JP5157440B2 - Manufacturing method of organic EL element - Google Patents

Manufacturing method of organic EL element Download PDF

Info

Publication number
JP5157440B2
JP5157440B2 JP2007509168A JP2007509168A JP5157440B2 JP 5157440 B2 JP5157440 B2 JP 5157440B2 JP 2007509168 A JP2007509168 A JP 2007509168A JP 2007509168 A JP2007509168 A JP 2007509168A JP 5157440 B2 JP5157440 B2 JP 5157440B2
Authority
JP
Japan
Prior art keywords
layer
organic
organic compound
compound layer
flexible support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007509168A
Other languages
Japanese (ja)
Other versions
JPWO2006100868A1 (en
Inventor
伸彦 高嶋
洋祐 ▲高▼島
真昭 村山
飛沢  誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007509168A priority Critical patent/JP5157440B2/en
Publication of JPWO2006100868A1 publication Critical patent/JPWO2006100868A1/en
Application granted granted Critical
Publication of JP5157440B2 publication Critical patent/JP5157440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、面光源やディスプレイパネル等として利用される有機EL(エレクトロ・ルミネッセンス)素子の有機化合物層の形成方法、有機EL素子の製造方法及びこの方法で作製された有機EL素子に関する。   The present invention relates to a method for forming an organic compound layer of an organic EL (electroluminescence) element used as a surface light source or a display panel, a method for producing an organic EL element, and an organic EL element produced by this method.

近年、有機物質を使用した有機EL素子は、固体発光型の安価な大面積フルカラー表示素子や書き込み光源アレイとしての用途が有望視されており、活発な研究開発が進められている。有機EL素子は、基板上に形成された第1電極(陽極又は陰極)と、その上に積層された有機発光物質を含有する有機化合物層(単層部又は多層部)即ち発光層と、この発光層上に積層された第2電極(陰極又は陽極)とを有する薄膜型の素子である。このような有機EL素子に電圧を印加すると、有機化合物層に陰極から電子が注入され陽極から正孔が注入される。この電子と正孔が発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光が得られることが知られている。   In recent years, organic EL elements using organic substances have been promising for use as solid light-emitting inexpensive, large-area full-color display elements and writing light source arrays, and active research and development have been promoted. The organic EL device includes a first electrode (anode or cathode) formed on a substrate, an organic compound layer (single layer portion or multilayer portion) containing an organic light emitting material laminated thereon, that is, a light emitting layer, It is a thin film type element having a second electrode (cathode or anode) laminated on the light emitting layer. When a voltage is applied to such an organic EL element, electrons are injected from the cathode and holes are injected from the anode into the organic compound layer. It is known that light is obtained by releasing energy as light when the electrons and holes recombine in the light emitting layer and the energy level returns from the conduction band to the valence band.

このように、有機EL素子は薄膜型の素子であるため、1個又は複数個の有機EL素子を基板上に形成した有機ELパネルをバックライト等の面光源として利用した場合には、面光源を備えた装置を容易に薄型にすることが出来る。又、画素としての有機EL素子を基板上に所定個数形成した有機ELパネルをディスプレイパネルとして用いて表示装置を構成した場合には視認性が高い、視野角依存性がないなど、液晶表示装置では得られない利点がある。   Thus, since the organic EL element is a thin film type element, when an organic EL panel in which one or a plurality of organic EL elements are formed on a substrate is used as a surface light source such as a backlight, a surface light source. It is possible to easily make a device equipped with In addition, when a display device is configured using an organic EL panel in which a predetermined number of organic EL elements as pixels are formed on a substrate as a display panel, the liquid crystal display device has high visibility and no viewing angle dependency. There are benefits that cannot be obtained.

一方、有機EL素子の有機化合物層を形成する際には、特開平9−102393号公報、特開2002−170676号公報に記載されている様に、蒸着法、スパッタ法、CVD、PVD、溶剤を用いた塗布法等の様々な方法が使用出来るが、これらの方法の中で、製造工程の簡略化、製造コストの低減、加工性の改善、バックライトや照明光源等のフレキシブルな大面積素子への応用等の観点からは塗布法等の湿式製膜法が有利であることが知られている。例えば、特開2002−170676号公報に枚葉のガラス基板上にスピンコート法により有機化合物層を形成する方法が記載されている。特開2003−142260号公報に枚葉の基板上にインクジェット方式で順次有機化合物層を形成する方法が記載されている。これらの方式は何れも基板として枚葉基板を使用しているため大面積フルカラー表示素子を作製するのは装置が大きくなり、コストも高くなるため、固体発光型の安価な大面積フルカラー表示素子や書き込み光源アレイとしての用途が有望視されている有機EL素子を製造する方法が検討されている。例えば、透光性基板としてプラスチックフィルムを使用し、このプラスチックフィルム上に陰極と、有機物質からなる一つ又は複数の発光層と、陽極層を設けた有機ELディスプレイを製造する方法として、有機物質からなる一つ又は複数の発光層のパターニング及び陰極のパターニングを真空下で蒸着方式でロールツーロール方式により作製する方法が知られている(例えば、特許文献1を参照。)。   On the other hand, when forming an organic compound layer of an organic EL element, as described in JP-A-9-102393 and JP-A-2002-170676, vapor deposition, sputtering, CVD, PVD, solvent Various methods, such as coating methods using a glass, can be used. Among these methods, manufacturing processes are simplified, manufacturing costs are reduced, workability is improved, flexible large-area elements such as backlights and illumination light sources, etc. It is known that a wet film-forming method such as a coating method is advantageous from the viewpoint of application to a film. For example, Japanese Patent Application Laid-Open No. 2002-170676 describes a method of forming an organic compound layer on a single wafer glass substrate by spin coating. Japanese Patent Application Laid-Open No. 2003-142260 describes a method of sequentially forming an organic compound layer on a single wafer substrate by an ink jet method. Since each of these methods uses a single-wafer substrate as a substrate, a large-area full-color display element is manufactured with a large apparatus and a high cost. A method of manufacturing an organic EL element that is expected to be used as a writing light source array has been studied. For example, as a method of manufacturing an organic EL display in which a plastic film is used as a light-transmitting substrate and a cathode, one or a plurality of light emitting layers made of an organic material, and an anode layer are provided on the plastic film, an organic material is used. There is known a method for producing a pattern of one or a plurality of light-emitting layers and a pattern of a cathode by a roll-to-roll method using a vapor deposition method under vacuum (see, for example, Patent Document 1).

しかしながら、特許文献1に記載のロールツーロール方式は、これまでの枚葉方式と異なり量産化が可能となるため安価な有機EL素子の製造が可能であるが次の欠点を有している。   However, the roll-to-roll system described in Patent Document 1 can be mass-produced unlike the conventional single-wafer system, so that an inexpensive organic EL element can be manufactured, but has the following drawbacks.

1)有機物質からなる一つ又は複数の発光層を形成するのに使用する有機化合物の使用効率が低く、コストが高くなる原因の一つになっている。   1) The use efficiency of an organic compound used to form one or a plurality of light emitting layers made of an organic substance is low, which is one of the causes of high costs.

2)有機物質からなる一つ又は複数の発光層が蒸着方式で形成する方式であるため大面積の表示素子を作るためには、蒸着室を大きくしなければならず、付随して付帯設備の能力も高いものにしなければならずスケールアップし難い。   2) Since one or a plurality of light emitting layers made of organic substances are formed by vapor deposition, in order to make a display element with a large area, the vapor deposition chamber must be enlarged, and incidental facilities are attached. It must be highly capable and difficult to scale up.

3)有機物質からなる一つ又は複数の発光層が蒸着方式で形成する方式であるため、発光層を形成するのに時間が掛かり生産性を上げることが難しい。   3) Since one or a plurality of light emitting layers made of an organic material are formed by a vapor deposition method, it takes time to form the light emitting layer and it is difficult to increase productivity.

4)特に照明用途に使用する有機EL素子の場合、蒸着方式では大面積に有機EL素子を形成しなければならないため、大面積でムラなく有機EL素子を形成することが難しい。   4) In particular, in the case of an organic EL element used for illumination purposes, it is difficult to form an organic EL element with a large area without unevenness because the organic EL element must be formed with a large area in the vapor deposition method.

これらの状況より、コストを上げることなく生産性が高く、大面積でムラなく有機EL素子形成用の有機化合物層の形成方法、この有機化合物層を使用した有機EL素子の製造方法及び有機EL素子の開発が望まれている。
国際公開第01/5194号パンフレット
From these circumstances, the productivity is high without increasing the cost, and the method for forming an organic compound layer for forming an organic EL element with a large area without unevenness, the method for producing an organic EL element using the organic compound layer, and the organic EL element Development is desired.
International Publication No. 01/5194 Pamphlet

本発明は、上記状況に鑑みなされたものであり、その目的は、高品質でコストを上げることなく生産性が高い有機EL素子の製造方法を提供することである。 The present invention has been made in view of the above circumstances, an object thereof is to provide a manufacturing how the productivity is high organic EL element without increasing the cost of high quality.

本発明の上記目的は、以下の構成により達成された。   The above object of the present invention has been achieved by the following constitution.

1.帯状可撓性支持体の上に、第1電極と、有機化合物層と、第2電極と、封止層又は封止フイルムとをこの順番で有する有機EL素子を、供給部と、塗・乾燥部と、回収部とを有する製造装置を用いて形成する有機化合物層の形成方法において、
前記供給部に第1電極が形成された帯状可撓性支持体A、巻き芯に巻かれたロール状態で供給
次いで、前記塗布・乾燥部有機化合物層形成用塗布液を塗布及び乾燥を行い、前記帯状可撓性支持体Aに前記有機化合物層を形成し帯状可撓性支持体Bとし、
前記回収部で、前記帯状可撓性支持体Bを巻き芯に巻取りロール状とし、
前記有機化合物層は、前記乾燥部で吐出風速0.1〜5m/s、有機化合物層用塗膜の幅手方向の風速分布が0.1〜10%の気流乾燥で前記有機化合物層用塗膜の溶媒を除去して形成されていることを特徴とする有機EL素子の製造方法。
2.前記塗布部・乾燥部は、有機化合物層形成用塗布液を湿式塗布装置により大気圧条件で有機化合物層を形成する塗布部と、大気圧条件で前記有機化合物層中の溶媒を除去し、有機化合物層を形成する乾燥部とを1ユニットとし、前記製造装置は少なくとも1ユニットの前記塗布部・乾燥部を有することを特徴とする請求項1に記載の有機EL素子の製造方法。
1. On the band-shaped flexible support, a first conductive electrode, and an organic compound layer, and the second electrodes, and a sealing layer or sealing film, an organic EL device having in that order, and the supply unit, and coating the fabric portion and drying section, in the formation method of the organic compound layer to be formed by using a manufacturing apparatus having a recovery unit,
Wherein the supply unit, the belt-shaped flexible support A first electrodes is formed, and supplies a roll state wound around the winding core,
Next, the organic compound layer forming coating solution is applied and dried in the coating unit / drying unit , and the organic compound layer is formed on the strip-shaped flexible support A to form a strip-shaped flexible support B.
In the collection unit, the belt-like flexible support B is wound around a winding core ,
The organic compound layer is coated with the organic compound layer by air-flow drying in which the air velocity distribution in the width direction of the coating film for the organic compound layer is 0.1 to 10% in the drying unit. A method for producing an organic EL device, which is formed by removing a solvent from a film .
2. The coating part / drying part removes the solvent in the organic compound layer under an atmospheric pressure condition by applying an organic compound layer-forming coating solution on the atmospheric pressure condition with a wet coating apparatus. 2. The method of manufacturing an organic EL element according to claim 1, wherein the drying unit that forms the compound layer is one unit, and the manufacturing apparatus includes at least one unit of the coating unit and the drying unit.

3.前記帯状可撓性支持体Aは、前記有機化合物層形成用塗布液を塗布する前に洗浄表面改質処理手段により洗浄表面改質処理が施されることを特徴とする請求または2に記載の有機EL素子の製造方法。 3. The band-shaped flexible support A is in claim 1 or 2, characterized in that cleaning the surface modification treatment is performed by washing the surface modification treatment unit prior to applying the organic compound layer forming coating solution The manufacturing method of the organic EL element of description.

4.前記洗浄表面改質処理手段が酸素プラズマ又はUV照射であることを特徴とする請求項3に記載の有機EL素子の製造方法。 4). 4. The method of manufacturing an organic EL element according to claim 3 , wherein the cleaning surface modification processing means is oxygen plasma or UV irradiation.

5.前記帯状可撓性支持体Aは、有機化合物層形成用塗布液を塗布する前に除電処理手段により除電処理が施されることを特徴とする請求項1乃至の何れか1項に記載の有機EL素子の製造方法。 5. The band-shaped flexible support A is as defined in any one of claims 1 to 4, characterized in that the charge elimination is performed by the charge elimination means prior to applying the organic compound layer forming coating solution Manufacturing method of organic EL element .

6.前記帯状可撓性支持体Aは、有機化合物層形成用塗布液を塗布するときの搬送速度のバラツキが平均搬送速度に対して0.2〜10%であることを特徴とする請求1乃至の何れか1項に記載の有機EL素子の製造方法。 6). The band-shaped flexible support A is to claim 1, wherein the variation of the conveying speed at the time of applying an organic compound layer forming coating liquid is from 0.2 to 10% of the average transport speed 6. The method for producing an organic EL element according to any one of 5 above.

7.前記有機化合物層形成用塗布液は、少なくとも1種の有機化合物材料と、少なくとも1種の溶媒とを有し、表面張力が15×10−3〜55×10−3N/mであることを特徴とする請求項1乃至6の何れか1項に記載の有機EL素子の製造方法。 7). The coating liquid for forming an organic compound layer has at least one organic compound material and at least one solvent, and has a surface tension of 15 × 10 −3 to 55 × 10 −3 N / m. The manufacturing method of the organic EL element of any one of Claims 1 thru | or 6 characterized by the above-mentioned.

8.前記製造装置は、乾燥部の後に加熱処理部を有することを特徴とする請求1乃至7の何れか1項に記載の有機EL素子の製造方法。 8). The manufacturing apparatus, a method of manufacturing an organic EL element according to any one of claims 1 to 7, characterized in that it has a heat processing unit after the drying section.

9.前記加熱処理部は、乾燥部で有機化合物層を形成した直後に、該有機化合物層のガラス転移温度に対して−30〜+30℃で、且つ有機化合物層の有機化合物の分解温度を超えない温度で裏面伝熱方式の熱処理を行うことを特徴とする請求8に記載の有機EL素子の製造方法。 9. Immediately after forming the organic compound layer in the drying unit, the heat treatment unit is -30 to + 30 ° C. with respect to the glass transition temperature of the organic compound layer and does not exceed the decomposition temperature of the organic compound in the organic compound layer the method for manufacturing an organic EL device according to claim 8, wherein in carrying out the heat treatment of the backside heat transfer method.

10.前記有機化合物層は、露点温度−20℃以下、且つJISB 9920に準拠し、測定した清浄度がクラス5以下で、且つ、乾燥部及び加熱処理部を除き10〜45℃の大気圧条件下で形成されることを特徴とする請求1乃至9の何れか1項に記載の有機EL素子の製造方法。 10. The organic compound layer has a dew point temperature of −20 ° C. or lower, conforms to JISB 9920, has a measured cleanliness of class 5 or lower, and an atmospheric pressure condition of 10 to 45 ° C. excluding a drying section and a heat treatment section. the method for manufacturing an organic EL device according to any one of claims 1 to 9, characterized in that it is formed.

11.前記有機化合物層が少なくとも正孔輸送層と有機発光層とを有することを特徴とする請求1乃至10の何れか1項に記載の有機EL素子の製造方法。 11. The method for manufacturing an organic EL device according to any one of claims 1 to 10 wherein the organic compound layer is characterized by having at least a hole-transporting layer and the organic light emitting layer.

12.前記帯状可撓性支持体Bを10−5〜10Paの減圧条件下で保管することを特徴とする請求1乃至11の何れか1項に記載の有機EL素子の製造方法。 12 The method for manufacturing an organic EL device according to any one of claims 1 to 11, wherein the storing the band-shaped flexible support B under a reduced pressure of 10 -5 10 Pa.

13.帯状可撓性支持体の上に、第1電極と、有機化合物層と、第2電極と、封止層とをこの順番で有する有機EL素子を、供給部と、塗布・乾燥部と陰極層形成部と封止層形成部と、回収部とを有する製造装置を用いて製造する有機EL素子の製造方法において、
前記供給部に、第1電極が形成された帯状可撓性支持体A、巻き芯に巻かれたロール状態で供給
次いで、前記塗布・乾燥部、有機化合物層形成用塗布液を塗布及び乾燥を行い前記帯状可撓性支持体Aに前記有機化合物層を形成し帯状可撓性支持体Bとし、
第1巻取り部で、帯状可撓性支持体Bを巻き芯に巻取りロール状とし、
ロール状の前記帯状可撓性支持体Bを使用し、前記陰極層形成部で前記有機化合物層上に減圧条件下で第2電極を含む陰極層を形成し、
引き続き、前記封止層形成部で前記陰極層上に減圧条件下で封止層を形成し、有機EL素子を形成した後、回収工程で巻き芯に巻取りロール状とし、
前記有機化合物層は、前記乾燥部で吐出風速0.1〜5m/s、有機化合物層用塗膜の幅手方向の風速分布が0.1〜10%の気流乾燥で前記有機化合物層用塗膜の溶媒を除去して形成されていることを特徴とする有機EL素子の製造方法。
13. On the band-shaped flexible support, a first conductive electrode, and an organic compound layer, and the second electrodes, and a sealing layer, an organic EL device having in that order, and the supply unit, coating unit and drying In the manufacturing method of an organic EL element manufactured using a manufacturing apparatus having a part, a cathode layer forming part, a sealing layer forming part, and a recovery part,
Wherein the supply unit, the belt-shaped flexible support A first electrodes is formed, and supplies a roll state wound around the winding core,
Next, in the coating part / drying part , a coating solution for forming an organic compound layer is applied and dried to form the organic compound layer on the strip-shaped flexible support A to form a strip-shaped flexible support B.
In the first winding part, the strip-shaped flexible support B is wound into a winding roll around the winding core,
Using the roll-shaped strip-like flexible support B, forming a cathode layer including a second electrode under reduced pressure conditions on the organic compound layer in the cathode layer forming portion,
Subsequently, after forming a sealing layer under reduced pressure on the cathode layer in the sealing layer forming part and forming an organic EL element, it is made into a winding roll shape on the winding core in the recovery step ,
The organic compound layer is coated with the organic compound layer by air-flow drying in which the air velocity distribution in the width direction of the coating film for the organic compound layer is 0.1 to 10% in the drying unit. A method for producing an organic EL device, which is formed by removing a solvent from a film .

