JP5168722B2 - Ultrasonic flow meter and sound absorbing material for ultrasonic flow meter - Google Patents

Ultrasonic flow meter and sound absorbing material for ultrasonic flow meter Download PDF

Info

Publication number
JP5168722B2
JP5168722B2 JP2008088854A JP2008088854A JP5168722B2 JP 5168722 B2 JP5168722 B2 JP 5168722B2 JP 2008088854 A JP2008088854 A JP 2008088854A JP 2008088854 A JP2008088854 A JP 2008088854A JP 5168722 B2 JP5168722 B2 JP 5168722B2
Authority
JP
Japan
Prior art keywords
fluid
ultrasonic
measured
water surface
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008088854A
Other languages
Japanese (ja)
Other versions
JP2009243980A (en
Inventor
治嗣 森
武志 鈴木
健一 手塚
守弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2008088854A priority Critical patent/JP5168722B2/en
Publication of JP2009243980A publication Critical patent/JP2009243980A/en
Application granted granted Critical
Publication of JP5168722B2 publication Critical patent/JP5168722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

本発明は,測定領域の流速分布から被測定流体の流量を測定することが可能な超音波流量計にかかり,特に,自由水面を有する開渠における超音波流量計の技術に関する。   The present invention relates to an ultrasonic flowmeter capable of measuring a flow rate of a fluid to be measured from a flow velocity distribution in a measurement region, and more particularly to a technique of an ultrasonic flowmeter in an open eye having a free water surface.

開渠における超音波流量計による流量測定の技術は,例えば特許文献1に開示されている。ここに開示された技術は,流体が流動する流路の水面側及び底面側から流速分布を取得し,これらの取得した流速分布に基づき流路の深さ方向の流速分布を校正処理により求め,求められた深さ方向の流速分布を水路幅方向に沿って積分することにより,精度良く流量を得るものである。   For example, Patent Document 1 discloses a technique for measuring a flow rate using an ultrasonic flowmeter in Kaiai. The technology disclosed here acquires flow velocity distributions from the water surface side and bottom surface side of the flow path through which the fluid flows, obtains the flow velocity distribution in the depth direction of the flow path based on these acquired flow velocity distributions by calibration processing, By integrating the obtained flow velocity distribution in the depth direction along the channel width direction, the flow rate can be obtained with high accuracy.

このような開渠における超音波流量計による流量測定の場合,流路底面から超音波を水面方向に向けて発信すると,水中に混在する気泡などの粒子(反射体)により反射された超音波エコー信号のほかに,水面で反射された反射波に起因する信号等が流路底面の受信部で受信され,測定誤差を生じうる。   In the case of flow measurement with an ultrasonic flowmeter in such an opening, if an ultrasonic wave is transmitted from the bottom of the channel toward the water surface, the ultrasonic echo reflected by particles (reflectors) such as bubbles mixed in the water In addition to the signal, a signal or the like caused by the reflected wave reflected on the water surface is received by the receiving unit on the bottom surface of the flow path, which may cause a measurement error.

図4を用いて説明する。超音波送受信手段30が送信する超音波は,被測定流体中の反射体(気泡)20などに対して反射した反射波91aのみを用いたい。また,発信超音波90が到達した水面70では,超音波送受信手段30に戻る方向の反射波91bも生じるが,反射波91bは,超音波送受信手段30にて受信されれば,水面の位置情報を提供する為,問題とはならず,むしろ流量測定において望ましい信号となる。しかし,図4に示す通り,水面70で生じた反射波91cは水底71にあたって反射し,その水底71における反射波91dが再び水面70において反射した反射波91eが,超音波送受信手段30により受信されることにより,測定誤差の原因となりうる。   This will be described with reference to FIG. As the ultrasonic wave transmitted by the ultrasonic wave transmitting / receiving means 30, it is desirable to use only the reflected wave 91a reflected from the reflector (bubble) 20 in the fluid to be measured. Further, on the water surface 70 where the transmitted ultrasonic wave 90 has arrived, a reflected wave 91b in a direction returning to the ultrasonic wave transmitting / receiving unit 30 is also generated, but if the reflected wave 91b is received by the ultrasonic wave transmitting / receiving unit 30, position information on the water surface is obtained. This is not a problem, but rather a desirable signal for flow measurement. However, as shown in FIG. 4, the reflected wave 91 c generated on the water surface 70 is reflected on the water bottom 71, and the reflected wave 91 e reflected on the water surface 70 is again received by the ultrasonic transmission / reception means 30. This can cause measurement errors.

図示は省略するが,被測定流体中の気泡などで反射した反射波のみで被測定流体の流速分布を測定できたとすれば,その測定結果は理論的にはなめらかな曲線を描くはずであるが,実際の測定結果は歪んだ曲線が描かれてしまうことになる。   Although illustration is omitted, if the flow velocity distribution of the fluid to be measured can be measured only with the reflected wave reflected by bubbles in the fluid to be measured, the measurement result should theoretically draw a smooth curve. , The actual measurement result will draw a distorted curve.

