JP5158594B2 - Silicone polymer having naphthalene ring and composition thereof - Google Patents

Silicone polymer having naphthalene ring and composition thereof Download PDF

Info

Publication number
JP5158594B2
JP5158594B2 JP2008132873A JP2008132873A JP5158594B2 JP 5158594 B2 JP5158594 B2 JP 5158594B2 JP 2008132873 A JP2008132873 A JP 2008132873A JP 2008132873 A JP2008132873 A JP 2008132873A JP 5158594 B2 JP5158594 B2 JP 5158594B2
Authority
JP
Japan
Prior art keywords
group
naphthalene ring
hydrocarbon group
silicone polymer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008132873A
Other languages
Japanese (ja)
Other versions
JP2009280666A (en
Inventor
健 西川
久 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2008132873A priority Critical patent/JP5158594B2/en
Publication of JP2009280666A publication Critical patent/JP2009280666A/en
Application granted granted Critical
Publication of JP5158594B2 publication Critical patent/JP5158594B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液晶表示素子や半導体素子等の電子部品の絶縁膜材料として有用なナフタレン環を含む炭化水素基を有するシリコーン重合体に関するものである。   The present invention relates to a silicone polymer having a hydrocarbon group containing a naphthalene ring, which is useful as an insulating film material for electronic parts such as liquid crystal display elements and semiconductor elements.

近年、液晶表示素子や半導体素子等の電子部品に用いられる絶縁膜としては、可視光で透過性が高い高透明性や、素子を製造する際の各種処理工程に耐えられる耐熱性、耐薬品性、クラック耐性などの特性を兼ね備えた樹脂の必要性が高まっている。その中で、シルセスキオキサン骨格を有するシリコーン樹脂は、光学特性や耐熱性等に優れた性能を有し、これらの特性を利用して広く利用されてきた。   In recent years, insulating films used in electronic components such as liquid crystal display elements and semiconductor elements include high transparency with high transparency to visible light, and heat resistance and chemical resistance that can withstand various processing steps when manufacturing elements. There is an increasing need for resins having characteristics such as crack resistance. Among them, a silicone resin having a silsesquioxane skeleton has excellent performance in optical characteristics and heat resistance, and has been widely used by utilizing these characteristics.

しかし、その硬化膜は特に1μm以上の膜厚で膜にクラックが入りやすく用途が限定されていた。重要な特性であるクラック耐性を有する材料として、特許文献1に記載されるエポキシ基含有シリコーン樹脂の例が開示されている。しかし、クラック耐性は優れているが、300℃以上の熱処理工程には耐えられず、耐熱性が不十分であった。   However, the cured film has a film thickness of 1 μm or more, and the film is liable to crack. An example of an epoxy group-containing silicone resin described in Patent Document 1 is disclosed as a material having crack resistance which is an important characteristic. However, although the crack resistance is excellent, it cannot withstand a heat treatment step of 300 ° C. or higher, and the heat resistance is insufficient.

一方、LSI製造では膜表面の平坦性が重要であり、加熱による膜形成後の膜表面が平坦であることが求められている。例えばLSI製造の多層配線工程において、加熱により形成した膜が平坦でない場合は、その上に膜形成した場合、新たに形成した膜が均一にならずにムラのある膜が形成してしまう可能性がある。そのように形成した膜に露光した場合、不均一な膜界面付近で光の乱反射や散乱が生じ、均一なパターン形成そのものができない。このように膜表面の平坦性が光学特性、機械特性などの膜特性に影響を与える場合が多いため、平坦な膜が求められている。   On the other hand, flatness of the film surface is important in LSI manufacturing, and the film surface after film formation by heating is required to be flat. For example, in the multilayer wiring process of LSI manufacturing, if the film formed by heating is not flat, when a film is formed on it, the newly formed film may not be uniform and a nonuniform film may be formed. There is. When the film thus formed is exposed to light, irregular reflection or scattering of light occurs near the non-uniform film interface, and a uniform pattern cannot be formed. As described above, since the flatness of the film surface often affects film characteristics such as optical characteristics and mechanical characteristics, a flat film is required.

ここで膜の平坦性については、表面粗さRaで表示される(JIS−B0601)。ここでRaは引っ掻き深さの算術平均の測定値であり、粗さの曲線と中心線とにより囲まれた部分の面積を測定長さで割った平均偏差つまり測定長さでの個々の深さの平均値をいう。また他にも表面粗さを示すパラメーターとしてRmaxが用いられ、これは測定長さにおける最高点から最低点までの最大深さである。これら数値が大きいほど表面が粗く、数値が小さい材料が求められていた。   Here, the flatness of the film is expressed by the surface roughness Ra (JIS-B0601). Here, Ra is the measured value of the arithmetic average of the scratch depth, and the individual deviation in the average deviation, that is, the measured length, obtained by dividing the area surrounded by the roughness curve and the center line by the measured length. The average value of In addition, Rmax is used as another parameter indicating the surface roughness, which is the maximum depth from the highest point to the lowest point in the measurement length. The larger the numerical value, the rougher the surface, and a material with a small numerical value has been demanded.

例えば、厚膜で平坦性が求められている材料として、特許文献2に記載されるようなフレキシブル基板がある。この例では、ポリイミドシロキサンおよび両末端エポキシシロキサンの組成物を熱硬化して、膜厚7.5〜35μmという厚膜のフィルムを形成できているが、Raが0.1μm程度と大きく、また硬化温度が80℃と低いため高沸点溶剤を含むワニスを用いるような膜焼成温度が300℃以上のプロセスには適していない。   For example, there is a flexible substrate as described in Patent Document 2 as a material that is required to be flat with a thick film. In this example, the composition of polyimide siloxane and both-end epoxy siloxane is thermally cured to form a film with a thickness of 7.5 to 35 μm, but Ra is as large as about 0.1 μm and cured. Since the temperature is as low as 80 ° C., it is not suitable for a process where the film baking temperature using a varnish containing a high boiling point solvent is 300 ° C. or higher.

以上のことから、1μm以上、さらには5μm以上の厚膜で耐熱性、光透過性を有し、Ra、Rmaxが小さく表面が平坦なシリコーン材料が望まれていた。
特開2001−040094号公報 特開2004−91648号公報
In view of the above, there has been a demand for a silicone material having a thick film of 1 μm or more, further 5 μm or more, which has heat resistance and light transmission properties, small Ra and Rmax, and a flat surface.
JP 2001-040094 A JP 2004-91648 A

本発明は、優れた平滑性を持ち、かつ、高クラック耐性、高透過性、高耐熱性、高耐溶剤性の特性を有する膜を形成できる新規シリコーン重合体を提供することを目的としてなされたものである。   The present invention was made for the purpose of providing a novel silicone polymer that has excellent smoothness and can form a film having high crack resistance, high permeability, high heat resistance, and high solvent resistance. Is.

本発明は、下記一般式   The present invention has the following general formula:

Figure 0005158594
Figure 0005158594

(式中、Rはナフタレン環を有する炭化水素基を示す。)
で示される繰り返し単位のみからなるシリコーン重合体であって、重量平均分子量が500〜8,000、分散度が1.1〜1.8であるナフタレン環を有するシリコーン重合体である。
(In the formula, R represents a hydrocarbon group having a naphthalene ring.)
And a silicone polymer having a naphthalene ring having a weight average molecular weight of 500 to 8,000 and a dispersity of 1.1 to 1.8 .

本発明のシリコーン重合体は、ナフタレン環を含む炭化水素基を有するシルセスキオキサン骨格のみからなる。シルセスキオキサン単位を含むシリコーン重合体にナフタレン環を含む炭化水素基を有するシリコーン重合体を加えて形成した組成物は、200℃以上に熱をかけることにより容易にシリコーン膜を形成することができ、そのシリコーン膜は、高い平坦性と優れたクラック耐性を示す。また耐熱性と耐溶剤性に非常に優れた特性を有する。 The silicone polymer of the present invention comprises only a silsesquioxane skeleton having a hydrocarbon group containing a naphthalene ring. A composition formed by adding a silicone polymer having a hydrocarbon group containing a naphthalene ring to a silicone polymer containing a silsesquioxane unit can easily form a silicone film by heating to 200 ° C. or higher. The silicone film exhibits high flatness and excellent crack resistance. In addition, it has very excellent characteristics in heat resistance and solvent resistance.