14.帯状可撓性支持体の上に、第1電極と、有機化合物層と、第2電極と、封止フイルムとをこの順番で有する有機EL素子を、供給部と、塗布・乾燥部と陰極層形成部と封止フイルム貼着部と、回収部とを有する製造装置を用いて製造する有機EL素子の製造方法において、
前記供給部、第1電極が形成された帯状可撓性支持体A、巻き芯に巻かれたロール状態で供給
次いで、前記塗布・乾燥部、有機化合物層形成用塗布液を塗布及び乾燥を行い前記帯状可撓性支持体Aに前記有機化合物層を形成し帯状可撓性支持体Bとし、
ロール状の前記帯状可撓性支持体Bを使用し、前記陰極層形成部で前記有機化合物層上に減圧条件下で第2電極を含む陰極層を形成し帯状可撓性支持体Cとし、
第2巻取り部で、前記帯状可撓性支持体Cを巻き芯に巻取りロール状とし、
ロール状の前記帯状可撓性支持体Cを使用し、前記封止フイルム貼着部で、不活性ガス条件下で前記陰極層上に封止フイルムを貼着し、
前記有機化合物層は、前記乾燥部で吐出風速0.1〜5m/s、有機化合物層用塗膜の幅手方向の風速分布が0.1〜10%の気流乾燥で前記有機化合物層用塗膜の溶媒を除去して形成されていることを特徴とする有機EL素子の製造方法。
15.前記塗布部・乾燥部は、有機化合物層形成用塗布液を湿式塗布装置により大気圧条件で有機化合物層を形成する塗布部と、大気圧条件で前記有機化合物層中の溶媒を除去し、有機化合物層を形成する乾燥部とを1ユニットとし、前記製造装置は少なくとも1ユニットの前記塗布部・乾燥部を有することを特徴とする請求項13または14に記載の有機EL素子の製造方法。
14 On the band-shaped flexible support, a first conductive electrode, and an organic compound layer, and the second electrodes, the organic EL device having a sealing film in this order, a supply unit, coating unit and drying unit In the manufacturing method of an organic EL element manufactured using a manufacturing apparatus having a cathode layer forming part, a sealing film sticking part, and a recovery part,
Wherein the supply unit, the belt-shaped flexible support A first electrodes is formed, and supplies a roll state wound around the winding core,
Next, in the coating part / drying part , a coating solution for forming an organic compound layer is applied and dried to form the organic compound layer on the strip-shaped flexible support A to form a strip-shaped flexible support B.
Using the roll-shaped strip-shaped flexible support B, a cathode layer including a second electrode is formed on the organic compound layer under reduced pressure conditions on the cathode layer forming portion to form a strip-shaped flexible support C.
In the second winding part, the belt-like flexible support C is wound into a winding roll around the winding core,
Using the roll-like strip-like flexible support C, the sealing film is applied on the cathode layer under inert gas conditions at the sealing film application part ,
The organic compound layer is coated with the organic compound layer by air-flow drying in which the air velocity distribution in the width direction of the coating film for the organic compound layer is 0.1 to 10% in the drying unit. A method for producing an organic EL device, which is formed by removing a solvent from a film .
15. The coating part / drying part removes the solvent in the organic compound layer under an atmospheric pressure condition by applying an organic compound layer-forming coating solution on the atmospheric pressure condition with a wet coating apparatus. 15. The method of manufacturing an organic EL element according to claim 13, wherein the drying unit forming the compound layer is one unit, and the manufacturing apparatus has at least one unit of the coating unit / drying unit.

高品質でコストを上げることなく生産性が高い有機EL素子形成用の有機化合物層の形成方法、この有機化合物層を使用した有機EL素子の製造方法及び有機EL素子を提供することが出来、主に照明用、バックライト用等の面光源用に使用可能な大面積の有機EL素子を製造することが可能となった。   It is possible to provide a method for forming an organic compound layer for forming an organic EL element with high quality and high productivity without increasing costs, a method for producing an organic EL element using the organic compound layer, and an organic EL element. In addition, it has become possible to produce a large-area organic EL device that can be used for surface light sources such as illumination and backlight.

有機EL素子の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated constitution of an organic EL element. 有機EL素子の構成層である有機化合物層までを形成する工程の模式図である。It is a schematic diagram of the process of forming even the organic compound layer which is a structural layer of an organic EL element. 有機EL素子を作製する工程の一例を示す模式図である。It is a schematic diagram which shows an example of the process of producing an organic EL element. 有機EL素子を作製する工程の他の一例を示す模式図である。It is a schematic diagram which shows another example of the process of producing an organic EL element. 図2に示す有機有機化合物層までを形成する工程を使用し、有機有機化合物層までを形成する概略フロー図である。FIG. 3 is a schematic flow diagram of forming up to an organic organic compound layer using a step of forming up to an organic organic compound layer shown in FIG. 2. 図3に示す有機EL素子を製造する工程とを使用し、有機EL素子を製造する概略フロー図である。It is a general | schematic flowchart which manufactures an organic EL element using the process of manufacturing the organic EL element shown in FIG. 図4に示す有機EL素子を製造する工程とを使用し、有機EL素子を製造する概略フロー図である。It is a schematic flowchart which manufactures an organic EL element using the process of manufacturing the organic EL element shown in FIG.

符号の説明Explanation of symbols

1a、1b 有機EL素子
101 基材
102 陽極層
103、201c 正孔輸送層
104、201e 有機化合物層(発光層)
105、201i 電子注入層(電子輸送層)
106、201j 陰極層
107 封止層
108 接着剤層
109 封止フィルム
2、3、7 製造装置
201、401、501、801 供給部
201b 帯状可撓性支持体A
201h、201f 帯状可撓性支持体B
201k、201l 帯状可撓性支持体C
201m 封止フィルム
201o 第1電極層
202 洗浄表面改質処理部
203 第1塗布・乾燥部
203b 第1湿式塗布機
203c 第1乾燥装置
204 第1加熱処理部
206 第2塗布・乾燥部
206b 第2湿式塗布機
207 第2加熱処理部
209、6、404、503、9 回収部
4 陰極層形成部
402、802 第1陰極層形成部
403、803 第2陰極層形成部
404 第2巻取り部
5 封止フィルム貼着部
502 貼着部
8 陰極層・封止層形成部
804 封止層形成部
601、901 有機EL素子
DESCRIPTION OF SYMBOLS 1a, 1b Organic EL element 101 Base material 102 Anode layer 103, 201c Hole transport layer 104, 201e Organic compound layer (light emitting layer)
105, 201i Electron injection layer (electron transport layer)
106, 201j Cathode layer 107 Sealing layer 108 Adhesive layer 109 Sealing film 2, 3, 7 Manufacturing apparatus 201, 401, 501, 801 Supply unit 201b Band-shaped flexible support A
201h, 201f strip-shaped flexible support B
201k, 201l belt-like flexible support C
201m Sealing film 201o First electrode layer 202 Cleaning surface modification processing unit 203 First coating / drying unit 203b First wet coating machine 203c First drying device 204 First heat processing unit 206 Second coating / drying unit 206b Second Wet coater 207 Second heat treatment unit 209, 6, 404, 503, 9 Collection unit 4 Cathode layer forming unit 402, 802 First cathode layer forming unit 403, 803 Second cathode layer forming unit 404 Second winding unit 5 Sealing film sticking part 502 Sticking part 8 Cathode layer / sealing layer forming part 804 Sealing layer forming part 601 901 Organic EL element

本発明に係る実施の形態を図1〜図7を参照しながら説明するが、本発明はこれに限定されるものではない。   Embodiments according to the present invention will be described with reference to FIGS. 1 to 7, but the present invention is not limited thereto.

図1は有機EL素子の層構成の一例を示す概略断面図である。図1の(a)は封止膜が形成された有機EL素子の構成層を示す概略断面図である。図1の(b)は接着剤を介して封止フィルムを貼着することで形成された有機EL素子の構成層を示す概略断面図である。   FIG. 1 is a schematic cross-sectional view showing an example of a layer structure of an organic EL element. FIG. 1A is a schematic cross-sectional view showing a constituent layer of an organic EL element on which a sealing film is formed. FIG. 1B is a schematic cross-sectional view showing a constituent layer of an organic EL element formed by attaching a sealing film via an adhesive.

図1の(a)に示される有機EL素子の層構成に付き説明する。図中、1aは有機EL素子を示す。有機EL素子1aは、基材101上に、陽極層102と、正孔輸送層103と、有機化合物層(発光層)104と、電子注入層105と、陰極層106と、封止層107とをこの順番に有している。   The layer structure of the organic EL element shown in FIG. In the figure, 1a represents an organic EL element. The organic EL element 1 a includes an anode layer 102, a hole transport layer 103, an organic compound layer (light emitting layer) 104, an electron injection layer 105, a cathode layer 106, and a sealing layer 107 on a substrate 101. In this order.

図1の(b)に示される有機EL素子の層構成に付き説明する。   The layer structure of the organic EL element shown in FIG. 1B will be described.

図中、1bは有機EL素子を示す。有機EL素子1bは、基材101上に、陽極102と、正孔輸送層(正孔注入層)103と、有機化合物層(発光層)104と、電子注入層105と、陰極106と、接着剤層108と、封止フィルム109とをこの順番に有している。本図に示される有機EL素子において、陽極102と正孔輸送層103の間に正孔注入層(不図示)を設けてもよい。又、陰極106と有機化合物層(発光層)104と電子注入層105との間に電子輸送層(不図示)を設けてもよい。本図に示される有機EL素子1a及び有機EL素子1bでは、陽極102と基材101との間にガスバリア膜(不図示)を設けてもかまわない。   In the figure, 1b represents an organic EL element. The organic EL element 1b is formed by bonding an anode 102, a hole transport layer (hole injection layer) 103, an organic compound layer (light emitting layer) 104, an electron injection layer 105, a cathode 106 on a base material 101. It has the agent layer 108 and the sealing film 109 in this order. In the organic EL element shown in this figure, a hole injection layer (not shown) may be provided between the anode 102 and the hole transport layer 103. Further, an electron transport layer (not shown) may be provided between the cathode 106, the organic compound layer (light emitting layer) 104, and the electron injection layer 105. In the organic EL element 1a and the organic EL element 1b shown in this figure, a gas barrier film (not shown) may be provided between the anode 102 and the substrate 101.

本発明は、本図に示される有機化合物層(発光層)104、有機化合物層(正孔輸送層)103の形成方法と、形成された有機化合物層(発光層)104、有機化合物層(正孔輸送層)103の上に電子注入層105と、陰極106と、封止膜107を形成した有機EL素子1aと、形成された有機化合物層(発光層)104の上に電子注入層105と、陰極106と、接着剤層108を介して封止フィルム109を貼着した有機EL素子1bの製造方法及びこれらの製造方法により作製された有機EL素子に関するものである。   The present invention relates to a method for forming the organic compound layer (light emitting layer) 104 and the organic compound layer (hole transporting layer) 103 shown in the figure, the formed organic compound layer (light emitting layer) 104, the organic compound layer (positive). The electron injection layer 105, the cathode 106, and the organic EL element 1 a having the sealing film 107 formed on the hole transport layer 103, and the electron injection layer 105 on the formed organic compound layer (light emitting layer) 104 The present invention relates to a method for producing an organic EL element 1b in which a sealing film 109 is bonded via a cathode 106 and an adhesive layer 108, and an organic EL element produced by these production methods.

本図に示す有機EL素子の層構成は一例を示したものであるが、他の代表的な有機EL素子の層構成としては次の構成が挙げられる。   The layer configuration of the organic EL element shown in this figure shows an example, but the following configuration can be given as a layer configuration of another typical organic EL element.

(1)基材/陽極/発光層/電子輸送層/陰極/封止層
(2)基材/陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極/封止層
(3)基材/陽極/正孔輸送層(正孔注入層)/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極/封止層
(4)基材/陽極/陽極バッファー層(正孔注入層)/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極/封止層
上記(1)〜(4)で用いられる封止層は、封止層単体もしくは接着層を介した封止フィルム、またはこれらの組み合わせを含むものとする。
(1) Base material / anode / light emitting layer / electron transport layer / cathode / sealing layer (2) Base material / anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode / sealing layer (3) substrate / anode / hole transport layer (hole injection layer) / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode / sealing layer (4) substrate / Anode / anode buffer layer (hole injection layer) / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode / sealing layer (1) to ( The sealing layer used in 4) includes a sealing film alone, a sealing film via an adhesive layer, or a combination thereof.

有機EL素子を構成している各層については後に説明する。   Each layer constituting the organic EL element will be described later.

図2は有機化合物層までを形成する工程の模式図である。図2の(a)は有機EL素子の構成層である有機化合物層までを形成する工程の模式図である。図2の(b)は図2の(a)のRで示される部分の拡大模式図である。尚、本図は塗布・乾燥部が2ユニット有する製造装置の場合を示している。   FIG. 2 is a schematic view of a process of forming up to the organic compound layer. FIG. 2A is a schematic diagram of a process for forming up to an organic compound layer which is a constituent layer of the organic EL element. FIG. 2B is an enlarged schematic view of a portion indicated by R in FIG. In addition, this figure has shown the case of the manufacturing apparatus which a coating and drying part has 2 units.

図中、2は有機EL素子の構成層の一つである有機化合物層までを大気圧条件下で形成する製造装置を示す。製造装置2は、帯状可撓性支持体の供給部201と、帯状可撓性支持体の洗浄表面改質処理部202と、第1塗布・乾燥部203と、第1加熱処理部204と、第2除電処理部と、第2塗布・乾燥部206と、第2加熱処理部207と、第3除電処理部208と、回収部209とを有している。   In the figure, reference numeral 2 denotes a manufacturing apparatus for forming up to an organic compound layer which is one of constituent layers of an organic EL element under atmospheric pressure conditions. The manufacturing apparatus 2 includes a strip-shaped flexible support supply unit 201, a belt-shaped flexible support cleaning surface modification processing unit 202, a first application / drying unit 203, a first heat processing unit 204, A second charge removal processing unit, a second application / drying unit 206, a second heat treatment unit 207, a third charge removal processing unit 208, and a recovery unit 209 are provided.

供給部201では、ガスバリア膜と第1電極を含む陽極層とがこの順番で既に形成された帯状可撓性支持体A201aが巻き芯に巻取られロール状態で供給される様になっている。   In the supply unit 201, the strip-shaped flexible support A201a in which the gas barrier film and the anode layer including the first electrode are already formed in this order is wound around the winding core and supplied in a roll state.

洗浄表面改質処理部202は、有機化合物層形成用塗布液を塗布する前に供給部201から送られてきた帯状可撓性支持体A201bの陽極層(不図示)表面を洗浄改質する洗浄表面改質処理手段202aと、第1除電処理手段202bとを有している。洗浄表面改質処理手段202aとしては、低圧水銀ランプ、エキシマランプ、プラズマ洗浄装置等が挙げられる。低圧水銀ランプによる洗浄表面改質処理の条件としては、例えば、波長184.2nmの低圧水銀ランプを、照射強度5〜20mW/cm2で、距離5〜15mmで照射し洗浄表面改質処理を行う条件が挙げられる。プラズマ洗浄装置による洗浄表面改質処理の条件としては、例えば、大気圧プラズマが好適に使用される。洗浄条件としてはアルゴンガスに酸素1〜5体積%含有ガスを用い、周波数100KHz〜150MHz、電圧10V〜10KV、照射距離5〜20mmで洗浄表面改質処理を行う条件が挙げられる。The cleaning surface modification processing unit 202 performs cleaning to modify the surface of the anode layer (not shown) of the strip-shaped flexible support A201b sent from the supply unit 201 before applying the organic compound layer forming coating solution. Surface modification processing means 202a and first charge removal processing means 202b are provided. Examples of the cleaning surface modification means 202a include a low-pressure mercury lamp, an excimer lamp, a plasma cleaning apparatus, and the like. As conditions for the cleaning surface modification treatment using a low-pressure mercury lamp, for example, a cleaning surface modification treatment is performed by irradiating a low-pressure mercury lamp with a wavelength of 184.2 nm at an irradiation intensity of 5 to 20 mW / cm 2 and a distance of 5 to 15 mm. Conditions are mentioned. For example, atmospheric pressure plasma is preferably used as the condition for the cleaning surface modification treatment by the plasma cleaning apparatus. Examples of the cleaning conditions include conditions in which a gas containing oxygen of 1 to 5% by volume is used for argon gas, and the cleaning surface modification treatment is performed at a frequency of 100 KHz to 150 MHz, a voltage of 10 V to 10 KV, and an irradiation distance of 5 to 20 mm.

第1除電処理手段202bとしては、光照射方式とコロナ放電式等が挙げられ、これらの中から必要に応じて適宜選択使用することが可能である。光照射式は微弱X線、コロナ放電式はコロナ放電により空気イオンを生成する。この空気イオンは、帯電物体に引き寄せられて反対極性の電荷を補い、静電気を中和する。コロナ放電による除電器、軟X線による除電器が利用可能である。第1除電処理手段により、基材の帯電除去が図られるため、ゴミの付着や絶縁破壊が防止されるため、素子の歩留まりの向上が図られる。   Examples of the first charge removal processing means 202b include a light irradiation method and a corona discharge method, and these can be appropriately selected and used as necessary. The light irradiation type generates weak ions, and the corona discharge type generates air ions by corona discharge. The air ions are attracted to the charged object to compensate for the opposite polarity charge and neutralize static electricity. A static eliminator using corona discharge or a static eliminator using soft X-rays can be used. Since the first charge removal processing means removes the charge of the base material, adhesion of dust and dielectric breakdown are prevented, so that the yield of the elements can be improved.

第1塗布・乾燥部203は、帯状可撓性支持体A201bを保持するバックアップロール203aと、バックアップロール203aに保持された帯状可撓性支持体A201bに第1有機化合物層形成用塗布液を塗布する第1湿式塗布機203bと、帯状可撓性支持体A201b上の陽極層(不図示)上に形成された第1有機化合物層201cの溶媒を除去する第1乾燥装置203cとを有している。   The first application / drying unit 203 applies the first organic compound layer forming coating solution to the backup roll 203a holding the strip-shaped flexible support A201b and the strip-shaped flexible support A201b held by the backup roll 203a. And a first drying device 203c for removing the solvent of the first organic compound layer 201c formed on the anode layer (not shown) on the strip-shaped flexible support A201b. Yes.

204は第1加熱処理部を示し、第1加熱処理部は装置本体204aと、第1有機化合物層201cが形成された帯状可撓性支持体の裏面側から第1有機化合物層201cを裏面伝熱方式で加熱する複数の加熱ローラ204bとを有している。   Reference numeral 204 denotes a first heat treatment unit. The first heat treatment unit transmits the first organic compound layer 201c from the back side of the apparatus main body 204a and the belt-like flexible support on which the first organic compound layer 201c is formed. And a plurality of heating rollers 204b that are heated by a heat method.

第1乾燥装置203cは、乾燥風を吐出する吐出口203c3と、乾燥風の供給口203c2とを有する乾燥風供給ヘッダー203c1と、排気口203c4と、搬送用ロール203c5とを有している。   The first drying device 203c includes a dry air supply header 203c1 having a discharge port 203c3 for discharging dry air, a supply port 203c2 for dry air, an exhaust port 203c4, and a transport roll 203c5.

205は、形成された第1有機化合物層201cの除電を行う第2除電処理手段を示す。尚、本図では第1有機化合物層形成用塗布液とは正孔輸送層形成用塗布液を指し、第1有機化合物層201cとは正孔輸送層を指す。   Reference numeral 205 denotes a second charge removal processing means for removing charge from the formed first organic compound layer 201c. In addition, in this figure, the coating liquid for 1st organic compound layer formation points out the coating liquid for hole transport layer formation, and the 1st organic compound layer 201c points out a hole transport layer.

第2塗布・乾燥部206は、バックアップロール206aに保持された第1有機化合物層(正孔輸送層)201cを有する帯状可撓性支持体に第2有機化合物層形成用塗布液を塗布する第2湿式塗布機206bと、第1有機化合物層(正孔輸送層)201c上に形成された第2有機化合物層201dを乾燥する第2乾燥装置206cとを有している。尚、本図では第2有機化合物層形成用塗布液とは発光層形成用塗布液を指し、第2有機化合物層201dとは発光層を指す。   The second coating / drying unit 206 applies a second organic compound layer forming coating solution to a strip-shaped flexible support having a first organic compound layer (hole transport layer) 201c held by a backup roll 206a. And a second wet coater 206b and a second drying device 206c for drying the second organic compound layer 201d formed on the first organic compound layer (hole transport layer) 201c. In the drawing, the second organic compound layer forming coating solution refers to a light emitting layer forming coating solution, and the second organic compound layer 201d refers to a light emitting layer.

207は第2加熱処理部を示し、第2加熱処理部207は第1加熱処理部204と同じ構成をしており、第1有機化合物層(正孔輸送層)201c上に形成された、第2有機化合物層(発光層)201dを帯状可撓性支持体の裏面側から裏面伝熱方式で加熱する様になっている。   Reference numeral 207 denotes a second heat treatment unit. The second heat treatment unit 207 has the same configuration as the first heat treatment unit 204, and is formed on the first organic compound layer (hole transport layer) 201c. 2 Organic compound layer (light emitting layer) 201d is heated from the back side of the belt-like flexible support by the back side heat transfer method.

208は、形成された第2有機化合物層(発光層)201eの除電を行う第3除電処理手段を示す。第2乾燥装置206cは第1乾燥装置203cと同じ構造を有している。第1除電処理手段202bと、第2除電処理手段205と、第3除電処理手段208とは同じであってもよい。   Reference numeral 208 denotes third neutralization processing means for performing neutralization of the formed second organic compound layer (light emitting layer) 201e. The second drying device 206c has the same structure as the first drying device 203c. The first static elimination processing means 202b, the second static elimination processing means 205, and the third static elimination processing means 208 may be the same.

本図では、塗布・乾燥部として第1塗布・乾燥部203と、第2塗布・乾燥部204との2ユニットを有する場合を示しているが、必要に応じて増加することが可能となっている。   This figure shows a case where there are two units of the first application / drying unit 203 and the second application / drying unit 204 as the application / drying unit, but it can be increased as necessary. Yes.

第1湿式塗布機203bにより塗布され形成される正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることが出来る。正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性の何れかを有するものであり、有機物、無機物の何れであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、又導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。   The hole transport layer applied and formed by the first wet coater 203b is made of a hole transport material having a function of transporting holes. In a broad sense, the hole injection layer and the electron blocking layer are also hole transport layers. include. The hole transport layer can be provided as a single layer or a plurality of layers. The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.

正孔輸送材料としては上記のものを使用することが出来るが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。   The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound. Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' − (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4′-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two of those described in US Pat. No. 5,061,569. Having a condensed aromatic ring in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-3086 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 8 are linked in a starburst type ( MTDATA) and the like.

更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることも出来る。又、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することが出来る。   Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.

又、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂p型正孔輸送材料を用いることも出来る。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。   JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.

正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。又、不純物をドープしたp性の高い正孔輸送層を用いることも出来る。その例としては、特開平4−297076号、特開2000−196140号、特開2001−102175号、J.Appl.Phys.,95,5773(2004)などに記載されたものが挙げられる。このようなp性の高い正孔輸送層を用いることが、より低消費電力の有機EL素子を作製することが出来るため好ましい。   Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials. A hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like. It is preferable to use a hole transport layer having such a high p property because an organic EL element with lower power consumption can be produced.

第2湿式塗布機206bにより形成される発光層が多層の場合は、積層する数に合わせて塗布・乾燥部のユニットを配設する必要がある。例えば、発光層を多層にすることで白色素子の作製が可能である。本発明において、発光層とは青色発光層、緑色発光層、赤色発光層を指す。発光層を積層する場合の積層順としては、特に制限はなく、又各発光層間に非発光性の中間層を有していてもよい。本発明においては、少なくとも一つの青発光層が、全発光層中最も陽極に近い位置に設けられていることが好ましい。又、発光層を4層以上設ける場合には、陽極に近い順から、例えば青色発光層/緑色発光層/赤色発光層/青色発光層、青色発光層/緑色発光層/赤色発光層/青色発光層/緑色発光層、青色発光層/緑色発光層/赤色発光層/青色発光層/緑色発光層/赤色発光層のように青色発光層、緑色発光層、赤色発光層を順に積層することが、輝度安定性を高める上で好ましい。   In the case where the light emitting layer formed by the second wet coater 206b is a multilayer, it is necessary to dispose units of the coating / drying unit in accordance with the number of layers to be stacked. For example, a white element can be manufactured by forming a light emitting layer in multiple layers. In the present invention, the light emitting layer refers to a blue light emitting layer, a green light emitting layer, and a red light emitting layer. There is no restriction | limiting in particular as a lamination order in the case of laminating | stacking a light emitting layer, You may have a nonluminous intermediate | middle layer between each light emitting layer. In the present invention, it is preferable that at least one blue light emitting layer is provided at a position closest to the anode in all the light emitting layers. Also, when four or more light emitting layers are provided, for example, blue light emitting layer / green light emitting layer / red light emitting layer / blue light emitting layer, blue light emitting layer / green light emitting layer / red light emitting layer / blue light emitting from the order close to the anode. Layered / green light emitting layer, blue light emitting layer / green light emitting layer / red light emitting layer / blue light emitting layer / green light emitting layer / red light emitting layer, etc. It is preferable for improving luminance stability.

発光層の膜厚の総和は特に制限はないが、膜の均質性、発光に必要な電圧等を考慮し、通常2nm〜5μm、好ましくは2〜200nmの範囲で選ばれる。更に10〜20nmの範囲にあるのが好ましい。膜厚を20nm以下にすると電圧面のみならず、駆動電流に対する発光色の安定性が向上する効果があり好ましい。個々の発光層の膜厚は、好ましくは2〜100nmの範囲で選ばれ、2〜20nmの範囲にあるのが更に好ましい。青、緑、赤の各発光層の膜厚の関係については、特に制限はないが、3発光層中、青発光層(複数層ある場合はその総和)が最も厚いことが好ましい。   The total thickness of the light emitting layer is not particularly limited, but is usually selected in the range of 2 nm to 5 μm, preferably 2 to 200 nm in consideration of the uniformity of the film and the voltage required for light emission. Furthermore, it is preferable that it exists in the range of 10-20 nm. A film thickness of 20 nm or less is preferable because it has the effect of improving the stability of the emission color with respect to the driving current as well as the voltage surface. The film thickness of each light emitting layer is preferably selected in the range of 2 to 100 nm, and more preferably in the range of 2 to 20 nm. Although there is no restriction | limiting in particular about the film thickness relationship of each light emitting layer of blue, green, and red, It is preferable that the blue light emitting layer (the sum total when there are two or more layers) is the thickest among three light emitting layers.

発光層は発光極大波長が各々430〜480nm、510〜550nm、600〜640nmの範囲にある発光スペクトルの異なる少なくとも3層以上の層を含む。3層以上であれば、特に制限はない。4層より多い場合には、同一の発光スペクトルを有する層が複数層あってもよい。発光極大波長が430〜480nmにある層を青発光層、510〜550nmにある層を緑発光層、600〜640nmの範囲にある層を赤発光層と言う。又、前記の極大波長を維持する範囲において、各発光層には複数の発光性化合物を混合してもよい。例えば、青発光層に、極大波長430〜480nmの青発光性化合物と、同510〜550nmの緑発光性化合物を混合して用いてもよい。   The light emitting layer includes at least three layers having different emission spectra, each having an emission maximum wavelength in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm. If it is three or more layers, there will be no restriction | limiting in particular. When there are more than four layers, there may be a plurality of layers having the same emission spectrum. A layer having an emission maximum wavelength in the range of 430 to 480 nm is referred to as a blue light emitting layer, a layer in the range of 510 to 550 nm is referred to as a green light emitting layer, and a layer in the range of 600 to 640 nm is referred to as a red light emitting layer. Moreover, in the range which maintains the said maximum wavelength, you may mix a several luminescent compound in each light emitting layer. For example, the blue light emitting layer may be used by mixing a blue light emitting compound having a maximum wavelength of 430 to 480 nm and a green light emitting compound having the same wavelength of 510 to 550 nm.

発光層に使用する材料は特に限定はなく、例えば、株式会社 東レリサーチセンター フラットパネルディスプレイの最新動向 ELディスプレイの現状と最新技術動向 228〜332頁に記載されている如き各種材料が挙げられる。   The material used for the light emitting layer is not particularly limited, and examples thereof include the latest trends of Toray Research Center, Inc. flat panel displays, the current state of EL displays and the latest technological trends, and various materials as described on pages 228-332.

第2湿式塗布機206bで有機化合物層形成用塗布液を塗布し、乾燥することで形成された有機化合物層(発光層)は、電極又は電子注入層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。   An organic compound layer (light-emitting layer) formed by applying an organic compound layer-forming coating solution with the second wet coater 206b and drying is an electron injected from an electrode, an electron injection layer, or a hole transport layer. And a layer that emits light by recombination of holes, and the light emitting portion may be in the layer of the light emitting layer or at the interface between the light emitting layer and the adjacent layer.

第1乾燥装置203cにおける第1有機化合物層(正孔輸送層)用塗膜の溶媒を除去する乾燥条件としては、乾燥ムラ、塗膜表面の吹き荒れ等を考慮し、吐出口からの乾燥風の吐出風速0.1〜5m/s、幅手方向の風速分布が0.1〜10%の気流乾燥が挙げられる。第2乾燥装置206cにおける第2有機化合物層(発光層)の溶媒を除去する乾燥条件は第1乾燥装置203cの条件と同じであってもよい。   As drying conditions for removing the solvent of the coating film for the first organic compound layer (hole transport layer) in the first drying device 203c, in consideration of drying unevenness, rough coating of the coating film surface, etc. Examples include air flow drying with a discharge wind speed of 0.1 to 5 m / s and a wind speed distribution in the width direction of 0.1 to 10%. The drying conditions for removing the solvent of the second organic compound layer (light emitting layer) in the second drying device 206c may be the same as the conditions of the first drying device 203c.

第1加熱処理部204における第1有機化合物層(正孔輸送層)の加熱処理条件として、第1有機化合物層(正孔輸送層)の平滑性向上、残留溶媒の除去、有機化合物層(正孔輸送層)の硬化等を考慮し、第1有機化合物層(正孔輸送層)のガラス転移温度に対して−30〜+30℃、且つ、第1有機化合物層(正孔輸送層)を構成している有機化合物の分解温度を超えない温度で裏面伝熱方式の熱処理を行うことが好ましい。   As heat treatment conditions for the first organic compound layer (hole transport layer) in the first heat treatment unit 204, improvement in smoothness of the first organic compound layer (hole transport layer), removal of residual solvent, organic compound layer (positive) Considering hardening of the hole transport layer), the first organic compound layer (hole transport layer) is configured at −30 to + 30 ° C. with respect to the glass transition temperature of the first organic compound layer (hole transport layer). It is preferable to perform the back surface heat transfer type heat treatment at a temperature not exceeding the decomposition temperature of the organic compound.

第2加熱処理部207における第2有機化合物層(発光層)の加熱処理条件として、第2有機化合物層(発光層)の平滑性向上、残留溶媒の除去、第2有機化合物層(発光層)の硬化等を考慮し、第2有機化合物層(発光層)のガラス転移温度に対して−30〜+30℃、且つ、第2有機化合物層(発光層)を構成している有機化合物の分解温度を超えない温度で裏面伝熱方式の熱処理を行うことが好ましい。   As heat treatment conditions for the second organic compound layer (light emitting layer) in the second heat treatment unit 207, the smoothness of the second organic compound layer (light emitting layer) is improved, the residual solvent is removed, and the second organic compound layer (light emitting layer). In consideration of curing, etc., the decomposition temperature of the organic compound constituting the second organic compound layer (light emitting layer) and −30 to + 30 ° C. with respect to the glass transition temperature of the second organic compound layer (light emitting layer) It is preferable to perform the back surface heat transfer type heat treatment at a temperature not exceeding.

第1湿式塗布機203bで第1有機化合物層(正孔輸送層)形成用塗布液を塗布するときの帯状可撓性支持体Aの搬送速度のバラツキと、第2湿式塗布機206bとで第2有機化合物層(発光層)形成用塗布液を塗布するときの帯状可撓性支持体Aの搬送速度のバラツキは、長手方向の塗膜厚みムラに伴う発光輝度ムラ、等を考慮し、平均搬送速度に対して0.2〜10%であることが好ましい。   Variations in the transport speed of the belt-shaped flexible support A when the first organic compound layer (hole transport layer) forming coating solution is applied by the first wet coater 203b and the second wet coater 206b 2 The variation in the transport speed of the strip-shaped flexible support A when applying the coating solution for forming the organic compound layer (light emitting layer) is an average considering the uneven brightness of the coating film due to the uneven coating thickness in the longitudinal direction, etc. It is preferable that it is 0.2 to 10% with respect to the conveyance speed.

第1湿式塗布機203bで使用する第1有機化合物層(正孔輸送層)形成用塗布液、及び第2湿式塗布機206bとで使用する第2有機化合物層(発光層)形成用塗布液は、少なくとも1種の有機化合物材料と少なくとも1種の溶媒とを有し、塗布時のハジキ、塗布ムラ等を考慮し、表面張力が15×10-3〜55×10-3N/mであることが好ましい。The coating liquid for forming the first organic compound layer (hole transport layer) used in the first wet coater 203b and the coating liquid for forming the second organic compound layer (light emitting layer) used in the second wet coater 206b are: , Having at least one organic compound material and at least one solvent, and taking into account repelling during coating, coating unevenness, etc., and surface tension of 15 × 10 −3 to 55 × 10 −3 N / m It is preferable.

本図で示される有機EL素子の構成層である第1有機化合物層(正孔輸送層)及び第2有機化合物層(発光層)を形成する工程は、第1有機化合物層(正孔輸送層)及び第2有機化合物層(発光層)の性能維持、異物付着に伴う故障欠陥の防止等を考慮し、露点温度−20℃以下、且つJISB 9920に準拠し、測定した清浄度がクラス5以下で、且つ、第1乾燥部、第2乾燥部を除き10〜45℃の大気圧条件下で形成されることが好ましい。本発明において清浄度がクラス5以下とは、クラス3〜クラス5を示す。   The step of forming the first organic compound layer (hole transport layer) and the second organic compound layer (light-emitting layer), which are the constituent layers of the organic EL element shown in this figure, includes the first organic compound layer (hole transport layer). ) And the second organic compound layer (light emitting layer), the dew point temperature is −20 ° C. or less, and the measured cleanliness is class 5 or less in consideration of JISB 9920. And it is preferable to form under atmospheric pressure conditions of 10-45 degreeC except a 1st drying part and a 2nd drying part. In the present invention, cleanliness of class 5 or less means class 3 to class 5.

回収部209で、第2有機化合物層(発光層)201dが形成された帯状可撓性支持体B201eを巻き芯に巻取りロール状とし、ロール状の帯状可撓性支持体B201fが作製される。ロール状に巻取る際は通気性のある合紙や素子面に空間を持たせるスペーサテープを介し巻取ることが好ましい。   In the recovery unit 209, the belt-like flexible support B201e on which the second organic compound layer (light emitting layer) 201d is formed is wound around a winding core to produce a roll-like belt-like flexible support B201f. . When winding in a roll shape, it is preferable to wind it through an air-permeable interleaving paper or a spacer tape that provides space on the element surface.

作製されたロール状の帯状可撓性支持体B201fは、第1有機化合物層(正孔輸送層)及び第2有機化合物層(発光層)の性能維持、未発光故障等を考慮し、10-5〜10Paの減圧条件下で保管することが好ましい。収納期間は、第1有機化合物層(正孔輸送層)及び第2有機化合物層(発光層)の劣化に起因する酸素や微量水分の除去を考慮し、1時間〜200時間が好ましい。場合によっては加熱環境下で保存してもよい。It produced rolled band-shaped flexible support B201f was the performance maintenance of the first organic compound layer (hole transport layer) and the second organic compound layer (light emitting layer), taking into account the non-light emission failure or the like, 10 - It is preferable to store under reduced pressure conditions of 5 to 10 Pa. The storage period is preferably 1 hour to 200 hours in consideration of the removal of oxygen and trace moisture caused by the deterioration of the first organic compound layer (hole transport layer) and the second organic compound layer (light emitting layer). In some cases, it may be stored in a heated environment.

本発明に係わる第1電極を含む陽極層が既に形成された帯状可撓性支持体に使用する帯状可撓性支持体としては、透明樹脂フィルムが挙げられる。樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。   A transparent resin film is mentioned as a strip | belt-shaped flexible support body used for the strip | belt-shaped flexible support body in which the anode layer containing the 1st electrode concerning this invention was already formed. Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.

陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。又、IDIXO(In23・ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィ法で所望の形状のパターンを形成してもよく、或いはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。或いは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式など湿式製膜法を用いることも出来る。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、又陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。As the anode, an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 .ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern of a desired shape may be formed by photolithography, or if the pattern accuracy is not so high (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply | coated like an organic electroconductive compound, wet film forming methods, such as a printing system and a coating system, can also be used. When light emission is taken out from the anode, it is desirable that the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.

陽極と有機化合物層(発光層)又は正孔輸送層の間、正孔注入層(陽極バッファー層)を存在させてもよい。注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。   A hole injection layer (anode buffer layer) may be present between the anode and the organic compound layer (light emitting layer) or the hole transport layer. An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) ) ", Chapter 2, Chapter 2," Electrode Materials "(pp. 123-166).

陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。陽極バッファー層(正孔注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。   The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene. The anode buffer layer (hole injection layer) is desirably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm although it depends on the material.

帯状可撓性支持体として使用する樹脂フィルムの表面にはガスバリア膜が必要に応じて形成されることが好ましい。ガスバリア膜としては無機物、有機物の被膜又はその両者のハイブリッド被膜が挙げられる。ガスバリア膜の特性としては、水蒸気透過度が0.01g/m2・day・atm以下であることが好ましい。更には、酸素透過度10-3ml/m2/day以下、水蒸気透過度10-5g/m2/day以下の高バリア性フィルムであることが好ましい。A gas barrier film is preferably formed on the surface of the resin film used as the belt-like flexible support, if necessary. Examples of the gas barrier film include an inorganic film, an organic film, or a hybrid film of both. As a characteristic of the gas barrier film, the water vapor permeability is preferably 0.01 g / m 2 · day · atm or less. Furthermore, a high barrier film having an oxygen permeability of 10 −3 ml / m 2 / day or less and a water vapor permeability of 10 −5 g / m 2 / day or less is preferable.

バリア膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることが出来る。更に該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。バリア膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることが出来るが、特開2004−68143号に記載されているような大気圧プラズマ重合法によるものが特に好ましい。   As a material for forming the barrier film, any material may be used as long as it has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times. The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, the atmospheric pressure plasma weighting. A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.

第1湿式塗布機203bと、第2湿式塗布機206bとに使用可能な湿式塗布機としては、例えば、ダイコート方式、スクリーン印刷方式、フレキソ印刷方式、インクジェット方式、メイヤーバー方式、キャップコート法、スプレー塗布法、キャスト法、ロールコート法、バーコート法、グラビアコート法等の塗布機の使用が可能である。これらの湿式塗布機の使用は有機化合物層の材料に応じて適宜選択することが可能となっている。   Examples of the wet coater that can be used for the first wet coater 203b and the second wet coater 206b include a die coat method, a screen printing method, a flexographic printing method, an ink jet method, a Mayer bar method, a cap coat method, and a spray. It is possible to use a coating machine such as a coating method, a casting method, a roll coating method, a bar coating method, or a gravure coating method. The use of these wet coating machines can be appropriately selected according to the material of the organic compound layer.

本図に示す製造装置を使用し、第1電極を含む陽極層が形成された帯状可撓性支持体Aを使用し、陽極層上に第1有機化合物層(正孔輸送層)と、第2有機化合物層(発光層)とを形成し帯状可撓性支持体Bとした後、帯状可撓性支持体Bを巻き芯に巻取りロール状の帯状可撓性支持体Bにする有機化合物層の形成方法により蒸着方式に比べ、次の効果が得られる。   Using the manufacturing apparatus shown in the figure, using a strip-shaped flexible support A on which an anode layer including a first electrode is formed, a first organic compound layer (hole transport layer) on the anode layer, 2 Organic compound layer (light emitting layer) is formed to form a strip-shaped flexible support B, and then the organic compound is formed into a strip-shaped flexible support B in the form of a winding roll using the strip-shaped flexible support B as a winding core. The following effects can be obtained by the layer formation method as compared with the vapor deposition method.

1)有機物質からなる一つ又は複数の発光層を形成するのに使用する有機化合物の使用効率が高くコストを抑えることが可能となる。   1) The use efficiency of the organic compound used to form one or a plurality of light emitting layers made of an organic substance is high, and the cost can be reduced.

2)大面積の有機EL素子を作るため必要とする大面積の有機化合物層の形成が容易となる。   2) It is easy to form an organic compound layer having a large area necessary for producing an organic EL element having a large area.

3)有機化合物層の形成が短時間に出来るため、稼働率の向上が可能となる。   3) Since the organic compound layer can be formed in a short time, the operation rate can be improved.

4)大面積の有機EL素子を作るため必要とする大面積の有機化合物層の形成が容易となる。   4) It becomes easy to form an organic compound layer having a large area necessary for producing an organic EL element having a large area.

図3は有機EL素子を作製する工程の一例を示す模式図である。尚、本図は塗布・乾燥部が2ユニット有する製造装置の場合を示しており、塗布・乾燥部は図2で示した塗布・乾燥部と同じであるため説明は省略する。   FIG. 3 is a schematic view showing an example of a process for producing an organic EL element. This figure shows a case of a manufacturing apparatus having two units of application / drying units. The application / drying unit is the same as the application / drying unit shown in FIG.

図中、3は有機EL素子を作製する製造装置を示す。製造装置3は図2で示した有機EL素子を構成する有機化合物層を大気圧条件下で形成する塗布・乾燥部(図2に示す塗布・乾燥部203と同じ)と、形成された有機化合物層上に第2電極を含む陰極層を減圧条件下で形成する陰極層形成部4と、形成された陰極層上に接着剤を介して封止フィルムを大気圧条件下で貼着する封止フィルム貼着部5と、回収部6とを有している。   In the figure, reference numeral 3 denotes a manufacturing apparatus for producing an organic EL element. The manufacturing apparatus 3 has a coating / drying unit (same as the coating / drying unit 203 shown in FIG. 2) for forming the organic compound layer constituting the organic EL element shown in FIG. 2 under atmospheric pressure conditions, and the formed organic compound Cathode layer forming portion 4 for forming a cathode layer including a second electrode on the layer under reduced pressure conditions, and sealing for adhering a sealing film on the formed cathode layer via an adhesive under atmospheric pressure conditions It has the film sticking part 5 and the collection | recovery part 6. FIG.

本図で示される有機EL素子を作製する製造装置3は、各塗布・乾燥部2〜封止フィルム貼着工程5間の物の移動は全てロール状の形態で行われ、回収部も巻き芯に巻取られたロール状態で回収される。尚、封止フィルム貼着後、シート状に断裁して回収してもよい。   In the manufacturing apparatus 3 for producing the organic EL element shown in the figure, the movement of the object between each application / drying unit 2 to the sealing film adhering step 5 is performed in a roll form, and the recovery unit is also a winding core. It is collected in the roll state wound around. In addition, after sticking a sealing film, you may cut and collect | recover in a sheet form.

陰極層形成部4は、材料の供給部401と、第1陰極層形成部402と、第2陰極層形成部403と、第2巻取り部404とを有しており、供給部401から回収部404迄が減圧条件下で連続的に行われる様になっている。材料の供給部401では、製造装置2で作製された、帯状可撓性支持体上に、陽極と、正孔輸送層と、有機化合物層(発光層)とが形成され、巻き芯に巻取られたロール状の帯状可撓性支持体B201fが供給される。   The cathode layer forming unit 4 includes a material supply unit 401, a first cathode layer forming unit 402, a second cathode layer forming unit 403, and a second winding unit 404, and is collected from the supply unit 401. Up to the portion 404 is continuously performed under reduced pressure conditions. In the material supply unit 401, the anode, the hole transport layer, and the organic compound layer (light emitting layer) are formed on the belt-like flexible support manufactured by the manufacturing apparatus 2, and wound around the winding core. The roll-shaped belt-like flexible support B201f thus produced is supplied.

供給部401から巻き出された有機化合物層(発光層)を有する帯状可撓性支持体B201fの有機化合物層(発光層)上に第1陰極層形成部402で電子注入層201gが形成される。402aは蒸着装置を示し、402bは蒸発源容器を示す。   An electron injection layer 201g is formed by the first cathode layer forming unit 402 on the organic compound layer (light emitting layer) of the strip-shaped flexible support B201f having the organic compound layer (light emitting layer) unwound from the supply unit 401. . Reference numeral 402a denotes a vapor deposition apparatus, and 402b denotes an evaporation source container.

第2陰極層形成部403では、第1陰極層形成部402で形成された電子注入層201g上に第2電極の陰極層201hが形成される。403aは蒸着装置を示し、403bは蒸発源容器を示す。   In the second cathode layer forming unit 403, the cathode layer 201h of the second electrode is formed on the electron injection layer 201g formed in the first cathode layer forming unit 402. Reference numeral 403a denotes a vapor deposition apparatus, and reference numeral 403b denotes an evaporation source container.

第2陰極層形成部403で第2電極の陰極層201hが形成さた帯状可撓性支持体C201iは回収部404で巻き芯に巻取られロール状の帯状可撓性支持体C201jとなる。   The strip-shaped flexible support C201i in which the cathode layer 201h of the second electrode is formed by the second cathode layer forming unit 403 is wound around the winding core by the collecting unit 404 to become a roll-shaped strip-shaped flexible support C201j.

本図では、第1陰極層形成部402、第2陰極層形成部403が蒸着装置の場合を示したが、陰極層形成方法については、特に限定はなく、例えばスパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることが出来る。   In this figure, the case where the first cathode layer forming portion 402 and the second cathode layer forming portion 403 are vapor deposition apparatuses is shown. However, the cathode layer forming method is not particularly limited, and for example, a sputtering method, a reactive sputtering method, A molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.

封止フィルム貼着部5は、材料の供給部501と、貼着部502と、回収部503とを有しており、供給部501から回収部6迄が工程を大気圧条件下で連続的に行われる様になっている。供給部501では、陰極層形成部4でで作製された、帯状可撓性支持体上に、陽極と、正孔輸送層と、有機化合物層(発光層)と、電子注入層と、陰極層が形成が形成された帯状可撓性支持体C201iが、巻き芯に巻取られたロール状の帯状可撓性支持体C201jが供給される。尚、封止フィルム貼着工程5は、有機化合物層(発光層)の劣化を防止するために不活性ガス環境下で行うことが好ましい。   The sealing film adhering unit 5 includes a material supplying unit 501, an adhering unit 502, and a collecting unit 503, and the process from the supplying unit 501 to the collecting unit 6 is continuously performed under atmospheric pressure conditions. It is supposed to be done. In the supply unit 501, the anode, the hole transport layer, the organic compound layer (light emitting layer), the electron injection layer, and the cathode layer are formed on the belt-like flexible support produced in the cathode layer forming unit 4. The belt-like flexible support body C201i in which the formation is formed is supplied with the roll-like belt-like flexible support body C201j wound around the winding core. In addition, it is preferable to perform the sealing film sticking process 5 in inert gas environment, in order to prevent deterioration of an organic compound layer (light emitting layer).

貼着部502は、供給部501から繰り出された帯状可撓性支持体C201iの陰極層上に接着剤を塗工する塗工装置502aと、封止フィルム供給部502bと、圧着ロール502cと、硬化処理部502dとを有している。502b1は巻き芯に巻取られたロール状の封止フィルムを示す。   The sticking unit 502 includes a coating device 502a that coats an adhesive on the cathode layer of the strip-shaped flexible support C201i fed out from the supply unit 501, a sealing film supply unit 502b, a pressure roll 502c, And a curing processing unit 502d. 502b1 indicates a roll-shaped sealing film wound around a winding core.

供給部501から巻き出され、塗工装置502aで帯状可撓性支持体C201iの陰極層上に接着剤が連続的に塗工された後、封止フィルムが連続的に貼合され圧着ロール502cを通過することで陰極層上に封止フィルムが接着剤を介して連続的に貼着される。封止フィルム502b2が接着剤を介して貼着された後、封止フィルムの貼着の硬化処理が行われる。接着剤の硬化処理が終了した段階で封止フィルム502b2で保護された有機EL素子が作製され、回収部6で巻き芯に巻取りロール状とすることで封止フィルムで保護されたロール状の有機EL素子601の作製が終了する。この場合、封止フィルムを貼着した後、巻取らず断裁してシート状にしてもよい。他の符号は図2と同じである。   After being unwound from the supply unit 501 and continuously coated with an adhesive on the cathode layer of the strip-shaped flexible support C201i by the coating device 502a, the sealing film is continuously bonded and the pressure roll 502c. The sealing film is continuously stuck on the cathode layer through an adhesive by passing through the adhesive layer. After the sealing film 502b2 is attached via an adhesive, a hardening process for attaching the sealing film is performed. An organic EL element protected by the sealing film 502b2 is produced at the stage where the curing process of the adhesive is completed, and a roll-like shape protected by the sealing film by forming a winding roll around the winding core in the recovery unit 6 The production of the organic EL element 601 is completed. In this case, after sticking the sealing film, it may be cut into a sheet shape without being wound. Other reference numerals are the same as those in FIG.

第1陰極層形成部402で形成される電子注入層とは、電子を輸送する機能を有する材料からなり広い意味で電子輸送層に含まれる。電子注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。電子注入層(陰極バッファー層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。他に陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることが出来、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることが出来る。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることも出来る。   The electron injection layer formed by the first cathode layer forming portion 402 is made of a material having a function of transporting electrons and is included in the electron transport layer in a broad sense. The electron injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of the light emission. “Organic EL element and its forefront of industrialization (NST 30, November 30, 1998) Issue) ”, Chapter 2, Chapter 2,“ Electrode Materials ”(pages 123-166). The details of the electron injection layer (cathode buffer layer) are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm although it depends on the material. In addition, as an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the cathode side, it is sufficient if it has a function of transmitting electrons injected from the cathode to the light emitting layer. Any one of the conventionally known compounds can be selected and used, for example, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethanes. And anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above oxadiazole derivatives, thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.

又、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることが出来る。その他、メタルフリーもしくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることが出来る。又、ジスチリルピラジン誘導体も、電子輸送材料として用いることが出来るし、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることが出来る。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種又は2種以上からなる一層構造であってもよい。又、不純物をドープしたn性の高い電子輸送層を用いることも出来る。その例としては、特開平4−297076号公報、特開平10−270172号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)などに記載されたものが挙げられる。このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することが出来るため好ましい。電子輸送層は上記電子輸送材料を、例えば、湿式塗布、真空蒸着法等の公知の方法により、薄膜化することにより形成することも出来る。本発明においては、例えば、図3に示される第3除電処理手段208の後に、図3に示される第2塗布・乾燥部206、第2加熱処理部207を配設し、電子輸送層を形成することも可能である。   Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum. Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. Distyrylpyrazine derivatives can also be used as electron transport materials, and inorganic semiconductors such as n-type-Si and n-type-SiC are also used as electron transport materials in the same manner as the hole injection layer and hole transport layer. I can do it. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials. An electron transport layer having a high n property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like. It is preferable to use such an electron transport layer having high n property because an element with lower power consumption can be manufactured. The electron transport layer can also be formed by thinning the electron transport material by a known method such as wet coating or vacuum deposition. In the present invention, for example, the second application / drying unit 206 and the second heat treatment unit 207 shown in FIG. 3 are arranged after the third static elimination processing unit 208 shown in FIG. 3 to form an electron transport layer. It is also possible to do.

陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム・カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することが出来る。又、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極又は陰極の何れか一方が、透明又は半透明であれば発光輝度が向上し好都合である。As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium / potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.

又、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することが出来、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することが出来る。   Moreover, after producing the above metal with a film thickness of 1 to 20 nm on the cathode, a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode thereon. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.

使用する封止フィルムとしては、ガスバリア膜と同じ材質のバリアフィルム及び金属膜を使用することが可能である。接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステルなどの湿気硬化型等の接着剤、エポキシ系などの熱及び化学硬化型(二液混合)等の接着剤、又、ポリアミド系、ポリエステル系、ポリオレフィン系のホットメルト型接着剤、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることが出来る。   As the sealing film to be used, a barrier film and a metal film made of the same material as the gas barrier film can be used. Specific examples of the adhesive include photo-curing and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, moisture-curing adhesives such as 2-cyanoacrylates, and epoxy. Heat- and chemical-curing type (two-component mixed) adhesives, polyamide-based, polyester-based, polyolefin-based hot-melt adhesives, cationic-curing type UV-curable epoxy resin adhesives, etc. I can do it.

尚、有機化合物層が熱処理により劣化する場合があるので、室温から80℃までに接着硬化出来るものが好ましい。又、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は、ダイコートや印刷法が利用可能である。   In addition, since an organic compound layer may deteriorate with heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable. A desiccant may be dispersed in the adhesive. For the application of the adhesive to the sealing portion, a die coating or a printing method can be used.

本図に示す様に、大気圧中で湿式塗布方式で塗布し有機化合物層用塗膜を形成する工程と、有機化合物層上に減圧条件下で電子注入層、陰極層を形成する工程と、陰極層上に封止フィルムを大気圧中で貼着する工程を有し、各工程間の物流をロール状態で行い、これらの各工程を経て有機EL素子を作製することで、図2で示した有機化合物層形成方法の効果に加えて次の効果が得られる。   As shown in this figure, a step of forming a coating film for an organic compound layer by applying a wet coating method at atmospheric pressure, a step of forming an electron injection layer and a cathode layer under reduced pressure conditions on the organic compound layer, It has the process of sticking a sealing film on a cathode layer in atmospheric pressure, and the physical distribution between each process is performed in a roll state, and it shows in FIG. 2 by producing an organic EL element through each of these processes. In addition to the effects of the organic compound layer forming method, the following effects can be obtained.

1)有機化合物層形成する塗布・乾燥工程と、第2電極を含む陰極層を形成する陰極層形成工程と、封止フィルム貼着工程とを分離することで、各工程での最適化を図ることが容易になり、品質が安定すると共に生産性の向上が可能となった。   1) Optimization in each step is achieved by separating the coating / drying step for forming the organic compound layer, the cathode layer forming step for forming the cathode layer including the second electrode, and the sealing film attaching step. This makes it easier to stabilize the quality and improve productivity.

2)有機物質からなる一つ又は複数の発光層を形成するのに使用する有機化合物の使用効率が高くコストを抑えることが可能となる。   2) The use efficiency of the organic compound used to form one or a plurality of light emitting layers made of an organic substance is high, and the cost can be reduced.

図4は有機EL素子を作製する工程の他の一例を示す模式図である。尚、本図は塗布・乾燥部が2ユニット有する製造装置の場合を示しており、塗布・乾燥部は図2で示した塗布・乾燥部と同じであるため説明は省略する。   FIG. 4 is a schematic view showing another example of a process for producing an organic EL element. This figure shows a case of a manufacturing apparatus having two units of application / drying units. The application / drying unit is the same as the application / drying unit shown in FIG.

図中、7は有機EL素子を作製する製造装置を示す。製造装置7は図2で示した有機EL素子を構成する有機化合物層を大気圧条件下で形成する塗布・乾燥部(図2に示す塗布・乾燥部203と同じ)と、形成された有機化合物層上に第2電極を含む陰極層と、封止層とを減圧条件下で形成する陰極層・封止層形成部8と、回収部9を有している。本図で示される有機EL素子を作製する製造装置7は、各塗布・乾燥部2と、陰極層・封止層形成部8との間の物の移動はロール状の形態で行われ、回収部も巻き芯に巻取られたロール状態で回収される。   In the figure, reference numeral 7 denotes a manufacturing apparatus for producing an organic EL element. The manufacturing apparatus 7 includes a coating / drying unit (same as the coating / drying unit 203 shown in FIG. 2) for forming an organic compound layer constituting the organic EL element shown in FIG. 2 under atmospheric pressure conditions, and the formed organic compound On the layer, a cathode layer / sealing layer forming portion 8 for forming a cathode layer including the second electrode and a sealing layer under reduced pressure conditions, and a recovery portion 9 are provided. In the manufacturing apparatus 7 for producing the organic EL element shown in this figure, the movement of the object between each coating / drying unit 2 and the cathode layer / sealing layer forming unit 8 is performed in a roll-like form and collected. The part is also collected in a roll state wound around the winding core.

陰極層・封止層形成部8は、供給部801と、第1陰極層形成部802と、第2陰極層形成部803と、封止層形成部804と、回収部9とを有しており、材料供給部801から回収部9迄が減圧条件下で連続的に行われる様になっている。材料供給部801では、製造装置2で作製された、帯状可撓性支持体上に、陽極と、正孔輸送層と、有機化合物層(発光層)とが形成され、巻き芯に巻取られたロール状の帯状可撓性支持体B201fが供給される。   The cathode layer / sealing layer forming unit 8 includes a supply unit 801, a first cathode layer forming unit 802, a second cathode layer forming unit 803, a sealing layer forming unit 804, and a recovery unit 9. The material supply unit 801 to the recovery unit 9 are continuously performed under reduced pressure conditions. In the material supply unit 801, the anode, the hole transport layer, and the organic compound layer (light emitting layer) are formed on the belt-like flexible support manufactured by the manufacturing apparatus 2, and wound around the winding core. A rolled belt-like flexible support B201f is supplied.

供給部801から巻き出された有機化合物層(発光層)を有する帯状可撓性支持体B201fの有機化合物層(発光層)上に第1陰極層形成部802で電子注入層201iが形成される。802aは蒸着装置を示し、802bは蒸発源容器を示す。   An electron injection layer 201i is formed by the first cathode layer forming unit 802 on the organic compound layer (light emitting layer) of the strip-shaped flexible support B201f having the organic compound layer (light emitting layer) unwound from the supply unit 801. . Reference numeral 802a denotes a vapor deposition apparatus, and 802b denotes an evaporation source container.

第2陰極層形成部803では、第1陰極層形成部802で形成された電子注入層201i上に陰極層201jが形成される。803aは蒸着装置を示し、803bは蒸発源容器を示す。封止層形成部804では、陰極層の上に封止層が形成され、封止層で保護された有機EL素子が作製され、回収部9で巻き芯に巻取りロール状とすることで封止フィルムで保護されたロール状の有機EL素子901の作製が終了する。他の符号は図2と同じである。   In the second cathode layer forming unit 803, the cathode layer 201j is formed on the electron injection layer 201i formed in the first cathode layer forming unit 802. Reference numeral 803a denotes a vapor deposition apparatus, and 803b denotes an evaporation source container. In the sealing layer forming unit 804, a sealing layer is formed on the cathode layer, an organic EL element protected by the sealing layer is produced, and the recovery unit 9 forms a winding roll to form a sealing roll. The production of the roll-shaped organic EL element 901 protected by the stop film is completed. Other reference numerals are the same as those in FIG.

本図に示される封止層形成部804では、陰極層の外側に無機物、有機物の層を形成する方法で封止膜を形成する方法をとることが好ましい。この場合、膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることが出来る。更に、膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることが出来る。陰極層・封止層形成部8で形成される電子注入層、陰極層は図3で示した陰極層形成部4で形成される電子注入層、陰極層と同じである。   In the sealing layer forming portion 804 shown in this drawing, it is preferable to take a method of forming a sealing film by a method of forming an inorganic or organic layer outside the cathode layer. In this case, as a material for forming the film, any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. . Furthermore, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster-ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used. The electron injection layer and cathode layer formed in the cathode layer / sealing layer forming portion 8 are the same as the electron injection layer and cathode layer formed in the cathode layer forming portion 4 shown in FIG.

本図に示す様に、大気圧中で湿式塗布方式で塗布し有機化合物層用塗膜を形成する工程と、有機化合物層上に減圧条件下で電子注入層、陰極層と、封止層を形成する工程を有し、各工程間の物流をロール状態で行い、これらの各工程を経て有機EL素子を作製することで図2で示した有機化合物層形成方法の効果に加えて次の効果が得られる。   As shown in this figure, a process for forming a coating film for an organic compound layer by applying a wet coating method at atmospheric pressure, and an electron injection layer, a cathode layer, and a sealing layer on the organic compound layer under reduced pressure conditions. In addition to the effect of the organic compound layer forming method shown in FIG. 2 by performing the physical distribution between the processes in a roll state and producing the organic EL element through these processes, the following effects are provided. Is obtained.

1)有機化合物層形成する塗布・乾燥工程と、第2電極を含む陰極層を形成する陰極層形成工程と、封止フィルム貼着工程とを分離することで、各工程での最適化を図ることが容易になり、品質が安定すると共に生産性の向上が可能となった。   1) Optimization in each step is achieved by separating the coating / drying step for forming the organic compound layer, the cathode layer forming step for forming the cathode layer including the second electrode, and the sealing film attaching step. This makes it easier to stabilize the quality and improve productivity.

2)有機物質からなる一つ又は複数の発光層を形成するのに使用する有機化合物の使用効率が高くコストを抑えることが可能となる。   2) The use efficiency of the organic compound used to form one or a plurality of light emitting layers made of an organic substance is high, and the cost can be reduced.

図5は図2に示す有機有機化合物層までを形成する製造装置を使用し、有機有機化合物層までを形成する概略フロー図である。   FIG. 5 is a schematic flow diagram for forming up to the organic organic compound layer using the manufacturing apparatus for forming up to the organic organic compound layer shown in FIG.

S1では巻き芯に巻かれ、少なくとも第1電極を含む陽極層が形成されロール状の帯状可撓性支持体201aが供給部に用意される。本図に示される帯状可撓性支持体201n上には既に、第1電極層201oが形成された状態となっている。第1電極層201oは、帯状可撓性支持体201n上に一定の大きさと間隔で長さ方向に連続してバリア層上に形成されている。尚、帯状可撓性支持体201nと第1電極層201oとの間にバリア層を設けてもよい。この場合、バリア層は、帯状可撓性支持体201nの全面に形成されている。ロール状の帯状可撓性支持体201aは、第1電極層201oが内側に巻かれた状態となっている。   In S1, an anode layer including at least a first electrode is formed around a winding core, and a roll-like strip-like flexible support 201a is prepared in the supply unit. The first electrode layer 201o has already been formed on the belt-like flexible support 201n shown in this figure. The first electrode layer 201o is continuously formed on the barrier layer on the strip-shaped flexible support 201n continuously in the length direction at a constant size and interval. A barrier layer may be provided between the belt-like flexible support 201n and the first electrode layer 201o. In this case, the barrier layer is formed on the entire surface of the belt-like flexible support 201n. The roll-shaped belt-like flexible support 201a is in a state where the first electrode layer 201o is wound inside.

S2では、洗浄表面改質処理部により基材供給部から巻き出された帯状可撓性支持体の洗浄表面改質処理が行われる。   In S2, a cleaning surface modification process is performed on the belt-like flexible support unwound from the base material supply unit by the cleaning surface modification processing unit.

S3では、第1塗布部で湿式塗布機により、大気圧中で第1有機化合物層(正孔輸送層)形成用塗布液が塗布される。このとき第1有機化合物層(正孔輸送層)形成用塗布液は第1電極層201oの片方の端部201o1を残して塗布される。塗布後は、第1乾燥部の第1乾燥装置により乾燥が行われ第1有機化合物層(正孔輸送層)201cが形成される。引き続き、第1加熱処理装置により第1有機化合物層(正孔輸送層)の加熱処理が行われる。この後、除電処理手段により形成された正孔輸送層の表面の除電処理がなされる。   In S3, the coating liquid for forming the first organic compound layer (hole transport layer) is applied at atmospheric pressure by the wet coating machine in the first coating unit. At this time, the coating liquid for forming the first organic compound layer (hole transport layer) is applied leaving one end 201o1 of the first electrode layer 201o. After the application, drying is performed by the first drying device of the first drying unit to form the first organic compound layer (hole transport layer) 201c. Subsequently, the first heat treatment apparatus heat-treats the first organic compound layer (hole transport layer). Thereafter, the surface of the hole transport layer formed by the charge removal processing means is discharged.

S4では、形成された第1有機化合物層(正孔輸送層)201cの上に第2塗布部で湿式塗布機により、大気圧中で第2有機化合物層(発光層)形成用塗布液が塗布され、第2乾燥部の第2乾燥装置により乾燥が行われ第2有機化合物層(発光層)201dが形成される。引き続き、第2加熱処理装置により第2有機化合物層(発光層)201eの加熱処理が行われる。第2有機化合物層(発光層)201dは、第1有機化合物層(正孔輸送層)201cと同じ塗布幅で塗布される。尚、第2有機化合物層(発光層)が複数の場合は、積層される第2有機化合物層(発光層)の数に合わせて塗布・乾燥・加熱処理が繰り返されることで積層された有機化合物層(発光層)が形成される。この後、除電処理手段により形成された第2有機化合物層(発光層)201eの表面の除電処理がなされる。   In S4, the coating solution for forming the second organic compound layer (light emitting layer) is applied on the formed first organic compound layer (hole transport layer) 201c by the wet coating machine in the second coating unit at atmospheric pressure. Then, drying is performed by the second drying device of the second drying unit to form the second organic compound layer (light emitting layer) 201d. Subsequently, the second heat treatment apparatus heat-treats the second organic compound layer (light emitting layer) 201e. The second organic compound layer (light emitting layer) 201d is applied with the same application width as the first organic compound layer (hole transport layer) 201c. In addition, when there are a plurality of second organic compound layers (light-emitting layers), organic compounds stacked by repeating coating, drying, and heat treatment according to the number of second organic compound layers (light-emitting layers) to be stacked. A layer (light emitting layer) is formed. Thereafter, the surface of the second organic compound layer (light emitting layer) 201e formed by the charge removal processing means is discharged.

S5では、第2有機化合物層(発光層)を有する帯状可撓性支持体が、第2有機化合物層(発光層)を内側にして巻き芯に巻取られロール状の帯状可撓性支持体201hの形態で、次工程に移動する間、10-5〜10Paの減圧条件下で保管される。In S5, the belt-like flexible support having the second organic compound layer (light-emitting layer) is wound around the core with the second organic compound layer (light-emitting layer) inside, and is rolled into a belt-like flexible support. In the form of 201h, it is stored under reduced pressure conditions of 10 −5 to 10 Pa while moving to the next step.

図6は図3に示す有機EL素子を製造する工程とを使用し、有機EL素子を製造する概略フロー図である。尚、有機化合物層(発光層)を形成するまでは、図5に示すS1〜S5までと同じであるため省略する。   FIG. 6 is a schematic flow diagram for manufacturing an organic EL element using the process for manufacturing the organic EL element shown in FIG. The steps until the organic compound layer (light emitting layer) is formed are the same as S1 to S5 shown in FIG.

S′1では、図5のS5で示した第2有機化合物層(発光層)201eを有する帯状可撓性支持体が巻き芯に巻取られ、ロール状の帯状可撓性支持体B201fが用意される。   In S′1, a strip-shaped flexible support body having the second organic compound layer (light emitting layer) 201e shown in S5 of FIG. 5 is wound around the winding core to prepare a roll-shaped strip-shaped flexible support body B201f. Is done.

S′2では、帯状可撓性支持体上の第2有機化合物層(発光層)201e上に5×10-4Paの減圧条件下で厚さ0.5nmの電子注入層(LiF層)201gが蒸着方式で形成される。電子注入層の形成は、蒸着時に第1電極層201oの片方の端部201o1が被覆されないようにマスクを掛けた状態で行われる。In S′2, an electron injection layer (LiF layer) 201 g having a thickness of 0.5 nm is formed on the second organic compound layer (light emitting layer) 201e on the belt-like flexible support under a reduced pressure condition of 5 × 10 −4 Pa. Is formed by vapor deposition. The electron injecting layer is formed in a state where a mask is applied so that one end 201o1 of the first electrode layer 201o is not covered during vapor deposition.

S′3では、形成された電子注入層201g上に5×10-4Paの減圧条件下で電子注入層201iと厚さ100nmの第2電極層(アルミニウム層)201hが蒸着方式で形成される。第2電極層の形成は、第1電極層の片方の端部201o1と反対側の端部が電子注入層の幅より広くし、帯状可撓性支持体201n上になるように形成される。In S′3, an electron injection layer 201i and a second electrode layer (aluminum layer) 201h having a thickness of 100 nm are formed by vapor deposition on the formed electron injection layer 201g under a reduced pressure condition of 5 × 10 −4 Pa. . The second electrode layer is formed so that the end opposite to the one end 201o1 of the first electrode layer is wider than the width of the electron injection layer and is on the belt-like flexible support 201n.

S′4では、第2電極を含む陰極層(電子注入層201gと第2電極層201h)が形成された、帯状可撓性支持体が減圧条件下で巻き芯に巻取られロール状の帯状可撓性支持体201jとし、次工程に移動される。   In S′4, a strip-shaped flexible support on which a cathode layer (electron injection layer 201g and second electrode layer 201h) including the second electrode is formed is wound around a core under reduced pressure and rolled into a strip. The flexible support 201j is moved to the next step.

S′5では、第1電極層の片方の端部20101と、第2電極を含む陰極層の片方の端部201h1とを外した状態で、第2電極を含む陰極層上を覆う様に接着剤201pが大気圧中で塗布される。接着剤としては、例えばUV硬化性のエポキシ樹脂(ナガセケムテックス(株)製UVレジン XNR5570−B1)をダイコートにより塗布した。引き続き、塗工された接着剤の面積に合わせ封止フィルム供給部から供給された封止フィルム502b2が貼合され、圧着ロールにより貼着し、UVランプを陰極側から照射し硬化処理することで有機EL素子が形成された帯状可撓性支持体(封止フィルムで保護された有機EL素子)が作製される。尚、接着剤のエポキシ樹脂は熱硬化型であってもよい。その場合は、貼り合せ時にヒートロール間を通すことにより加熱圧着を行う。   In S′5, with one end 20101 of the first electrode layer and one end 201h1 of the cathode layer including the second electrode removed, adhesion is performed so as to cover the cathode layer including the second electrode. Agent 201p is applied at atmospheric pressure. As the adhesive, for example, a UV curable epoxy resin (UV resin XNR5570-B1 manufactured by Nagase ChemteX Corporation) was applied by die coating. Subsequently, the sealing film 502b2 supplied from the sealing film supply unit is pasted in accordance with the area of the applied adhesive, and is stuck by a pressure roll, and the UV lamp is irradiated from the cathode side and cured. A band-shaped flexible support (organic EL element protected with a sealing film) on which the organic EL element is formed is produced. The adhesive epoxy resin may be a thermosetting type. In that case, thermocompression bonding is performed by passing between heat rolls at the time of bonding.

S′6では、有機EL素子が形成された帯状可撓性支持体(封止フィルムで保護された有機EL素子)を巻き芯に巻取りロール状とすることで封止フィルムで保護されたロール状の有機EL素子601の作製が終了する。尚、必要に応じて、連続的に第1電極層の大きさに合わせシート状に断裁してもよい。尚、断裁した場合は、接着剤を有機化合物層(発光層)の外周のみにディスペンサ、スクリーン印刷等で形成することが好ましい。   In S'6, the roll protected by the sealing film by forming the belt-like flexible support (organic EL element protected by the sealing film) on which the organic EL element is formed into a winding roll shape around the winding core The organic EL element 601 is finished. Note that, if necessary, the sheet may be cut continuously in accordance with the size of the first electrode layer. In the case of cutting, the adhesive is preferably formed only on the outer periphery of the organic compound layer (light emitting layer) by a dispenser, screen printing or the like.

図7は図4に示す有機EL素子を製造する工程とを使用し、有機EL素子を製造する概略フロー図である。尚、有機化合物層(発光層)を形成するまでは、図5に示すS1〜S5までと同じであるため省略する。   FIG. 7 is a schematic flow diagram for manufacturing an organic EL element using the process for manufacturing the organic EL element shown in FIG. The steps until the organic compound layer (light emitting layer) is formed are the same as S1 to S5 shown in FIG.

S′′1では、図5のS5で示した第2有機化合物層(発光層)201eを有する帯状可撓性支持体が巻き芯に巻取られ、ロール状の帯状可撓性支持体201fが用意される。   In S ″ 1, a strip-shaped flexible support body having the second organic compound layer (light emitting layer) 201e shown in S5 of FIG. 5 is wound around the winding core, and a roll-shaped strip-shaped flexible support body 201f is formed. Prepared.

S′′2では、帯状可撓性支持体上の第2有機化合物層(発光層)201e上に5×10-4Paの減圧条件下で厚さ0.5nmの電子注入層(LiF層)201gが蒸着方式で形成される。電子注入層の形成は、蒸着時に第1電極層の片方の端部201o1が被覆されないようにマスクを掛けた状態で行われる。In S ″ 2, an electron injection layer (LiF layer) having a thickness of 0.5 nm is formed on the second organic compound layer (light emitting layer) 201e on the belt-like flexible support under a reduced pressure of 5 × 10 −4 Pa. 201 g is formed by vapor deposition. The electron injecting layer is formed in a state where a mask is applied so that one end 201o1 of the first electrode layer is not covered during vapor deposition.

S′′3では、形成された電子注入層201g上に5×10-4Paの減圧条件下で厚さ100nmの第2電極層(アルミニウム層)201hが蒸着方式で形成される。第2電極を含む陰極層の形成は、第1電極層の片方の端部201o1と反対側の端部が電子注入層201gの幅より広くし、帯状可撓性支持体201n上になるように形成される。In S ″ 3, a second electrode layer (aluminum layer) 201h having a thickness of 100 nm is formed on the formed electron injection layer 201g by a vapor deposition method under a reduced pressure condition of 5 × 10 −4 Pa. The cathode layer including the second electrode is formed so that one end of the first electrode layer opposite to the end 201o1 is wider than the width of the electron injection layer 201g and is on the belt-like flexible support 201n. It is formed.

S′′4では、引き続き形成された第2電極層(陰極層)201h上に、第1電極層(陽極層)201oの片方の端部201o1と、第2電極層(陰極層)201hの片方の端部201h1とを外した状態で、第2電極層201j上を覆う様に封止層201qが減圧条件下で蒸着方式で形成され、有機EL素子が形成された帯状可撓性支持体が作製される。   In S ″ 4, one end portion 201o1 of the first electrode layer (anode layer) 201o and one side of the second electrode layer (cathode layer) 201h are formed on the second electrode layer (cathode layer) 201h that is continuously formed. A strip-shaped flexible support body in which an organic EL element is formed by forming a sealing layer 201q under a reduced pressure condition so as to cover the second electrode layer 201j with the end portion 201h1 removed. Produced.

S′′5では、有機EL素子が形成された帯状可撓性支持体(封止層で保護された有機EL素子)を巻き芯に巻取りロール状とすることで封止層で保護されたロール状の有機EL素子901の作製が終了する。尚、必要に応じて、連続的に第1電極層の大きさに合わせシート状に断裁してもよい。尚、断裁した場合は、接着剤を有機化合物層(発光層)の外周のみにディスペンサ、スクリーン印刷等で形成することが好ましい。   In S ″ 5, the belt-shaped flexible support (organic EL element protected by the sealing layer) on which the organic EL element was formed was wound around the winding core to be protected by the sealing layer. The production of the roll-shaped organic EL element 901 is completed. Note that, if necessary, the sheet may be cut continuously in accordance with the size of the first electrode layer. In the case of cutting, the adhesive is preferably formed only on the outer periphery of the organic compound layer (light emitting layer) by a dispenser, screen printing or the like.

この後、連続的に第1電極層の大きさに合わせシート状に断裁してもよいし、一旦、巻き芯に巻取りロール状としてもかまわない。   Thereafter, it may be continuously cut into a sheet shape in accordance with the size of the first electrode layer, or it may be once wound around the winding core.

次に、本発明に係る有機EL素子の構成に使用される他の構成部材に付き説明する。有機化合物層(発光層)に隣接して設けられる層として阻止層が挙げられる。阻止層としては正孔阻止層、電子阻止層が挙げられる。阻止層は、有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることが出来る。又、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることが出来、正孔阻止層は、有機化合物層(発光層)に隣接して設けられていることが好ましい。   Next, other structural members used for the configuration of the organic EL element according to the present invention will be described. Examples of the layer provided adjacent to the organic compound layer (light emitting layer) include a blocking layer. Examples of the blocking layer include a hole blocking layer and an electron blocking layer. The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258, 11-204359, and “Organic EL elements and their forefront of industrialization” (issued by NTT, Inc. on November 30, 1998). There is a hole blocking (hole blocking) layer. The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. By blocking this, the recombination probability of electrons and holes can be improved. Further, the structure of the electron transport layer described later can be used as a hole blocking layer according to the present invention as necessary, and the hole blocking layer is provided adjacent to the organic compound layer (light emitting layer). It is preferable.

有機化合物層(発光層)が、複数の発光色の異なる発光層を有する場合には、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と、該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対し、そのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。   When the organic compound layer (light-emitting layer) has a plurality of light-emitting layers with different emission colors, the light-emitting layer whose emission maximum wavelength is the shortest is preferably closest to the anode among all the light-emitting layers, In such a case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode. Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more higher than the host compound of the shortest wave emitting layer.

イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることが出来る。(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることが出来る。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることも出来る。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、或いは紫外光電子分光として知られている方法を好適に用いることが出来る。   The ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example. (1) Keywords using Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), which is molecular orbital calculation software manufactured by Gaussian, USA. The ionization potential can be obtained as a value obtained by rounding off the second decimal place of the value (eV unit conversion value) calculated by performing structural optimization using B3LYP / 6-31G *. This calculation value is effective because the correlation between the calculation value obtained by this method and the experimental value is high. (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.

一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることが出来る。又、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることが出来る。本発明に係わる正孔阻止層、電子輸送層の膜厚としては好ましくは3nm〜100nmであり、更に好ましくは5nm〜30nmである。   On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.

本発明の有機EL素子を構成している有機化合物層(発光層)には、有機化合物層(発光層)の発光効率を高くするために公知のホスト化合物と公知のリン光性化合物(リン光発光性化合物とも言う)を含有することが好ましい。   The organic compound layer (light emitting layer) constituting the organic EL device of the present invention has a known host compound and a known phosphorescent compound (phosphorescent) in order to increase the light emission efficiency of the organic compound layer (light emitting layer). It is preferable to contain a luminescent compound.

ホスト化合物とは、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。ホスト化合物を複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することが出来る。又、リン光性化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることが出来る。リン光性化合物の種類、ドープ量を調整することで白色発光が可能であり、照明、バックライトへの応用も出来る。   The host compound is a compound contained in the light-emitting layer, the mass ratio in the layer is 20% or more, and the phosphorescence quantum yield of phosphorescence emission is 0.1 at room temperature (25 ° C.). Is defined as less than a compound. The phosphorescence quantum yield is preferably less than 0.01. A plurality of host compounds may be used in combination. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of phosphorescent compounds, it is possible to mix different light emission, thereby obtaining an arbitrary emission color. White light emission is possible by adjusting the kind of phosphorescent compound and the amount of doping, and can also be applied to illumination and backlight.

これらのホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、尚且つ高Tg(ガラス転移温度)である化合物が好ましい。公知のホスト化合物としては、例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等に記載の化合物が挙げられる。   As these host compounds, compounds having a hole transporting ability and an electron transporting ability, preventing emission light from being increased in wavelength, and having a high Tg (glass transition temperature) are preferable. Known host compounds include, for example, JP-A Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, and 2002-334786. Gazette, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227 2002-231453, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, Examples thereof include compounds described in 2002-299060, 2002-302516, 2002-305083, 2002-305084, 2002-308837 and the like.

有機化合物層(発光層)が複数の発光層を有する場合、これら各層のホスト化合物の50質量%以上が同一の化合物であることが、有機層全体に渡って均質な膜性状を得やすいことから好ましく、更にはホスト化合物のリン光発光エネルギーが2.9eV以上であることが、ドーパントからのエネルギー移動を効率的に抑制し、高輝度を得る上で有利となることからより好ましい。リン光発光エネルギーとは、ホスト化合物を基板上に100nmの蒸着膜のフォトルミネッセンスを測定し、そのリン光発光の0−0バンドのピークエネルギーを言う。   When the organic compound layer (light emitting layer) has a plurality of light emitting layers, it is easy to obtain a uniform film property over the entire organic layer that 50% by mass or more of the host compound in each layer is the same compound. Further, it is more preferable that the phosphorescence emission energy of the host compound is 2.9 eV or more because it is advantageous in efficiently suppressing energy transfer from the dopant and obtaining high luminance. Phosphorescence emission energy means the peak energy of the 0-0 band of phosphorescence emission when the photoluminescence of a deposited film of 100 nm is measured on a substrate with a host compound.

ホスト化合物は、有機EL素子の経時での劣化(輝度低下、膜性状の劣化)、光源としての市場ニーズ等を考慮し、リン光発光エネルギーが2.9eV以上且つTgが90℃以上のものであることが好ましい。即ち、輝度と耐久性の両方を満足するためには、リン光発光エネルギーが2.9eV以上且つTgが90℃以上のものであることが好ましい。Tgは、更に好ましくは100℃以上である。   The host compound has a phosphorescence emission energy of 2.9 eV or more and a Tg of 90 ° C. or more in consideration of deterioration of the organic EL device over time (decrease in luminance and film properties), market needs as a light source, and the like. Preferably there is. That is, in order to satisfy both luminance and durability, it is preferable that phosphorescence emission energy is 2.9 eV or more and Tg is 90 ° C. or more. Tg is more preferably 100 ° C. or higher.

リン光性化合物(リン光発光性化合物)とは、励起三重項からの発光が観測される化合物であり、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物である。先に説明したホスト化合物と合わせ使用することで、より発光効率の高い有機EL素子とすることが出来る。   A phosphorescent compound (phosphorescent compound) is a compound in which light emission from an excited triplet is observed, is a compound that emits phosphorescence at room temperature (25 ° C.), and has a phosphorescence quantum yield of 25. The compound is 0.01 or more at ° C. When used in combination with the host compound described above, an organic EL device with higher luminous efficiency can be obtained.

本発明に係るリン光性化合物は、リン光量子収率は好ましくは0.1以上である。上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定出来る。溶液中でのリン光量子収率は種々の溶媒を用いて測定出来るが、本発明に用いられるリン光性化合物は、任意の溶媒の何れかにおいて上記リン光量子収率が達成されればよい。   The phosphorescent compound according to the present invention preferably has a phosphorescence quantum yield of 0.1 or more. The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 version, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence quantum yield used in the present invention only needs to achieve the phosphorescence quantum yield in any solvent.

リン光性化合物の発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上出来ャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光性化合物に移動させることでリン光性化合物からの発光を得るというエネルギー移動型、もう一つはリン光性化合物がキャリアトラップとなり、リン光性化合物上でキャリアの再結合が起こりリン光性化合物からの発光が得られるというキャリアトラップ型であるが、何れの場合においても、リン光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。   There are two types of light emission of the phosphorescent compound in principle. One is the recombination of the carrier on the host compound to which carriers are transported, and an excited state of the host compound is generated, and this energy is generated by the phosphorescent compound. The energy transfer type is to obtain light emission from the phosphorescent compound by moving to the other, and the other is that the phosphorescent compound becomes a carrier trap, and carrier recombination occurs on the phosphorescent compound, and the phosphorescent compound emits light. Although it is a carrier trap type in which light emission can be obtained, in any case, it is a condition that the excited state energy of the phosphorescent compound is lower than the excited state energy of the host compound.

リン光性化合物は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることが出来る。リン光性化合物としては、好ましくは元素の周期表で8族〜10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。   The phosphorescent compound can be appropriately selected from known compounds used for the light emitting layer of the organic EL device. The phosphorescent compound is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex compound), rare earth Of these, iridium compounds are the most preferred.

本発明においては、リン光性化合物のリン光発光極大波長としては特に制限されるものではなく、原理的には中心金属、配位子、配位子の置換基等を選択することで得られる発光波長を変化させることが出来る。   In the present invention, the phosphorescence emission maximum wavelength of the phosphorescent compound is not particularly limited, and can be obtained in principle by selecting a central metal, a ligand, a ligand substituent, and the like. The emission wavelength can be changed.

本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。   The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with the total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.

本発明で言うところの白色素子とは、2℃視野角正面輝度を上記方法により測定した際に、1000Cd/m2でのCIE1931 表色系における色度がX=0.33±0.07、Y=0.33±0.07の領域内にあることを言う。The white element referred to in the present invention means that the chromaticity in the CIE1931 color system at 1000 Cd / m 2 is X = 0.33 ± 0.07 when the front luminance at 2 ° C. viewing angle is measured by the above method. It is in the region of Y = 0.33 ± 0.07.

本発明の有機EL素子の発光の室温における外部取り出し効率は1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。   The external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more. Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.

又、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。   In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.

封止部材(図1に示される封止膜、封止フィルム)と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。又、真空とすることも可能である。又、内部に吸湿性化合物を封入することも出来る。吸湿性化合物としては例えば金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。   In the gap between the sealing member (sealing film and sealing film shown in FIG. 1) and the display area of the organic EL element, in the gas phase and the liquid phase, an inert gas such as nitrogen or argon, or fluorocarbon It is preferable to inject an inert liquid such as hydrogen or silicon oil. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside. Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, etc.). Metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, barium perchlorate, In particular, anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.

本発明の有機EL素子は、発光層で発生した光を効率よく取り出すために以下に示す方法を併用することが好ましい。有機EL素子は、空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光の内15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことが出来ないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。   The organic EL device of the present invention preferably uses the following method in combination in order to efficiently extract light generated in the light emitting layer. The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1), and only about 15% to 20% of the light generated in the light emitting layer can be extracted. It is generally said that there is no. This is because the light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the element, or the transparent electrode or light emitting layer and the transparent substrate This is because the light undergoes total reflection between them, and the light is guided through the transparent electrode or the light emitting layer.

この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435)。基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)。素子の側面等に反射面を形成する方法(特開平1−220394号公報)。基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)。基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)。基板、透明電極層や発光層の何れかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)などがある。   As a method for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435). A method for improving efficiency by providing a substrate with a light condensing property (JP-A-63-314795). A method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394). A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between a substrate and a light emitter (Japanese Patent Laid-Open No. 62-172691). A method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter (Japanese Patent Laid-Open No. 2001-202827). There is a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer, and a light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951).

本発明においては、これらの方法を有機EL素子と組み合わせて用いることが出来るが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、或いは基板、透明電極層や発光層の何れかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることが出来る。本発明においては、これらの手段を組み合わせることにより、更に高輝度或いは耐久性に優れた素子を得ることが出来る。   In the present invention, these methods can be used in combination with an organic EL element. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, a transparent electrode layer, A method of forming a diffraction grating between any layers of the light emitting layer (including between the substrate and the outside) can be suitably used. In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.

透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。又、更に1.35以下であることが好ましい。低屈折率媒質の厚みは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。全反射を起こす界面もしくは何れかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることが出来る性質を利用して、発光層から発生した光の内、層間での全反射等により外に出ることが出来ない光を、何れかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。   When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. . Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less. The thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate. The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method is generated from the light emitting layer by utilizing the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Of the light, the light that cannot go out due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode) , Trying to extract light out. The introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.

回折格子を導入する位置としては前述のとおり、何れかの層間もしくは、媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2〜3倍程度が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、2次元的に配列が繰り返されることが好ましい。   As described above, the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium. The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.

更に、本発明の有機EL素子は、発光層で発生した光を効率よく取り出すために、基板の光取出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工したり、或いは、所謂集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることが出来る。マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。   Furthermore, the organic EL device of the present invention is processed so as to provide, for example, a structure on the microlens array on the light extraction side of the substrate in order to efficiently extract the light generated in the light emitting layer, or so-called condensing. By combining with the sheet, the luminance in the specific direction can be increased by collecting light in a specific direction, for example, in the front direction with respect to the element light emitting surface. As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.

集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることが出来る。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。又、発光素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることが出来る。   As the condensing sheet, for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, a substrate may be formed with a Δ-shaped stripe having an apex angle of 90 degrees and a pitch of 50 μm, or the apex angle is rounded and the pitch is changed randomly. Other shapes may be used. Moreover, in order to control the light emission angle from a light emitting element, you may use a light-diffusion plate and a film together with a condensing sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.

以下、実施例を挙げて本発明の具体的な効果を示すが、本発明の態様はこれに限定されるものではない。   Hereinafter, although an example is given and the concrete effect of the present invention is shown, the mode of the present invention is not limited to this.

実施例1
〈ガスバリア層と第1電極層とをこの順番で有する帯状可撓性支持体の準備〉
厚さ200μmのポリエーテルスルホン(住友ベークライト社製フィルム、以下、PESと略記する)を用い、以下に示す方法でガスバリア層と第1電極層とを形成し、巻き芯に巻取りロール状としたガスバリア層と第1電極層とをこの順番で有する帯状可撓性支持体を準備した。
Example 1
<Preparation of strip-shaped flexible support having gas barrier layer and first electrode layer in this order>
Using a 200 μm thick polyethersulfone (a film manufactured by Sumitomo Bakelite Co., Ltd., hereinafter abbreviated as PES), a gas barrier layer and a first electrode layer are formed by the method described below, and a winding roll is formed on the winding core. A belt-like flexible support having a gas barrier layer and a first electrode layer in this order was prepared.

(透明性ガスバリア層の形成)
準備したPES上に、大気圧プラズマ放電処理法で、厚さ約90nmの透明ガスバリア層を形成した。JISk−7129Bに準拠した方法により水蒸気透過率を測定した結果、10-3g/m2/day以下であった。JISk−7126Bに準拠した方法により酸素透過率を測定した結果、10-3g/m2/day以下であった。
(Formation of a transparent gas barrier layer)
A transparent gas barrier layer having a thickness of about 90 nm was formed on the prepared PES by an atmospheric pressure plasma discharge treatment method. As a result of measuring the water vapor transmission rate by a method based on JISk-7129B, it was 10 −3 g / m 2 / day or less. As a result of measuring the oxygen transmission rate by a method based on JISk-7126B, it was 10 −3 g / m 2 / day or less.

(第1電極層の形成)
形成したバリア層の上に厚さ120nmのITO(インジウムチンオキシド)を蒸着法によりパターニングを行い、第1電極層を形成した。
(Formation of first electrode layer)
On the barrier layer thus formed, ITO (indium tin oxide) having a thickness of 120 nm was patterned by an evaporation method to form a first electrode layer.

〈有機化合物層(発光層)の形成〉
図2に示す工程を使用し、準備した巻き芯に巻取りロール状としたガスバリア層と第1電極層とをこの順番で有する帯状可撓性支持体の第1電極層の上に以下に示す正孔輸送層形成用塗布液をエクストルージョン塗布機を使用した湿式塗布方式により塗布・乾燥した後、除電処理を行い、引き続き引き正孔輸送層上に、有機化合物層(発光層)形成用塗布液をエクストルージョン塗布機を使用した湿式塗布方式により表1に示す様に有機化合物層(発光層)形成用塗布液を塗布するときの搬送速度のバラツキを変えて以下に示す条件で塗布・乾燥し有機化合物層(発光層)を形成した後、除電処理し、室温と同じ温度になるまで冷却した後、巻き芯に巻取りロール状とし試料No.101〜108とした。尚、搬送速度は三菱電機(株)製 レーザドップラ速度計LV203で測定し、搬送速度のバラツキは平均速度に対する二乗平均平方根を%表示した値を示す。搬送速度のバラツキの変化は搬送速度を変化させることで行った。
<Formation of organic compound layer (light emitting layer)>
The process shown in FIG. 2 is used, and the following is shown on the first electrode layer of the belt-like flexible support having the gas barrier layer and the first electrode layer in this order on the prepared winding core. After applying and drying the coating liquid for forming the hole transport layer by a wet coating method using an extrusion coating machine, the charge removal treatment is performed, and subsequently, the coating for forming the organic compound layer (light emitting layer) is formed on the pulling hole transport layer. As shown in Table 1, the liquid is applied and dried under the conditions shown below by varying the transport speed when applying the coating liquid for forming an organic compound layer (light emitting layer) by a wet coating method using an extrusion coating machine. After forming the organic compound layer (light emitting layer), it was subjected to charge removal treatment, cooled to the same temperature as the room temperature, and then taken up into a winding roll shape on the winding core. 101-108. The conveyance speed is measured with a laser Doppler velocimeter LV203 manufactured by Mitsubishi Electric Corporation, and the variation in the conveyance speed indicates a value expressed in% of the root mean square with respect to the average speed. The variation in the conveyance speed was changed by changing the conveyance speed.

正孔輸送層形成用塗布液を塗布する前に、帯状可撓性支持体の洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm2、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。Before applying the coating liquid for forming the hole transport layer, the surface of the belt-like flexible support is subjected to a cleaning surface modification treatment using a low-pressure mercury lamp with a wavelength of 184.9 nm at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm. Carried out. The charge removal treatment was performed using a static eliminator with weak X-rays.

正孔輸送層形成用塗布液は乾燥後の厚みが50nmになるように塗布した。有機化合物層(発光層)形成用塗布液は乾燥後の厚みが100nmになるように塗布した。尚、搬送速度は2m/minで実施した。   The coating liquid for forming the hole transport layer was applied so that the thickness after drying was 50 nm. The coating solution for forming the organic compound layer (light emitting layer) was applied so that the thickness after drying was 100 nm. The conveyance speed was 2 m / min.

正孔輸送層形成用塗布液の準備
ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。正孔輸送層形成用塗布液の表面張力は0.04Nm(協和界面化学社製:表面張力計CBVP−A3)であった。
Preparation of coating solution for forming hole transport layer Polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS, Baytron P AI 4083 manufactured by Bayer) diluted with pure water 65% and methanol 5% to form hole transport layer It was prepared as a coating solution. The surface tension of the coating liquid for forming a hole transport layer was 0.04 Nm (manufactured by Kyowa Interface Chemical Co., Ltd .: surface tension meter CBVP-A3).

有機化合物層形成用塗布液の準備
ホスト材のポリビニルカルバゾール(PVK)にドーパント材Ir(ppy)3を5質量%を1,2−ジクロロエタン中に溶解し10%溶液とし有機化合物層形成用塗布液として準備した。有機化合物層形成用塗布液の表面張力は0.032Nm(協和界面化学社製:表面張力計CBVP−A3)であった。有機化合物層のガラス転移温度は225℃であった。尚、本例は緑色の発光を有する材料を用いたが、更に青色、赤色及びドーパント材を使用し積層させることで、白色の有機EL素子を作製することが可能である。
Preparation of organic compound layer forming coating solution 5% by mass of dopant material Ir (ppy) 3 in polyvinylcarbazole (PVK) as a host material in 1,2-dichloroethane to form a 10% solution Prepared as. The surface tension of the coating solution for forming an organic compound layer was 0.032 Nm (manufactured by Kyowa Interface Chemical Co., Ltd .: surface tension meter CBVP-A3). The glass transition temperature of the organic compound layer was 225 ° C. In addition, although the material which has green light emission was used for this example, it is possible to produce a white organic EL element by laminating | stacking further using blue, red, and a dopant material.

乾燥及び加熱処理条件
正孔輸送層形成用塗布液を塗布した後、図2示す第1乾燥装置及び第1加熱処理装置を使用し、第1乾燥装置ではスリットノズル形式の吐出口から製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、第1加熱処理装置で温度200℃で裏面伝熱方式の熱処理を行い正孔輸送層を形成した。
Drying and Heating Treatment Conditions After applying the hole transport layer forming coating solution, the first drying device and the first heat treatment device shown in FIG. 2 are used. After removing the solvent at a height of 100 mm, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 100 ° C., a backside heat transfer system heat treatment is subsequently performed at a temperature of 200 ° C. in a first heat treatment apparatus. A hole transport layer was formed.

有機化合物層(発光層)形成用塗布液を塗布した後、図2の(b)に示す第2乾燥装置及び第2加熱処理装置を使用し、第2乾燥装置ではスリットノズル形式の吐出口から製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、第2加熱処理装置で温度220℃で加熱処理を行い有機化合物層(発光層)を形成した。   After applying the organic compound layer (light emitting layer) forming coating solution, the second drying device and the second heat treatment device shown in FIG. 2B are used. In the second drying device, the slit nozzle type discharge port is used. After removing the solvent at a height of 100 mm toward the film forming surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., a second heat treatment apparatus is then used for heat treatment at a temperature of 220 ° C. A compound layer (light emitting layer) was formed.

塗布条件
正孔輸送層形成用塗布液の塗布時の温度は、25℃、有機化合物層形成用塗布液の塗布時の温度は、25℃の環境の大気環境下で行った。尚、湿式塗布工程は露点温度−20℃以下且つ清浄度クラス5以下(JIS B 9920)とした。
Coating conditions The temperature at the time of application of the coating liquid for forming a hole transport layer was 25 ° C., and the temperature at the time of coating of the coating liquid for forming an organic compound layer was 25 ° C. in an atmospheric environment. The wet coating process was performed with a dew point temperature of −20 ° C. or lower and a cleanliness class 5 or lower (JIS B 9920).

評価
作製した試料No.101〜108に付き、発光輝度ムラを以下に示す評価ランクに従って評価した結果を表1に示す。
Evaluation The produced sample No. Table 1 shows the results of evaluation of emission luminance unevenness according to the following evaluation ranks attached to 101 to 108.

発光輝度ムラの測定方法
10Vの直流電圧を印加したときの発光輝度(cd/m2)をコニカミノルタ(株)製
CS−1000を用いて測定し、以下に示す計算式より求めた。
Method for measuring unevenness of light emission luminance The light emission luminance (cd / m 2 ) when a DC voltage of 10 V is applied is manufactured by Konica Minolta Co., Ltd.
It measured using CS-1000 and calculated | required from the formula shown below.

発光輝度ムラ(%)=(最大発光輝度−最小発光輝度の差)/最大発光輝度×100
発光輝度ムラの評価ランク
○:発光輝度ムラが10%未満
△:発光輝度ムラが10%以上、15%未満
×:発光輝度ムラが15%以上
Emission luminance unevenness (%) = (difference between maximum emission luminance−minimum emission luminance) / maximum emission luminance × 100
Evaluation rank of light emission unevenness ○: Light emission unevenness is less than 10% Δ: Light emission unevenness is 10% or more, less than 15% ×: Light emission unevenness is 15% or more

尚、試料No.101発光輝度ムラは良好な結果を示したが、搬送速度のバラツキをおさえるためには平均搬送速度を高めることが有効であるが搬送速度が上がるため、乾燥装置が必要以上に大きくなり、エネルギー効率が低下する懸念がある。本発明の有効性が確認された。   Sample No. Although the 101 luminance unevenness showed a good result, it is effective to increase the average conveyance speed in order to suppress the variation in the conveyance speed. However, since the conveyance speed increases, the drying apparatus becomes larger than necessary, and the energy efficiency There is a concern that will decrease. The effectiveness of the present invention was confirmed.

実施例2
実施例1で作製した試料No.103を作製するとき、有機化合物層(発光層)形成用塗布液を塗布した後の乾燥条件(吐出風速、有機化合物層(発光層)塗膜の幅手方向の風速分布)を表2に示す様に変えて乾燥した他は全て同じ条件とし、有機化合物層を形成した後室温まで冷却し、巻き芯に巻取りロール状とし試料No.201〜214とした。尚、吐出風速はカノマックス(株)製 熱風風速計 モデル6113で測定し、幅手方向の風速分布は次式により計算で求めた。
Example 2
Sample No. 1 prepared in Example 1 was used. Table 2 shows the drying conditions (discharge air speed, the air speed distribution in the width direction of the organic compound layer (light emitting layer) coating film) after applying the coating liquid for forming the organic compound layer (light emitting layer). The organic compound layer was formed, cooled to room temperature, and wound into a winding roll shape on the winding core. 201-214. The discharge wind speed was measured with a hot air anemometer model 6113 manufactured by Kanomax Co., Ltd., and the wind speed distribution in the width direction was calculated by the following formula.

風速分布=(最大風速−最小風速)/平均風速×100
評価
作製した試料No.201〜214に付き、目視により塗膜面の状態を評価し、以下に示す評価ランクに従って評価した結果を表2に示す。
Wind speed distribution = (maximum wind speed−minimum wind speed) / average wind speed × 100
Evaluation The produced sample No. Table 2 shows the results of evaluations according to the evaluation ranks shown below.

○:塗膜面ムラ、面荒れがない
△:実技上問題ならないわずかな塗膜面ムラ、面荒れが一部に認められる
×:塗膜面ムラ、面荒れが全面に認められる
○: No coating surface unevenness or surface roughness △: Slight coating surface unevenness or surface roughness that is not a problem in practice is observed in part ×: Coating surface unevenness or surface roughness is recognized over the entire surface

本発明の有効性が確認された。   The effectiveness of the present invention was confirmed.

実施例3
実施例1で作製した試料No.103を作製するとき、有機化合物層形成用塗布液の(発光層)の表面張力を表3に示す様に変えた他は全て同じ条件で有機化合物層を形成した後、室温まで冷却し、巻き芯に巻取りロール状とし試料No.301〜307とした。表面張力は、協和界面化学社製:表面張力計CBVP−A3で測定した値を示す。
Example 3
Sample No. 1 prepared in Example 1 was used. 103, the organic compound layer was formed under the same conditions except that the surface tension of the (light emitting layer) of the coating solution for forming an organic compound layer was changed as shown in Table 3, and then cooled to room temperature and wound. Sample No. was made into a winding roll shape on the core. 301 to 307. The surface tension is a value measured by Kyowa Interface Chemical Co., Ltd .: surface tension meter CBVP-A3.

評価
作製した試料No.301〜307に付き、目視により塗膜面の状態を評価し、以下に示す評価ランクに従って評価した結果を表3に示す。
Evaluation The produced sample No. Table 3 shows the results of the evaluation of the state of the coating film surface by visual observation 301 to 307 according to the evaluation rank shown below.

○:塗膜面ムラ、面荒れがない
△:実技上問題ならないわずかな塗膜面ムラ、面荒れが一部に認められる
×:塗膜面ムラ、面荒れが全面に認められる
○: No coating surface unevenness or surface roughness △: Slight coating surface unevenness or surface roughness that is not a problem in practice is observed in part ×: Coating surface unevenness or surface roughness is recognized over the entire surface

本発明の有効性が確認された。   The effectiveness of the present invention was confirmed.

実施例4
実施例1で作製した試料No.103を作製するとき、有機化合物層(発光層)形成用塗布液を塗布し、乾燥した後の熱処理の条件を表4に示す様に変えて処理した他は全て同じ条件とし、有機化合物層(発光層)を形成した後、室温まで冷却し、巻き芯に巻取りロール状とし試料No.401〜408とした。
Example 4
Sample No. 1 prepared in Example 1 was used. 103, the coating solution for forming the organic compound layer (light emitting layer) was applied, and the conditions for the heat treatment after drying were changed as shown in Table 4, and all the conditions were the same, and the organic compound layer ( After the light emitting layer is formed, the sample is cooled to room temperature, and a winding roll is formed on the winding core. 401-408.

評価
作製した試料No.401〜408に付き、有機化合物層(発光層)の寿命を評価した結果を表4に示す。尚、有機化合物層(発光層)の寿命は、2.5mA/cmの一定電流で駆動したときの輝度が初期の輝度の半分になるのに要した時間(半減時間)を寿命の指標とし、熱処理をしない場合を100として、その相対値で評価を行った。熱処理温度は有機化合物層(発光層)のガラス転移温度(225℃)に対する温度を示す。
Evaluation The produced sample No. Table 4 shows the results of evaluating the lifetime of the organic compound layer (light emitting layer) attached to 401 to 408. The lifetime of the organic compound layer (light-emitting layer) is the time required for the luminance to be half of the initial luminance when driven at a constant current of 2.5 mA / cm 2 (half time) as an indicator of the lifetime. The case where no heat treatment was performed was set as 100, and the evaluation was performed based on the relative value. The heat treatment temperature indicates the temperature relative to the glass transition temperature (225 ° C.) of the organic compound layer (light emitting layer).

本発明の有効性が確認された。   The effectiveness of the present invention was confirmed.

実施例5
実施例1で作製した試料No.103を作製するとき、正孔輸送層形成用塗布液及び有機化合物層(発光層)形成用塗布液を塗布し、正孔輸送層及び有機化合物層(発光層)を形成するまでの環境条件(露点温度、清浄度)を表5に示す様に変えて処理した他は全て同じ条件とし、有機化合物層(発光層)を形成した後、室温まで冷却し、巻き芯に巻取りロール状とし試料No.501〜507とした。尚、清浄度はJISB 9920に準拠し測定した値を示し、清浄度の変化はフィルターを変えることで行った。尚、正孔輸送層形成用塗布液及び有機化合物層(発光層)形成用塗布液の塗布温度が25℃で行ったため、乾燥装置及び加熱処理装置は除き他は温度は25℃で大気圧条件で行った。
Example 5
Sample No. 1 prepared in Example 1 was used. 103 is applied, a hole transport layer forming coating solution and an organic compound layer (light emitting layer) forming coating solution are applied, and the environmental conditions until the hole transport layer and the organic compound layer (light emitting layer) are formed ( All samples were processed under the same conditions except that the dew point temperature and cleanliness were changed as shown in Table 5. After forming the organic compound layer (light emitting layer), the sample was cooled to room temperature and wound into a winding roll around the sample. No. 501-507. The cleanliness indicates a value measured according to JISB 9920, and the cleanliness was changed by changing the filter. In addition, since the coating temperature of the coating solution for forming the hole transport layer and the coating solution for forming the organic compound layer (light emitting layer) was 25 ° C., the temperature was 25 ° C. and the atmospheric pressure condition except for the drying device and the heat treatment device. I went there.

評価
作製した試料No.501〜507に付き、未発光故障を目視で確認し、次の評価ランクに従って評価した結果を表5に示す。
Evaluation The produced sample No. Table 5 shows the results of visually confirming the non-light-emitting failure and the evaluation according to the following evaluation rank.

未発光故障の確認方法
作製した試料を1週間、80℃の恒温室で保管した後、2.5mA/cmの一定電流で駆動したとき、発光しない箇所の有無を目視で確認した。未発光故障の評価ランク
○:未発光故障が確認されない
△:実技上問題とならないわずかな未発光故障が認められる
×:実技上問題となる未発光故障が散見される
Method for Confirming Non-Luminous Failure After the prepared sample was stored in a constant temperature room at 80 ° C. for 1 week, it was visually confirmed whether or not there was a portion that did not emit light when driven at a constant current of 2.5 mA / cm 2 . Evaluation rank of non-luminescent failure ○: No non-luminescent failure is confirmed △: Slight non-luminescent failure that does not cause a practical problem is recognized ×: Non-luminescent failure that causes a practical problem is occasionally seen

試料No.501の場合は、試料中に含まれる水分量により、又、試料No.504の場合は、付着した異物により未発光故障が発生したものと推測される。本発明の有効性が確認された。   Sample No. In the case of 501, depending on the amount of water contained in the sample, the sample No. In the case of 504, it is presumed that a non-light emission failure has occurred due to the adhered foreign matter. The effectiveness of the present invention was confirmed.

実施例6
実施例1で作製した試料No.103を保管する条件を表6に示す様に変えて処理した他は全て同じ条件とし試料No.601〜606とした。尚、保管期間5日間とした。
Example 6
Sample No. 1 prepared in Example 1 was used. The sample No. 103 was stored under the same conditions except that the conditions for storing 103 were changed as shown in Table 6 and processed. 601-606. The storage period was 5 days.

評価
作製した試料No.601〜606に付き、実施例4と同じ評価項目を同じ測定方法で測定した結果を表6に示す。尚、寿命(相対値)は保管条件が10-5Paのときの寿命を100としたときの相対値を示す。
Evaluation The produced sample No. Table 6 shows the results of measuring the same evaluation items as in Example 4 with the same measurement method as in 601 to 606. The life (relative value) is a relative value when the life is 100 when the storage condition is 10 −5 Pa.

試料No.606は寿命(相対値)は良好な値を示したが、得られる効果に対して高真空度を保つのに大掛かりの設備になってしまい設備の維持管理、コストアップが懸念される。本発明の有効性が確認された。   Sample No. Although the life (relative value) 606 shows a good value, it becomes a large-scale facility to maintain a high degree of vacuum with respect to the obtained effect, and there is a concern about maintenance and management of the facility and an increase in cost. The effectiveness of the present invention was confirmed.

Claims (15)

帯状可撓性支持体の上に、第1電極と、有機化合物層と、第2電極と、封止層又は封止フイルムとを、この順番で有する有機EL素子を、供給部と、塗布部・乾燥部と、回収部とを有する製造装置を用いて形成する有機化合物層の形成方法において、
前記供給部に、第1電極が形成された帯状可撓性支持体Aを、巻き芯に巻かれたロール状態で供給し、
次いで、前記塗布部・乾燥部で有機化合物層形成用塗布液を塗布及び乾燥を行い、前記帯状可撓性支持体Aに前記有機化合物層を形成して帯状可撓性支持体Bとし、
前記回収部で、前記帯状可撓性支持体Bを巻き芯に巻取りロール状とし、
前記有機化合物層は、前記乾燥部で吐出風速0.1〜5m/s、有機化合物層用塗膜の幅手方向の風速分布が0.1〜10%の気流乾燥で前記有機化合物層用塗膜の溶媒を除去して形成されていることを特徴とする有機EL素子の製造方法。
An organic EL element having a first electrode, an organic compound layer, a second electrode, and a sealing layer or a sealing film in this order on a strip-like flexible support, a supply unit, and a coating unit In the method for forming an organic compound layer formed using a manufacturing apparatus having a drying unit and a recovery unit,
Supply the strip-shaped flexible support A on which the first electrode is formed to the supply unit in a roll state wound around a winding core,
Next, the organic compound layer forming coating solution is applied and dried in the coating unit / drying unit, and the organic compound layer is formed on the strip-shaped flexible support A to form a strip-shaped flexible support B.
In the collection unit, the belt-like flexible support B is wound around a winding core,
The organic compound layer is coated with the organic compound layer by air-flow drying in which the air velocity distribution in the width direction of the coating film for the organic compound layer is 0.1 to 10% in the drying unit. A method for producing an organic EL device, which is formed by removing a solvent from a film.
前記塗布部・乾燥部は、有機化合物層形成用塗布液を湿式塗布装置により大気圧条件で有機化合物層を形成する塗布部と、大気圧条件で前記有機化合物層中の溶媒を除去し、有機化合物層を形成する乾燥部とを1ユニットとし、前記製造装置は少なくとも1ユニットの前記塗布部・乾燥部を有することを特徴とする請求項1に記載の有機EL素子の製造方法。  The coating part / drying part removes the solvent in the organic compound layer under an atmospheric pressure condition by applying an organic compound layer-forming coating solution on the atmospheric pressure condition with a wet coating apparatus. 2. The method of manufacturing an organic EL element according to claim 1, wherein the drying unit that forms the compound layer is one unit, and the manufacturing apparatus includes at least one unit of the coating unit and the drying unit. 前記帯状可撓性支持体Aは、前記有機化合物層形成用塗布液を塗布する前に洗浄表面改質処理手段により洗浄表面改質処理が施されることを特徴とする請求項1または2に記載の有機EL素子の製造方法。  3. The belt-like flexible support A is subjected to a cleaning surface modification treatment by a washing surface modification treatment means before applying the organic compound layer forming coating solution. The manufacturing method of the organic EL element of description. 前記洗浄表面改質処理手段が酸素プラズマ又はUV照射であることを特徴とする請求項3に記載の有機EL素子の製造方法。  4. The method of manufacturing an organic EL element according to claim 3, wherein the cleaning surface modification processing means is oxygen plasma or UV irradiation. 前記帯状可撓性支持体Aは、有機化合物層形成用塗布液を塗布する前に除電処理手段により除電処理が施されることを特徴とする請求項1乃至4の何れか1項に記載の有機EL素子の製造方法。  The strip-like flexible support A is subjected to a charge removal process by a charge removal process means before the coating liquid for forming an organic compound layer is applied. Manufacturing method of organic EL element. 前記帯状可撓性支持体Aは、有機化合物層形成用塗布液を塗布するときの搬送速度のバラツキが平均搬送速度に対して0.2〜10%であることを特徴とする請求項1乃至5の何れか1項に記載の有機EL素子の製造方法。  The belt-like flexible support A is characterized in that the variation in the conveyance speed when applying the coating solution for forming an organic compound layer is 0.2 to 10% with respect to the average conveyance speed. 6. The method for producing an organic EL element according to any one of 5 above. 前記有機化合物層形成用塗布液は、少なくとも1種の有機化合物材料と、少なくとも1種の溶媒とを有し、表面張力が15×10−3〜55×10−3N/mであることを特徴とする請求項1乃至6の何れか1項に記載の有機EL素子の製造方法。The coating liquid for forming an organic compound layer has at least one organic compound material and at least one solvent, and has a surface tension of 15 × 10 −3 to 55 × 10 −3 N / m. The manufacturing method of the organic EL element of any one of Claims 1 thru | or 6 characterized by the above-mentioned. 前記製造装置は、乾燥部の後に加熱処理部を有することを特徴とする請求項1乃至7の何れか1項に記載の有機EL素子の製造方法。  The said manufacturing apparatus has a heat processing part after a drying part, The manufacturing method of the organic EL element of any one of Claim 1 thru | or 7 characterized by the above-mentioned. 前記加熱処理部は、乾燥部で有機化合物層を形成した直後に、該有機化合物層のガラス転移温度に対して−30〜+30℃で、且つ有機化合物層の有機化合物の分解温度を超えない温度で裏面伝熱方式の熱処理を行うことを特徴とする請求項8に記載の有機EL素子の製造方法。  Immediately after forming the organic compound layer in the drying unit, the heat treatment unit is -30 to + 30 ° C. with respect to the glass transition temperature of the organic compound layer and does not exceed the decomposition temperature of the organic compound in the organic compound layer The method for manufacturing an organic EL element according to claim 8, wherein a back-surface heat transfer type heat treatment is performed. 前記有機化合物層は、露点温度−20℃以下、且つJISB 9920に準拠し、測定した清浄度がクラス5以下で、且つ、乾燥部及び加熱処理部を除き10〜45℃の大気圧
条件下で形成されることを特徴とする請求項1乃至9の何れか1項に記載の有機EL素子の製造方法。
The organic compound layer has a dew point temperature of −20 ° C. or lower, conforms to JISB 9920, has a measured cleanliness of class 5 or lower, and an atmospheric pressure condition of 10 to 45 ° C. excluding a drying section and a heat treatment section. It forms, The manufacturing method of the organic EL element of any one of Claim 1 thru | or 9 characterized by the above-mentioned.
前記有機化合物層が少なくとも正孔輸送層と有機発光層とを有することを特徴とする請求項1乃至10の何れか1項に記載の有機EL素子の製造方法。  The method for producing an organic EL element according to any one of claims 1 to 10, wherein the organic compound layer includes at least a hole transport layer and an organic light emitting layer. 前記帯状可撓性支持体Bを10−5〜10Paの減圧条件下で保管することを特徴とする請求項1乃至11の何れか1項に記載の有機EL素子の製造方法。The method for producing an organic EL element according to any one of claims 1 to 11, wherein the belt-like flexible support B is stored under a reduced pressure condition of 10 -5 to 10 Pa. 帯状可撓性支持体の上に、第1電極と、有機化合物層と、第2電極と、封止層とを、この順番で有する有機EL素子を、供給部と、塗布部・乾燥部と、陰極層形成部と、封止層形成部と、回収部とを有する製造装置を用いて製造する有機EL素子の製造方法において、
前記供給部に、第1電極が形成された帯状可撓性支持体Aを、巻き芯に巻かれたロール状態で供給し、
次いで、前記塗布部・乾燥部で、有機化合物層形成用塗布液を塗布及び乾燥を行い前記帯状可撓性支持体Aに前記有機化合物層を形成して帯状可撓性支持体Bとし、
第1巻取り部で、帯状可撓性支持体Bを巻き芯に巻取りロール状とし、
ロール状の前記帯状可撓性支持体Bを使用し、前記陰極層形成部で前記有機化合物層上に減圧条件下で第2電極を含む陰極層を形成し、
引き続き、前記封止層形成部で前記陰極層上に減圧条件下で封止層を形成し、有機EL素子を形成した後、回収工程で巻き芯に巻取りロール状とし、
前記有機化合物層は、前記乾燥部で吐出風速0.1〜5m/s、有機化合物層用塗膜の幅手方向の風速分布が0.1〜10%の気流乾燥で前記有機化合物層用塗膜の溶媒を除去して形成されていることを特徴とする有機EL素子の製造方法。
An organic EL element having a first electrode, an organic compound layer, a second electrode, and a sealing layer in this order on the belt-like flexible support, a supply unit, a coating unit / drying unit, In the method of manufacturing an organic EL element manufactured using a manufacturing apparatus having a cathode layer forming part, a sealing layer forming part, and a recovery part,
Supply the strip-shaped flexible support A on which the first electrode is formed to the supply unit in a roll state wound around a winding core,
Next, in the coating part / drying part, a coating solution for forming an organic compound layer is applied and dried to form the organic compound layer on the strip-shaped flexible support A to form a strip-shaped flexible support B.
In the first winding part, the strip-shaped flexible support B is wound into a winding roll around the winding core,
Using the roll-shaped strip-like flexible support B, forming a cathode layer including a second electrode under reduced pressure conditions on the organic compound layer in the cathode layer forming portion,
Subsequently, after forming a sealing layer under reduced pressure on the cathode layer in the sealing layer forming part and forming an organic EL element, it is made into a winding roll shape on the winding core in the recovery step,
The organic compound layer is coated with the organic compound layer by air-flow drying in which the air velocity distribution in the width direction of the coating film for the organic compound layer is 0.1 to 10% in the drying unit. A method for producing an organic EL device, which is formed by removing a solvent from a film.
帯状可撓性支持体の上に、第1電極と、有機化合物層と、第2電極と、封止フイルムとをこの順番で有する有機EL素子を、供給部と、塗布部・乾燥部と、陰極層形成部と、封止フイルム貼着部と、回収部とを有する製造装置を用いて製造する有機EL素子の製造方法において、
前記供給部に、第1電極が形成された帯状可撓性支持体Aを、巻き芯に巻かれたロール状態で供給し、
次いで、前記塗布部・乾燥部で、有機化合物層形成用塗布液を塗布及び乾燥を行い前記帯状可撓性支持体Aに前記有機化合物層を形成して帯状可撓性支持体Bとし、
ロール状の前記帯状可撓性支持体Bを使用し、前記陰極層形成部で前記有機化合物層上に減圧条件下で第2電極を含む陰極層を形成し帯状可撓性支持体Cとし、
第2巻取り部で、前記帯状可撓性支持体Cを巻き芯に巻取りロール状とし、
ロール状の前記帯状可撓性支持体Cを使用し、前記封止フイルム貼着部で、不活性ガス条件下で前記陰極層上に封止フイルムを貼着し、
前記有機化合物層は、前記乾燥部で吐出風速0.1〜5m/s、有機化合物層用塗膜の幅手方向の風速分布が0.1〜10%の気流乾燥で前記有機化合物層用塗膜の溶媒を除去して形成されていることを特徴とする有機EL素子の製造方法。
An organic EL device having a first electrode, an organic compound layer, a second electrode, and a sealing film in this order on a strip-like flexible support, a supply unit, a coating unit / drying unit, In the manufacturing method of an organic EL element manufactured using a manufacturing apparatus having a cathode layer forming part, a sealing film sticking part, and a recovery part,
Supply the strip-shaped flexible support A on which the first electrode is formed to the supply unit in a roll state wound around a winding core,
Next, in the coating part / drying part, a coating solution for forming an organic compound layer is applied and dried to form the organic compound layer on the strip-shaped flexible support A to form a strip-shaped flexible support B.
Using the roll-shaped strip-shaped flexible support B, a cathode layer including a second electrode is formed on the organic compound layer under reduced pressure conditions on the cathode layer forming portion to form a strip-shaped flexible support C.
In the second winding part, the belt-like flexible support C is wound into a winding roll around the winding core,
Using the roll-like strip-like flexible support C, the sealing film is applied on the cathode layer under inert gas conditions at the sealing film application part,
The organic compound layer is coated with the organic compound layer by air-flow drying in which the air velocity distribution in the width direction of the coating film for the organic compound layer is 0.1 to 10% in the drying unit. A method for producing an organic EL device, which is formed by removing a solvent from a film.
前記塗布部・乾燥部は、有機化合物層形成用塗布液を湿式塗布装置により大気圧条件で有機化合物層を形成する塗布部と、大気圧条件で前記有機化合物層中の溶媒を除去し、有機化合物層を形成する乾燥部とを1ユニットとし、前記製造装置は少なくとも1ユニットの前記塗布部・乾燥部を有することを特徴とする請求項13または14に記載の有機EL素子の製造方法。  The coating part / drying part removes the solvent in the organic compound layer under an atmospheric pressure condition by applying an organic compound layer-forming coating solution on the atmospheric pressure condition with a wet coating apparatus. 15. The method of manufacturing an organic EL element according to claim 13, wherein the drying unit forming the compound layer is one unit, and the manufacturing apparatus has at least one unit of the coating unit / drying unit.
JP2007509168A 2005-03-18 2006-02-23 Manufacturing method of organic EL element Active JP5157440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007509168A JP5157440B2 (en) 2005-03-18 2006-02-23 Manufacturing method of organic EL element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005079146 2005-03-18
JP2005079146 2005-03-18
PCT/JP2006/303225 WO2006100868A1 (en) 2005-03-18 2006-02-23 Method of forming organic compound layer, process for producing organic el device, and organic el device
JP2007509168A JP5157440B2 (en) 2005-03-18 2006-02-23 Manufacturing method of organic EL element

Publications (2)

Publication Number Publication Date
JPWO2006100868A1 JPWO2006100868A1 (en) 2008-08-28
JP5157440B2 true JP5157440B2 (en) 2013-03-06

Family

ID=37023546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007509168A Active JP5157440B2 (en) 2005-03-18 2006-02-23 Manufacturing method of organic EL element

Country Status (3)

Country Link
JP (1) JP5157440B2 (en)
GB (1) GB2439001B (en)
WO (1) WO2006100868A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717401A (en) * 2011-08-17 2014-04-09 惠普发展公司,有限责任合伙企业 Printing system and method

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057464A1 (en) * 2007-11-01 2009-05-07 Konica Minolta Holdings, Inc. Coating method, and coating apparatus
JP5294141B2 (en) * 2008-03-25 2013-09-18 株式会社ニコン Display element manufacturing equipment
DE102008033017A1 (en) * 2008-07-14 2010-01-21 Osram Opto Semiconductors Gmbh Encapsulated optoelectronic component and method for its production
US8102119B2 (en) * 2008-12-17 2012-01-24 General Electric Comapny Encapsulated optoelectronic device and method for making the same
KR101777096B1 (en) * 2009-09-25 2017-09-08 가부시키가이샤 니콘 Substrate cartridge and its applications
US8801307B2 (en) 2009-09-25 2014-08-12 Nikon Corporation Substrate cartridge, substrate processing apparatus, substrate processing system, control apparatus, and method of manufacturing display element
TWI538861B (en) 2009-11-05 2016-06-21 尼康股份有限公司 A substrate processing system, and a circuit manufacturing method
JP2011098808A (en) 2009-11-05 2011-05-19 Nikon Corp Substrate cartridge, substrate processing device, substrate processing system, substrate processing method, control device and method of manufacturing display element
TWI582889B (en) 2009-11-19 2017-05-11 尼康股份有限公司 A substrate processing apparatus, a substrate cassette, a circuit manufacturing method, and a substrate processing method
KR101880017B1 (en) 2009-11-26 2018-07-18 가부시키가이샤 니콘 Substrate processing apparatus and method for manufacturing display element
US20110135405A1 (en) 2009-12-04 2011-06-09 Akira Miyaji Roller apparatus and transportation apparatus
US10541160B2 (en) 2009-12-29 2020-01-21 Nikon Corporation Substrate case and substrate accommodation apparatus
WO2011099563A1 (en) * 2010-02-12 2011-08-18 株式会社ニコン Substrate processing device
JP5567407B2 (en) * 2010-03-15 2014-08-06 ユー・ディー・シー アイルランド リミテッド Method for manufacturing organic electroluminescent device
TWI611500B (en) * 2010-04-09 2018-01-11 Nikon Corp Substrate processing device
JP5838964B2 (en) 2010-04-09 2016-01-06 株式会社ニコン Substrate cartridge and substrate processing system
JP5821853B2 (en) * 2010-08-26 2015-11-24 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence element
JP5852810B2 (en) * 2010-08-26 2016-02-03 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5401443B2 (en) * 2010-12-28 2014-01-29 日東電工株式会社 Method and apparatus for manufacturing organic EL element
KR101652674B1 (en) * 2011-02-24 2016-08-30 가부시키가이샤 니콘 Device for transporting sheet substrate, and processing device
WO2012115143A1 (en) * 2011-02-24 2012-08-30 株式会社ニコン Substrate processing apparatus
KR101837917B1 (en) 2011-04-25 2018-03-12 가부시키가이샤 니콘 Substrate processing device
JP6138811B2 (en) * 2011-11-03 2017-05-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. OLED structuring
CN103958379B (en) 2011-11-04 2016-12-28 株式会社尼康 Substrate board treatment and substrate processing method using same
WO2013065451A1 (en) * 2011-11-04 2013-05-10 株式会社ニコン Substrate processing unit and method for processing substrate
KR101962083B1 (en) * 2012-04-03 2019-03-25 가부시키가이샤 니콘 Pattern forming device
CN104203785B (en) 2012-04-13 2016-08-24 株式会社尼康 Box device, base board delivery device, substrate board treatment and substrate processing method using same
JP5743004B2 (en) * 2014-05-12 2015-07-01 株式会社ニコン Electric circuit manufacturing method
JP5743005B2 (en) * 2014-05-12 2015-07-01 株式会社ニコン Manufacturing method of display element
JP6405436B1 (en) 2017-10-23 2018-10-17 住友化学株式会社 Organic electronic device manufacturing method and organic electronic device
CN113441377B (en) * 2021-06-29 2022-10-28 辽宁分子流科技有限公司 Preparation method of nano silver wire electrode film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077467A (en) * 1996-09-04 1998-03-24 Sumitomo Chem Co Ltd Production of organic electroluminescence element
JP2001052861A (en) * 1999-08-06 2001-02-23 Sharp Corp Coating liquid for forming organic layer in organic led display and manufacture of organic led display
JP2002361742A (en) * 2001-06-12 2002-12-18 Pioneer Electronic Corp Laminating method and laminating device
JP2003509817A (en) * 1999-09-03 2003-03-11 スリーエム イノベイティブ プロパティズ カンパニー Large area organic electronic device having conductive polymer buffer layer and method of manufacturing the same
JP2004095535A (en) * 2002-07-09 2004-03-25 Semiconductor Energy Lab Co Ltd Manufacturing device and manufacturing method of light emitting device using it
JP2004305912A (en) * 2003-04-07 2004-11-04 Seiko Epson Corp Drying method of liquid material, drying apparatus, production method of device, manufacturing apparatus of device, device, and electric appliance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986112A3 (en) * 1998-09-11 2004-02-04 Agilent Technologies, Inc. (a Delaware corporation) An efficient method for fabricating organic light emitting diodes
JP2001006875A (en) * 1999-06-24 2001-01-12 Dainippon Printing Co Ltd Manufacture of el element
DE10134132A1 (en) * 2001-07-13 2003-01-30 Siemens Ag Device and method for the continuous printing of organic light emitting diodes
JP2003077669A (en) * 2001-09-03 2003-03-14 Toppan Printing Co Ltd High polymer electroluminescent element and manufacturing method therefor
JP2004185951A (en) * 2002-12-03 2004-07-02 Dainippon Printing Co Ltd Production line for flexible polymer organic el display
JP2004247100A (en) * 2003-02-12 2004-09-02 Tokai Rubber Ind Ltd Manufacturing method of organic electroluminescent element, and organic electroluminescent element obtained by the same
JP2004311111A (en) * 2003-04-03 2004-11-04 Fuji Photo Film Co Ltd Method for manufacturing organic electroluminescent element and organic electroluminescent element
JP2005327667A (en) * 2004-05-17 2005-11-24 Seiko Epson Corp Method for manufacturing organic el device, system for manufacturing organic el device, and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077467A (en) * 1996-09-04 1998-03-24 Sumitomo Chem Co Ltd Production of organic electroluminescence element
JP2001052861A (en) * 1999-08-06 2001-02-23 Sharp Corp Coating liquid for forming organic layer in organic led display and manufacture of organic led display
JP2003509817A (en) * 1999-09-03 2003-03-11 スリーエム イノベイティブ プロパティズ カンパニー Large area organic electronic device having conductive polymer buffer layer and method of manufacturing the same
JP2002361742A (en) * 2001-06-12 2002-12-18 Pioneer Electronic Corp Laminating method and laminating device
JP2004095535A (en) * 2002-07-09 2004-03-25 Semiconductor Energy Lab Co Ltd Manufacturing device and manufacturing method of light emitting device using it
JP2004305912A (en) * 2003-04-07 2004-11-04 Seiko Epson Corp Drying method of liquid material, drying apparatus, production method of device, manufacturing apparatus of device, device, and electric appliance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717401A (en) * 2011-08-17 2014-04-09 惠普发展公司,有限责任合伙企业 Printing system and method
CN103717401B (en) * 2011-08-17 2016-01-20 惠普发展公司,有限责任合伙企业 Print system and method

Also Published As

Publication number Publication date
GB2439001B (en) 2011-03-09
JPWO2006100868A1 (en) 2008-08-28
WO2006100868A1 (en) 2006-09-28
GB0718024D0 (en) 2007-10-24
GB2439001A (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP5157440B2 (en) Manufacturing method of organic EL element
JP5055711B2 (en) Method for manufacturing organic EL element, organic EL element
JP5125503B2 (en) Manufacturing method of organic EL element
US8080277B2 (en) Method of forming organic compound layer, method of manufacturing organic EL element and organic EL element
JPWO2007034647A1 (en) Method for manufacturing organic electroluminescence element, organic electroluminescence display device
JP5652405B2 (en) Manufacturing method of organic EL element
JP5575353B2 (en) Method for manufacturing organic electroluminescence device
JP5104849B2 (en) Method for manufacturing organic electroluminescent element, organic electroluminescent element
JP2007073332A (en) Organic electroluminescent panel and method of manufacturing the same
JP5104301B2 (en) Method for manufacturing organic electroluminescence panel
JP2007207469A (en) Method of manufacturing laminate, laminate, method of manufacturing organic electroluminescent element, organic electroluminescent element, and organic electroluminescent display device
JP5018317B2 (en) Method for manufacturing organic electroluminescence device
JPWO2008102867A1 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP2007012358A (en) Organic electroluminescent element, and method of manufacturing organic electroluminescent element
JP5092756B2 (en) Organic electroluminescent panel manufacturing method, organic electroluminescent lighting device, and organic electroluminescent panel manufacturing device
JPWO2009025186A1 (en) Organic electroluminescent panel manufacturing method, organic electroluminescent panel
JP2006302814A (en) Method for forming organic electroluminescent layer, and organic electroluminescent element
WO2014104102A1 (en) Method for producing organic electroluminescent element, and organic electroluminescent element
JP4957643B2 (en) Application method of coating solution for organic compound layer formation
JP5862439B2 (en) Organic semiconductor device and manufacturing method thereof
JP2008117689A (en) Method of forming functional laminated film, laminate thin film device, and organic electroluminescent display device
JP5472107B2 (en) Method for manufacturing organic electroluminescent element
JP4622746B2 (en) Method for manufacturing organic electroluminescence element
JPWO2007029474A1 (en) Method for manufacturing organic electroluminescence panel
JP5170102B2 (en) Method for manufacturing organic electronics element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5157440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250