を示す図である。It is a figure which shows the experiment example of the folded-panel structure which made the shape of the cross section in a mountain part substantially rectangular shape. 山部における断面の形状を略台形状とした折板パネル構造の実験例を示す図である。It is a figure which shows the experimental example of the folded-plate panel structure which made the shape of the cross section in a mountain part substantially trapezoid shape. 山部における断面の形状を略長方形状とした折板パネル構造の実験結果を示す図である。It is a figure which shows the experimental result of the folded-panel structure which made the shape of the cross section in a mountain part substantially rectangular shape. 山部における断面の形状を略台形状とした折板パネル構造の実験結果を示す図である。It is a figure which shows the experimental result of the folded-panel structure which made the shape of the cross section in a mountain part into substantially trapezoid shape. 山部における上低の辺長と下底の辺長の比率を変化させた場合の折板パネル構造の実験結果を示す図である。It is a figure which shows the experimental result of the folded-plate panel structure at the time of changing the ratio of the side length of the upper and lower sides in a mountain part, and the side length of a lower base.

符号の説明Explanation of symbols

1 折板パネル構造
2 枠材
3 折板
5 建築構造物
17 柱
18 梁
19、20 プレート
21 端部
22 中央部
25 リブ
31 山部
32 谷部
35 ドリルねじ
51 接合部
61、62 形鋼
65 粘弾塑性体
91 上フランジ
92 下フランジ
93 ウェブ
DESCRIPTION OF SYMBOLS 1 Folded plate panel structure 2 Frame material 3 Folded plate 5 Building structure 17 Column 18 Beam 19, 20 Plate 21 End part 22 Central part 25 Rib 31 Mountain part 32 Valley part 35 Drill screw 51 Joint part 61, 62 Shape steel 65 Viscosity Elasto-plastic 91 Upper flange 92 Lower flange 93 Web

Claims (9)

上フランジとその両端のウェブからなる山部と下フランジからなる谷部とが所定間隔で屈曲形成された折板に枠材を接合した折板パネル構造において、
上記谷部のみが上記枠材に接合・固定され谷部の幅方向で谷部の浮き上がりが防止され、上記山部は、山部軸方向と略直交方向に可動とされ、
上記折板パネル構造に対して面内せん断力が負荷された場合に、上記谷部と上記枠材との接合部を上記折板よりも先行降伏させることなく、上記山部をその可動方向に歪ませることにより、上記面内せん断力に対してエネルギー吸収させること
を特徴とする折板パネル構造。
In the folded plate panel structure in which the frame material is joined to the folded plate formed by bending the upper flange and the crest portion formed of the webs at both ends and the trough portion formed of the lower flange at a predetermined interval
Only the valleys are joined and fixed to the frame member, is prevented valleys floating in the width direction of the valley, the peak portions is movable in the crest portion axially substantially perpendicular direction,
When an in-plane shear force is applied to the folded plate panel structure , the peak portion is moved in the movable direction without causing the junction between the valley portion and the frame material to yield before the folded plate. A folded plate panel structure that absorbs energy with respect to the in-plane shear force by being distorted.
上記山部の断面が、略長方形状で構成されていること
を特徴とする請求項1に記載の折板パネル構造。
The folded plate panel structure according to claim 1, wherein a cross section of the peak portion is formed in a substantially rectangular shape.
上記山部の断面が、下底の辺長に対する上の辺長の比が0.6以上、1.0未満である略台形状で構成されていること
を特徴とする請求項1に記載の折板パネル構造。
The cross section of the ridges is, according to claim 1, the ratio of the side length of the upper bottom 0.6 or higher, characterized in that it consists of a substantially trapezoidal shape is less than 1.0 for the side length of the lower base Folded board panel structure.
上記山部の断面が、上記山部軸方向の両端部から、上記山部軸方向の中央部にかけて、断面寸法を漸減させたこと
を特徴とする請求項1〜3のうち何れか1項記載の折板パネル構造。
4. The cross-sectional dimension of the peak portion is gradually reduced from both end portions in the peak portion axial direction to a central portion in the peak portion axial direction. 5. Folded board panel structure.
少なくとも上記山部軸方向の端部において、上記谷部および上記山部を形成する面のうち少なくとも1面に、リブが形成されていること
を特徴とする請求項1〜4のうち何れか1項記載の折板パネル構造。
The rib is formed in at least 1 surface among the surfaces which form the said trough part and the said peak part at least in the edge part of the said peak part axial direction. The folded plate panel structure described in the item.
少なくとも上記山部軸方向の端部において、上記山部の内側には、粘弾塑性体が設置されたこと
を特徴とする請求項1〜5のうち何れか1項記載の折板パネル構造。
The folded plate panel structure according to any one of claims 1 to 5, wherein a viscoelastic plastic body is installed inside the peak portion at least at an end portion in the peak portion axial direction.
請求項1〜6のうち何れか1項記載の折板パネル構造を壁パネルに用いたことを特徴とする建築構造物。   A building structure using the folded plate panel structure according to any one of claims 1 to 6 as a wall panel. 請求項1〜6のうち何れか1項記載の折板パネル構造を屋根パネルに用いたこと
を特徴とする建築構造物。
An architectural structure using the folded plate panel structure according to any one of claims 1 to 6 as a roof panel.
請求項1〜6のうち何れか1項記載の折板パネル構造を屋根パネルに用いたこと
を特徴とする建築構造物。
An architectural structure using the folded plate panel structure according to any one of claims 1 to 6 as a roof panel.
JP2008263555A 2008-10-10 2008-10-10 Folded panel structure and building structure Active JP5176855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008263555A JP5176855B2 (en) 2008-10-10 2008-10-10 Folded panel structure and building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263555A JP5176855B2 (en) 2008-10-10 2008-10-10 Folded panel structure and building structure

Publications (2)

Publication Number Publication Date
JP2010090650A JP2010090650A (en) 2010-04-22
JP5176855B2 true JP5176855B2 (en) 2013-04-03

Family

ID=42253623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263555A Active JP5176855B2 (en) 2008-10-10 2008-10-10 Folded panel structure and building structure

Country Status (1)

Country Link
JP (1) JP5176855B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688238B1 (en) * 2010-06-01 2011-05-25 株式会社 構造材料研究会 Box-shaped metal wall plate with square tube reinforcement
WO2014118966A1 (en) * 2013-02-01 2014-08-07 大和ハウス工業株式会社 Load bearing wall using corrugated steel sheet
JP6230902B2 (en) * 2013-12-19 2017-11-15 大和ハウス工業株式会社 Bearing wall
US9828770B2 (en) * 2014-03-25 2017-11-28 Steven B. Tipping Wall sheathing with passive energy dissipation
JP6417997B2 (en) * 2015-02-17 2018-11-07 新日鐵住金株式会社 Shear panel
JP6586277B2 (en) * 2015-02-26 2019-10-02 日鉄建材株式会社 Leg joint structure
JP6589482B2 (en) * 2015-09-14 2019-10-16 日本製鉄株式会社 Shear panel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11247351A (en) * 1998-03-03 1999-09-14 Nippon Light Metal Co Ltd Aggregate made of aluminum of structure and panel
JP2002097748A (en) * 2000-09-21 2002-04-05 Kawatetsu Galvanizing Co Ltd Folded plate for construction and its manufacturing method
JP4563872B2 (en) * 2005-06-03 2010-10-13 株式会社竹中工務店 Seismic wall
JP5098052B2 (en) * 2006-04-11 2012-12-12 新日鐵住金株式会社 Wall panels
JP4975384B2 (en) * 2006-06-27 2012-07-11 新日本製鐵株式会社 Folded plate material for building structure

Also Published As

Publication number Publication date
JP2010090650A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5176855B2 (en) Folded panel structure and building structure
KR101263078B1 (en) Connection metal fitting and building with the same
US8590220B2 (en) Metal joint, damping structure, and architectural construction
JP5336145B2 (en) Damping structure and building with damping structure
JP5726590B2 (en) Connection structure of reinforced concrete beams or columns
JP4842755B2 (en) Seismic walls using corrugated steel plates made of ultra high strength steel
JP4879723B2 (en) Buckling restraint brace
JP4758146B2 (en) Multi-story shear wall
JP2009047193A (en) Damper device and structure
KR101406485B1 (en) Coupling structure and method for beam to column connection
JP5422891B2 (en) Folded panel structure
KR101051058B1 (en) Damping system for construction
JP4395419B2 (en) Vibration control pillar
JP4771136B2 (en) Anti-seismic brace
JP2010121383A (en) Seismic retrofitting method and building
JP6635607B2 (en) Energy absorption mechanism and wooden building
JP5095492B2 (en) Corrugated steel shear wall
JP2009185469A (en) Beam flexual yielding preceding type frame
US20180274222A1 (en) Laminate cell construction system
JP7230630B2 (en) weld joint
JP5176905B2 (en) Folded panel structure and building structure
TWI408272B (en) The low friction energy dissipation and vibration reduction structure element, the energy dissipation and vibration reduction method of its application, the energy dissipation and vibration reduction structure of its application
JP5423193B2 (en) Folded panel structure
JP6505377B2 (en) Load bearing wall with diagonal member and deformation absorbing device
JP2011149153A (en) Vibration control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5176855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350