本発明のシリコーン重合体は、透明性、耐熱性、耐薬品性、クラック耐性などの特性を兼ね備えた材料であることから、液晶表示素子や半導体素子等の電子部品に用いられる絶縁膜として利用できる。また、本発明のシリコーン重合体は電子材料分野に限らず、塗料や接着剤等、幅広い分野で応用できる。   Since the silicone polymer of the present invention is a material having characteristics such as transparency, heat resistance, chemical resistance, and crack resistance, it can be used as an insulating film used in electronic parts such as liquid crystal display elements and semiconductor elements. . Further, the silicone polymer of the present invention can be applied not only in the field of electronic materials but also in a wide range of fields such as paints and adhesives.

本発明のナフタレン環を有するシリコーン重合体は、下記一般式   The silicone polymer having a naphthalene ring of the present invention has the following general formula:

Figure 0005158594
Figure 0005158594

(式中、Rは、ナフタレン環を有する炭化水素基を示す。)
で示される繰り返し単位のみからなるシリコーン重合体である。
(In the formula, R represents a hydrocarbon group having a naphthalene ring.)
It is a silicone polymer which consists only of repeating units shown by.

本発明のナフタレン環を有するシリコーン重合体の下記骨格   The following skeleton of the silicone polymer having a naphthalene ring of the present invention

Figure 0005158594
Figure 0005158594

は、シルセスキオキサン骨格を示し、各ケイ素原子が3個の酸素原子に結合し、各酸素原子が2個のケイ素原子に結合していることを示す。シルセスキオキサン骨格は、例えば、下記一般式 Represents a silsesquioxane skeleton, wherein each silicon atom is bonded to three oxygen atoms, and each oxygen atom is bonded to two silicon atoms. The silsesquioxane skeleton has, for example, the following general formula

Figure 0005158594
Figure 0005158594

に示す構造式で示すことができる。 It can be shown by the structural formula shown in

また、本発明のナフタレン環を有するシリコーン重合体は、例えば、下記一般式 Further, silicone down the polymer having a naphthalene ring of the present invention, for example, the following formula

Figure 0005158594
Figure 0005158594

で示されるラダー型シリコーン重合体でも良い。
Rとして示されるナフタレン環を有する炭化水素基としては、ナフタレン環に炭化水素基が結合していても良く、好ましい例として、下記一般式
In a ladder-type silicone emissions may be a polymer that is shown.
As the hydrocarbon group having a naphthalene ring represented by R, a hydrocarbon group may be bonded to the naphthalene ring.

Figure 0005158594
Figure 0005158594

(式中、Dは水素原子または有機基を示しナフタレン環に結合している。Eは炭化水素基を示す。)
に示すナフタレン環を有する炭化水素基が挙げられる。
(In the formula, D represents a hydrogen atom or an organic group and is bonded to the naphthalene ring. E represents a hydrocarbon group.)
And a hydrocarbon group having a naphthalene ring.

ナフタレン環に結合している置換基Dの好ましい例としては、水素原子または炭素数1から10の直鎖状、分枝状、環状の炭化水素基、または、エーテル結合を有する有機基、エステル結合を有する有機基が挙げられる。中でも、原料入手やモノマー精製の行いやすさから、水素原子またはメチル基、エチル基、n−プロピル基、iso−プロピル基や、メトキシ基、エトキシ基、アセトキシ基、エチルカルボニルオキシ基、カルボン酸、メトキシカルボニル基、エトキシカルボニル基がより好ましく、水素原子、メチル基、メトキシ基がさらに好ましい。   Preferred examples of the substituent D bonded to the naphthalene ring include a hydrogen atom, a linear, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms, an organic group having an ether bond, or an ester bond. An organic group having Among them, from the ease of raw material acquisition and monomer purification, hydrogen atom or methyl group, ethyl group, n-propyl group, iso-propyl group, methoxy group, ethoxy group, acetoxy group, ethylcarbonyloxy group, carboxylic acid, A methoxycarbonyl group and an ethoxycarbonyl group are more preferable, and a hydrogen atom, a methyl group, and a methoxy group are more preferable.

シルセスキオキサンのケイ素に結合している置換基Eの好ましい例として、炭素数1から10の直鎖状、分枝状、環状の炭化水素基または、エステル基を含有する炭化水素基が好ましく、原料入手やモノマー精製の行いやすさから、メチレン基、エチレン基、n−プロピレン基、iso−プロピレン基、カルボニルオキシプロピル基がより好ましく、メチレン基、エチレン基、カルボニルオキシプロピル基がさらに好ましい。   Preferred examples of the substituent E bonded to silicon of silsesquioxane are preferably a linear, branched, or cyclic hydrocarbon group having 1 to 10 carbon atoms or a hydrocarbon group containing an ester group. From the viewpoint of availability of raw materials and monomer purification, a methylene group, an ethylene group, an n-propylene group, an iso-propylene group, and a carbonyloxypropyl group are more preferable, and a methylene group, an ethylene group, and a carbonyloxypropyl group are more preferable.

特に好ましいナフタレン環を有する炭化水素基は、下記一般式   The hydrocarbon group having a particularly preferred naphthalene ring is represented by the following general formula:

Figure 0005158594
Figure 0005158594

で示すナフタレン環を含む炭化水素基である。 And a hydrocarbon group containing a naphthalene ring.

本発明のナフタレン環を有するシリコーン重合体は、重量平均分子量(ポリスチレン換算)が、500〜8,000の範囲にある。本発明のシリコーン共重合体は、分散度が1.1〜2.5の範囲にあるものが好ましく、1.1〜1.8の範囲にあるものがさらに好ましい。 Silicone down the polymer having a naphthalene ring of the present invention has a weight average molecular weight (polystyrene equivalent), area by near 5 00~8,000. The silicone copolymer of the present invention preferably has a dispersity in the range of 1.1 to 2.5, and more preferably in the range of 1.1 to 1.8.

重量平均分子量の測定には、ゲルパーミエイションクロマトグラフィ(以後GPCと略す)装置を用いて測定を行い、本製品では東ソー製GPC測定装置HLC−8220を用いて測定を行った。測定では、東ソー製GPCカラム(TSKgel GMHXLを2本並列)を使用し、ポリスチレンを標準物質として検量線を作成し、その後測定を行った。また分散度は測定から得られた重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)で表される。一般に重量平均分子量が20,000以上になると分散度も1.8以上になり、有機溶媒に不溶となる場合がある。   The weight average molecular weight was measured using a gel permeation chromatography (hereinafter abbreviated as GPC) apparatus. In this product, the measurement was performed using a GPC measuring apparatus HLC-8220 manufactured by Tosoh Corporation. In the measurement, a Tosoh GPC column (two TSKgel GMHXLs in parallel) was used, a calibration curve was prepared using polystyrene as a standard substance, and then the measurement was performed. The degree of dispersion is represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) obtained from the measurement. In general, when the weight average molecular weight is 20,000 or more, the degree of dispersion is 1.8 or more, which may be insoluble in an organic solvent.

本発明のナフタレン骨格を有するシリコーン重合体は、好ましくは、有機溶媒に可溶であり、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン溶媒、メタノール、エタノール、イソプロパノール、n−ブタノール、シクロへキサノール等のアルコール溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル等のエステル溶媒、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン等のエーテル溶媒、アセトニトリル、ベンゾニトリル等のニトリル系溶媒、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒に可溶である。   The silicone polymer having a naphthalene skeleton of the present invention is preferably soluble in an organic solvent, and is a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl cyclohexanone, methanol, ethanol, isopropanol, n-butanol, Alcohol solvents such as cyclohexanol, aromatic hydrocarbon solvents such as benzene, toluene and xylene, ester solvents such as methyl acetate, ethyl acetate, butyl acetate and ethyl lactate, ether solvents such as diethyl ether, dibutyl ether and tetrahydrofuran, acetonitrile , Nitrile solvents such as benzonitrile, glycols such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol monomethyl ether acetate Solvent is soluble.

下記一般式で示される本発明の   The present invention represented by the following general formula

Figure 0005158594
Figure 0005158594

(式中、Rはナフタレン環を有する炭化水素基を示す。)
で示されるナフタレン環を有するシリコーン重合体を製造する場合、例えば、下記で示される水を用いた加水分解反応、重縮合反応で合成することができる。
(In the formula, R represents a hydrocarbon group having a naphthalene ring.)
In the case of producing a silicone polymer having a naphthalene ring represented by, for example, it can be synthesized by a hydrolysis reaction or polycondensation reaction using water shown below.

Figure 0005158594
Figure 0005158594

(式中、Rはナフタレン環を有する炭化水素基を示す。Xは加水分解性基を示す。) (In the formula, R represents a hydrocarbon group having a naphthalene ring. X represents a hydrolyzable group.)

ここで、Xは加水分解性基を示すが、塩素、臭素、ヨウ素のハロゲン原子、もしくはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基が好ましく、特に塩素原子、メトキシ基、エトキシ基が原料入手と反応性が高いことから特に好ましい。   Here, X represents a hydrolyzable group, preferably a halogen atom of chlorine, bromine or iodine, or an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group or a butoxy group, particularly a chlorine atom, a methoxy group or an ethoxy group. Is particularly preferred because of the availability of raw materials and high reactivity.

この加水分解、重縮合反応は水を用いて行うが、通常触媒を加えて行うことが好ましい。この場合、分子量制御の観点から酸性条件で行うことが好ましく、塩酸、酢酸、クエン酸、シュウ酸等の触媒を使用することが特に好ましい。この触媒使用量は原料モノマーのモル数に対して0.01〜1.0当量が好ましく、0.05〜0.5当量がさらに好ましい。   This hydrolysis and polycondensation reaction is carried out using water, but it is usually preferred to carry out by adding a catalyst. In this case, the reaction is preferably performed under acidic conditions from the viewpoint of molecular weight control, and it is particularly preferable to use a catalyst such as hydrochloric acid, acetic acid, citric acid, or oxalic acid. The amount of the catalyst used is preferably 0.01 to 1.0 equivalent, more preferably 0.05 to 0.5 equivalent, relative to the number of moles of the raw material monomer.

加水分解、重縮合条件として、反応温度0〜100℃が好ましく、触媒を使用することにより反応が容易に進行することから、10〜40℃がより好ましい。   As the hydrolysis and polycondensation conditions, a reaction temperature of 0 to 100 ° C. is preferable, and the reaction proceeds easily by using a catalyst, and therefore 10 to 40 ° C. is more preferable.

この加水分解、重縮合反応には水が必要であるが、原料モノマーのモル数に対して3〜100当量使用することが好ましく、5〜50当量使用することが特に好ましい。   Although water is required for this hydrolysis and polycondensation reaction, it is preferable to use 3 to 100 equivalents, particularly preferably 5 to 50 equivalents, based on the number of moles of the raw material monomer.

この反応では、有機溶媒を使用することが好ましく、有機溶媒としては、トルエン、キシレン等の非プロトン性溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、メタノール、エタノール、2−プロパノール等のアルコール溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル溶媒、等の溶媒を使用することができる。   In this reaction, an organic solvent is preferably used. Examples of the organic solvent include aprotic solvents such as toluene and xylene, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and alcohol solvents such as methanol, ethanol and 2-propanol. , Ether solvents such as diethyl ether and tetrahydrofuran, and the like can be used.

反応終了後は、非極性溶媒を添加して反応生成物と水とを分離して、有機溶媒に溶解した反応生成物を回収し、水で洗浄後に溶媒を留去することにより目的の生成物を得ることができる。   After completion of the reaction, a non-polar solvent is added to separate the reaction product and water, and the reaction product dissolved in an organic solvent is recovered. After washing with water, the solvent is distilled off to obtain the desired product. Can be obtained.

例えば、このようにして本発明のシリコーン重合体を合成することができる。   For example, the silicone polymer of the present invention can be synthesized in this manner.

本発明のナフタレン環を有するシリコーン重合体と、下記一般式   Silicone polymer having naphthalene ring of the present invention, and the following general formula

Figure 0005158594
Figure 0005158594

(式中、Aは、芳香族炭化水素基を有する炭化水素基を示し、Bは、脂肪族炭化水素基を示す。mとnはモル%を示し、0≦m、n≦100を示す。ただしm+n=100である。)
で示されるシルセスキオキサン単位を有するシリコーン重合体との組成物は、200℃以上の加熱後によりシリコーン膜を形成し、形成したシリコーン膜は、クラック耐性と平坦性を優れた材料になる。
(In the formula, A represents a hydrocarbon group having an aromatic hydrocarbon group, B represents an aliphatic hydrocarbon group, m and n represent mol%, and 0 ≦ m and n ≦ 100. However, m + n = 100.)
The composition with the silicone polymer having a silsesquioxane unit represented by the above formula forms a silicone film after heating at 200 ° C. or higher, and the formed silicone film becomes a material excellent in crack resistance and flatness.

下記一般式   The following general formula

Figure 0005158594
Figure 0005158594

(式中、Aは芳香族炭化水素基を有する炭化水素基を示し、Bは脂肪族炭化水素基を示す。mとnはモル%を示し、0≦m、n≦100を示す。ただしm+n=100である。)
で示されるシルセスキオキサン単位を含むシリコーン重合体のAとして示される芳香族炭化水素基は、好ましい例として、フェニル基、ベンジル基、フェネチル基、フェニルプロピル基、ジフェニルメチル基、シンナミル基、スチリル基、トリチル基等のベンゼン環と炭化水素基とを有した置換基、トルイル基、クメニル基、メシル基、キシリル基等のベンゼン環に置換基が結合した芳香族炭化水素基等が挙げられる。4−メチルフェニルエチル基、4−メチルフェニルプロピル基、2,4−ジメチルフェニルエチル基等、ベンゼン環に置換基が結合していても良い。
(In the formula, A represents a hydrocarbon group having an aromatic hydrocarbon group, B represents an aliphatic hydrocarbon group, m and n represent mol%, and 0 ≦ m and n ≦ 100, where m + n. = 100.)
The aromatic hydrocarbon group shown as A of the silicone polymer containing a silsesquioxane unit shown by the following is preferable examples of phenyl group, benzyl group, phenethyl group, phenylpropyl group, diphenylmethyl group, cinnamyl group, styryl. And a substituent having a benzene ring and a hydrocarbon group such as a group and a trityl group, an aromatic hydrocarbon group having a substituent bonded to a benzene ring such as a toluyl group, a cumenyl group, a mesyl group, and a xylyl group. A substituent may be bonded to the benzene ring such as a 4-methylphenylethyl group, a 4-methylphenylpropyl group, or a 2,4-dimethylphenylethyl group.

芳香族炭化水素基は、加熱による膜形成時における樹脂の耐熱性を向上させる効果があり、樹脂の耐熱性を向上させることが出来る。芳香族炭化水素基は、フェニル基、トルイル基、クメニル基、メシル基、キシリル基等の芳香族炭化水素基が、特に好ましく、一般的に入手が容易なフェニル基が、さらに好ましい。芳香族環とシリコン原子との間に置換基があると、置換基がない場合と比較して一般的にガラス転移温度が向上し、耐熱性が向上する傾向がある。   The aromatic hydrocarbon group has an effect of improving the heat resistance of the resin during film formation by heating, and can improve the heat resistance of the resin. The aromatic hydrocarbon group is particularly preferably an aromatic hydrocarbon group such as a phenyl group, a toluyl group, a cumenyl group, a mesyl group, or a xylyl group, and more preferably a phenyl group that is generally readily available. If there is a substituent between the aromatic ring and the silicon atom, the glass transition temperature generally improves and the heat resistance tends to improve as compared with the case where there is no substituent.

シルセスキオキサン単位を含むシリコーン重合体のBとして好ましい脂肪族炭化水素基は、炭素数1〜20の直鎖状炭化水素基、分枝状炭化水素基、環状炭化水素基、架橋環式炭化水素基、2重結合を有する炭化水素基であり、炭素数1〜20の直鎖状炭化水素基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基等の炭化水素基が挙げられる。分枝状炭化水素基としては、イソプロピル基、イソブチル基等の炭化水素基が好ましい。環状炭化水素基として、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の環状炭化水素基が好ましく、また、ノルボルナン骨格を有するような架橋環式炭化水素基も好ましい。また、2重結合を有するビニル基、アリル基を有する炭化水素基も好ましい。これら炭化水素基の中で、メチル基、エチル基、プロピル基等の炭素数1〜5の直鎖状炭化水素基が、より好ましく、原料入手の観点からメチル基がさらに好ましい。   Preferred aliphatic hydrocarbon groups as B of the silicone polymer containing silsesquioxane units are linear hydrocarbon groups having 1 to 20 carbon atoms, branched hydrocarbon groups, cyclic hydrocarbon groups, and bridged cyclic carbon groups. A hydrogen group, a hydrocarbon group having a double bond, and a linear hydrocarbon group having 1 to 20 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, etc. These hydrocarbon groups are mentioned. As the branched hydrocarbon group, a hydrocarbon group such as isopropyl group and isobutyl group is preferable. As the cyclic hydrocarbon group, a cyclic hydrocarbon group such as a cyclopentyl group, a cyclohexyl group, or a cycloheptyl group is preferable, and a bridged cyclic hydrocarbon group having a norbornane skeleton is also preferable. A vinyl group having a double bond and a hydrocarbon group having an allyl group are also preferred. Among these hydrocarbon groups, straight-chain hydrocarbon groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, and a propyl group are more preferable, and a methyl group is more preferable from the viewpoint of obtaining raw materials.

m、nは、シリコーン共重合体のモル%を示す。mは、シリコーン膜の耐熱性を向上させる部位であり、40モル%以上である。nは、シリコーン膜形成後の有機溶剤やアルカリ現像液に対する薬液耐性を示し、60モル%以下であるm and n represent mol% of the silicone copolymer. m is a portion for improving the heat resistance of the silicone film is 4 0 mol% or more. n represents the chemical resistance to an organic solvent or an alkaline developing solution after the silicone film formed is 6 0 mol% or less.

Figure 0005158594
Figure 0005158594

(式中、Rはナフタレン環を含む炭化水素基を示す。)
で示される繰り返し単位を有するシリコーン重合体と、下記一般式
(In the formula, R represents a hydrocarbon group containing a naphthalene ring.)
A silicone polymer having a repeating unit represented by the following general formula:

Figure 0005158594
Figure 0005158594

(式中、Aは芳香族炭化水素基を有する炭化水素基を示し、Bは脂肪族炭化水素基を示す。mとnはモル%を示し、0≦m、n≦100を示す。ただしm+n=100である。)
で示される繰り返し単位を含むシリコーン共重合体との組成物を200℃以上に加熱してシリコーン膜を形成する場合、ナフタレン環を含む炭化水素基を有するシリコーン重合体の組成比率は、30重量%が好ましい。
(In the formula, A represents a hydrocarbon group having an aromatic hydrocarbon group, B represents an aliphatic hydrocarbon group, m and n represent mol%, and 0 ≦ m and n ≦ 100, where m + n. = 100.)
In the case of forming a silicone film by heating a composition with a silicone copolymer containing a repeating unit represented by formula (2) to 200 ° C. or more, the composition ratio of the silicone polymer having a hydrocarbon group containing a naphthalene ring is 30% by weight. Is preferred.

以下、実施例を示して本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

以下の実施例において、測定には下記装置を使用し、原料は試薬メーカー(東京化成品、和光純薬品、ナカライテスク品、アズマックス品、信越化学品)から購入した一般的な試薬を用いた。   In the following examples, the following apparatus was used for the measurement, and general reagents purchased from reagent manufacturers (Tokyo Chemicals, Wako Pure Chemicals, Nacalai Tesque, Azmax, Shin-Etsu Chemical) were used as raw materials.

<測定装置>
NMR測定・・・日本電子製400MHz NMR測定器
IR測定・・・島津製IR Prestige−21。KBr板に合成品を少量塗布し、別のKBr板に挟んで赤外を透過させて測定した。
GPC測定・・・東ソー製HLC−8220
GC測定・・・島津製GC−2010シリーズ
<Measurement device>
NMR measurement: JEOL 400 MHz NMR measuring instrument IR measurement: Shimadzu IR Prestige-21. A small amount of a synthetic product was applied to a KBr plate, and the measurement was performed by passing infrared light through another KBr plate.
GPC measurement: Tosoh HLC-8220
GC measurement: Shimadzu GC-2010 series

<被膜評価>
実施例5〜9、比較例2に記載した成膜方法により成膜された被膜に対して、以下の方法で膜評価を行った。
<Evaluation of coating>
For the coating films formed by the film forming methods described in Examples 5 to 9 and Comparative Example 2, film evaluation was performed by the following method.

〔表面粗さの測定〕
(中心線平均値Ra)
シリコンウエハ上に形成された最終硬化被膜の中心部分において、東京精密製触針式表面粗さ測定器サーフコム1500Aを用いてカットオフ値0.25mm、測定長さ1mmの条件で3点測定し、その平均値を算出した。
[Measurement of surface roughness]
(Center line average value Ra)
At the central part of the final cured film formed on the silicon wafer, three points were measured using a Tokyo Seimitsu stylus type surface roughness measuring device Surfcom 1500A under the conditions of a cutoff value of 0.25 mm and a measurement length of 1 mm. The average value was calculated.

(最大高さRmax)
シリコンウエハ上に形成された最終硬化被膜の中心部分において、東京精密製触針式表面粗さ測定器サーフコム1500Aを用いて、測定長さ1mmで3点測定し、その平均値を算出した。
(Maximum height Rmax)
At the central portion of the final cured film formed on the silicon wafer, three points were measured at a measurement length of 1 mm using a stylus type surface roughness measuring device Surfcom 1500A manufactured by Tokyo Seimitsu, and the average value was calculated.

(粗さ評価)
上記で測定したRaが0.005以下かつRmaxが0.05以下ならば◎、Raが0.005〜0.010かつRmaxが0.050〜0.500ならば○、Raが0.010〜0.050かつRmaxが0.500〜1.000ならば△、Raが0.050以上かつRmaxが1.000以上ならば×とした。
(Roughness evaluation)
When Ra measured above is 0.005 or less and Rmax is 0.05 or less, ◎, when Ra is 0.005 to 0.010 and Rmax is 0.050 to 0.500, ○, Ra is 0.010. When 0.050 and Rmax were 0.500 to 1.000, Δ, and when Ra was 0.050 or more and Rmax was 1.000 or more, ×.

〔クラック耐性の評価〕
シリコンウエハ上に形成された最終硬化被膜について、金属顕微鏡により10倍〜100倍の倍率による面内のクラックの有無を確認した。クラックの発生がない場合は○、クラックが見られた場合を×と判定した。
[Evaluation of crack resistance]
With respect to the final cured film formed on the silicon wafer, the presence or absence of in-plane cracks at a magnification of 10 to 100 times was confirmed with a metal microscope. The case where no crack was generated was judged as ◯, and the case where a crack was seen was judged as ×.

〔耐溶剤性の評価〕
シリコンウエハ上に形成された最終硬化被膜について、90℃の温度に加温されたジメチルスルホキシドの溶剤中に120分間浸漬して膜表面の荒れ、膜のハガレ、溶解の有無を試験した。膜表面の荒れ、膜のハガレ、溶解のない場合を○、膜表面の荒れ、膜のハガレ、溶解のいずれかが確認された場合を×と判定した。
[Evaluation of solvent resistance]
The final cured film formed on the silicon wafer was immersed in a dimethyl sulfoxide solvent heated to a temperature of 90 ° C. for 120 minutes to test whether the film surface was rough, the film peeled, or dissolved. The case where there was no film surface roughness, film peeling, or dissolution was judged as ◯, and the film surface roughness, film peeling, or dissolution was confirmed as x.

〔透過率の測定〕
可視光領域に吸収がないガラス基板上に塗布された被膜について、日立製UV3310を用いて遠紫外線露光波長365nm(i線)の透過率を測定した。
(Measurement of transmittance)
The transmittance at a deep ultraviolet exposure wavelength of 365 nm (i-line) was measured using a UV3310 manufactured by Hitachi on a film coated on a glass substrate having no absorption in the visible light region.

合成例1
2−メチル−1−ナフチルトリメトキシシランの合成例
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、マグネシウム11.5g(0.475モル)とテトラヒドロフラン300mLを加え40℃に温度を昇温した。次いで開始剤として1,2−ジブロモエタンを少量加えた後、1−ブロモ−2−メチルナフタレン100g(0.452モル)を45℃を超えないように6時間かけて滴下した。滴下終了後、40〜45℃で2時間熟成しグリニャール試薬を調整した。
Synthesis example 1
Example of synthesis of 2-methyl-1-naphthyltrimethoxysilane To a 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 11.5 g (0.475 mol) of magnesium and 300 mL of tetrahydrofuran were added. The temperature was raised to 40 ° C. Next, a small amount of 1,2-dibromoethane was added as an initiator, and 100 g (0.452 mol) of 1-bromo-2-methylnaphthalene was added dropwise over 6 hours so as not to exceed 45 ° C. After completion of dropping, the mixture was aged at 40 to 45 ° C. for 2 hours to prepare a Grignard reagent.

次に撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた1000mL4つ口フラスコに、正珪酸メチル206.5g(1.357モル)仕込み缶内温度を80℃まで昇温し、グリニャール試薬を80〜85℃の温度で2時間かけて滴下した。滴下終了後、80〜85℃で2時間熟成後冷却し、マグネシウム塩をろ過し、溶媒を留去し、減圧度1Torrで110〜115℃の留分を46.4g(0.177モル)得た。得られた留分のGC分析の結果、GC純度98.6%、NMRとIR分析の結果、2−メチル−1−ナフチルトリメトキシシランであった。   Next, in a 1000 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 206.5 g (1.357 mol) of normal methyl silicate was charged, and the internal temperature of the can was raised to 80 ° C., Grignard reagent Was added dropwise at a temperature of 80 to 85 ° C. over 2 hours. After completion of dropping, the mixture was aged at 80 to 85 ° C. for 2 hours and then cooled, the magnesium salt was filtered, the solvent was distilled off, and 46.4 g (0.177 mol) of a fraction at 110 to 115 ° C. was obtained at a reduced pressure of 1 Torr. It was. As a result of GC analysis of the obtained fraction, GC purity was 98.6%. As a result of NMR and IR analysis, it was 2-methyl-1-naphthyltrimethoxysilane.

得られた化合物のスペクトルデータを下記に示す。   The spectrum data of the obtained compound is shown below.

赤外線吸収スペクトル(IR)データ
2839,2941cm−1 (−CH3,Ar)、1080cm−1 (Si−O)
核磁気共鳴スペクトル(NMR)データ(H−NMR溶媒:CDCl3)
2.73ppm(s、3H、Ar−CH3)、3.64ppm(s、9H、−OCH3)、7.24−7.50ppm(m、3H、Ar−H)、7.78ppm(dd、J=11.6、8.8Hz、2H、Ar−H)、8.61ppm(d、J=8.8Hz、1H、Ar−H)。
Infrared absorption spectrum (IR) data 2839,2941cm -1 (-CH3, Ar), 1080cm -1 (Si-O)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR solvent: CDCl 3)
2.73 ppm (s, 3 H, Ar—CH 3), 3.64 ppm (s, 9 H, —OCH 3), 7.24-7.50 ppm (m, 3 H, Ar—H), 7.78 ppm (dd, J = 11.6, 8.8 Hz, 2H, Ar—H), 8.61 ppm (d, J = 8.8 Hz, 1H, Ar—H).

合成例2
6−メトキシ−2−ナフチルトリメトキシシランの合成例
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、マグネシウム10.8g(0.443モル)とテトラヒドロフラン300mLを加え40℃に温度を昇温した。次いで開始剤として1,2−ジブロモエタンを少量加えた後、2−ブロモ−6−メトキシナフタレン100.0g(0.422モル)を45℃を超えないように6時間かけて滴下した。滴下終了後、40〜45℃で2時間熟成しグリニャール試薬を調整した。
Synthesis example 2
Example of synthesis of 6-methoxy-2-naphthyltrimethoxysilane To a 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 10.8 g (0.443 mol) of magnesium and 300 mL of tetrahydrofuran were added. The temperature was raised to 40 ° C. Next, a small amount of 1,2-dibromoethane was added as an initiator, and then 100.0 g (0.422 mol) of 2-bromo-6-methoxynaphthalene was added dropwise over 6 hours so as not to exceed 45 ° C. After completion of dropping, the mixture was aged at 40 to 45 ° C. for 2 hours to prepare a Grignard reagent.

次に撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた1000mL4つ口フラスコに、正珪酸メチル192.8g(1.267モル)仕込み缶内温度を80℃まで昇温し、グリニャール試薬を80〜85℃の温度で2時間かけて滴下した。滴下終了後80〜85℃で2時間熟成後冷却し、マグネシウム塩をろ過し、溶媒を留去し、減圧度1mmHgで135〜138℃の留分を37.6g(0.135モル)得た。得られた留分のGC分析の結果、GC純度98.7%、NMRとIR分析の結果、6−メトキシ−2−ナフチルトリメトキシシランであった。   Next, in a 1000 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer, 192.8 g (1.267 mol) of normal methyl silicate was charged, and the internal temperature of the can was raised to 80 ° C., Grignard reagent Was added dropwise at a temperature of 80 to 85 ° C. over 2 hours. After completion of dropping, the mixture was aged at 80 to 85 ° C. for 2 hours and then cooled, the magnesium salt was filtered, the solvent was distilled off, and 37.6 g (0.135 mol) of a fraction at 135 to 138 ° C. was obtained at a reduced pressure of 1 mmHg. . As a result of GC analysis of the obtained fraction, GC purity was 98.7%, and NMR and IR analysis showed that it was 6-methoxy-2-naphthyltrimethoxysilane.

得られた化合物のスペクトルデータを下記に示す。   The spectrum data of the obtained compound is shown below.

赤外線吸収スペクトル(IR)データ
2838,2943cm−1 (−CH3,Ar)、1080cm−1 (Si−O)
核磁気共鳴スペクトル(NMR)データ(H−NMR溶媒:CDCl3)
3.63ppm(s、9H、Si−OCH3)、3.87ppm(s、3H、Ar−OCH3)、7.04−7.30ppm(m、3H、Ar−H)、7.77ppm(dd、J=11.6、8.8Hz、2H、Ar−H)、8.60ppm(d、J=8.8Hz、1H、Ar−H)。
Infrared absorption spectrum (IR) data 2838,2943cm -1 (-CH3, Ar), 1080cm -1 (Si-O)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR solvent: CDCl 3)
3.63 ppm (s, 9H, Si-OCH3), 3.87 ppm (s, 3H, Ar-OCH3), 7.04-7.30 ppm (m, 3H, Ar-H), 7.77 ppm (dd, J = 11.6, 8.8 Hz, 2H, Ar-H), 8.60 ppm (d, J = 8.8 Hz, 1H, Ar-H).

合成例3
1−アセナフテニルトリエトキシシランの合成例
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた200mL4つ口フラスコに、アセナフチレン55.1g(0.329モル)と0.1モル/Lの塩化白金酸六水和物のイソプロパノール溶液を0.83mL加えて80℃に加熱した。アセナフチレンの黄色結晶が溶解した時点でトリエトキシシラン56.7g(0.345モル)を80〜85℃で滴下した。その後75〜80℃で2時間熟成した。次いでそのまま減圧蒸留を行い130〜140℃/0.5mmHgの留分回収し、黄色透明溶液63.4g(0.200モル)を得た。得られた留分のGC分析の結果、GC純度96.9%、NMRとIR分析の結果、1−アセナフテニルトリエトキシシランであった。
Synthesis example 3
Example of synthesis of 1-acenaphthenyltriethoxysilane In a 200 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 55.1 g (0.329 mol) of acenaphthylene and 0.1 mol / L were added. 0.83 mL of an isopropanol solution of chloroplatinic acid hexahydrate was added and heated to 80 ° C. When the yellow crystals of acenaphthylene were dissolved, 56.7 g (0.345 mol) of triethoxysilane was added dropwise at 80 to 85 ° C. Thereafter, aging was performed at 75 to 80 ° C. for 2 hours. Subsequently, distillation under reduced pressure was performed as it was, and a fraction of 130 to 140 ° C./0.5 mmHg was collected to obtain 63.4 g (0.200 mol) of a yellow transparent solution. As a result of GC analysis of the obtained fraction, GC purity was 96.9%. As a result of NMR and IR analysis, it was 1-acenaphthenyltriethoxysilane.

得られた化合物のスペクトルデータを下記に示す。   The spectrum data of the obtained compound is shown below.

赤外線吸収スペクトル(IR)データ
2887−3043cm−1 (−CH−、−CH2−、−CH3,Ar)、1080−1101cm−1 (Si−O)
核磁気共鳴スペクトル(NMR)データ(H−NMR溶媒:CDCl3)
1.10ppm(t、9H、CH3)、3.19ppm(t、1H、Si−CH−)、3.57ppm(s、2H、Ar−CH2−)、3.71ppm(q、6H、Si−OCH3)、7.25−7.56ppm(m、6H、Ar−H)。
Infrared absorption spectrum (IR) data 2887-3043 cm −1 (—CH—, —CH 2 —, —CH 3, Ar), 1080-1101 cm −1 (Si—O)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR solvent: CDCl 3)
1.10 ppm (t, 9H, CH3), 3.19 ppm (t, 1H, Si-CH-), 3.57 ppm (s, 2H, Ar-CH2-), 3.71 ppm (q, 6H, Si-OCH3) ), 7.25-7.56 ppm (m, 6H, Ar-H).

実施例1
1−ナフチルシルセスキオキサン(下記一般式)の合成
Example 1
Synthesis of 1-naphthylsilsesquioxane (the following general formula)

Figure 0005158594
Figure 0005158594

撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、トルエン75.1gと水36.7gを仕込み、35%塩酸を3.13g(0.03モル)を加えた。次に1−ナフチルトリメトキシシラン75.1g(0.302モル)のトルエン37.5gの溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが分かった。次にトルエンと水を加えて抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。トルエン油層を回収し、トルエンを除去して、目的の白色固体状の化合物57.6gを得た。   A 500 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer was charged with 75.1 g of toluene and 36.7 g of water, and 3.13 g (0.03 mol) of 35% hydrochloric acid was added. . Next, a solution of 75.1 g (0.302 mol) of 1-naphthyltrimethoxysilane in 37.5 g of toluene was added dropwise at 20 to 30 ° C. After completion of dropping, the mixture was aged at the same temperature for 2 hours. As a result of analyzing the reaction solution at this time by GC, it was found that no raw material remained. Next, toluene and water were added for extraction, and after washing with an aqueous sodium hydrogen carbonate solution, the solution was washed with water until the solution became neutral. The toluene oil layer was recovered and toluene was removed to obtain 57.6 g of the target white solid compound.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1026−1151cm−1(Si−O)、2980−3080cm−1(C−H)、3080−3700cm−1(Si−OH)
核磁気共鳴スペクトル(NMR)データ(H−NMR δ(ppm)、溶媒:CDCl
7.19−8.43(m、Ar)
GPC分析データ:Mw=660、Mw/Mn=1.14(ポリスチレン換算)。
Infrared absorption spectrum (IR) data 1026-1151 cm −1 (Si—O), 2980-3080 cm −1 (C—H), 3080-3700 cm −1 (Si—OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
7.19-8.43 (m, Ar)
GPC analysis data: Mw = 660, Mw / Mn = 1.14 (polystyrene conversion).

実施例2
2−メチル−1−ナフチルシルセスキオキサン(下記一般式)の合成
Example 2
Synthesis of 2-methyl-1-naphthylsilsesquioxane (the following general formula)

Figure 0005158594
Figure 0005158594

撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、トルエン79.3gと水36.7gを仕込み、35%塩酸を3.13g(0.03モル)を加えた。次に2−メチル−1−ナフチルトリメトキシシラン79.3g(0.302モル)のトルエン39.3gの溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが分かった。次にトルエンと水を加えて抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。トルエン油層を回収し、トルエンを除去して、目的の白色固体状の化合物60.8gを得た。   A 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer was charged with 79.3 g of toluene and 36.7 g of water, and 3.13 g (0.03 mol) of 35% hydrochloric acid was added. . Next, a solution of 79.3 g (0.302 mol) of 2-methyl-1-naphthyltrimethoxysilane in 39.3 g of toluene was added dropwise at 20 to 30 ° C. After completion of dropping, the mixture was aged at the same temperature for 2 hours. As a result of analyzing the reaction solution at this time by GC, it was found that no raw material remained. Next, toluene and water were added for extraction, and after washing with an aqueous sodium hydrogen carbonate solution, the solution was washed with water until the solution became neutral. The toluene oil layer was collected and toluene was removed to obtain 60.8 g of the target white solid compound.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1025−1151cm−1(Si−O)、2979−3081cm−1(C−H)、3081−3700cm−1(Si−OH)
核磁気共鳴スペクトル(NMR)データ(H−NMR δ(ppm)、溶媒:CDCl
2.73(s、3H、−CH3)、7.19−8.43(m、Ar)
GPC分析データ:Mw=682、Mw/Mn=1.14(ポリスチレン換算)。
Infrared absorption spectrum (IR) data 1025-1151 cm −1 (Si—O), 2979-3081 cm −1 (C—H), 3081-3700 cm −1 (Si—OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
2.73 (s, 3H, -CH3), 7.19-8.43 (m, Ar)
GPC analysis data: Mw = 682, Mw / Mn = 1.14 (polystyrene conversion).

実施例3
6−メトキシ−2−ナフチルシルセスキオキサン(下記一般式)の合成
Example 3
Synthesis of 6-methoxy-2-naphthylsilsesquioxane (the following general formula)

Figure 0005158594
Figure 0005158594

撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、トルエン84.1gと水36.7gを仕込み、35%塩酸を3.13g(0.03モル)を加えた。次に2−メチル−1−ナフチルトリメトキシシラン84.1g(0.302モル)のトルエン42.1gの溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが分かった。次にトルエンと水を加えて抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。トルエン油層を回収し、トルエンを除去して、目的の白色固体状の化合物64.6gを得た。   A 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer was charged with 84.1 g of toluene and 36.7 g of water, and 3.13 g (0.03 mol) of 35% hydrochloric acid was added. . Next, a solution of 82.1 g (0.302 mol) of 2-methyl-1-naphthyltrimethoxysilane in 42.1 g of toluene was added dropwise at 20 to 30 ° C. After completion of dropping, the mixture was aged at the same temperature for 2 hours. As a result of analyzing the reaction solution at this time by GC, it was found that no raw material remained. Next, toluene and water were added for extraction, and after washing with an aqueous sodium hydrogen carbonate solution, the solution was washed with water until the solution became neutral. The toluene oil layer was recovered, and toluene was removed to obtain 64.6 g of the target white solid compound.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1026−1151cm−1(Si−O)、1150−1170cm−1(Ar−O−CH3)、2980−3080cm−1(C−H)、3080−3700cm−1(Si−OH)
核磁気共鳴スペクトル(NMR)データ(H−NMR δ(ppm)、溶媒:CDCl
3.86(s、3H、−OCH3)、7.10−8.23(m、Ar)
GPC分析データ:Mw=690、Mw/Mn=1.15(ポリスチレン換算)。
Infrared absorption spectrum (IR) data 1026-1151 cm −1 (Si—O), 1150-1170 cm −1 (Ar—O—CH 3), 2980-3080 cm −1 (C—H), 3080-3700 cm −1 (Si— OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
3.86 (s, 3H, -OCH3), 7.10-8.23 (m, Ar)
GPC analysis data: Mw = 690, Mw / Mn = 1.15 (polystyrene conversion).

実施例4
1−アセナフテニルシルセスキオキサン(下記一般式)の合成
Example 4
Synthesis of 1-acenaphthenylsilsesquioxane (the following general formula)

Figure 0005158594
Figure 0005158594

撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、トルエン95.6gと水36.7gを仕込み、35%塩酸を3.13g(0.03モル)を加えた。次に1−アセナフテニルトリエトキシシラン95.6g(0.302モル)のトルエン47.8gの溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが分かった。次にトルエンと水を加えて抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。トルエン油層を回収し、トルエンを除去して、目的の白色固体状の化合物73.4gを得た。   A 500 mL four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer was charged with 95.6 g of toluene and 36.7 g of water, and 3.13 g (0.03 mol) of 35% hydrochloric acid was added. . Next, a solution of 95.6 g (0.302 mol) of 1-acenaphthenyltriethoxysilane in 47.8 g of toluene was added dropwise at 20 to 30 ° C. After completion of dropping, the mixture was aged at the same temperature for 2 hours. As a result of analyzing the reaction solution at this time by GC, it was found that no raw material remained. Next, toluene and water were added for extraction, and after washing with an aqueous sodium hydrogen carbonate solution, the solution was washed with water until the solution became neutral. The toluene oil layer was recovered, and toluene was removed to obtain 73.4 g of the target white solid compound.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1022−1150cm−1(Si−O)、2975−3085cm−1(C−H)、3085−3700cm−1(Si−OH)
核磁気共鳴スペクトル(NMR)データ(H−NMR δ(ppm)、溶媒:CDCl
3.00−3.20ppm(m、Si−CH−)、3.20−3.50ppm(m、Ar−CH2−)、7.19−8.20(m、Ar)
GPC分析データ:Mw=698、Mw/Mn=1.14(ポリスチレン換算)。
Infrared absorption spectrum (IR) data 1022-1150 cm −1 (Si—O), 2975-3085 cm −1 (C—H), 3085-3700 cm −1 (Si—OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
3.00-3.20 ppm (m, Si-CH-), 3.20-3.50 ppm (m, Ar-CH2-), 7.19-8.20 (m, Ar)
GPC analysis data: Mw = 698, Mw / Mn = 1.14 (polystyrene conversion).

比較例1
フェニルシルセスキオキサン・メチルシルセスキオキサン共重合体(下記一般式)の合成
Comparative Example 1
Synthesis of phenylsilsesquioxane / methylsilsesquioxane copolymer (general formula below)

Figure 0005158594
Figure 0005158594

(構造式中の50:50は使用原料のモル比)
撹拌機、還流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、トルエン50.6gと水33.4gを仕込み、35%塩酸を3.13g(0.03モル)を加えた。次にフェニルトリメトキシシラン30.0g(0.151モル)、メチルトリメトキシシラン20.6g(0.151モル)のトルエン25.3gの溶液を20〜30℃で滴下した。滴下終了後、同温度で2時間熟成させた。このときの反応溶液をGCで分析した結果、原料は残っていないことが分かった。次にトルエンと水を加えて抽出し、炭酸水素ナトリウム水溶液で洗浄後に、水で溶液が中性になるまで洗浄した。トルエン油層を回収し、トルエンを除去して、目的の白色固体状の化合物27.2gを得た。
(50:50 in the structural formula is the molar ratio of the raw materials used)
A 500 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a thermometer was charged with 50.6 g of toluene and 33.4 g of water, and 3.13 g (0.03 mol) of 35% hydrochloric acid was added. . Next, a solution of phenyltrimethoxysilane 30.0 g (0.151 mol) and methyltrimethoxysilane 20.6 g (0.151 mol) in toluene 25.3 g was added dropwise at 20 to 30 ° C. After completion of dropping, the mixture was aged at the same temperature for 2 hours. As a result of analyzing the reaction solution at this time by GC, it was found that no raw material remained. Next, toluene and water were added for extraction, and after washing with an aqueous sodium hydrogen carbonate solution, the solution was washed with water until the solution became neutral. The toluene oil layer was recovered, and toluene was removed to obtain 27.2 g of the target white solid compound.

得られた共重合体のスペクトルデータを下記に示す。   The spectrum data of the obtained copolymer is shown below.

赤外線吸収スペクトル(IR)データ
1028−1132cm−1(Si−O)、2970−3070 cm−1(C−H)、3070−3700 cm−1(Si−OH)
核磁気共鳴スペクトル(NMR)データ(H−NMR δ(ppm)、溶媒:CDCl
0.16(bs)、7.00−7.57(m)、7.57−7.90(m)
GPC分析データ:Mw=960、Mw/Mn=1.25(ポリスチレン換算)。
Infrared absorption spectrum (IR) data 1028-1132cm -1 (Si-O), 2970-3070 cm -1 (C-H), 3070-3700 cm -1 (Si-OH)
Nuclear magnetic resonance spectrum (NMR) data ( 1 H-NMR δ (ppm), solvent: CDCl 3 )
0.16 (bs), 7.00-7.57 (m), 7.57-7.90 (m)
GPC analysis data: Mw = 960, Mw / Mn = 1.25 (polystyrene conversion).

<絶縁被膜の製造>
実施例5
実施例1及び比較例1に従って製造されたシリコーン化合物を、それぞれ酢酸プロピレングリコールモノメチルエーテルに溶解し、固形分濃度が40重量%になるように溶液を調製した。次に、実施例1と比較例1に従って製造された各シリコーン化合物の重量比が30:70になるようにそれぞれの溶液を混合した。その混合液をPTFE製のフィルタで濾過し、シリコンウエハまたはガラス基板上に、溶媒除去した後の膜厚が5.0μmになるような回転数で30秒回転塗布した。その後150℃/2分かけて溶媒除去し、次いで、O2濃度が1000ppm未満にコントロールされている石英チューブ炉で350℃/30分間かけて被膜を最終硬化し絶縁被膜とした。
<Manufacture of insulation coating>
Example 5
The silicone compounds produced according to Example 1 and Comparative Example 1 were each dissolved in propylene glycol monomethyl ether acetate to prepare a solution so that the solid concentration was 40% by weight. Next, each solution was mixed so that the weight ratio of each silicone compound manufactured according to Example 1 and Comparative Example 1 was 30:70. The mixed solution was filtered with a PTFE filter, and applied on a silicon wafer or glass substrate by spin-coating for 30 seconds at a rotational speed such that the film thickness after removal of the solvent was 5.0 μm. Thereafter, the solvent was removed over 150 ° C./2 minutes, and then the film was finally cured over 350 ° C./30 minutes in a quartz tube furnace in which the O 2 concentration was controlled to less than 1000 ppm to obtain an insulating coating.

実施例6
実施例1及び比較例1に従って製造されたシリコーン化合物を、それぞれ酢酸プロピレングリコールモノメチルエーテルに溶解し、固形分濃度が40重量%になるように溶液を調製した。次に、実施例1と比較例1に従って製造された各シリコーン化合物の重量比が10:90になるようにそれぞれの溶液を混合した。その混合液をPTFE製のフィルタで濾過し、シリコンウエハまたはガラス基板上に、溶媒除去した後の膜厚が5.0μmになるような回転数で30秒回転塗布した。その後150℃/2分かけて溶媒除去し、次いで、O2濃度が1000ppm未満にコントロールされている石英チューブ炉で350℃/30分間かけて被膜を最終硬化し絶縁被膜とした。
Example 6
The silicone compounds produced according to Example 1 and Comparative Example 1 were each dissolved in propylene glycol monomethyl ether acetate to prepare a solution so that the solid concentration was 40% by weight. Next, each solution was mixed so that the weight ratio of each silicone compound produced according to Example 1 and Comparative Example 1 was 10:90. The mixed solution was filtered with a PTFE filter, and applied on a silicon wafer or glass substrate by spin-coating for 30 seconds at a rotational speed such that the film thickness after removal of the solvent was 5.0 μm. Thereafter, the solvent was removed over 150 ° C./2 minutes, and then the film was finally cured over 350 ° C./30 minutes in a quartz tube furnace in which the O 2 concentration was controlled to less than 1000 ppm to obtain an insulating coating.

実施例7
実施例5に記載の「実施例1に従って製造されたシリコーン化合物」を、「実施例2に従って製造されたシリコーン化合物」に変更した以外は、実施例5と同様の方法で最終硬化絶縁被膜を得た。
Example 7
A final cured insulating coating was obtained in the same manner as in Example 5 except that “silicone compound produced according to Example 1” described in Example 5 was changed to “silicone compound produced according to Example 2”. It was.

実施例8
実施例5に記載の「実施例1に従って製造されたシリコーン化合物」を、「実施例3に従って製造されたシリコーン化合物」に変更した以外は、実施例5と同様の方法で最終硬化絶縁被膜を得た。
Example 8
A final cured insulating coating was obtained in the same manner as in Example 5 except that “silicone compound produced according to Example 1” described in Example 5 was changed to “silicone compound produced according to Example 3”. It was.

実施例9
実施例5に記載の「実施例1に従って製造されたシリコーン化合物」を、「実施例4に従って製造されたシリコーン化合物」に変更した以外は、実施例5と同様の方法で最終硬化絶縁被膜を得た。
Example 9
A final cured insulating coating was obtained in the same manner as in Example 5 except that “silicone compound produced according to Example 1” described in Example 5 was changed to “silicone compound produced according to Example 4”. It was.

比較例2
比較例1に従って製造されたシリコーン化合物を、酢酸プロピレングリコールモノメチルエーテルに溶解し、固形分濃度が40重量%になるように溶液を調製した。その調製液をPTFE製のフィルタで濾過し、シリコンウエハまたはガラス基板上に、溶媒除去した後の膜厚が5.0μmになるような回転数で30秒回転塗布した。その後150℃/2分かけて溶媒除去し、次いで、O2濃度が1000ppm未満にコントロールされている石英チューブ炉で350℃/30分間かけて被膜を最終硬化し絶縁被膜とした。
Comparative Example 2
The silicone compound produced according to Comparative Example 1 was dissolved in propylene glycol monomethyl ether acetate to prepare a solution so that the solid concentration was 40% by weight. The prepared solution was filtered through a PTFE filter and applied on a silicon wafer or glass substrate by spin-coating for 30 seconds at a rotational speed such that the film thickness after removal of the solvent was 5.0 μm. Thereafter, the solvent was removed over 150 ° C./2 minutes, and then the film was finally cured over 350 ° C./30 minutes in a quartz tube furnace in which the O 2 concentration was controlled to less than 1000 ppm to obtain an insulating coating.

<評価結果>
絶縁皮膜の各評価結果およびそれに基づく総合評価を下記の表1に示した。
<Evaluation results>
Table 1 below shows each evaluation result of the insulating film and a comprehensive evaluation based thereon.

Figure 0005158594
Figure 0005158594

このように、ナフタレン環を有するシリコーン重合体を加えることにより膜表面が大幅に改善される。本発明におけるナフタレン環を有するシリコーン重合体はさらにクラック耐性が良好になり、他用途に対応できる材料となる。   Thus, the film surface is greatly improved by adding a silicone polymer having a naphthalene ring. The silicone polymer having a naphthalene ring in the present invention is further improved in crack resistance and is a material that can be used for other applications.

Claims (3)

下記一般式
Figure 0005158594
(式中、Rはナフタレン環を有する炭化水素基を示す。)
で示される繰り返し単位のみからなるシリコーン重合体であって、重量平均分子量が500〜8,000、分散度が1.1〜1.8であるナフタレン環を有するシリコーン重合体。
The following general formula
Figure 0005158594
(In the formula, R represents a hydrocarbon group having a naphthalene ring.)
A silicone polymer having a naphthalene ring having a weight average molecular weight of 500 to 8,000 and a dispersity of 1.1 to 1.8.
下記一般式
Figure 0005158594
(式中、Rはナフタレン環を有する炭化水素基を示し、Xは加水分解性基を示す。)
で示されるモノマーを酸性条件で加水分解して請求項1に記載のナフタレン環を有するシリコーン重合体を製造するナフタレン環を有するシリコーン重合体の製造方法。
The following general formula
Figure 0005158594
(In the formula, R represents a hydrocarbon group having a naphthalene ring, and X represents a hydrolyzable group.)
The manufacturing method of the silicone polymer which has a naphthalene ring which hydrolyzes the monomer shown by above on acidic conditions, and manufactures the silicone polymer which has a naphthalene ring of Claim 1.
請求項1に記載のナフタレン環を有するシリコーン重合体、30重量%と、下記一般式
Figure 0005158594
(式中、Aは、芳香族炭化水素基を有する炭化水素基を示し、Bは、脂肪族炭化水素基を示す。mとnはモル%を示し、40≦m、n≦60を示す。ただし、m+n=100である。)
で示される繰り返し単位を含むシリコーン重合体、70重量%からなるシリコーン重合体組成物。
The silicone polymer having a naphthalene ring according to claim 1 , 30% by weight, and the following general formula
Figure 0005158594
(In the formula, A represents a hydrocarbon group having an aromatic hydrocarbon group, B represents an aliphatic hydrocarbon group, m and n represent mol%, and 40 ≦ m and n ≦ 60. However, m + n = 100.)
A silicone polymer comprising 70% by weight of a silicone polymer comprising a repeating unit represented by the formula:
JP2008132873A 2008-05-21 2008-05-21 Silicone polymer having naphthalene ring and composition thereof Expired - Fee Related JP5158594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132873A JP5158594B2 (en) 2008-05-21 2008-05-21 Silicone polymer having naphthalene ring and composition thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132873A JP5158594B2 (en) 2008-05-21 2008-05-21 Silicone polymer having naphthalene ring and composition thereof

Publications (2)

Publication Number Publication Date
JP2009280666A JP2009280666A (en) 2009-12-03
JP5158594B2 true JP5158594B2 (en) 2013-03-06

Family

ID=41451463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132873A Expired - Fee Related JP5158594B2 (en) 2008-05-21 2008-05-21 Silicone polymer having naphthalene ring and composition thereof

Country Status (1)

Country Link
JP (1) JP5158594B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551646B2 (en) 2013-09-30 2017-01-24 Espec Corp. Apparatus for environmental test

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140048240A (en) 2011-07-07 2014-04-23 다우 코닝 도레이 캄파니 리미티드 Organo polysiloxane, and method for producing same
WO2013005858A1 (en) 2011-07-07 2013-01-10 東レ・ダウコーニング株式会社 Curable silicon composition, cured product thereof, and optical semiconductor device
JP5950155B2 (en) * 2012-05-11 2016-07-13 東レ・ファインケミカル株式会社 Method for producing silicon compound
JP6022236B2 (en) * 2012-06-28 2016-11-09 東レ・ダウコーニング株式会社 Coating agent, electrical / electronic device, and method for protecting metal part of electrical / electronic device
JP2014062198A (en) 2012-09-21 2014-04-10 Dow Corning Toray Co Ltd Curable silicone composition, and semiconductor sealing material and optical semiconductor device using the same
JP2015173184A (en) * 2014-03-11 2015-10-01 東京応化工業株式会社 Alkali etching mask agent composition, and etching method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296297B2 (en) * 2005-04-04 2013-09-25 東レ・ファインケミカル株式会社 Silicone copolymer having condensed polycyclic hydrocarbon group and process for producing the same
JP4761139B2 (en) * 2006-03-10 2011-08-31 独立行政法人産業技術総合研究所 Efficient production method of siloxane polymer
WO2007132845A1 (en) * 2006-05-16 2007-11-22 Sharp Kabushiki Kaisha Organic semiconductor device and method for manufacturing same
WO2007144453A1 (en) * 2006-06-13 2007-12-21 Braggone Oy Carbosilane polymer compositions for anti-reflective coatings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551646B2 (en) 2013-09-30 2017-01-24 Espec Corp. Apparatus for environmental test

Also Published As

Publication number Publication date
JP2009280666A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP6323225B2 (en) Positive photosensitive resin composition, film production method using the same, and electronic component
JP5158594B2 (en) Silicone polymer having naphthalene ring and composition thereof
KR102593420B1 (en) Resin composition, photosensitive resin composition, cured film, method for producing a cured film, patterned cured film, and method for producing a patterned cured film
JP7269503B2 (en) Silicon-containing layer-forming composition and method for producing patterned substrate using same
TWI480334B (en) A silane-based composition and a hardened film thereof, and a method for forming a negative resist pattern using the same
JP2006233155A (en) Coating liquid for flattening film and flattening film
JP5376210B2 (en) Silicone copolymer having condensed polycyclic hydrocarbon group and process for producing the same
JP5115099B2 (en) Silicone copolymer having acyloxy group and method for producing the same
JP5854385B2 (en) Silicone polymer
JP5915878B2 (en) Method for producing silicone polymer
WO2016111112A1 (en) Silicone copolymer and method for producing same
JP5158589B2 (en) Silicone copolymer
WO2021186994A1 (en) Composition, composition precursor solution, production method for composition, substrate, and production method for patterned substrate
WO2021187324A1 (en) Negative photosensitive resin composition, pattern structure and method for producing patterned cured film
JPWO2021186994A5 (en)
JPWO2021187324A5 (en)
TW202124399A (en) Silicon compound, reactive material, resin composition, photosensitive resin composition, cured film, method for producing cured film, patterned cured film and method for producing patterned cured film
TW202231737A (en) Resin composition, cured film, method for manufacturing cured film, substrate having multilayer film, method for manufacturing patterned substrate, photosensitive resin composition, method for manufacturing pattern cured film, method for manufacturing polymer, and method for manufacturing resin composition
JP2015052075A (en) Polyorganosiloxane and production method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

R150 Certificate of patent or registration of utility model

Ref document number: 5158594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees