JP5170570B2 - Resin multilayer module and method for manufacturing resin multilayer module - Google Patents

Resin multilayer module and method for manufacturing resin multilayer module Download PDF

Info

Publication number
JP5170570B2
JP5170570B2 JP2009102826A JP2009102826A JP5170570B2 JP 5170570 B2 JP5170570 B2 JP 5170570B2 JP 2009102826 A JP2009102826 A JP 2009102826A JP 2009102826 A JP2009102826 A JP 2009102826A JP 5170570 B2 JP5170570 B2 JP 5170570B2
Authority
JP
Japan
Prior art keywords
connection electrode
plane connection
electronic component
electrode
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009102826A
Other languages
Japanese (ja)
Other versions
JP2010258019A (en
Inventor
範夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009102826A priority Critical patent/JP5170570B2/en
Publication of JP2010258019A publication Critical patent/JP2010258019A/en
Application granted granted Critical
Publication of JP5170570B2 publication Critical patent/JP5170570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、樹脂多層モジュール及び樹脂多層モジュールの製造方法に関し、詳しくは、樹脂多層基板に電子部品が搭載された樹脂多層モジュール及びその製造方法に関する。   The present invention relates to a resin multilayer module and a method for manufacturing the resin multilayer module, and more particularly to a resin multilayer module in which an electronic component is mounted on a resin multilayer substrate and a method for manufacturing the same.

近年、LCP(液晶ポリマー)等の熱可塑性樹脂層を複数積み重ねた積層体に各種回路を形成してなる樹脂多層モジュールが開発されている。この樹脂多層モジュールは、樹脂を素体としているため、セラミックを素体としたセラミック多層モジュールに比べて、落下等の衝撃に対して強く、優れた機械的強度を有するとともに、比誘電率が小さいので、高周波特性に優れたモジュールを構成することができる。   In recent years, resin multilayer modules have been developed in which various circuits are formed on a laminate in which a plurality of thermoplastic resin layers such as LCP (liquid crystal polymer) are stacked. Since this resin multilayer module is made of resin, it is strong against impacts such as dropping, has excellent mechanical strength, and has a low relative dielectric constant, compared to a ceramic multilayer module that uses ceramic as a base. Therefore, a module having excellent high frequency characteristics can be configured.

このような樹脂多層モジュールは、セラミック多層モジュールと同様、その回路を構成する素子として、チップ型積層コンデンサやチップ型積層インダクタのようなチップ型の電子部品を備えることがある。   Such a resin multilayer module, like the ceramic multilayer module, may include a chip-type electronic component such as a chip-type multilayer capacitor or a chip-type multilayer inductor as an element constituting the circuit.

このような場合、積層体の表面に設けられた面内接続電極(ランド)とチップ型の電子部品の端子電極とをはんだを介して接続するのが一般的であるが、特にチップ型の電子部品を積層体に内蔵する場合について、例えば特許文献1〜3には、積層体に形成されたビア電極(層間接続電極)とチップ型の電子部品の端子電極とを固相拡散により接続する方法が開示されている。   In such a case, it is common to connect the in-plane connection electrodes (lands) provided on the surface of the laminate and the terminal electrodes of the chip-type electronic component via solder. For example, in Patent Documents 1 to 3, for example, in Patent Documents 1 to 3, a method of connecting a via electrode (interlayer connection electrode) formed in a stacked body and a terminal electrode of a chip-type electronic component by solid phase diffusion. Is disclosed.

具体的には、例えば図10の製造工程を示す工程別断面図に示すように、片面導体パターンフィルム121のビアホール(貫通孔)124内に錫粒子と銀粒子とが混合された導電ペースト150を充填し、片面導体パターンフィルム131に電子部品141と略同一寸法の貫通孔135を形成し、こられの片面導体パターンフィルム121,131を積層して積層体100を形成するために加圧・加熱する際に、導電ペースト150をチップ型の電子部品141の端子電極142の最外表面の錫めっき層に接触させ、導電ペースト150により形成された合金からなる導電性組成物151とチップ型の電子部品141の端子電極142とを、その界面に形成された固相拡散層を介して電気的に接続する(例えば、特許文献1参照)。   Specifically, for example, as shown in the cross-sectional view for each process showing the manufacturing process of FIG. 10, the conductive paste 150 in which tin particles and silver particles are mixed in the via holes (through holes) 124 of the single-sided conductor pattern film 121. Fill and form a through-hole 135 having substantially the same dimensions as the electronic component 141 in the single-sided conductor pattern film 131, and pressurize and heat to form the laminate 100 by laminating these single-sided conductor pattern films 121 and 131. In this case, the conductive paste 150 is brought into contact with the tin plating layer on the outermost surface of the terminal electrode 142 of the chip-type electronic component 141, and the conductive composition 151 made of an alloy formed of the conductive paste 150 and the chip-type electronic The terminal electrode 142 of the component 141 is electrically connected through a solid phase diffusion layer formed at the interface (see, for example, Patent Document 1).

特開2003−86949号公報JP 2003-86949 A 特開2007−305674号公報JP 2007-305694 A 特開2007−324550号公報JP 2007-324550 A

この手法は、電子部品141の端子電極142の錫とビア電極(ビアホール124に充填された導電性ペースト150)の錫及び銀とを拡散させて合金化させる手法である。一般に、チップ型電子部品の端子電極における錫めっき層の厚みは1〜5μm程度であり、端子電極とビア電極とが合金化する際に、端子電極の溶融した錫がビア電極側に移動して、いわゆる「食われ」が発生し、原子の拡散速度の差異によってはんだ接合界面に発生するカーケンダルボイドのような隙間(空隙)が、端子電極とビア電極の界面にできてしまい、その結果、チップ型の電子部品の接続信頼性が得られないことがある。   This technique is a technique in which tin of the terminal electrode 142 of the electronic component 141 and tin and silver of the via electrode (the conductive paste 150 filled in the via hole 124) are diffused and alloyed. Generally, the thickness of the tin plating layer in the terminal electrode of the chip-type electronic component is about 1 to 5 μm, and when the terminal electrode and the via electrode are alloyed, the molten tin of the terminal electrode moves to the via electrode side. , So-called "erosion" occurs, and a gap (void) like a Kirkendall void generated at the solder joint interface due to the difference in the diffusion rate of atoms is formed at the interface between the terminal electrode and the via electrode, Connection reliability of chip-type electronic components may not be obtained.

本発明は、かかる実情に鑑み、チップ型の電子部品の接続信頼性を確保することができる樹脂多層モジュール及び樹脂多層モジュールの製造方法を提供しようとするものである。   In view of such a situation, the present invention intends to provide a resin multilayer module and a resin multilayer module manufacturing method capable of ensuring the connection reliability of chip-type electronic components.

本発明は、上記課題を解決するために、以下のように構成した樹脂多層モジュールを提供する。   In order to solve the above-mentioned problems, the present invention provides a resin multilayer module configured as follows.

樹脂多層モジュールは、(a)複数の樹脂層が積層された積層体と、(b)前記積層体の表面又は内部に配置されたチップ型の電子部品と、(c)前記積層体の表面又は内部に、銅を主成分とする金属箔により形成された面内接続電極と、(d)前記樹脂層を貫通し、金属粒子からなり、前記面内接続電極に接する層間接続電極とを備える。前記電子部品は、最外表面層が錫を主成分とする端子電極を有する。前記面内接続電極に、前記面内接続電極を貫通する開口部が形成されている。前記電子部品の前記端子電極の前記最外表面層は、前記面内接続電極の前記開口部の少なくとも一部を覆い、かつ前記開口部に隣接する部分の前記面内接続電極に接して拡散接合により接続されている。前記層間接続電極は、前記面内接続電極の前記開口部を介して前記電子部品の前記端子電極の前記最外表面層に接して拡散接合により接続されている。 The resin multilayer module includes: (a) a laminated body in which a plurality of resin layers are laminated; (b) a chip-type electronic component disposed on or inside the laminated body; and (c) a surface of the laminated body or An in-plane connection electrode formed of a metal foil containing copper as a main component, and (d) an interlayer connection electrode that penetrates the resin layer, is made of metal particles, and is in contact with the in-plane connection electrode . In the electronic component, the outermost surface layer has a terminal electrode mainly composed of tin. An opening that penetrates the in-plane connection electrode is formed in the in-plane connection electrode. The outermost surface layer of the terminal electrode of the electronic component covers at least a part of the opening of the in-plane connection electrode and is in contact with the in-plane connection electrode at a portion adjacent to the opening by diffusion bonding. Connected by. The interlayer connection electrode is in contact with the outermost surface layer of the terminal electrode of the electronic component through the opening of the in-plane connection electrode and connected by diffusion bonding.

上記構成によれば、樹脂層同士を接着するため加熱するときに、電子部品の端子電極の最外表面層に含まれる錫が溶融し、面内接続電極に含まれる銅とともにSn−Cu合金となり、電子部品の端子電極と積層体の面内接続電極とが拡散接合するようにできる。このとき、電子部品の端子電極の最外表面層が接する面内接続電極は銅を主成分とする金属箔であるため、粉末状の銅等に比べて溶融しにくいので、電子部品の端子電極の最外表面層に含まれる錫は、電子部品の端子電極と面内接続電極との界面に隙間ができるほど過剰に面内接続電極側に移動してしまうことがない。したがって、電子部品の端子電極と面内接続電極との接続信頼性を確保することができる。   According to the above configuration, when heating is performed to bond the resin layers, tin contained in the outermost surface layer of the terminal electrode of the electronic component is melted and becomes a Sn—Cu alloy together with copper contained in the in-plane connection electrode. The terminal electrode of the electronic component and the in-plane connection electrode of the laminate can be diffusion bonded. At this time, since the in-plane connection electrode in contact with the outermost surface layer of the terminal electrode of the electronic component is a metal foil mainly composed of copper, it is hard to melt compared with powdered copper or the like. The tin contained in the outermost surface layer does not move excessively to the in-plane connection electrode side so that a gap is formed at the interface between the terminal electrode of the electronic component and the in-plane connection electrode. Therefore, the connection reliability between the terminal electrode of the electronic component and the in-plane connection electrode can be ensured.

この場合、樹脂層同士を接着するため加熱するときに、層間接続電極の金属粒子が溶融し、層間接続電極が接している面内接続電極に含まれる銅とともに合金になり、層間接続電極と面内接続電極とが拡散接合するようにできる。これによって、面内接続電極、層間接続電極及び端子電極が、拡散接合により一体的に接続され、接続信頼性を確保することができる。   In this case, when heating to bond the resin layers, the metal particles of the interlayer connection electrode melt and become an alloy together with the copper contained in the in-plane connection electrode in contact with the interlayer connection electrode. The inner connection electrode can be diffusion bonded. Thereby, the in-plane connection electrode, the interlayer connection electrode, and the terminal electrode are integrally connected by diffusion bonding, and connection reliability can be ensured.

上記構成によれば、電子部品の端子電極と層間接続電極とが接して拡散接合するようにできる。電子部品の端子電極と層間接続電極とは、面内接続電極に形成された開口部を介して接するため、面内接続電極の開口部の大きさや形状、面内接続電極の開口部と電子部品の端子電極との位置関係などにより、電子部品の端子電極の最外表面層に含まれる錫が層間接続電極側に移動して合金化する程度を制御できる。したがって、電子部品の端子電極は面内接続電極と層間接続電極との両方に接合され、接続信頼性や接合強度を向上させることができる。   According to the above configuration, the terminal electrode of the electronic component and the interlayer connection electrode can be in contact with each other to be diffusion bonded. Since the terminal electrode and the interlayer connection electrode of the electronic component are in contact with each other through the opening formed in the in-plane connection electrode, the size and shape of the opening of the in-plane connection electrode, the opening of the in-plane connection electrode, and the electronic component The degree of the tin contained in the outermost surface layer of the terminal electrode of the electronic component moving to the interlayer connection electrode side and alloying can be controlled by the positional relationship with the terminal electrode. Therefore, the terminal electrode of the electronic component is bonded to both the in-plane connection electrode and the interlayer connection electrode, and connection reliability and bonding strength can be improved.

好ましくは、前記面内接続電極は、260℃より高い融点を有する金属材料のみで構成されている。   Preferably, the in-plane connection electrode is made of only a metal material having a melting point higher than 260 ° C.

樹脂多層モジュールをリフローにより実装する場合、リフロー時に樹脂多層モジュールの内部の温度は、通常、260℃を超えない。面内接続電極は、融点が260℃を超える銅単体、あるいは銅と銀、ビスマス等との合金で構成されるため、樹脂多層モジュールを基板に実装するためのリフロー時に電子部品の端子電極の最外表面層に含まれる金属材料が溶融しても、面内接続電極に含まれる金属材料は溶融しないため、食われが発生しない。すなわち、電子部品の端子電極の最外表面層に含まれる錫が面内接続電極側に過剰に移動して端子電極と面内接続電極との間の界面に隙間が発生し、接続信頼性が低下することはない。したがって、リフロー後も接続信頼性を確保することができる。   When the resin multilayer module is mounted by reflow, the temperature inside the resin multilayer module usually does not exceed 260 ° C. during reflow. Since the in-plane connection electrode is made of copper alone having a melting point of more than 260 ° C. or an alloy of copper, silver, bismuth, etc., the terminal electrode of the electronic component is most suitable during reflow for mounting the resin multilayer module on the substrate. Even if the metal material contained in the outer surface layer is melted, the metal material contained in the in-plane connection electrode is not melted, so that no biting occurs. That is, tin contained in the outermost surface layer of the terminal electrode of the electronic component moves excessively to the in-plane connection electrode side, and a gap is generated at the interface between the terminal electrode and the in-plane connection electrode. There is no decline. Therefore, connection reliability can be ensured even after reflow.

また、本発明は上記課題を解決するために、以下のように構成された樹脂多層モジュールの製造方法を提供する。   Moreover, in order to solve the said subject, this invention provides the manufacturing method of the resin multilayer module comprised as follows.

樹脂多層モジュールの製造方法は、複数の樹脂層が積層された積層体の表面又は内部にチップ型の電子部品が配置された樹脂多層モジュールを製造する方法である。樹脂多層モジュールの製造方法は、(a)銅を主成分とする金属箔により少なくとも1つの前記樹脂層に形成された面内接続電極に、最外表面層が錫を主成分とする端子電極を有する前記電子部品の前記端子電極の前記最外表面層を接触させた状態で、前記樹脂層を積層して積層体を形成する積層工程と、(b)前記積層体を加熱して前記樹脂層同士を接着するとともに、前記電子部品の前記端子電極の前記最外表面層に含まれる錫を溶融させ、前記電子部品の前記端子電極と前記面内接続電極とを拡散接合により接続する加熱工程とを備える。前記面内接続電極に、前記面内接続電極を貫通する開口部を予め形成する。前記面内接続電極が形成された前記樹脂層に、当該樹脂層を貫通し、金属粒子からなり、前記面内接続電極の前記開口から露出する層間接続電極を予め形成する。前記加熱工程において、前記電子部品の前記端子電極と前記面内接続電極とが接する界面を、拡散接合により接続し、前記電子部品の前記端子電極と前記層間接続電極とを、前記面内接続電極の前記開口部を介して、拡散接合により接続する。 The method for producing a resin multilayer module is a method for producing a resin multilayer module in which chip-type electronic components are arranged on the surface or inside of a laminate in which a plurality of resin layers are laminated. The method for producing a resin multilayer module includes: (a) an in-plane connection electrode formed on at least one resin layer with a metal foil mainly containing copper, and a terminal electrode whose outermost surface layer is mainly tin. A laminating step of laminating the resin layers to form a laminate in a state where the outermost surface layer of the terminal electrode of the electronic component is in contact; and (b) heating the laminate to heat the resin layer A heating step of bonding each other, melting tin contained in the outermost surface layer of the terminal electrode of the electronic component, and connecting the terminal electrode of the electronic component and the in-plane connection electrode by diffusion bonding; Is provided. An opening that penetrates the in-plane connection electrode is formed in advance in the in-plane connection electrode. An interlayer connection electrode that penetrates the resin layer, is made of metal particles, and is exposed from the opening of the in-plane connection electrode is formed in advance in the resin layer on which the in-plane connection electrode is formed. In the heating step, an interface where the terminal electrode of the electronic component and the in-plane connection electrode are in contact is connected by diffusion bonding, and the terminal electrode of the electronic component and the interlayer connection electrode are connected to the in-plane connection electrode. These are connected by diffusion bonding through the openings.

上記方法によれば、樹脂層の熱圧着と同時に、電子部品を面内接続電極に接続することができる。   According to the above method, the electronic component can be connected to the in-plane connection electrode simultaneously with the thermocompression bonding of the resin layer.

本発明によれば、チップ型の電子部品の接続信頼性を確保することができる。   According to the present invention, connection reliability of a chip-type electronic component can be ensured.

樹脂多層モジュールの分解断面図である。(実施例1)It is an exploded sectional view of a resin multilayer module. Example 1 樹脂多層モジュールの断面図である。(実施例1)It is sectional drawing of a resin multilayer module. Example 1 樹脂多層モジュールの要部拡大断面図である。(実施例1)It is a principal part expanded sectional view of a resin multilayer module. Example 1 樹脂多層モジュールの要部平面図である。(実施例2)It is a principal part top view of a resin multilayer module. (Example 2) 樹脂多層モジュールの要部拡大断面図である。(実施例2)It is a principal part expanded sectional view of a resin multilayer module. (Example 2) 樹脂多層モジュールの要部平面図である。(変形例1、2)It is a principal part top view of a resin multilayer module. (Modifications 1 and 2) 樹脂多層モジュールの断面図である。(変形例3)It is sectional drawing of a resin multilayer module. (Modification 3) 樹脂多層モジュールの要部拡大断面図である。(変形例4)It is a principal part expanded sectional view of a resin multilayer module. (Modification 4) 樹脂多層モジュールの要部拡大断面図である。(変形例5)It is a principal part expanded sectional view of a resin multilayer module. (Modification 5) 樹脂多層モジュールの製造工程を示す断面図である。(従来例)It is sectional drawing which shows the manufacturing process of a resin multilayer module. (Conventional example)

以下、本発明の実施の形態について、図1〜図9を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

<実施例1> 実施例1の樹脂多層モジュール10について、図1〜図3を参照しながら説明する。図1は、樹脂層同士を接合する前の樹脂多層モジュール10の分解断面図である。図2は、樹脂層同士を接合後の樹脂多層モジュール10の断面図である。   <Example 1> The resin multilayer module 10 of Example 1 will be described with reference to FIGS. FIG. 1 is an exploded cross-sectional view of the resin multilayer module 10 before joining the resin layers. FIG. 2 is a cross-sectional view of the resin multilayer module 10 after joining the resin layers.

図1及び図2に示すように、樹脂多層モジュール10は、樹脂層21〜25が積層された積層体12の内部や表面12a,12bに、面内接続電極14a,14b,16や層間接続電極18が形成されている。積層体12の内部には、ICチップやチップコンデンサ、チップコイル、チップ抵抗等のチップ型の電子部品2が内蔵され、電子部品2の端子電極6と面内接続電極16とが接し拡散接合によって接続されている。   As shown in FIGS. 1 and 2, the resin multilayer module 10 includes in-plane connection electrodes 14 a, 14 b, 16 and interlayer connection electrodes on the inside and surfaces 12 a, 12 b of the laminate 12 in which the resin layers 21 to 25 are laminated. 18 is formed. A chip-type electronic component 2 such as an IC chip, a chip capacitor, a chip coil, or a chip resistor is built in the laminated body 12, and the terminal electrode 6 and the in-plane connection electrode 16 of the electronic component 2 are in contact with each other by diffusion bonding. It is connected.

例えば、樹脂多層モジュール10の上面12aに形成された面内接続電極14a,14bには、表面実装型部品を搭載する。樹脂多層モジュール10の下面12b側の面内接続電極14s,14tは、樹脂多層モジュール10を他の回路基板等に実装する際に接続する端子として用いる。   For example, surface-mounted components are mounted on the in-plane connection electrodes 14 a and 14 b formed on the upper surface 12 a of the resin multilayer module 10. The in-plane connection electrodes 14s and 14t on the lower surface 12b side of the resin multilayer module 10 are used as terminals to be connected when the resin multilayer module 10 is mounted on another circuit board or the like.

次に、樹脂多層モジュール10の製造方法について説明する。   Next, a method for manufacturing the resin multilayer module 10 will be described.

(1)まず、図1に示すように、面内接続電極31〜35や層間接続電極51〜55が形成された樹脂層21〜25を準備する。   (1) First, as shown in FIG. 1, resin layers 21 to 25 on which in-plane connection electrodes 31 to 35 and interlayer connection electrodes 51 to 55 are formed are prepared.

樹脂層21〜25は、例えば、銅を主成分とする金属箔を片面に有する樹脂シートを用いて作製する。すなわち、樹脂シートの金属箔上に感光性レジストを塗布し、露光、現像を行い、所定のマスクパターンを形成し、マスクパターンを介して金属箔のエッチングを行った後、マスクパターンを除去することにより、所定形状の面内接続電極31〜35を形成する。樹脂シート上に、インクジェットやメッキによって、所定形状の面内接続電極31〜35を形成してもよい。   The resin layers 21 to 25 are produced using, for example, a resin sheet having a metal foil mainly composed of copper on one side. That is, a photosensitive resist is applied on the metal foil of the resin sheet, exposed and developed, a predetermined mask pattern is formed, the metal foil is etched through the mask pattern, and then the mask pattern is removed. Thus, in-plane connection electrodes 31 to 35 having a predetermined shape are formed. The in-plane connection electrodes 31 to 35 having a predetermined shape may be formed on the resin sheet by inkjet or plating.

また、樹脂シートにレーザー加工やドリル加工によりビアホール(貫通孔)41〜45を形成した後、印刷等により導電性ペーストを充填することにより、層間接続電極51〜55を形成する。導電ペーストは、電子部品2の端子電極の表面層であるSnと合金化する組成を有する導電性粉末、例えばSn/Au、Sn/Ag/Cu、Sn/Cuを主成分とする粉末に、有機溶剤やエポキシ樹脂等が混合されたものを用いる。   In addition, via holes (through holes) 41 to 45 are formed on the resin sheet by laser processing or drilling, and then, the interlayer connection electrodes 51 to 55 are formed by filling the conductive paste with printing or the like. The conductive paste is made of conductive powder having a composition alloyed with Sn, which is the surface layer of the terminal electrode of the electronic component 2, such as powder containing Sn / Au, Sn / Ag / Cu, Sn / Cu as a main component. A mixed solvent or epoxy resin is used.

また、電子部品2の周囲に配置される樹脂層22については、電子部品2と略同じ寸法・形状の貫通孔22xを、レーザー加工やドリル加工により形成する。   Moreover, about the resin layer 22 arrange | positioned around the electronic component 2, the through-hole 22x of the dimension and shape substantially the same as the electronic component 2 is formed by laser processing or drill processing.

樹脂シートには、加工が簡単で、加工後の変形が少ない材料が適しており、例えば、液晶ポリマー(LCP)、ポリイミド、フッ素樹脂等の熱可塑性樹脂を用いる。特に、液晶ポリマー(LCP)は、吸水性が低く、エッチング後の変形が極めて小さいため、特に好ましい。   For the resin sheet, a material that is easy to process and has little deformation after processing is suitable. For example, a thermoplastic resin such as liquid crystal polymer (LCP), polyimide, or fluororesin is used. In particular, a liquid crystal polymer (LCP) is particularly preferable because of its low water absorption and extremely small deformation after etching.

(2)次いで、ICチップやチップコンデンサ等の内蔵すべき電子部品2を、所定の樹脂層23の所定位置に搭載する。このとき、接着材や粘性のある液体等を用いて電子部品2を固定してもよい。   (2) Next, the electronic component 2 to be built in such as an IC chip or a chip capacitor is mounted at a predetermined position of the predetermined resin layer 23. At this time, the electronic component 2 may be fixed using an adhesive or a viscous liquid.

(3)次いで、樹脂層21〜25を所定の順序で積み重ねて積層し、積層方向に押圧し、真空引きした状態で、樹脂層21〜25のガラス転移温度を超える温度(例えば、300℃)まで加熱し、樹脂層21〜25の基材である樹脂シートを軟化させ、樹脂層21〜25同士を圧着する。必要に応じて、積層前に樹脂層21〜25の表面を活性化処理したり、接着剤を塗布したりする。この熱圧着工程において、電子部品2の周囲に配置される樹脂層21,22は、軟化して電子部品2を包み込むように変形する。   (3) Next, the resin layers 21 to 25 are stacked and stacked in a predetermined order, pressed in the stacking direction, and evacuated to a temperature exceeding the glass transition temperature of the resin layers 21 to 25 (for example, 300 ° C.). Until the resin sheet which is the base material of the resin layers 21 to 25 is softened, and the resin layers 21 to 25 are pressure bonded. If necessary, the surface of the resin layers 21 to 25 is activated or laminated with an adhesive before lamination. In this thermocompression bonding process, the resin layers 21 and 22 arranged around the electronic component 2 are deformed so as to be softened and enclose the electronic component 2.

また、この熱圧着工程において、同時に、電子部品2の端子電極6と面内接続電極33とが接続される。   In the thermocompression bonding step, the terminal electrode 6 of the electronic component 2 and the in-plane connection electrode 33 are simultaneously connected.

詳しくは図3の要部拡大断面図に示すように、電子部品2の本体4の端部に形成された端子電極6は、複数層6a,6b,6cからなり、例えば、チップ型積層コンデンサの場合、Cu層6c、Ni層6b、Sn層6aが順に形成されている。最外表面層となるSn層6a中の錫の融点は232℃と低いため、熱圧着工程中の加熱によって溶融し、面内接続電極16に含まれる銅とともにSn−Cu合金となり、電子部品2の端子電極6と面内接続電極33とが拡散接合により接続される。   Specifically, as shown in the enlarged cross-sectional view of the main part of FIG. 3, the terminal electrode 6 formed at the end of the body 4 of the electronic component 2 is composed of a plurality of layers 6a, 6b, 6c. In this case, the Cu layer 6c, the Ni layer 6b, and the Sn layer 6a are sequentially formed. Since the melting point of tin in the Sn layer 6a which is the outermost surface layer is as low as 232 ° C., it melts by heating during the thermocompression bonding process and becomes a Sn—Cu alloy together with the copper contained in the in-plane connection electrode 16, and the electronic component 2 The terminal electrode 6 and the in-plane connection electrode 33 are connected by diffusion bonding.

(4)次いで、加熱・圧着後、必要に応じて、積層体12の表面12a,12bに露出している面内接続電極31,35についてエッチングやめっき等を行って、樹脂多層モジュール10が完成する。複数個の樹脂多層モジュール10をまとめて作製する場合には、ダイシング等によって樹脂多層モジュール10の個片に分割する。   (4) Next, after heating and pressure bonding, if necessary, the in-plane connection electrodes 31 and 35 exposed on the surfaces 12a and 12b of the laminate 12 are etched and plated to complete the resin multilayer module 10. To do. When a plurality of resin multilayer modules 10 are manufactured together, the resin multilayer modules 10 are divided into individual pieces by dicing or the like.

以上の工程により、樹脂層21〜25の熱圧着と同時に、電子部品2の端子電極6と面内接続電極33とが拡散接合により接続することができる。   Through the above steps, simultaneously with the thermocompression bonding of the resin layers 21 to 25, the terminal electrode 6 of the electronic component 2 and the in-plane connection electrode 33 can be connected by diffusion bonding.

電子部品2の端子電極6と面内接続電極33とが拡散接合により接続するとき、面内接続電極33は銅を主成分とするため加熱されても溶融しない。そのため、食われが発生しない。すなわち、電子部品2の端子電極6の最外表面層6aに含まれる錫は、端子電極6と面内接続電極33との界面33sに隙間ができるほど過剰に面内接続電極33側に移動してしまうことはない。したがって、端子電極6と面内接続電極33との接続信頼性を確保することができる。   When the terminal electrode 6 of the electronic component 2 and the in-plane connection electrode 33 are connected by diffusion bonding, the in-plane connection electrode 33 contains copper as a main component and thus does not melt even when heated. Therefore, no biting occurs. That is, tin contained in the outermost surface layer 6a of the terminal electrode 6 of the electronic component 2 moves to the in-plane connection electrode 33 side excessively so that a gap is formed at the interface 33s between the terminal electrode 6 and the in-plane connection electrode 33. There is no end to it. Therefore, connection reliability between the terminal electrode 6 and the in-plane connection electrode 33 can be ensured.

<実施例2> 実施例2の樹脂多層モジュールについて、図4及び図5を参照しながら説明する。   <Example 2> The resin multilayer module of Example 2 will be described with reference to FIGS.

実施例2の樹脂多層モジュールは、実施例1の樹脂多層モジュール10と略同様に構成され、略同様の工程で製造することができる。以下では、実施例1と同様の構成部分には同じ符号を用い、実施例1との相違点を中心に説明する。   The resin multilayer module of Example 2 is configured in substantially the same manner as the resin multilayer module 10 of Example 1, and can be manufactured in substantially the same process. In the following description, the same reference numerals are used for the same components as in the first embodiment, and differences from the first embodiment will be mainly described.

図4は、電子部品2が搭載される樹脂層の要部平面図である。図5は、樹脂多層モジュールの要部拡大断面図である。   FIG. 4 is a plan view of an essential part of a resin layer on which the electronic component 2 is mounted. FIG. 5 is an enlarged cross-sectional view of a main part of the resin multilayer module.

図4及び図5に示すように、実施例2の樹脂多層モジュールは、面内接続電極33aに開口部33xが形成され、面内接続電極33aの開口部33xから層間接続電極53が露出するようになっている。そして、電子部品2の端子電極6は、面内接続電極33aの開口部33xの近傍部分と、面内接続電極33aの開口部33xから露出している層間接続電極53との両方に接する。開口部33xは、レーザー加工やドリル加工により樹脂層に23に貫通孔43を形成するときに、同時に形成することができる。面内接続電極33aを所定の形状に形成するときに、同時に開口部33xを形成してもよい。   As shown in FIGS. 4 and 5, in the resin multilayer module of Example 2, the opening 33x is formed in the in-plane connection electrode 33a, and the interlayer connection electrode 53 is exposed from the opening 33x of the in-plane connection electrode 33a. It has become. The terminal electrode 6 of the electronic component 2 is in contact with both the vicinity of the opening 33x of the in-plane connection electrode 33a and the interlayer connection electrode 53 exposed from the opening 33x of the in-plane connection electrode 33a. The opening 33x can be formed simultaneously when the through hole 43 is formed in the resin layer 23 by laser processing or drilling. When the in-plane connection electrode 33a is formed in a predetermined shape, the opening 33x may be formed at the same time.

実施例2の樹脂多層モジュールは、実施例1の樹脂多層モジュール10と同じく、樹脂層を積層し熱圧着することにより作製する。   The resin multilayer module of Example 2 is manufactured by laminating a resin layer and thermocompression bonding like the resin multilayer module 10 of Example 1.

熱圧着時の加熱により、電子部品2の端子電極6と面内接続電極33aとが接する界面33pは、実施例1と同様に、端子電極6の最外表面層6aに含まれる錫が溶融し、拡散接合により接続される。   As a result of heating during thermocompression bonding, the tin contained in the outermost surface layer 6a of the terminal electrode 6 is melted at the interface 33p where the terminal electrode 6 of the electronic component 2 and the in-plane connection electrode 33a are in contact with each other. Are connected by diffusion bonding.

また、電子部品2の端子電極6と層間接続電極53との界面53pでは、端子電極6の最外表面層6aに含まれる錫が溶融し、層間接続電極53に含まれる金属材料、例えばSn、Ag、Cu、Bi、Zn、Au、Niとともに、Sn−Ag、Sn−Cu、Sn−Bi、Sn−Zn、Sn−Au、Sn−Ni等の合金になり、電子部品2の端子電極6と層間接続電極53とが、面内接続電極33aの開口部33xを介して、拡散接合により接続される。   Further, at the interface 53p between the terminal electrode 6 of the electronic component 2 and the interlayer connection electrode 53, tin contained in the outermost surface layer 6a of the terminal electrode 6 is melted, and a metal material contained in the interlayer connection electrode 53, for example, Sn, Together with Ag, Cu, Bi, Zn, Au, Ni, it becomes an alloy such as Sn-Ag, Sn-Cu, Sn-Bi, Sn-Zn, Sn-Au, Sn-Ni, and the terminal electrode 6 of the electronic component 2 The interlayer connection electrode 53 is connected by diffusion bonding through the opening 33x of the in-plane connection electrode 33a.

電子部品2の端子電極6の最外表面層6aに含まれる錫は、面内接続電極33aの主成分である銅と比べると、層間接続電極53中の金属材料と合金化しやすく、電子部品2の端子電極6と層間接続電極53との固着強度は、電子部品2の端子電極6と面内接続電極33aとの固着強度よりも強くなる。   The tin contained in the outermost surface layer 6a of the terminal electrode 6 of the electronic component 2 is easily alloyed with the metal material in the interlayer connection electrode 53, compared to copper, which is the main component of the in-plane connection electrode 33a. The fixing strength between the terminal electrode 6 and the interlayer connection electrode 53 is stronger than the fixing strength between the terminal electrode 6 of the electronic component 2 and the in-plane connection electrode 33a.

電子部品2の端子電極6の最外表面層6aに含まれる錫は、面内接続電極33aに形成された開口部33xを介して、層間接続電極53側に移動するため、面内接続電極33aの開口部33xの大きさや形状、面内接続電極33aの開口部33xと電子部品2の端子電極6との位置関係などにより、電子部品2の端子電極6の最外表面層に含まれる錫が層間接続電極53側に移動して合金化する程度を制御し、電子部品2の端子電極6が面内接続電極33aと層間接続電極53とに接続される状態を調整することができる。したがって、接続信頼性や接合強度を向上させることができる。具体的には、端子電極6と層間接続電極53との接触部分が大きいほど、端子電極6と層間電極が層間電極53との合金化がすすむ。   Since tin contained in the outermost surface layer 6a of the terminal electrode 6 of the electronic component 2 moves to the interlayer connection electrode 53 side through the opening 33x formed in the in-plane connection electrode 33a, the in-plane connection electrode 33a Depending on the size and shape of the opening 33x, the positional relationship between the opening 33x of the in-plane connection electrode 33a and the terminal electrode 6 of the electronic component 2, tin contained in the outermost surface layer of the terminal electrode 6 of the electronic component 2 may be reduced. It is possible to adjust the state in which the terminal electrode 6 of the electronic component 2 is connected to the in-plane connection electrode 33a and the interlayer connection electrode 53 by controlling the degree of alloying by moving to the interlayer connection electrode 53 side. Therefore, connection reliability and bonding strength can be improved. Specifically, the larger the contact portion between the terminal electrode 6 and the interlayer connection electrode 53, the more the terminal electrode 6 and the interlayer electrode are alloyed with the interlayer electrode 53.

<変形例1> 図6(a)の要部平面図に示すように、面内接続電極33mが電子部品2のそれぞれの端子電極6と接する部分に、2つ以上の開口部33yが形成され、各開口部33yから層間接続電極53が露出する構成としてもよい。   <Modification 1> As shown in the plan view of the main part of FIG. 6A, two or more openings 33 y are formed in the portion where the in-plane connection electrode 33 m is in contact with each terminal electrode 6 of the electronic component 2. The interlayer connection electrode 53 may be exposed from each opening 33y.

<変形例2> 図6(b)の要部平面図に示す面内接続電極33nのように、層間接続電極53が露出する開口部33zが形成され、電子部品2の端子電極6と接続されるが、樹脂層に沿って延在する配線部を形成しない構成としてもよい。   <Modification 2> Like the in-plane connection electrode 33n shown in the plan view of the main part in FIG. 6B, an opening 33z is formed through which the interlayer connection electrode 53 is exposed, and is connected to the terminal electrode 6 of the electronic component 2. However, a configuration may be adopted in which a wiring portion extending along the resin layer is not formed.

<変形例3> 図7の断面図に示す変形例3の樹脂多層モジュール11は、樹脂層が積層された積層体13の内部や表面13a,13bに、面内接続電極15a,15b,15s,15t,17や層間接続電極19a〜19fが形成されている。積層体13の表面13aの面内接続電極15a,15bには開口部15x,15yが形成され、この開口部15x,15yから層間接続電極19a,19bが露出している。   <Modification 3> The resin multilayer module 11 of Modification 3 shown in the cross-sectional view of FIG. 7 includes in-plane connection electrodes 15a, 15b, 15s, and the like on the inside and surfaces 13a and 13b of the laminate 13 in which the resin layers are laminated. 15t, 17 and interlayer connection electrodes 19a to 19f are formed. Openings 15x and 15y are formed in the in-plane connection electrodes 15a and 15b on the surface 13a of the multilayer body 13, and the interlayer connection electrodes 19a and 19b are exposed from the openings 15x and 15y.

積層体13の上面13に配置されたチップ型の電子部品2の端子電極6は、開口部15xが形成された面内接続電極15aの開口部15xのまわりの部分と、面内接続電極15aの開口部15xから露出する層間接続電極19aとに接し、実施例2と同じく、加熱によって端子電極6の最外表面層に含まれる錫が溶融し、電子部品2の端子電極6は面内接続電極15aと層間接続電極19aとの両方に拡散接合により接続される。   The terminal electrode 6 of the chip-type electronic component 2 disposed on the upper surface 13 of the multilayer body 13 includes a portion around the opening 15x of the in-plane connection electrode 15a in which the opening 15x is formed, and the in-plane connection electrode 15a. In contact with the interlayer connection electrode 19a exposed from the opening 15x, as in Example 2, the tin contained in the outermost surface layer of the terminal electrode 6 is melted by heating, and the terminal electrode 6 of the electronic component 2 becomes the in-plane connection electrode 15a and the interlayer connection electrode 19a are both connected by diffusion bonding.

また、積層体13の上面13に配置されたチップ型の電子部品3の端子電極であるバンプ7は、開口部15yが形成された面内接続電極15bの開口部15yのまわりの部分と、面内接続電極15bの開口部15yから露出する層間接続電極19bとに接する。実施例2と同じく、加熱によって、バンプ7の最外表面層に含まれる錫が溶融し、バンプ7が面内接続電極15bと層間接続電極19bとに拡散接合により接続される。   Further, the bump 7 that is a terminal electrode of the chip-type electronic component 3 disposed on the upper surface 13 of the multilayer body 13 includes a portion around the opening 15y of the in-plane connection electrode 15b in which the opening 15y is formed, It contacts the interlayer connection electrode 19b exposed from the opening 15y of the inner connection electrode 15b. As in Example 2, the tin contained in the outermost surface layer of the bump 7 is melted by heating, and the bump 7 is connected to the in-plane connection electrode 15b and the interlayer connection electrode 19b by diffusion bonding.

<変形例4> 図8の要部拡大断面図に示すように、電子部品2の端子電極6と接続される面内接続電極33b,33cに形成された開口部は、実施例2とは異なり、面内接続電極33b,33cによって全周が囲まれるようには形成されていない。   <Modification 4> As shown in the enlarged cross-sectional view of the main part of FIG. 8, the openings formed in the in-plane connection electrodes 33b and 33c connected to the terminal electrode 6 of the electronic component 2 are different from those of the second embodiment. The entire circumference is not surrounded by the in-plane connection electrodes 33b and 33c.

面内接続電極33b,33cの外周縁は、樹脂層23に形成された貫通孔43の開口部を横断し、貫通孔43の開口部の一部分のみが面内接続電極33b,33cで覆われる。貫通孔43の開口部の他の部分23x,23yにおいて、貫通孔43に形成された層間接続電極53b,53cが露出する。これらの隣接する面内接続電極33b,33cと層間接続電極53との両方に電子部品2の端子電極6が接し、樹脂層の熱圧着時の加熱によって、電子部品2の端子電極6は、面内接続電極33b,33cとの界面33s,33tと、導電性ペースト53b,53cとの界面53s,53tとの両方において、拡散接合により接続される。   The outer peripheral edges of the in-plane connection electrodes 33b and 33c cross the opening of the through hole 43 formed in the resin layer 23, and only a part of the opening of the through hole 43 is covered with the in-plane connection electrodes 33b and 33c. In other portions 23x and 23y of the opening of the through hole 43, the interlayer connection electrodes 53b and 53c formed in the through hole 43 are exposed. The terminal electrode 6 of the electronic component 2 is in contact with both of the adjacent in-plane connection electrodes 33b and 33c and the interlayer connection electrode 53, and the terminal electrode 6 of the electronic component 2 is heated by the heat-compression of the resin layer. Both the interfaces 33s and 33t with the internal connection electrodes 33b and 33c and the interfaces 53s and 53t with the conductive pastes 53b and 53c are connected by diffusion bonding.

面内接続電極33b,33cの開口部は、図8(a)のように電子部品2の外側に形成されても、図8(b)のように電子部品2の内側に形成されてもよい。   The openings of the in-plane connection electrodes 33b and 33c may be formed outside the electronic component 2 as shown in FIG. 8A, or may be formed inside the electronic component 2 as shown in FIG. 8B. .

<変形例5> 図9の要部拡大断面図に示すように、樹脂層23の表面に、導電性ペースト53kを塗布する。電子部品2の端子電極6が導電性ペースト53kと銅を主成分とする金属箔により形成された面内接続電極33kとの両方に接する状態で、樹脂層を熱圧着する。これによって、電子部品2の端子電極6が、面内接続電極33kとの界面33rと、導電性ペースト53kにより形成される面内接続電極部との界面53rとおいて、拡散接合により接続される。   <Modification 5> As shown in the enlarged cross-sectional view of the main part in FIG. 9, a conductive paste 53 k is applied to the surface of the resin layer 23. In a state where the terminal electrode 6 of the electronic component 2 is in contact with both the conductive paste 53k and the in-plane connection electrode 33k formed of a metal foil mainly composed of copper, the resin layer is thermocompression bonded. As a result, the terminal electrode 6 of the electronic component 2 is connected by diffusion bonding at the interface 33r with the in-plane connection electrode 33k and the interface 53r with the in-plane connection electrode portion formed by the conductive paste 53k.

<まとめ> 以上に説明したように、電子部品の端子電極と面内接続電極とが接して拡散接合により接続されるようにすることで、接続信頼性を確保することができる。   <Summary> As described above, the connection reliability can be ensured by connecting the terminal electrode of the electronic component and the in-plane connection electrode by diffusion bonding.

なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。   The present invention is not limited to the above embodiment, and can be implemented with various modifications.

2,3 電子部品
6,7 端子電極
6a 最外表面層
10,11 樹脂多層モジュール
12 積層体
12a 上面(表面)
12b 下面(表面)
13 積層体
13a 上面(表面)
13b 下面(表面)
14a,14b,14s,14t 面内接続電極
15a,15b,15s,15t 面内接続電極
15x,15y 開口部
16,17 面内接続電極
18,19a〜19f 層間接続導体
21〜25 樹脂層
31〜35 面内接続電極
33a,33b,33c,33k,33m,33n 面内接続電極
33x,33y,33z 開口部
41〜45 ビアホール(貫通孔)
51,52,53,53b,53c,54,55 層間接続電極
2,3 Electronic parts 6,7 Terminal electrode 6a Outermost surface layer 10,11 Resin multilayer module 12 Laminated body 12a Upper surface (surface)
12b Bottom surface (surface)
13 Laminated body 13a Upper surface (surface)
13b Bottom surface (surface)
14a, 14b, 14s, 14t In-plane connection electrodes 15a, 15b, 15s, 15t In-plane connection electrodes 15x, 15y Openings 16, 17 In-plane connection electrodes 18, 19a-19f Interlayer connection conductors 21-25 Resin layers 31-35 In-plane connection electrodes 33a, 33b, 33c, 33k, 33m, 33n In-plane connection electrodes 33x, 33y, 33z Openings 41 to 45 Via holes (through holes)
51, 52, 53, 53b, 53c, 54, 55 Interlayer connection electrode

Claims (3)

複数の樹脂層が積層された積層体と、
前記積層体の表面又は内部に配置されたチップ型の電子部品と、
前記積層体の表面又は内部に、銅を主成分とする金属箔により形成された面内接続電極と、
前記樹脂層を貫通し、金属粒子からなり、前記面内接続電極に接する層間接続電極と、
を備え、
前記電子部品は、最外表面層が錫を主成分とする端子電極を有し、
前記面内接続電極に、前記面内接続電極を貫通する開口部が形成され、
前記電子部品の前記端子電極の前記最外表面層は、前記面内接続電極の前記開口部の少なくとも一部を覆い、かつ前記開口部に隣接する部分の前記面内接続電極に接して拡散接合により接続され、
前記層間接続電極は、前記面内接続電極の前記開口部を介して前記電子部品の前記端子電極の前記最外表面層に接して拡散接合により接続されていることを特徴とする、樹脂多層モジュール。
A laminate in which a plurality of resin layers are laminated;
A chip-type electronic component disposed on the surface or inside of the laminate; and
An in-plane connection electrode formed of a metal foil mainly composed of copper on the surface or inside of the laminate, and
An interlayer connection electrode penetrating the resin layer, made of metal particles, and in contact with the in-plane connection electrode;
With
The electronic component has a terminal electrode whose outermost surface layer is mainly composed of tin,
An opening that penetrates the in-plane connection electrode is formed in the in-plane connection electrode,
The outermost surface layer of the terminal electrode of the electronic component covers at least a part of the opening of the in-plane connection electrode and is in contact with the in-plane connection electrode at a portion adjacent to the opening by diffusion bonding. Connected by
The resin multilayer module, wherein the interlayer connection electrode is in contact with the outermost surface layer of the terminal electrode of the electronic component through the opening of the in-plane connection electrode and connected by diffusion bonding .
前記面内接続電極は、260℃より高い融点を有する金属材料のみで構成されていることを特徴とする、請求項に記載の樹脂多層モジュール。 2. The resin multilayer module according to claim 1 , wherein the in-plane connection electrode is composed only of a metal material having a melting point higher than 260 ° C. 3. 複数の樹脂層が積層された積層体の表面又は内部にチップ型の電子部品が配置された樹脂多層モジュールを製造する方法であって、
銅を主成分とする金属箔により少なくとも1つの前記樹脂層に形成された面内接続電極に、最外表面層が錫を主成分とする端子電極を有する前記電子部品の前記端子電極の前記最外表面層を接触させた状態で、前記樹脂層を積層して積層体を形成する積層工程と、
前記積層体を加熱して前記樹脂層同士を接着するとともに、前記電子部品の前記端子電極の前記最外表面層に含まれる錫を溶融させ、前記電子部品の前記端子電極と前記面内接続電極とを拡散接合により接続する加熱工程と、
を備え
前記面内接続電極に、前記面内接続電極を貫通する開口部を予め形成し、
前記面内接続電極が形成された前記樹脂層に、当該樹脂層を貫通し、金属粒子からなり、前記面内接続電極の前記開口から露出する層間接続電極を予め形成し、
前記加熱工程において、
前記電子部品の前記端子電極と前記面内接続電極とが接する界面を、拡散接合により接続し、
前記電子部品の前記端子電極と前記層間接続電極とを、前記面内接続電極の前記開口部を介して、拡散接合により接続することを特徴とする、樹脂多層モジュールの製造方法。
A method for producing a resin multilayer module in which chip-type electronic components are arranged on the surface or inside of a laminate in which a plurality of resin layers are laminated,
The outermost surface layer of the terminal electrode of the electronic component has a terminal electrode whose main component is tin as an in-plane connection electrode formed on at least one of the resin layers by a metal foil whose main component is copper. In a state where the outer surface layer is in contact, a laminating step of laminating the resin layer to form a laminate,
The laminated body is heated to bond the resin layers together, and tin contained in the outermost surface layer of the terminal electrode of the electronic component is melted, whereby the terminal electrode of the electronic component and the in-plane connection electrode And a heating process for connecting them by diffusion bonding,
Equipped with a,
In the in-plane connection electrode, an opening that penetrates the in-plane connection electrode is formed in advance,
In the resin layer on which the in-plane connection electrode is formed, an interlayer connection electrode that penetrates the resin layer and is made of metal particles and is exposed from the opening of the in-plane connection electrode is formed in advance.
In the heating step,
The interface where the terminal electrode and the in-plane connection electrode of the electronic component are in contact is connected by diffusion bonding,
The method of manufacturing a resin multilayer module, wherein the terminal electrode of the electronic component and the interlayer connection electrode are connected by diffusion bonding through the opening of the in-plane connection electrode .
JP2009102826A 2009-04-21 2009-04-21 Resin multilayer module and method for manufacturing resin multilayer module Expired - Fee Related JP5170570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102826A JP5170570B2 (en) 2009-04-21 2009-04-21 Resin multilayer module and method for manufacturing resin multilayer module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102826A JP5170570B2 (en) 2009-04-21 2009-04-21 Resin multilayer module and method for manufacturing resin multilayer module

Publications (2)

Publication Number Publication Date
JP2010258019A JP2010258019A (en) 2010-11-11
JP5170570B2 true JP5170570B2 (en) 2013-03-27

Family

ID=43318640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102826A Expired - Fee Related JP5170570B2 (en) 2009-04-21 2009-04-21 Resin multilayer module and method for manufacturing resin multilayer module

Country Status (1)

Country Link
JP (1) JP5170570B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140008104A1 (en) * 2012-02-08 2014-01-09 Panasonic Corporation Resistance-formed substrate and method for manufacturing same
CN204518238U (en) 2012-10-31 2015-07-29 株式会社村田制作所 Built-in substrate and communication terminal
JP6164228B2 (en) * 2013-01-25 2017-07-19 株式会社村田製作所 Module and manufacturing method thereof
WO2015170539A1 (en) * 2014-05-08 2015-11-12 株式会社村田製作所 Resin multilayer substrate and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882540B2 (en) * 2001-07-04 2007-02-21 株式会社デンソー Printed circuit board manufacturing method and printed circuit board formed by the manufacturing method
JP4846633B2 (en) * 2007-03-20 2011-12-28 富士通株式会社 Manufacturing method of component-embedded substrate

Also Published As

Publication number Publication date
JP2010258019A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP4766049B2 (en) Manufacturing method of component built-in module and component built-in module
JP3709882B2 (en) Circuit module and manufacturing method thereof
EP1280393B1 (en) Multilayer circuit board and method for manufacturing multilayer circuit board
JP4945974B2 (en) Component built-in wiring board
JP5756515B2 (en) Chip component built-in resin multilayer substrate and manufacturing method thereof
JP3906225B2 (en) Circuit board, multilayer wiring board, method for manufacturing circuit board, and method for manufacturing multilayer wiring board
JP4201436B2 (en) Manufacturing method of multilayer wiring board
JP2001237512A (en) Double-sided circuit board, maltilayer interconnection board using it, and manufacturing method of double-sided circuit board
JP5427305B1 (en) Component-embedded substrate, manufacturing method thereof, and mounting body
JP2011060875A (en) Electronic component built-in substrate and method of manufacturing the same, and semiconductor device using the substrate
JP2007273654A (en) Flexible circuit board, method for manufacturing the same, and electronic component
JP5170570B2 (en) Resin multilayer module and method for manufacturing resin multilayer module
JP6687081B2 (en) Resin multilayer board
JP4918780B2 (en) Multilayer wiring board manufacturing method and semiconductor device
JP2013073989A (en) Surface mounting passive element component, component carrier tape, wiring board with built-in component
JP5108253B2 (en) Component mounting module
JP2005026573A (en) Manufacturing method of module with built-in component
JP2001274555A (en) Printed wiring board, blank board for printed wiring, semiconductor device, manufacturing method for printed wiring board and manufacturing method for semiconductor device
JP2010098021A (en) Component built-in circuit substrate and method of producing the same
JP5130666B2 (en) Component built-in wiring board
JP6315681B2 (en) Component-embedded substrate, manufacturing method thereof, and mounting body
JP2850761B2 (en) Multilayer wiring board and method of manufacturing the same
WO2004012489A1 (en) Circuit substrate, multi-layer wiring plate, circuit substrate manufacturing method, and multi-layer wiring plate manufacturing method
JP2011249457A (en) Wiring board having embedded component, and manufacturing method for the same
JP5913535B1 (en) Component built-in substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

R150 Certificate of patent or registration of utility model

Ref document number: 5170570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees