JP5174540B2 - Wood defect detection device - Google Patents

Wood defect detection device Download PDF

Info

Publication number
JP5174540B2
JP5174540B2 JP2008146157A JP2008146157A JP5174540B2 JP 5174540 B2 JP5174540 B2 JP 5174540B2 JP 2008146157 A JP2008146157 A JP 2008146157A JP 2008146157 A JP2008146157 A JP 2008146157A JP 5174540 B2 JP5174540 B2 JP 5174540B2
Authority
JP
Japan
Prior art keywords
defect
luminance
area
value
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008146157A
Other languages
Japanese (ja)
Other versions
JP2009293999A (en
Inventor
達也 本田
一成 吉村
良介 三高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008146157A priority Critical patent/JP5174540B2/en
Publication of JP2009293999A publication Critical patent/JP2009293999A/en
Application granted granted Critical
Publication of JP5174540B2 publication Critical patent/JP5174540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)

Description

本発明は、木材欠陥検出装置、殊に合板に張り合わせる薄厚でシート状の単板表面、あるいは単板を張り合わせた合板表面の欠陥を検出する木材欠陥検出装置に関するものである。   The present invention relates to a wood defect detection device, and more particularly to a wood defect detection device that detects defects on a thin and sheet-like single plate surface that is bonded to a plywood or a plywood surface that is bonded to a single plate.

木材表面の欠陥検出にあたり、色分布を基に欠陥を検出するものが特開2007−147442号公報に示されている。この場合、色も加味して欠陥を検出するために、欠陥検出を正確に行うことができるものの、モノクロ画像を利用するものに比して、システムが高額となる。また、ここでは欠陥判定に複雑な関数を利用していることと、事前に収集した欠陥パターンを用いて欠陥を判定しているために、検査処理(判定処理)が高速でなく、事前に欠陥パターンの把握が必要であるという問題がある。   Japanese Laid-Open Patent Publication No. 2007-147442 discloses a technique for detecting defects on the surface of wood based on color distribution. In this case, since the defect can be detected accurately in consideration of the color, the system can be expensive compared with the case of using a monochrome image. In addition, here, since the defect is determined using a complicated function for the defect determination and the defect pattern collected in advance, the inspection process (determination process) is not fast and the defect is determined in advance. There is a problem that it is necessary to grasp the pattern.

一方、モノクロ画像で欠陥を検出することができるようにしたものとしては、特開平8−145914号公報に示されたものがある。これは一次元テレビカメラを用いることもあって、安価であるものの、欠陥部と良品部の輝度差が十分獲得できず、安定して検出できないことがあるという問題を有しているほか、欠陥状態によって撮像画像中の見え方が異なるために、欠陥検出を確実に行えない場合がある。これは表面状態、含水率等の検査対象に依存する要因及び欠陥部の輝度レベルに依存する要因が考えられる。
特開2007−147442号公報 特開平8−145914号公報
On the other hand, there is one disclosed in Japanese Patent Application Laid-Open No. Hei 8-145914 which can detect a defect in a monochrome image. This is because a one-dimensional TV camera is used, and although it is inexpensive, it has the problem that the brightness difference between the defective part and the non-defective part cannot be obtained sufficiently and cannot be detected stably. Since the appearance in the captured image differs depending on the state, defect detection may not be reliably performed. This can be attributed to factors such as the surface state and moisture content that depend on the inspection target and factors that depend on the luminance level of the defect portion.
JP 2007-147442 A JP-A-8-145914

本発明は上記の従来の問題点に鑑みて発明したものであって、安価である上に安定した欠陥検出を行うことができる木材欠陥検出装置を提供することを課題とするものであり、更には単純な処理で欠陥を高速に検出することができる木材欠陥検出装置を提供することを課題とするものである。   The present invention was invented in view of the above-described conventional problems, and it is an object of the present invention to provide a wood defect detection apparatus that can perform stable defect detection while being inexpensive. An object of the present invention is to provide a wood defect detection device capable of detecting defects at high speed by simple processing.

上記課題を解決するために本発明に係る木材欠陥検出装置は、所定速度で移送される検査木材の表面を照明する照明手段と、照明手段で照明された検査木材の表面を撮像する撮像手段と、前記撮像手段で撮像された画像に基づいて検査木材表面の欠陥を検出する処理手段とからなり、上記照明手段は検査木材の検査面に420nm〜530nmの波長域の光を照射するものであり、上記処理手段は撮像された画像における各画素の輝度情報を基に欠陥部を抽出するものであり、上記処理手段は、所定のしきい値以下の輝度であり且つその輝度値を有する領域の面積が所定値以上である領域を欠陥領域として抽出し、所定の輝度値以下の輝度値を有する欠陥領域の面積値が欠陥と判定する所定値より小さい時、所定の輝度値以下の領域における最低輝度画素を中心とした輝度分布の最低輝度から所定の輝度値を超えるまでの勾配の角度に応じて欠陥と判定する、又は所定の輝度値以下の輝度値を有する欠陥領域の面積値が欠陥と判定する所定値より小さい時、所定の輝度値以下の領域における最低輝度画素を中心とした輝度分布の最低輝度から所定の輝度値を超えるまでの勾配の角度に応じて欠陥と判定するものであることに特徴を有している。上記波長の光を用いることで、正常部(良品部)と欠陥部とで高いコントラストを得ることができるものであり、このために欠陥部の判定を良好に行うことができる。そして、所定のしきい値以下の輝度であり且つその輝度値を有する領域の面積が所定値以上である領域を欠陥領域として抽出するため、欠陥を含むものを確実に抽出することができる。更に、所定の輝度値以下の輝度値を有する欠陥領域の面積値が欠陥と判定する所定値より小さい時、欠陥領域内の最低輝度画素を中心とした少なくとも4方向の輝度分布がいずれかの方向においても少なくとも1個以上の変曲点を有するものを欠陥と判定することで、本来は欠陥であるものの、面積では欠陥と判定されない節欠陥についても、欠陥と判定することができる。また、所定の輝度値以下の輝度値を有する欠陥領域の面積値が欠陥と判定する所定値より小さい時、所定の輝度値以下の領域における最低輝度画素を中心とした輝度分布の最低輝度から所定の輝度値を超えるまでの勾配の角度に応じて欠陥と判定することで、最低輝度が同レベルである欠陥領域でも欠陥種を安定して分類することができる。 In order to solve the above problems, a wood defect detection apparatus according to the present invention includes an illumination unit that illuminates the surface of the inspection wood that is transferred at a predetermined speed, and an imaging unit that images the surface of the inspection wood illuminated by the illumination unit. consists of a processing means for detecting a defect of inspection wood surface based on the image captured by the imaging means, the illumination means irradiates light in the wavelength range 420nm~530nm the inspection surface of the inspection timber There, the processing means state, and are not to extract the defect portion based on luminance information of each pixel in the captured image, the processing means is a predetermined threshold or less of the luminance and the luminance value A region having an area of a predetermined area equal to or greater than a predetermined value is extracted as a defect area, and when the area value of a defective area having a luminance value equal to or lower than a predetermined luminance value is smaller than a predetermined value for determining a defect, the predetermined luminance value or lower In the area An area value of a defect region having a luminance value equal to or lower than a predetermined luminance value is determined as a defect according to an angle of gradient from the lowest luminance of the luminance distribution centering on the lowest luminance pixel to a predetermined luminance value. Determining a defect according to the angle of the gradient from the lowest luminance of the luminance distribution centering on the lowest luminance pixel in the area below the predetermined luminance value to the predetermined luminance value when the value is smaller than the predetermined value for determining the defect It is characterized by being. By using light of the above-mentioned wavelength, a high contrast can be obtained between the normal part (non-defective part) and the defective part. For this reason, the defective part can be determined well. And since the area | region which is the brightness | luminance below a predetermined threshold value and the area of the area | region which has the luminance value is more than a predetermined value is extracted as a defect area | region, what includes a defect can be extracted reliably. Further, when the area value of the defective area having a luminance value equal to or lower than the predetermined luminance value is smaller than the predetermined value for determining as a defect, the luminance distribution in at least four directions centered on the lowest luminance pixel in the defective area is any direction. In this case, by determining a defect having at least one inflection point as a defect, a node defect that is originally a defect but is not determined as a defect by area can be determined as a defect. Further, when the area value of the defective area having a luminance value equal to or lower than the predetermined luminance value is smaller than the predetermined value for determining as a defect, the predetermined value is determined from the lowest luminance of the luminance distribution centering on the lowest luminance pixel in the area equal to or lower than the predetermined luminance value. By determining a defect according to the angle of the gradient until the luminance value is exceeded, the defect type can be stably classified even in a defect region having the same minimum luminance.

この時、上記照明手段としては、検査木材の繊維方向に対して略平行方向な光を検査木材の検査面に対して40〜75°の角度で照明するものが好ましい。木材の特性を活用した撮像部と処理部の単純な構成で欠陥検出ができるものであり、また事前に欠陥パターンを収集することなく、様々な欠陥を検出することができる。   At this time, it is preferable that the illuminating means illuminates light substantially parallel to the fiber direction of the inspection wood at an angle of 40 to 75 ° with respect to the inspection surface of the inspection wood. Defects can be detected with a simple configuration of the imaging unit and processing unit utilizing the characteristics of wood, and various defects can be detected without collecting defect patterns in advance.

そして上記処理手段は、所定のしきい値以下の輝度であり且つその輝度値を有する領域の面積が所定値以下である領域を欠陥候補領域として抽出し、該欠陥候補領域を中心とした所定領域において、周辺輝度が高い場合はしきい値レベルを上昇させ、周辺輝度が低い場合はしきい値レベルを低下させる処理を行って上記領域の面積値を再計測し、該面積値にて欠陥判定を行うものであると、しきい値を周辺輝度に応じて調整することになるために、欠陥部と良品部の輝度差が十分にないものにおいても、確実に欠陥を検出することができる。   The processing means extracts, as a defect candidate area, an area having a luminance equal to or lower than a predetermined threshold and an area having the luminance value equal to or lower than the predetermined value, and the predetermined area centered on the defect candidate area In this case, when the peripheral brightness is high, the threshold level is increased, and when the peripheral brightness is low, the threshold level is decreased to remeasure the area value of the region, and the defect determination is performed based on the area value. Since the threshold value is adjusted according to the peripheral luminance, the defect can be reliably detected even when the luminance difference between the defective portion and the non-defective portion is not sufficient.

また、上記処理手段は、欠陥領域の最低輝度画素の存在する所定領域における平均輝度と全撮像画像の平均輝度に基づいて2値化のためのしきい値を設定し、該しきい値を基に欠陥領域を抽出するものであると、周辺領域(良品部領域)の輝度を反映させて正確に欠陥部領域を抽出することができる。   The processing means sets a threshold for binarization based on the average luminance in a predetermined area where the lowest luminance pixel of the defective area exists and the average luminance of all captured images, and based on the threshold. If the defect area is extracted, the brightness of the peripheral area (non-defective part area) can be reflected to accurately extract the defect area.

上記処理手段は、複数のしきい値を用いて欠陥領域を求めるとともに、各しきい値において夫々欠陥があると判定された欠陥領域のうち、重複する箇所にある欠陥領域を求め、更に重複する欠陥領域のうちの最大の欠陥領域を残して他の欠陥領域を削除するものであると、検査木材表面状態や撮像状態により欠陥部輝度が安定しない場合でも、安定して欠陥領域を抽出することができる。   The processing means obtains a defect area using a plurality of threshold values, obtains a defect area at an overlapping position among defect areas determined to have a defect at each threshold value, and further overlaps the defect area. If the defect area is to be deleted while leaving the largest defect area among the defect areas, the defect area can be stably extracted even if the brightness of the defect portion is not stable due to the surface condition of the inspection wood or the imaging state. Can do.

さらに上記処理手段は、検査木材表面の所定領域間の平均輝度差に基づいて表面色むら欠陥を判定するものであると、従来はカラー画像を用いて色分布から判定していた色むら欠陥も検出することができる。   Furthermore, if the processing means is to determine the surface color unevenness defect based on the average luminance difference between the predetermined areas on the surface of the inspection wood, the color unevenness defect that has been conventionally determined from the color distribution using a color image is also included. Can be detected.

本発明は、照明手段として検査木材の検査面に420nm〜530nmの波長域の光を照射するものを用いるために、正常部(良品部)と欠陥部とで高いコントラストを得ることができるものであり、このために輝度を基に行う欠陥部の判定を良好に行うことができる。   Since this invention uses what irradiates the light of the wavelength range of 420 nm-530 nm to the test | inspection surface of test | inspection wood as an illumination means, it can obtain high contrast with a normal part (good part) and a defective part. For this reason, it is possible to satisfactorily determine the defective portion based on the luminance.

以下、本発明を添付図面に示す実施形態に基づいて説明すると、図示例は、合板の表面に貼られる厚みが薄いシート状の単板の表面に現れる各種欠陥を検出するためのもので、図1及び図2に示すように、コンベア4によって搬送される検査木材1の上方に少なくとも1台のカメラ2を配置するとともに、カメラ2による撮像範囲となる部分を照明する光源3を配置してある。撮像手段である上記カメラ2としてはラインセンサ型のものを用いており、また照明手段である上記光源3には発光ダイオードを用いて、斜光照明を検査木材1に対して与える。   Hereinafter, the present invention will be described based on an embodiment shown in the accompanying drawings. The illustrated example is for detecting various defects appearing on the surface of a thin sheet-like single plate attached to the surface of a plywood. As shown in FIG. 1 and FIG. 2, at least one camera 2 is arranged above the inspection wood 1 conveyed by the conveyor 4, and a light source 3 that illuminates a portion that is an imaging range by the camera 2 is arranged. . A line sensor type camera is used as the camera 2 as the imaging means, and oblique light illumination is given to the inspection wood 1 by using a light emitting diode as the light source 3 as the illumination means.

ここで、光源3には420nm〜530nmの波長の光を出力するものを用いている。図3は検査木材1の正常部分の反射率イと、欠陥部分(カナスジ欠陥)の反射率ロとを波長を変えて測定した結果を示しており、この両反射率イ、ロの比率ハは、420〜530nmの範囲において小さく、従って正常部(良品部)と欠陥部とのコントラストが大きくなるために、上記波長の光を用いたものであり、図からも明らかなように、430nm〜480nmの波長であれば、コントラストが最大となるために、更に良好な欠陥検出を行うことができる。   Here, a light source 3 that outputs light having a wavelength of 420 nm to 530 nm is used. FIG. 3 shows the result of measuring the reflectance of the normal part of the inspection wood 1 and the reflectance of the defective part (cane stripe defect) by changing the wavelength. In this case, since the contrast between the normal part (non-defective part) and the defective part becomes large in the range of 420 to 530 nm, the light having the above wavelength is used. As is apparent from the figure, 430 nm to 480 nm. Since the contrast is maximized at a wavelength of 1, it is possible to perform better defect detection.

また、上記光源3による照明は、検査木材1の繊維方向Sに略平行で且つ40〜75°、図示例では60°上方より照射している。繊維方向Sには木材の水分を供給する導管等が一般に存在するために、図4に示すように繊維方向Sと直交する方向に凹凸が現れる。また、木目・欠陥等が存在する場合には、凹凸形状が他凹凸と異なることがある。これは形状が大きい、凹凸部の色が他凹凸と異なる等の特徴を有することであり、繊維方向Sに対して平行な光を斜め上方から照射することで、木目・欠陥等の凹凸を他の凹凸よりも強調することができる。さらに、木材内部に浸透した光が凹凸の影響を受けにくく、表面に光が返りやすくなる(拡散しやすくなる)。逆に、繊維方向Sと直交する方向から照射した場合には、木目・欠陥等の識別が困難になる。なお、繊維方向S以外の方向に走る凹凸も存在することがあるが、その量は微小で問題になるレベルでない。   Further, the illumination by the light source 3 is applied substantially parallel to the fiber direction S of the inspection wood 1 and from 40 to 75 °, in the illustrated example, from 60 ° above. Since there are generally conduits for supplying moisture from the wood in the fiber direction S, irregularities appear in the direction perpendicular to the fiber direction S as shown in FIG. In addition, when there are grain, a defect, etc., the uneven shape may be different from other unevenness. This is because the shape is large and the color of the uneven part is different from other uneven parts. By irradiating light parallel to the fiber direction S from diagonally above, other uneven parts such as grain and defects can be obtained. It can be emphasized rather than the unevenness. Furthermore, the light penetrating into the wood is not easily affected by the unevenness, and the light easily returns to the surface (is easily diffused). On the contrary, when it irradiates from the direction orthogonal to the fiber direction S, it becomes difficult to identify wood grain and defects. There may be irregularities that run in directions other than the fiber direction S, but the amount is minute and not a problem level.

また、図5は光源3による照明の角度を変化させて、3種の木材(カバ(M1)、ナラ(M2)、ブナ(M3))に光を当てた際の平均輝度を測定したものであるが、図から明らかなように、角度は40°〜75°、殊に60°前後とした時に高い反射輝度を得ることができるために、欠陥検出のための反射光を多く得ることができる。   FIG. 5 shows the measurement of average brightness when light is applied to three kinds of wood (hip (M1), oak (M2), and beech (M3)) by changing the angle of illumination by the light source 3. However, as is apparent from the figure, since a high reflection luminance can be obtained when the angle is 40 ° to 75 °, especially around 60 °, a large amount of reflected light for defect detection can be obtained. .

カメラ2の出力画像は図1,図2に示す処理手段4において次のような処理がなされて欠陥検出が行われる。すなわち、画像処理用コンピュータからなる上記処理手段4は、検査木材1の搬送に同期させてラインセンサ型カメラ2の出力を取り込むことで得られた2次元撮像画像の各画素に対し、図6に示すように、しきい値を段階的に変化させてしきい値毎に2値化処理を行って画素のグループ化を行い、撮像画像から領域を抽出する。そして、この処理でグループ化した領域の面積を、検出しきい値毎に予め設定した規格面積と比較して、規格面積以上であれば、その領域を欠陥領域と判定するという処理を行う。   The output image of the camera 2 is subjected to the following processing in the processing means 4 shown in FIGS. That is, the processing means 4 comprising an image processing computer is shown in FIG. 6 for each pixel of the two-dimensional captured image obtained by capturing the output of the line sensor type camera 2 in synchronization with the conveyance of the inspection wood 1. As shown in the figure, the threshold value is changed stepwise and binarization processing is performed for each threshold value to group pixels, and an area is extracted from the captured image. Then, the area of the areas grouped by this process is compared with a standard area set in advance for each detection threshold, and if the area is equal to or larger than the standard area, a process of determining the area as a defective area is performed.

ところで、撮像画像の状態によりエッジ部がだらける状態(エッジ部から立上る画素数が多数となる状態)となり、画像から正確に面積が検出できないことがある。このエッジの「だらけ」を削除するために、しきい値を再設定して2値化処理を行うのが好ましい。図7はこの場合のフローを示しており、該フローは図6に示したフロー中の「しきい値毎に検出画素をまとめて領域化する」というステップまでをFとする時、このFに続けて実行する。   By the way, depending on the state of the picked-up image, the edge portion may become loose (the number of pixels rising from the edge portion becomes large), and the area may not be detected accurately from the image. In order to delete the “full” edge, it is preferable to reset the threshold value and perform binarization processing. FIG. 7 shows a flow in this case. When the flow up to the step “collection of detected pixels for each threshold” in the flow shown in FIG. Continue to run.

図6に示した場合と同様に、まず検出しきい値毎に予め設定した面積と比較して、該面積以上であれば、その領域を欠陥候補領域と判定し、次いで一度計測した欠陥候補領域を再度2値化しきい値を変更して2値化処理を行って、上記の予め設定した面積以下であった欠陥候補領域を再度チェックする。しきい値を変更する場合の値Aとしては固定値を与える。例えば、最初の検出しきい値が30であり、欠陥部最低輝度と良品部平均輝度の輝度差が110である時、輝度差の1/2となる55をAの値として用いて欠陥検出しきい値に加算した値85をしきい値として設定する。周辺輝度に応じてしきい値を調整するのである。そして、領域面積を再計測して判定を行う。この処理を行うことで、図8に示すように、検出した欠陥のサイズS1よりも広くて目視確認することができる欠陥のサイズS0にほぼ一致する欠陥領域を検出することができる。周辺輝度との分離を確実に行うことができ、欠陥部を正確に抽出することができるものとなる。   As in the case shown in FIG. 6, first, the area is compared with a preset area for each detection threshold value. If the area is equal to or larger than the area, the area is determined as a defect candidate area, and then the defect candidate area is measured once. Then, the binarization process is performed again by changing the binarization threshold value, and the defect candidate area that is equal to or smaller than the preset area is checked again. A fixed value is given as the value A when changing the threshold value. For example, when the initial detection threshold is 30, and the luminance difference between the defective portion minimum luminance and the non-defective portion average luminance is 110, the defect detection is performed using 55 which is ½ of the luminance difference as the value of A. A value 85 added to the threshold value is set as a threshold value. The threshold value is adjusted according to the peripheral luminance. Then, the determination is performed by re-measuring the area of the area. By performing this process, as shown in FIG. 8, it is possible to detect a defect area that is larger than the detected defect size S1 and substantially coincides with the defect size S0 that can be visually confirmed. Separation from the peripheral luminance can be reliably performed, and the defective portion can be accurately extracted.

ところで、検査木材1が図9に示すように、合板上に複数枚の単板(ピース)を貼り合わせたものである場合、欠陥9の存在するピースP1と欠陥9が存在しないピースP2とで平均輝度が異なる時、しきい値設定時にいずれかのピースに存在する欠陥の輝度レベルでしきい値を設定すると、同欠陥をピースP1で検出する場合とピースP2で検出する場合とでは欠陥として検出する領域に差が発生してしまう。   By the way, as shown in FIG. 9, when the inspection wood 1 is a laminate of a plurality of single plates (pieces) on a plywood, a piece P1 where the defect 9 exists and a piece P2 where the defect 9 does not exist When the average brightness is different and the threshold is set with the brightness level of a defect present in any piece when the threshold is set, the defect is detected as a defect in the case where the defect is detected by the piece P1 and in the case of the piece P2. A difference occurs in the area to be detected.

この点に対処したフローを図10に示す。撮像画像に存在するピースの平均輝度を基準として、欠陥が存在するピースの平均輝度との差を加味してしきい値を可変させるとともに全ピースの平均輝度を基準として変動させることで、平均的なしきい値を設定するのである。すなわち、「全体平均輝度−欠陥存在ピース平均輝度」の値でしきい値を変化させるのである。なお、各ピースの境界の判断は、撮像画像の端部を検出して、その端部にマッチするようにピース境界を割り付けることで行っている。   FIG. 10 shows a flow for dealing with this point. By using the average brightness of the pieces present in the captured image as a reference, taking into account the difference from the average brightness of the pieces with defects, the threshold value can be varied and the average brightness of all pieces can be varied as a reference. The threshold value is set. That is, the threshold value is changed by the value of “total average luminance−defect existence piece average luminance”. Note that the boundary of each piece is determined by detecting the end of the captured image and assigning the piece boundary so as to match the end.

また、撮像画像中の欠陥領域は、撮像系の状態(カメラ2のピントボケ、カメラ2のレンズの収差等)や検査木材1の状態(含水率による反射光量の差等)により同一しきい値で検出されず、複数のしきい値領域から検出されるために、図11に示すように複数の欠陥領域A1,A2,A3が重複することになる。   In addition, the defect area in the captured image has the same threshold value depending on the state of the imaging system (focus blur of the camera 2, aberration of the lens of the camera 2, etc.) and the state of the inspection wood 1 (difference in reflected light amount due to moisture content, etc.). Since it is not detected but is detected from a plurality of threshold regions, a plurality of defect regions A1, A2, A3 overlap as shown in FIG.

このような場合には、検出領域が最大となる領域で欠陥判定を行うことで、欠陥領域の重複を防ぐ。図12はこの重複する欠陥領域の削除(記録除去)を行うために、しきい値Nにおいて欠陥判定して検出した領域の重心座標を中心とした所定の範囲内に重心位置を有する他の欠陥領域があれば、その欠陥領域(狭い面積の欠陥領域)の記録を削除することを行っている。   In such a case, the defect determination is performed in the area where the detection area is the maximum, thereby preventing the overlap of the defect areas. FIG. 12 shows another defect having a centroid position within a predetermined range centered on the centroid coordinate of the area detected by determining the defect at the threshold value N in order to delete (delete) the overlapping defect area. If there is a region, the recording of the defective region (defect region having a small area) is deleted.

上記所定範囲としては、規格面積値が最大となる欠陥サイズ(通常、最大輝度値をしきい値として検出した領域に適用する規格面積値)に相当する半径で設定することが好ましい。また、この処理は、高輝度のしきい値設定により検出した領域(しきい値が高い設定により検出した領域)から処理を行うことが好ましい。   The predetermined range is preferably set by a radius corresponding to a defect size having a maximum standard area value (usually a standard area value applied to a region detected using the maximum luminance value as a threshold value). In addition, this process is preferably performed from an area detected by setting a high-luminance threshold value (an area detected by setting a high threshold value).

欠陥にも各種のものが存在しており、その中の節欠陥については、規定された所定の面積値を満足しない場合においても欠陥として検出する必要がある。従って、欠陥検出にあたり、節欠陥であるかどうかの検出も必要となるが、節欠陥のある部分について輝度分布を調べると、欠陥領域内の最低輝度(領域重心位置)を中心としてその輝度分布が図13に示す3パターンに分類できることが判明した。この特性から、変曲点が1つ以上の場合、及び同一節欠陥でも変曲点が1つの場合と2つ以上ある場合で欠陥を分類できる。なお、通常の欠陥は図13(a)に示す輝度分布と同様であり、節欠陥の場合、図13(b)や図13(c)に示すような輝度分布も存在することから、このような分類でも節欠陥を判定することができる。   There are various types of defects, and it is necessary to detect a node defect in the defect as a defect even when the prescribed area value is not satisfied. Therefore, when detecting a defect, it is necessary to detect whether or not it is a node defect. However, when the luminance distribution is examined for a portion having a node defect, the luminance distribution is centered on the lowest luminance (region centroid position) in the defect region. It was found that the three patterns shown in FIG. 13 can be classified. From this characteristic, defects can be classified when there are one or more inflection points, and when there are one and two or more inflection points even in the same nodal defect. The normal defect is the same as the luminance distribution shown in FIG. 13A, and in the case of a node defect, the luminance distribution as shown in FIGS. 13B and 13C also exists. It is possible to determine a nodal defect even with a simple classification.

この点に基づき、図14に示すように、欠陥領域の重心位置を試算し、得た重心位置を中心として領域の外接矩形の2倍のサイズのエリアの輝度分布を重心位置を通る4方向(重心位置から見て8方向)で計測し、さらに輝度分布に変曲点があるかどうかを計測する。そして、上記の4方向のうちの2方向で且つ変曲点が2つ以上あれば生節欠陥として記録するとともに、2方向で変曲点が1つ以上であれば、しきい値に対応した欠陥領域として記録するという面積に依存しない欠陥検出を行う。   Based on this point, as shown in FIG. 14, the center of gravity position of the defect area is estimated, and the luminance distribution of the area twice the size of the circumscribed rectangle of the area centered on the obtained center of gravity position is displayed in four directions ( Measurement is performed in eight directions from the position of the center of gravity, and further, whether or not there is an inflection point in the luminance distribution is measured. And if it is two of the above four directions and there are two or more inflection points, it is recorded as a life defect, and if there are one or more inflection points in two directions, it corresponds to the threshold value. Defect detection independent of the area of recording as a defect area is performed.

また、節欠陥のように周辺輝度までの輝度変化が、図15(a)に示すように、最低輝度レベルから急峻に周辺輝度に到達する輝度分布を持つ欠陥と、図15(b)に示すように、なだらかに輝度変化しながら周辺輝度パターンに到達する輝度分布を持つ欠陥の2種類が存在する。ちなみに、図15(a)に示すものでは、最低輝度レベルから周辺良品部への輝度変化が10画素程度であり、図15(b)に示す例では20画素程度である。   Further, as shown in FIG. 15B, the luminance change up to the peripheral luminance, such as a node defect, has a luminance distribution that suddenly reaches the peripheral luminance from the lowest luminance level, as shown in FIG. As described above, there are two types of defects having a luminance distribution that reaches the peripheral luminance pattern while the luminance changes gently. Incidentally, in the case shown in FIG. 15A, the luminance change from the lowest luminance level to the peripheral non-defective part is about 10 pixels, and in the example shown in FIG. 15B, it is about 20 pixels.

これらの欠陥では、しきい値の輝度値の設定によっては欠陥の規格面積値を満足せず、欠陥と判定されない場合でもこの輝度分布の特性から欠陥として判定することで、安定した欠陥検出を行うことができる。   These defects do not satisfy the standard area value of the defect depending on the setting of the luminance value of the threshold value, and even when the defect is not determined, it is determined as a defect from the characteristics of this luminance distribution, thereby performing stable defect detection. be able to.

この点に対処したフローを図16に示す。まず、面積での欠陥判定を行い、この面積値を満足しない場合に、輝度分布を用いて判定する。輝度分布は欠陥候補の重心位置を中心して、その中心から両側(両方向)に欠陥の外接矩形の2倍のサイズを計測する。また、この輝度分布は重心位置を通る4方向で45度毎に計測して、この内の2方向以上において輝度変化が所定の傾き以上である場合に欠陥と判定する。   FIG. 16 shows a flow for dealing with this point. First, defect determination is performed by area, and when the area value is not satisfied, determination is made using a luminance distribution. The luminance distribution is centered on the position of the center of gravity of the defect candidate, and measures twice the size of the circumscribed rectangle of the defect on both sides (both directions) from the center. Further, this luminance distribution is measured every 45 degrees in four directions passing through the center of gravity position, and when the luminance change is equal to or larger than a predetermined inclination in two or more directions, it is determined as a defect.

このほか、合板表面に複数の単板(ピース)を貼り合わせたものでは、他のピースとの差が大きいピースがあるものは欠陥として扱うのが好ましい。この点に関しては、これまでカラー画像でこれらピースの色差(色分布差)を計測し評価していたが、ここでは輝度コントラストが最大となる波長域の光を照射していることから、この輝度を利用してカラー画像と同様の検出を行っている。   In addition, in the case where a plurality of single plates (pieces) are bonded to the plywood surface, it is preferable to treat a piece having a large difference from other pieces as a defect. In this regard, until now we have measured and evaluated the color difference (color distribution difference) of these pieces with color images, but here we are emitting light in the wavelength range where the luminance contrast is maximum. Is used for the same detection as a color image.

具体的には図17に示すように、ピース毎に領域分割を行って、ピース毎の平均輝度を求め、あるピースとこれに隣接するピースとの輝度差が所定以上である時、そのピースは欠陥を有するものと判定する。たとえば470nmの波長の光に対してピースP1の平均輝度が68、ピースP2の平均輝度が55,ピースP3の平均輝度が70、ピースP4の平均輝度が65であり、ピースP2にピースP1,P3,P4が隣接している時、ピース2の平均輝度は周辺ピース(ピースP1,P3,P4)に対して所定以上の輝度差を有するために、色不良欠陥として検出する。   Specifically, as shown in FIG. 17, area division is performed for each piece to obtain an average luminance for each piece, and when a luminance difference between a piece and an adjacent piece is equal to or greater than a predetermined value, Judged to have a defect. For example, the average brightness of the piece P1 is 68, the average brightness of the piece P2 is 55, the average brightness of the piece P3 is 70, the average brightness of the piece P4 is 65, and the pieces P1 and P3 are in the piece P2. , P4 are adjacent to each other, the average luminance of the piece 2 has a luminance difference greater than or equal to a predetermined value with respect to the peripheral pieces (pieces P1, P3, P4).

本発明の実施の形態の一例の概略ブロック図である。It is a schematic block diagram of an example of an embodiment of the invention. 同上の斜視図である。It is a perspective view same as the above. 反射率及び反射比率と波長との関係の説明図である。It is explanatory drawing of the relationship between a reflectance, a reflection ratio, and a wavelength. 検査木材表面の凹凸を示すもので、(a)は平面図、(b)はX−X線断面図である。It shows the unevenness of the surface of the inspection wood, (a) is a plan view, (b) is a cross-sectional view along the line XX. 照射方向と輝度との関係の説明図である。It is explanatory drawing of the relationship between an irradiation direction and a brightness | luminance. 同上のフローチャートである。It is a flowchart same as the above. 他例のフローチャートである。It is a flowchart of another example. 輝度分布の一例の説明図である。It is explanatory drawing of an example of luminance distribution. 検査木材表面の一例の平面図である。It is a top view of an example of the inspection wood surface. 更に他例のフローチャートである。It is a flowchart of other examples. 複数のしきい値による2値化画像の一例の説明図である。It is explanatory drawing of an example of the binarized image by a some threshold value. 別の例のフローチャートである。It is a flowchart of another example. (a)(b)(c)は夫々節欠陥の場合の輝度分布の説明図である。(a), (b), and (c) are explanatory diagrams of the luminance distribution in the case of a nodal defect. 更に別の例のフローチャートである。It is a flowchart of another example. (a)(b)は夫々節欠陥の場合の輝度分布の説明図である。(a) (b) is explanatory drawing of the luminance distribution in the case of a node defect, respectively. 他の例のフローチャートである。It is a flowchart of another example. 別の例のフローチャートである。It is a flowchart of another example.

符号の説明Explanation of symbols

1 検査木材
2 カメラ
3 光源
4 処理手段
1 Inspection wood 2 Camera 3 Light source 4 Processing means

Claims (7)

所定速度で移送される検査木材の表面を照明する照明手段と、照明手段で照明された検査木材の表面を撮像する撮像手段と、前記撮像手段で撮像された画像に基づいて検査木材表面の欠陥を検出する処理手段とからなり、
上記照明手段は検査木材の検査面に420nm〜530nmの波長域の光を照射するものであり、
上記処理手段は撮像された画像における各画素の輝度情報を基に欠陥部を抽出するものであり、
上記処理手段は、所定のしきい値以下の輝度であり且つその輝度値を有する領域の面積が所定値以上である領域を欠陥領域として抽出し、所定の輝度値以下の輝度値を有する欠陥領域の面積値が欠陥と判定する所定値より小さい時、欠陥領域内の最低輝度画素を中心とした少なくとも4方向の輝度分布がいずれかの方向においても少なくとも1個以上の変曲点を有するものを欠陥と判定するものであることを特徴とする木材欠陥検出装置。
Illuminating means for illuminating the surface of the inspection timber transferred at a predetermined speed, imaging means for imaging the surface of the inspection timber illuminated by the illuminating means, and defects on the surface of the inspection timber based on the image captured by the imaging means And processing means for detecting
It said illuminating means is adapted to irradiate light in a wavelength range of 420nm~530nm the inspection surface of the inspection timber,
It said processing means state, and are not to extract the defect portion based on luminance information of each pixel in the captured image,
The processing means extracts a region having a luminance equal to or lower than a predetermined threshold and the area of the luminance value having a luminance value equal to or larger than a predetermined value as a defective region, and a defective region having a luminance value equal to or lower than the predetermined luminance value When the area value is smaller than a predetermined value for determining a defect, the luminance distribution in at least four directions centered on the lowest luminance pixel in the defect region has at least one inflection point in any direction. A wood defect detection device characterized by being determined as a defect.
所定速度で移送される検査木材の表面を照明する照明手段と、照明手段で照明された検査木材の表面を撮像する撮像手段と、前記撮像手段で撮像された画像に基づいて検査木材表面の欠陥を検出する処理手段とからなり、
上記照明手段は、検査木材の検査面に420nm〜530nmの波長域の光を照射するものであり、
上記処理手段は、撮像された画像における各画素の輝度情報を基に欠陥部を抽出するものであり、
上記処理手段は、所定のしきい値以下の輝度であり且つその輝度値を有する領域の面積が所定値以上である領域を欠陥領域として抽出し、所定の輝度値以下の輝度値を有する欠陥領域の面積値が欠陥と判定する所定値より小さい時、所定の輝度値以下の領域における最低輝度画素を中心とした輝度分布の最低輝度から所定の輝度値を超えるまでの勾配の角度に応じて欠陥と判定するものであることを特徴とする木材欠陥検出装置。
Illuminating means for illuminating the surface of the inspection timber transferred at a predetermined speed, imaging means for imaging the surface of the inspection timber illuminated by the illuminating means, and defects on the surface of the inspection timber based on the image captured by the imaging means And processing means for detecting
The illuminating means irradiates the inspection surface of the inspection wood with light having a wavelength range of 420 nm to 530 nm,
The processing means extracts a defective portion based on luminance information of each pixel in a captured image,
The processing means extracts a region having a luminance equal to or lower than a predetermined threshold and the area of the luminance value having a luminance value equal to or larger than a predetermined value as a defective region, and a defective region having a luminance value equal to or lower than the predetermined luminance value When the area value is smaller than the predetermined value for determining the defect, the defect is determined according to the angle of the gradient from the lowest luminance of the luminance distribution centering on the lowest luminance pixel in the area below the predetermined luminance value to the predetermined luminance value. it characterized in that to determine the wood defect detection apparatus.
上記照明手段は、検査木材の繊維方向に対して略平行方向な光を検査木材の検査面に対して40〜75°の角度で照明するものであることを特徴とする請求項1または2記載の木材欠陥検出装置。 3. The illumination means illuminates light substantially parallel to the fiber direction of the inspection wood at an angle of 40 to 75 [deg.] With respect to the inspection surface of the inspection wood. Wood defect detection device. 上記処理手段は、所定のしきい値以下の輝度であり且つその輝度値を有する領域の面積が所定値以下である領域を欠陥候補領域として抽出し、該欠陥候補領域を中心とした所定領域において、周辺輝度が高い場合はしきい値レベルを上昇させ、周辺輝度が低い場合はしきい値レベルを低下させる処理を行って上記領域の面積値を再計測し、該面積値にて欠陥判定を行うものであることを特徴とする請求項1乃至3のいずれか一項に記載の木材欠陥検出装置。 The processing means extracts a region having a luminance equal to or lower than a predetermined threshold and an area having the luminance value equal to or lower than a predetermined value as a defect candidate region, and in a predetermined region centered on the defect candidate region When the peripheral brightness is high, the threshold level is increased, and when the peripheral brightness is low, the threshold level is decreased, and the area value of the region is remeasured, and the defect determination is performed based on the area value. The wood defect detection apparatus according to any one of claims 1 to 3, wherein the detection is performed. 上記処理手段は、欠陥領域の最低輝度画素の存在する所定領域における平均輝度と全撮像画像の平均輝度に基づいて2値化のためのしきい値を設定し、該しきい値を基に欠陥領域を抽出するものであることを特徴とする請求項1乃至4のいずれか一項に記載の木材欠陥検出装置。 The processing means sets a threshold value for binarization based on the average luminance in a predetermined area where the lowest luminance pixel of the defective area exists and the average luminance of all captured images, and the defect is determined based on the threshold value. The wood defect detection device according to any one of claims 1 to 4, wherein the region is extracted. 上記処理手段は、複数のしきい値を用いて欠陥領域を求めるとともに、各しきい値において夫々欠陥があると判定された欠陥領域のうち、重複する箇所にある欠陥領域を求め、更に重複する欠陥領域のうちの最大の欠陥領域を残して他の欠陥領域を削除するものであることを特徴とする請求項1乃至5のいずれか一項に記載の木材欠陥検出装置。 The processing means obtains a defect area using a plurality of threshold values, obtains a defect area at an overlapping position among defect areas determined to have a defect at each threshold value, and further overlaps the defect area. The wood defect detection device according to any one of claims 1 to 5, wherein the defect region is deleted while leaving the largest defect region among the defect regions. 上記処理手段は、検査木材表面の所定領域間の平均輝度差に基づいて表面色むら欠陥を判定するものであることを特徴とする請求項1乃至6のいずれか一項に記載の木材欠陥検出装置 The wood defect detection according to any one of claims 1 to 6, wherein the processing means determines a surface color unevenness defect based on an average luminance difference between predetermined regions on the surface of the inspection wood. Equipment .
JP2008146157A 2008-06-03 2008-06-03 Wood defect detection device Expired - Fee Related JP5174540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146157A JP5174540B2 (en) 2008-06-03 2008-06-03 Wood defect detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146157A JP5174540B2 (en) 2008-06-03 2008-06-03 Wood defect detection device

Publications (2)

Publication Number Publication Date
JP2009293999A JP2009293999A (en) 2009-12-17
JP5174540B2 true JP5174540B2 (en) 2013-04-03

Family

ID=41542310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146157A Expired - Fee Related JP5174540B2 (en) 2008-06-03 2008-06-03 Wood defect detection device

Country Status (1)

Country Link
JP (1) JP5174540B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402182B2 (en) * 2009-04-10 2014-01-29 Tdk株式会社 Appearance inspection method and appearance inspection apparatus
JP2011158455A (en) * 2010-01-29 2011-08-18 Koji Murata Defect detection and physical property measuring device of wood and laminated veneer material
JP5603163B2 (en) * 2010-08-11 2014-10-08 コアテック株式会社 Surface inspection apparatus and surface inspection method
CN102313747B (en) * 2011-07-27 2013-06-05 国家林业局北京林业机械研究所 Image acquisition system for sawn timber surface defects and detection method
CN103198554B (en) * 2013-02-06 2016-02-24 江苏科思机电工程有限公司 Patty object side edge inspection system
CN106683093B (en) * 2017-01-12 2019-11-29 国家林业和草原局北京林业机械研究所 Plate presentation quality Comprehensive quantitative evaluation method
CN106680299B (en) * 2017-01-12 2018-12-18 国家林业局北京林业机械研究所 Plate knot Evaluation on Appearance Quality method
CN108398431A (en) * 2017-12-29 2018-08-14 北京林业大学 A kind of device and method of wood materials defects detection
CN110614282A (en) * 2018-06-19 2019-12-27 宝山钢铁股份有限公司 Automatic detection device for surface cleaning quality defects of hot-rolled plate blanks
CN109085179A (en) * 2018-09-17 2018-12-25 周口师范学院 A kind of board surface flaw detection device and detection method
CN117782225B (en) * 2024-02-23 2024-05-03 广州华凯车辆装备有限公司 Anti-riot carriage structure and assessment method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143554U (en) * 1979-03-31 1980-10-15
JPS58122450A (en) * 1982-01-15 1983-07-21 Matsushita Electric Works Ltd Detecting method of live knot
JPH11295235A (en) * 1998-04-14 1999-10-29 Japan Paint Inspection Association Optical surface inspection apparatus
JP3917431B2 (en) * 2002-01-25 2007-05-23 ペンタックス株式会社 Optical member inspection method
JP4687248B2 (en) * 2005-05-31 2011-05-25 Nok株式会社 Appearance inspection device

Also Published As

Publication number Publication date
JP2009293999A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP5174540B2 (en) Wood defect detection device
JP5086970B2 (en) Wood appearance inspection device, wood appearance inspection method
JP4150390B2 (en) Appearance inspection method and appearance inspection apparatus
JP5520006B2 (en) Wood defect detection apparatus and method
JP5520005B2 (en) Wood defect detection apparatus and method
JP2009109243A (en) Device for inspecting resin sealing material
JP5634390B2 (en) Glass container defect inspection method and apparatus
JP5297245B2 (en) Object surface inspection equipment
JP4015436B2 (en) Gold plating defect inspection system
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
JP2004361085A (en) Visual examination device
JP2002296192A (en) Method for inspecting flaw using color illumination
JP5266118B2 (en) Defect inspection method and defect inspection apparatus for object surface
JP5679564B2 (en) Surface foreign matter inspection device
JP2004191070A (en) Coated surface inspection apparatus
JP4563184B2 (en) Method and apparatus for inspecting mura defect
JP2012008018A (en) Surface inspection method
JP4967132B2 (en) Defect inspection method for object surface
JP4971043B2 (en) Container quality determination method and inspection device
JP6509146B2 (en) Inspection apparatus and inspection method
JP2009047513A (en) Inspection apparatus
JP6260175B2 (en) Sign panel inspection system, sign panel inspection method
JP3609136B2 (en) Semiconductor device inspection method and apparatus
JP2013044635A (en) Defect detecting device
JPH0943162A (en) External appearance inspection method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

LAPS Cancellation because of no payment of annual fees