超音波流量計による流量測定における上記の問題は,配管の外側から超音波を入射することにより,配管内を流れる被測定流体の流速分布を測定する超音波流量計による流量測定でも同じである。配管からの反射波を原因とする測定誤差を低減して,流量計測の精度を上げる技術は,例えば特許文献2に開示されている。被測定流体の流体配管における超音波の到達位置における配管外壁に固定可能な吸音材を設け,その吸音材の音響インピーダンスが,流体配管の音響インピーダンスと近似値となるような高密度な材質とすることにより問題解決を図ろうとするものである。
特開2005−321314 特開2005−195371
The above-mentioned problem in the flow measurement by the ultrasonic flow meter is the same in the flow measurement by the ultrasonic flow meter that measures the flow velocity distribution of the fluid to be measured flowing in the pipe by making the ultrasonic wave incident from the outside of the pipe. For example, Patent Literature 2 discloses a technique for improving measurement accuracy by reducing a measurement error caused by a reflected wave from a pipe. Provide a sound-absorbing material that can be fixed to the pipe outer wall at the ultrasonic wave arrival position in the fluid piping of the fluid to be measured, and make the acoustic impedance of the sound-absorbing material close to the acoustic impedance of the fluid piping. This is to solve the problem.
JP-A-2005-321314 JP-A-2005-195371

しかし,上記の解決方法は,固体である配管の外壁に吸音材を備えるものであり,開渠における流量測定にそのまま適用できるものではない。例えば,自由水面を有する開渠に吸音材を浮かべて配置すると,水面の近傍では,吸音材の水面下の部分の存在が被測定流体の流れに対する抵抗となる為,被測定流体の流れが自然な状態から変化し,自然な流れの状態における流速分布の測定が妨げられるとの問題が生じる。また,空気の流れがある場合は,吸音材の水面上の部分の存在が空気の流れに対する抵抗となる為,水面下の流れへ影響を及ぼし,結果として,被測定流体の自然な流れの状態を変化させる。   However, the above-described solution is provided with a sound absorbing material on the outer wall of a solid pipe, and is not directly applicable to the flow measurement in opening. For example, if a sound absorbing material is floated and arranged on an open pier that has a free water surface, the presence of the portion under the water surface of the sound absorbing material near the water surface becomes a resistance against the flow of the fluid to be measured. The problem arises that the measurement of the flow velocity distribution in a natural flow state is hindered. Also, if there is an air flow, the presence of the sound absorbing material on the surface of the water acts as a resistance to the air flow, which affects the flow below the surface of the water, resulting in the state of the natural flow of the fluid being measured. To change.

本発明は,このような課題に鑑み,水面での超音波の反射を防止するとともに,被測定流体の自然な流れへの妨害を排除し,水面の近傍まで可能な限り自然な流れの状態での流量測定を可能とする,開渠における超音波流量計による流量測定の精度向上に資する吸音材及びそのような吸音材を用いた超音波流量計を提供することを目的とする。   In view of such problems, the present invention prevents reflection of ultrasonic waves on the water surface, eliminates interference with the natural flow of the fluid to be measured, and keeps the flow as close to the water surface as possible. It is an object of the present invention to provide a sound-absorbing material that contributes to improving the accuracy of flow measurement using an ultrasonic flowmeter in the open eye, and an ultrasonic flowmeter using such a sound-absorbing material.

上記課題を解決するために,超音波流量計に用いられる本発明にかかる吸音材の代表的な構成は,自由水面を有する開渠内の被測定流体中へ流路底面から水面へ向かって超音波を入射させる超音波送信手段と,被測定流体に入射された超音波の反射された超音波エコーを受信する超音波受信手段と,受信された超音波エコーを処理し,被測定流体の流速分布を測定する流体速度分布測定手段と,被測定流体の流速分布に基づいて,被測定流体の流量を演算する流量演算手段とを備えて被測定流体の流量を測定する超音波流量計に用いる吸音材であって,開渠の水面に浮かんで超音波を吸収する本体部と,本体部を水面近傍に浮かせて配置させる浮遊助成部と,開渠内の水面における超音波到達位置にとどまる為に外部の固定物と接続される為の接続部を備え,本体部の底面は,被測定流体の流れに対する摩擦抵抗を減少させる曲率を有する曲面の形状に形成したことを特徴とする。   In order to solve the above problems, a typical structure of the sound absorbing material according to the present invention used in an ultrasonic flowmeter is to superimpose a fluid to be measured in an open mouth having a free water surface from the flow path bottom to the water surface. An ultrasonic transmission means for making a sound wave incident; an ultrasonic reception means for receiving a reflected ultrasonic echo of an ultrasonic wave incident on a fluid to be measured; and a flow velocity of the fluid to be measured by processing the received ultrasonic echo A fluid velocity distribution measuring means for measuring the distribution and a flow rate calculating means for calculating the flow rate of the fluid to be measured based on the flow velocity distribution of the fluid to be measured are used for an ultrasonic flowmeter for measuring the flow rate of the fluid to be measured. It is a sound-absorbing material that floats on the surface of the open water and absorbs ultrasonic waves, a floating support that places the main body in the vicinity of the water surface, and a position where ultrasonic waves reach the surface of the water in the open surface To be connected to external fixed objects It includes a connection portion, the bottom surface of the body portion, characterized by being formed in the shape of a curved surface having a curvature to reduce the frictional resistance to the flow of the fluid to be measured.

上記構成によれば,開渠において流路底面から発信され,水面に到達した超音波は,水面に浮かんで配置された吸音材に吸収されることにより,水面での反射が防止される。従って,水面での反射波に起因する信号が底面の超音波送受信手段に到達することが抑制され,流量測定の精度向上が可能となる。   According to the above configuration, the ultrasonic wave transmitted from the bottom surface of the flow path during the opening and reaching the water surface is absorbed by the sound absorbing material arranged so as to float on the water surface, thereby preventing reflection on the water surface. Therefore, the signal caused by the reflected wave on the water surface is suppressed from reaching the ultrasonic wave transmitting / receiving means on the bottom surface, and the accuracy of flow rate measurement can be improved.

また,本体部の底面は,被測定流体の流れに対する摩擦抵抗を減少させる曲率を有する曲面の形状に形成されているため,本体部と,その底面に衝突する被測定流体の流れとの間に生じる摩擦抵抗は最小限に抑えられることから,被測定流体の自然な流れが乱されるのが防止される。   In addition, since the bottom surface of the main body is formed in a curved surface shape having a curvature that reduces the frictional resistance against the flow of the fluid to be measured, the bottom of the main body is located between the main body and the flow of the fluid to be measured that collides with the bottom surface. Since the generated frictional resistance is minimized, the natural flow of the fluid to be measured is prevented from being disturbed.

超音波流量計の流量演算手段等,測定手段に関わる技術は,例えば前記特許文献2などに記載があり,一般事項であるので,ここでの説明は省略する。   The technology related to the measurement means such as the flow rate calculation means of the ultrasonic flowmeter is described in, for example, the above-mentioned Patent Document 2 and is a general matter, and thus the description thereof is omitted here.

本発明にかかる吸音材の他の代表的な構成は,自由水面を有する開渠内の被測定流体中へ流路底面から水面へ向かって超音波を入射させる超音波送信手段と,被測定流体に入射された超音波の反射された超音波エコーを受信する超音波受信手段と,受信された超音波エコーを処理し,被測定流体の流速分布を測定する流体速度分布測定手段と,被測定流体の流速分布に基づいて,被測定流体の流量を演算する流量演算手段とを備えて被測定流体の流量を測定する超音波流量計に用いる吸音材であって,開渠の水面に浮かんで超音波を吸収する本体部と,本体部を水面近傍に浮かせて配置させる浮遊助成部と,開渠内の水面における超音波到達位置にとどまる為に外部の固定物と接続される為の接続部を備え,本体部は空気の流れに対する摩擦抵抗を減少させる,空気の通り道を有する形状に形成したことを特徴とする。   Another typical configuration of the sound absorbing material according to the present invention is an ultrasonic transmission means for injecting an ultrasonic wave into a fluid to be measured in an opening having a free water surface from the bottom surface of the channel toward the water surface, and a fluid to be measured. An ultrasonic receiving means for receiving a reflected ultrasonic echo of the ultrasonic wave incident on the fluid; a fluid velocity distribution measuring means for processing the received ultrasonic echo and measuring a flow velocity distribution of the fluid to be measured; A sound-absorbing material that is used in an ultrasonic flowmeter that measures the flow rate of a fluid to be measured based on the flow velocity distribution of the fluid and that has a flow rate calculation means for calculating the flow rate of the fluid to be measured. Main body part that absorbs ultrasonic waves, floating support part that floats the main body part in the vicinity of the water surface, and connection part that is connected to an external fixed object in order to stay at the ultrasonic wave arrival position on the water surface in the culvert The body part is friction against air flow Reducing anti and characterized by being formed into a shape having a path of air.

かかる構成によれば,超音波の水面での反射が防止されるとともに,本体部は空気の流れに対する摩擦抵抗を減少させる,空気の通り道を有する形状に形成されているため,空気の流れがある場合に,吸音材の水面上の部分の存在が空気の流れに対する抵抗となることがないことから,水面下の流れへ影響を及ぼし,被測定流体の自然な流れの状態を変化させるような事態の発生を防止する。   According to this configuration, reflection of ultrasonic waves on the water surface is prevented, and the main body is formed in a shape having an air passage that reduces frictional resistance against the air flow, so there is an air flow. In such a case, the presence of the sound absorbing material on the surface of the water does not become a resistance to the air flow, which affects the flow below the water surface and changes the natural flow state of the fluid to be measured. Preventing the occurrence of

本発明にかかる吸音材を備える超音波流量計の発明として構成してもよい。かかる超音波流量計の代表的な構成は,自由水面を有する開渠内の被測定流体中へ流路底面から水面へ向かって超音波を入射させる超音波送信手段と,被測定流体に入射された超音波の反射された超音波エコーを受信する超音波受信手段と,受診された超音波エコーを処理し,被測定流体の流速分布を測定する流体速度分布測定手段と,被測定流体の流速分布に基づいて,被測定流体の流量を演算する流量演算手段とを備えて被測定流体の流量を測定する超音波流量計であって,上記の吸音材を備える超音波流量計とすることができる。   You may comprise as invention of an ultrasonic flowmeter provided with the sound-absorbing material concerning this invention. A typical configuration of such an ultrasonic flowmeter is an ultrasonic transmission means for injecting ultrasonic waves into the fluid to be measured in the open channel having a free water surface from the bottom surface of the flow path toward the water surface, and the ultrasonic fluid is incident on the fluid to be measured. Ultrasonic receiving means for receiving reflected ultrasonic echoes, fluid velocity distribution measuring means for processing the received ultrasonic echoes and measuring the flow velocity distribution of the fluid to be measured, and the flow velocity of the fluid to be measured An ultrasonic flowmeter comprising a flow rate calculation means for calculating the flow rate of the fluid to be measured based on the distribution and measuring the flow rate of the fluid to be measured, wherein the ultrasonic flowmeter is provided with the sound absorbing material. it can.

かかる構成によれば,開渠における水面での超音波の反射を抑制し,かつ,被測定流体の自然な流れへの妨害を排除し,水面近傍まで精度の高い流量測定が可能となる。   According to such a configuration, it is possible to suppress the reflection of ultrasonic waves on the water surface during opening, eliminate interference with the natural flow of the fluid to be measured, and measure the flow rate with high accuracy up to the vicinity of the water surface.

本発明によれば,開渠における超音波流量計による流量測定において,水面での超音波の反射を防止し,被測定流体の自然な流れへの妨害を排除することにより,水面近傍まで自然な流れの状態での流量測定が可能となり,測定の精度を向上することができる。   According to the present invention, in the flow measurement with an ultrasonic flowmeter in the open sea, the reflection of ultrasonic waves on the water surface is prevented, and interference with the natural flow of the fluid to be measured is eliminated, so that the natural flow to the vicinity of the water surface is eliminated. The flow rate can be measured in the flow state, and the measurement accuracy can be improved.

以下に添付図面を参照しながら,本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法,材料,その他具体的な数値などは,発明の理解を容易とするための例示にすぎず,特に断る場合を除き,本発明を限定するものではない。なお,本明細書及び図面において,実質的に同一の機能,構成を有する要素については,同一の符号を付することにより重複説明を省略し,また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are omitted. To do.

図1は,本実施形態にかかる吸音材の外観図である。図1(a)は,吸音材を側方から見た図であり,図1(b)は平面図であり,図(c)は正面図である。吸音材10は,本体部11,接続ワイヤ13を接続する為の接続部12,および浮遊助成部14から構成される。かかる吸音材10は,開渠における水面に浮かべられ,本体部11下面に到達する超音波を吸収する。   FIG. 1 is an external view of a sound absorbing material according to the present embodiment. Fig.1 (a) is the figure which looked at the sound-absorbing material from the side, FIG.1 (b) is a top view, FIG.1 (c) is a front view. The sound absorbing material 10 includes a main body part 11, a connection part 12 for connecting a connection wire 13, and a floating support part 14. The sound absorbing material 10 is floated on the water surface in the unfolding and absorbs ultrasonic waves that reach the lower surface of the main body 11.

本体部11は水面に浮かんで配置されるように,被測定流体よりも小さい密度を有する。密度によっては,吸音材10が十分な浮力を得ることができない場合に,吸音材10が水面に浮かぶことが可能なように,浮遊助成部14は,吸音材10に浮力を与える役割を果たす。浮遊助成部14の働きにより,吸音材10がより水面近傍に配置されて浮かぶ場合は,より水面に近い領域までの流速分布が得られ,より精度の高い流量測定が可能となる。   The main body 11 has a density smaller than that of the fluid to be measured so as to float on the water surface. Depending on the density, the floating assisting portion 14 plays a role of imparting buoyancy to the sound absorbing material 10 so that the sound absorbing material 10 can float on the water surface when the sound absorbing material 10 cannot obtain sufficient buoyancy. When the sound absorbing material 10 is placed near the water surface and floats by the action of the floating support unit 14, a flow velocity distribution up to a region closer to the water surface can be obtained, and the flow rate can be measured with higher accuracy.

かかる役割を果たす為に,浮遊助成部14は,例えば,発泡スチロールで構成される。図1では,浮遊助成部14は,略三角柱の形状を有し,本体部11と嵌合によって固定されているが,浮遊助成部14と本体部11の固定方法は,例えば,浮遊助成部14と本体部11にそれぞれ雄ネジと雌ネジを設けて螺合する方法でも良い。浮遊助成部14の形状や大きさは,上記の役割を果たすものであれば,特に限定されるものではない。   In order to fulfill this role, the floating support unit 14 is made of, for example, foamed polystyrene. In FIG. 1, the floating support portion 14 has a substantially triangular prism shape and is fixed to the main body portion 11 by fitting. The fixing method of the floating support portion 14 and the main body portion 11 is, for example, the floating support portion 14. Alternatively, the main body 11 may be provided with a male screw and a female screw and screwed together. The shape and size of the floating support part 14 are not particularly limited as long as they fulfill the above role.

本体部11の少なくとも下面は,多孔質体,発泡樹脂,繊維の板状部材からなることにより,超音波を吸収可能とする。例えば,発泡ポリウレタンそのものや,下面にフェルトを接着剤により接着させた発泡ポリウレタンを本体部11とすることができる。   At least the lower surface of the main body 11 is made of a porous member, a foamed resin, and a fiber-like plate member, so that ultrasonic waves can be absorbed. For example, the foamed polyurethane itself or foamed polyurethane having a felt bonded to the lower surface with an adhesive can be used as the main body 11.

本体部11の下面は,また,被測定流体の流れに対する摩擦抵抗を減少させる曲率を有する曲面の形状に形成されている。かかる形状に形成されることにより,本体部11と,本体部11の底面に衝突する被測定流体の流れとの間に生じる摩擦抵抗は最小限に抑えられる。よって,被測定流体の自然な流れが乱されるのが防止されることにより,水面近傍まで自然な流れの状態での流量測定が可能となり,測定精度が向上できる。   The lower surface of the main body 11 is also formed in a curved shape having a curvature that reduces the frictional resistance against the flow of the fluid to be measured. By forming in this shape, the frictional resistance generated between the main body 11 and the flow of the fluid to be measured that collides with the bottom surface of the main body 11 can be minimized. Therefore, by preventing the natural flow of the fluid to be measured from being disturbed, the flow rate can be measured in a natural flow state up to the vicinity of the water surface, and the measurement accuracy can be improved.

接続部12は,例えば,足場41(図3参照)に接続された接続ワイヤ13と本体部11を接続し,超音波が到達する所定の位置に吸音材10をとどめる役割を果たす。本実施形態においては,接続部12として手環(環状の金具)を備えるよう図示しているが,接続部12の形状はこれに限定されるものではなく,本体部11の外周に溝を設けたり,本体部11に接続ワイヤ13を接続する為の孔を設けたりすることでもよい。   For example, the connecting portion 12 connects the connecting wire 13 connected to the scaffold 41 (see FIG. 3) and the main body portion 11 and plays a role of keeping the sound absorbing material 10 at a predetermined position where the ultrasonic waves reach. In the present embodiment, the connection portion 12 is illustrated as having a hand ring (annular metal fitting), but the shape of the connection portion 12 is not limited to this, and a groove is provided on the outer periphery of the main body portion 11. Alternatively, a hole for connecting the connection wire 13 to the main body 11 may be provided.

足場41と吸音材10の接続手段は,接続ワイヤ13に限定されるものではなく,吸音材10を所定の位置にとどめるものであれば,ロープでも良いし,ひもでも良い。なお,吸音材10の形状や大きさは特に限定されるものではなく,水面に到達する超音波を吸収することができるものであれば良い。   The connection means between the scaffold 41 and the sound absorbing material 10 is not limited to the connection wire 13, and may be a rope or a string as long as the sound absorbing material 10 is held at a predetermined position. The shape and size of the sound absorbing material 10 are not particularly limited as long as they can absorb ultrasonic waves that reach the water surface.

図2は,本発明の他の実施形態にかかる吸音材の外観図である。図2(a)は,図2(b)のB−B断面図であり,図2(b)は図2(a)のA−A断面図であり,図2(c)は図2(b)のC−C断面図である。本実施形態にかかる吸音材10は,図1に示す吸音材10と同様に,本体部11a,接続ワイヤ13を接続する為の接続部12,および浮遊助成部14から構成されるが,その本体部11aは,図2に示すように,上板111,下板112,側方構造材113,および中央構造材114から形成される。   FIG. 2 is an external view of a sound absorbing material according to another embodiment of the present invention. 2A is a cross-sectional view taken along the line BB in FIG. 2B, FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A, and FIG. It is CC sectional drawing of b). The sound absorbing material 10 according to the present embodiment is composed of a main body portion 11a, a connecting portion 12 for connecting a connecting wire 13, and a floating assisting portion 14, like the sound absorbing material 10 shown in FIG. As shown in FIG. 2, the portion 11 a is formed from an upper plate 111, a lower plate 112, a side structure material 113, and a center structure material 114.

本体部11aは,かかる構造により,空気の流れがある場合に,空気の流れに対する摩擦抵抗を減少させるような空気の通り道を形成する。すなわち,本体部11aの一端から入った空気は,上板111,下板112,側方構造材113および中央構造材114で形成された空気の通り道を通過し,本体部11aの他の一端から出ていく。ここで,空気の通り道は,本体部11aの水面上の部分の存在が空気の流れに対する抵抗となることがないように形成されているため,水面下の流れへの影響を少なくし,被測定流体の自然な流れの状態が変化するような事態の発生が防止されることにより,水面近傍付近までの測定精度の向上が可能となる。   With this structure, the main body 11a forms an air passage that reduces the frictional resistance against the air flow when there is an air flow. That is, the air that has entered from one end of the main body portion 11a passes through the air passage formed by the upper plate 111, the lower plate 112, the side structural member 113, and the central structural member 114, and from the other end of the main body portion 11a. to go out. Here, the air passage is formed so that the presence of the portion of the main body portion 11a on the water surface does not become a resistance to the air flow, so that the influence on the flow below the water surface is reduced, and the measurement is made. By preventing the occurrence of a situation where the state of the natural flow of the fluid changes, the measurement accuracy up to the vicinity of the water surface can be improved.

かかる効果を得るために,側方構造材113および中央構造材114の一部形状は,図2に示すとおり,略流線型の形状に形成されていることが望ましい。略流線型に形成することが困難な場合は,空気の通り道の断面積を大きくすることや,構造材の板厚を小さくすることにより,空気抵抗を減少させることが可能である。   In order to obtain such an effect, it is desirable that part of the lateral structural member 113 and the central structural member 114 are formed into a substantially streamlined shape as shown in FIG. When it is difficult to form a substantially streamlined shape, it is possible to reduce the air resistance by increasing the cross-sectional area of the air passage or reducing the thickness of the structural material.

図3は,吸音材を有する超音波流量計を説明する図である。図3に示すように,吸音材10は,流路の水面70の近傍に配置して浮かべられ,単管パイプ等で組み立てられたガイド40aに固定された足場41に,接続ワイヤ13により接続される。つまり,ガイド40aは,所定の位置に吸音材10をとどめる為の外部の固定物として機能する。なお,吸音材10は上方に固定された足場41から吊り下げて水面70に浮かべられても良い。   FIG. 3 is a diagram for explaining an ultrasonic flowmeter having a sound absorbing material. As shown in FIG. 3, the sound absorbing material 10 is floated by being placed in the vicinity of the water surface 70 of the flow path, and is connected to a scaffold 41 fixed to a guide 40 a assembled by a single pipe or the like by a connection wire 13. The That is, the guide 40a functions as an external fixed object for keeping the sound absorbing material 10 at a predetermined position. The sound absorbing material 10 may be suspended from the scaffold 41 fixed above and floated on the water surface 70.

被測定流体80中に,測定に十分な反射体20(気泡など)が存在しない場合は,気泡発生装置50により反射体20(気泡)が供給される。気泡発生装置50はガイド40aにより固定される。超音波の送受信を行う超音波送受信手段30(トランスデューサ)は流路の下流側の水底71に配置され,ガイド40bにより固定される。超音波送受信手段30は,演算処理装置(図示せず)に接続され,超音波送受信手段30が送受信した信号を基に流速分布が計測され,流量測定が行われる。図3中の白抜き矢印は被測定流体80の流れる方向を示す。   When there is not enough reflector 20 (such as bubbles) for measurement in the fluid 80 to be measured, the bubble generator 50 supplies the reflector 20 (bubbles). The bubble generating device 50 is fixed by a guide 40a. The ultrasonic transmission / reception means 30 (transducer) that transmits and receives ultrasonic waves is disposed on the water bottom 71 on the downstream side of the flow path and is fixed by the guide 40b. The ultrasonic transmission / reception means 30 is connected to an arithmetic processing unit (not shown), and the flow velocity distribution is measured based on the signal transmitted / received by the ultrasonic transmission / reception means 30 and the flow rate is measured. The white arrow in FIG. 3 indicates the direction in which the fluid 80 to be measured flows.

超音波送受信手段30から発信された発信超音波90は,測定線上に多数存在する反射体20にあたって反射され,その反射波91aが超音波送受信手段30に受信される。発信超音波90は,例えばパルス幅5mm程度で拡がりをほとんど持たない直進性のビームであり,水面70に到達する。   The transmitted ultrasonic wave 90 transmitted from the ultrasonic transmission / reception means 30 is reflected by a large number of reflectors 20 existing on the measurement line, and the reflected wave 91 a is received by the ultrasonic transmission / reception means 30. The transmitted ultrasonic wave 90 is, for example, a straight beam having a pulse width of about 5 mm and hardly spreading, and reaches the water surface 70.

吸音材10がない場合,水面70に到達した発信超音波90は水面70で反射し,その反射波91c(水面近傍100参照)が測定誤差の原因となるのは前述した通りである。   In the absence of the sound absorbing material 10, the transmitted ultrasonic wave 90 that has reached the water surface 70 is reflected by the water surface 70, and the reflected wave 91c (see the vicinity of the water surface 100) causes measurement errors as described above.

一方,本願発明にかかる吸音材10が水面70にある場合は以下の通りである。例えば,本体部11がスポンジ状の発泡ポリウレタンであり,被測定流体80が水の場合である。発信超音波90は,発泡ポリウレタンと水の界面における反射や透過により発泡ポリウレタン内に入る(図3中の超音波92)。   On the other hand, the case where the sound absorbing material 10 according to the present invention is on the water surface 70 is as follows. For example, the main body 11 is a foamed polyurethane foam and the fluid 80 to be measured is water. The transmitted ultrasonic wave 90 enters the foamed polyurethane by reflection or transmission at the interface between the foamed polyurethane and water (ultrasonic wave 92 in FIG. 3).

発泡ポリウレタンは多数の大小さまざまな孔を有する為,発泡ポリウレタン内に入射した超音波92は,発泡ポリウレタンと水の界面でさまざまな方向に反射する。その乱反射の過程で,超音波92のエネルギーは,水との摩擦により熱に変換されたり,発泡ポリウレタンの振動エネルギーに変換されて失われて,超音波92は発泡ポリウレタンに吸音される。   Since the polyurethane foam has a large number of small and large holes, the ultrasonic wave 92 incident on the polyurethane foam is reflected in various directions at the interface between the polyurethane foam and water. In the process of irregular reflection, the energy of the ultrasonic wave 92 is converted into heat by friction with water, or is lost by being converted into vibration energy of the polyurethane foam, and the ultrasonic wave 92 is absorbed by the polyurethane foam.

よって,水面70に到達した発信超音波90は吸音材10にほとんど吸収されてしまい,流量測定の誤差要因となる反射波91cの発生が抑制される。また,吸音材10内に入射した超音波92が吸音材10と空気との界面で再び反射して,超音波送受信手段30に受信され,流量測定の誤差要因となることを抑制できる。   Therefore, the transmitted ultrasonic wave 90 that has reached the water surface 70 is almost absorbed by the sound absorbing material 10, and the generation of the reflected wave 91c that causes an error in flow rate measurement is suppressed. Further, it can be suppressed that the ultrasonic wave 92 incident on the sound absorbing material 10 is reflected again at the interface between the sound absorbing material 10 and the air and is received by the ultrasonic wave transmitting / receiving means 30 and becomes an error factor in flow rate measurement.

また,本体部11の下面は,水の流れに対する摩擦抵抗を減少させる曲率を有する曲面の形状に形成されているため,本体部と,矢印方向に流れる水の摩擦抵抗は最小限に抑えられる。従って,水面近傍100では,水面近くまで,水の自然な流れが乱されないため,水本来の流れの状態を崩すことなく流量を測定することが可能となる。   Further, since the lower surface of the main body 11 is formed in a curved surface shape having a curvature that reduces the frictional resistance against the flow of water, the frictional resistance of the water flowing in the direction of the main body and the arrow is minimized. Therefore, in the vicinity of the water surface 100, since the natural flow of water is not disturbed to the vicinity of the water surface, the flow rate can be measured without destroying the original flow state of the water.

本発明は,開渠における超音波流量計による流量測定において,水面での超音波を吸収し,その反射を防止するとともに,水面近傍まで自然な流れを実現させる吸音材として,また,かかる吸音材を有する超音波流量計として利用することができる。   The present invention relates to a sound absorbing material that absorbs ultrasonic waves on the water surface, prevents reflection thereof, and realizes a natural flow to the vicinity of the water surface in the flow measurement by an ultrasonic flow meter in the open eye. It can be used as an ultrasonic flowmeter having

本実施形態にかかる吸音材の外観図である。It is an external view of the sound absorbing material according to the present embodiment. 他の実施形態にかかる吸音材の外観図である。It is an external view of the sound-absorbing material according to another embodiment. 吸音材を有する超音波流量計を説明する図である。It is a figure explaining the ultrasonic flowmeter which has a sound-absorbing material. 従来の技術の問題点を説明する図である。It is a figure explaining the problem of the prior art.

符号の説明Explanation of symbols

10…吸音材,11,11a…本体部,12…接続部,13…接続ワイヤ,14,14a…浮遊助成部,20…反射体(流体中の気泡),30…超音波送受信手段(トランスデューサ),40a,40b…ガイド,41…足場,50…気泡発生装置,70…水面,71…水底,80…被測定流体,90…発信超音波,91a,91b,91c,91d,91e…反射波,92…超音波,100…水面近傍,111…上板,112…下板,113…側方構造材,114…中央構造材 DESCRIPTION OF SYMBOLS 10 ... Sound-absorbing material 11, 11a ... Main-body part, 12 ... Connection part, 13 ... Connection wire, 14, 14a ... Floating assistance part, 20 ... Reflector (bubble in fluid), 30 ... Ultrasonic transmission / reception means (transducer) , 40a, 40b ... guide, 41 ... scaffold, 50 ... bubble generator, 70 ... water surface, 71 ... water bottom, 80 ... fluid to be measured, 90 ... transmitted ultrasonic wave, 91a, 91b, 91c, 91d, 91e ... reflected wave, 92 ... Ultrasonic, 100 ... Near water surface, 111 ... Upper plate, 112 ... Lower plate, 113 ... Side structure material, 114 ... Center structure material

Claims (3)

自由水面を有する開渠内の被測定流体中へ流路底面から水面へ向かって超音波を入射させる超音波送信手段と,被測定流体に入射された超音波の反射された超音波エコーを受信する超音波受信手段と,前記受信された超音波エコーを処理し,被測定流体の流速分布を測定する流体速度分布測定手段と,前記被測定流体の流速分布に基づいて,被測定流体の流量を演算する流量演算手段とを備えて被測定流体の流量を測定する超音波流量計に用いる吸音材であって,
開渠の水面に浮かんで超音波を吸収する本体部と,
前記本体部を水面近傍に浮かせて配置させる浮遊助成部と,
前記開渠内の水面における超音波到達位置にとどまる為に外部の固定物と接続される為の接続部を備え,
前記本体部の底面は,被測定流体の流れに対する摩擦抵抗を減少させる曲率を有する曲面の形状に形成したことを特徴とする吸音材。
Ultrasonic wave transmission means for making ultrasonic waves enter the fluid under measurement in the open channel with a free water surface from the channel bottom to the water surface, and receiving the reflected ultrasonic echo of the ultrasonic wave incident on the fluid under measurement An ultrasonic receiving means for processing, a fluid velocity distribution measuring means for processing the received ultrasonic echo and measuring a flow velocity distribution of the fluid to be measured, and a flow rate of the fluid to be measured based on the flow velocity distribution of the fluid to be measured. A sound-absorbing material for use in an ultrasonic flowmeter that measures the flow rate of a fluid to be measured,
A body that floats on the surface of the open water and absorbs ultrasound,
A floating aid part for placing the main body part near the water surface;
In order to stay at the ultrasonic wave arrival position on the water surface in the culvert, a connection part for connecting to an external fixed object is provided,
The sound absorbing material, wherein the bottom surface of the main body is formed in a curved shape having a curvature that reduces a frictional resistance against a flow of a fluid to be measured.
自由水面を有する開渠内の被測定流体中へ流路底面から水面へ向かって超音波を入射させる超音波送信手段と,被測定流体に入射された超音波の反射された超音波エコーを受信する超音波受信手段と,前記受信された超音波エコーを処理し,被測定流体の流速分布を測定する流体速度分布測定手段と,前記被測定流体の流速分布に基づいて,被測定流体の流量を演算する流量演算手段とを備えて被測定流体の流量を測定する超音波流量計に用いる吸音材であって,
開渠の水面に浮かんで超音波を吸収する本体部と,
前記本体部を水面近傍に浮かせて配置させる浮遊助成部と,
前記開渠内の水面における超音波到達位置にとどまる為に外部の固定物と接続される為の接続部を備え,
前記本体部は空気の流れに対する摩擦抵抗を減少させる,空気の通り道を有する形状に形成したことを特徴とする吸音材。
Ultrasonic wave transmission means for making ultrasonic waves enter the fluid under measurement in the open channel with a free water surface from the channel bottom to the water surface, and receiving the reflected ultrasonic echo of the ultrasonic wave incident on the fluid under measurement An ultrasonic receiving means for processing, a fluid velocity distribution measuring means for processing the received ultrasonic echo and measuring a flow velocity distribution of the fluid to be measured, and a flow rate of the fluid to be measured based on the flow velocity distribution of the fluid to be measured. A sound-absorbing material for use in an ultrasonic flowmeter that measures the flow rate of a fluid to be measured,
A body that floats on the surface of the open water and absorbs ultrasound,
A floating aid part for placing the main body part near the water surface;
In order to stay at the ultrasonic wave arrival position on the water surface in the culvert, a connection part for connecting to an external fixed object is provided,
The sound-absorbing material, wherein the main body is formed in a shape having an air passage that reduces frictional resistance against air flow.
自由水面を有する開渠内の被測定流体中へ流路底面から水面へ向かって超音波を入射させる超音波送信手段と,被測定流体に入射された超音波の反射された超音波エコーを受信する超音波受信手段と,前記受診された超音波エコーを処理し,被測定流体の流速分布を測定する流体速度分布測定手段と,前記被測定流体の流速分布に基づいて,被測定流体の流量を演算する流量演算手段とを備えて被測定流体の流量を測定する超音波流量計であって,請求項1または2項に記載の吸音材を備える超音波流量計。   Ultrasonic wave transmission means for making ultrasonic waves enter the fluid under measurement in the open channel with a free water surface from the channel bottom to the water surface, and receiving the reflected ultrasonic echo of the ultrasonic wave incident on the fluid under measurement Ultrasonic wave receiving means, fluid velocity distribution measuring means for processing the received ultrasonic echoes and measuring the flow velocity distribution of the fluid under measurement, and the flow rate of the fluid under measurement based on the flow velocity distribution of the fluid under measurement. An ultrasonic flowmeter comprising a flow rate calculating means for calculating the flow rate of the fluid to be measured and comprising the sound absorbing material according to claim 1.
JP2008088854A 2008-03-28 2008-03-28 Ultrasonic flow meter and sound absorbing material for ultrasonic flow meter Expired - Fee Related JP5168722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088854A JP5168722B2 (en) 2008-03-28 2008-03-28 Ultrasonic flow meter and sound absorbing material for ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088854A JP5168722B2 (en) 2008-03-28 2008-03-28 Ultrasonic flow meter and sound absorbing material for ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2009243980A JP2009243980A (en) 2009-10-22
JP5168722B2 true JP5168722B2 (en) 2013-03-27

Family

ID=41306059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088854A Expired - Fee Related JP5168722B2 (en) 2008-03-28 2008-03-28 Ultrasonic flow meter and sound absorbing material for ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5168722B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073350B2 (en) * 1991-09-25 1995-01-18 株式会社エヌケーエス Fluid velocity measuring method and device
JP4788107B2 (en) * 2004-05-10 2011-10-05 東京電力株式会社 Ultrasonic flow meter, flow measurement method and flow measurement program
JP4731145B2 (en) * 2004-09-21 2011-07-20 リコーエレメックス株式会社 Ultrasonic sensor and ultrasonic flow meter
JP2006292381A (en) * 2005-04-05 2006-10-26 Tokyo Gas Co Ltd Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP2009243980A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP4702668B2 (en) Flow measuring device
US20110023623A1 (en) Device for Determining and/or Monitoring the Volume or Mass Flow Rate of a Medium in a Pipe Conduit
JP5971428B2 (en) Fluid measuring device
JP2006030041A (en) Clamp-on type doppler type ultrasonic flow velocity distribution meter
CN100594362C (en) Wedge and wedge unit for use in ultrasonic doppler flow meter
EP0690974A4 (en) Fluid meter construction
KR20120108001A (en) Ultrasonic transducer, flow meter and method
WO2006004408A1 (en) Ultrasonic transducer system
JP3761399B2 (en) Ultrasonic flow meter
US10890471B2 (en) Method and assembly for ultrasonic clamp-on flow measurement, and bodies for implementing off-center flow measurement
US20050154307A1 (en) Apparatus and method for measuring a fluid velocity profile using acoustic doppler effect
JP5167892B2 (en) Ultrasonic flow meter and sound absorbing material for ultrasonic flow meter
JP5168722B2 (en) Ultrasonic flow meter and sound absorbing material for ultrasonic flow meter
NO144813B (en) SONAR DOUBLE SYSTEM FOR A MARINE VEHICLE.
US8879360B2 (en) Acoustic lens
JP2006208159A (en) Ultrasonic flowmeter
JP2007033115A (en) Detection part of ultrasonic flowmeter
JP2020101418A (en) Ultrasonic wave liquid level measurement device and calculation method for ultrasonic wave sensor installation position
JP2009216496A (en) Ultrasonic flowmeter
JP2022188333A (en) ultrasonic flow meter
KR102351365B1 (en) A Fixing Apparatus For Acoustic Doppler Current Profilers
KR101119998B1 (en) Clamp-on type Ultrasonic Transducer using a multi-path
KR101173372B1 (en) Ultrasonic transmitting/receiving device
JP2005195371A (en) Ultrasonic flowmeter, and sound absorbing material for ultrasonic flowmeter
JP4296947B2 (en) Ultrasonic transceiver unit of Doppler type ultrasonic flow velocity distribution meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121216

LAPS Cancellation because of no payment of annual fees