JP5142180B2 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP5142180B2
JP5142180B2 JP2006138347A JP2006138347A JP5142180B2 JP 5142180 B2 JP5142180 B2 JP 5142180B2 JP 2006138347 A JP2006138347 A JP 2006138347A JP 2006138347 A JP2006138347 A JP 2006138347A JP 5142180 B2 JP5142180 B2 JP 5142180B2
Authority
JP
Japan
Prior art keywords
epoxy resin
phenol
resin composition
epoxy
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006138347A
Other languages
Japanese (ja)
Other versions
JP2007308570A (en
JP2007308570A5 (en
Inventor
政隆 中西
克彦 押見
高男 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2006138347A priority Critical patent/JP5142180B2/en
Publication of JP2007308570A publication Critical patent/JP2007308570A/en
Publication of JP2007308570A5 publication Critical patent/JP2007308570A5/ja
Application granted granted Critical
Publication of JP5142180B2 publication Critical patent/JP5142180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)

Description

本発明は 半導体封止材、及び基板材料(プリント配線板、ビルドアップ基板などの積層板、あるいは熱硬化もしくは感光性ソルダーレジスト)、接着剤(基板の張り合わせ等)として有用であるエポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition useful as a semiconductor sealing material, and a substrate material (a laminated board such as a printed wiring board or a build-up board, or a thermosetting or photosensitive solder resist), or an adhesive (such as bonding of substrates). About.

エポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。   Epoxy resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It has been.

しかし近年、電気・電子分野においてはその発展に伴い、樹脂組成物の高純度化をはじめ耐湿性、密着性、誘電特性、フィラーを高充填させるための低粘度化、成型サイクルを短くするための反応性のアップ等の諸特性の一層の向上が求められている。又、構造材としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料が求められている。特に半導体封止分野、基板(基板自体、もしくはその周辺材料)、においては薄型化が年々高度になり、材料に求められる特性として耐熱性はもちろんのこと、柔軟性等の特性が求められるようになってきている。更に環境問題から、近年、難燃剤としてハロゲン系エポキシ樹脂と三酸化アンチモンが特に電気電子部品の難燃剤として多用されているが、これらを使用した製品はその廃棄後の不適切な処理により、ダイオキシン等の有毒物質の発生に寄与することが指摘されている。上記の問題を解決する方法の一つとして、リン原子を骨格に有するエポキシ樹脂が提案されている。特に、通常のリン酸エステルタイプの化合物はその安定性が低いため、安定性の良い、環状リン酸エステル化合物が使用されている。またリン酸エステル化合物を使用しなくても、樹脂骨格を選ぶことで従来のエポキ樹脂に比べ難燃性に優れたものが開発されてきている。現在、特に一般に「ハロゲンフリー、リンフリー」と呼ばれる難燃性が求められており、難燃剤を使用せずに難燃性を発現するような樹脂骨格の探索がなされている。   However, in recent years, with the development in the electric and electronic fields, the resin composition is highly purified, moisture resistance, adhesion, dielectric properties, low viscosity for high filler filling, and short molding cycle. There is a need for further improvements in various properties such as increased reactivity. Further, as a structural material, there is a demand for a material that is lightweight and has excellent mechanical properties in applications such as aerospace materials and leisure / sports equipment. Especially in the field of semiconductor encapsulation and substrates (substrate itself or its peripheral materials), the thinning is becoming more and more sophisticated year by year, and the properties required for the materials are not only heat resistance but also properties such as flexibility. It has become to. Furthermore, in recent years, halogen-based epoxy resins and antimony trioxide are frequently used as flame retardants for electrical and electronic parts as flame retardants due to environmental problems. It has been pointed out that it contributes to the generation of toxic substances such as As one method for solving the above problem, an epoxy resin having a phosphorus atom in the skeleton has been proposed. In particular, since a normal phosphate ester type compound has low stability, a cyclic phosphate compound having good stability is used. Even if a phosphoric acid ester compound is not used, those having excellent flame retardancy compared to conventional epoxy resins have been developed by selecting a resin skeleton. At present, flame retardancy called “halogen-free and phosphorus-free” is particularly demanded, and a resin skeleton that exhibits flame retardancy without using a flame retardant has been searched.

このような背景の中で有力な候補としてフェノールービフェニレン型フェノール樹脂、およびそのエピハロヒドリンとの反応物が注目されている。これらは無機充填材の添加が必要であるものの、ハロゲンフリー、リンフリーの条件下においても難燃性にすぐれた硬化物を与える。市販品としては明和化成工業株式会社製 MEH−7851シリーズ(フェノールービフェニレン型フェノール樹脂)、日本化薬株式会社製 KAYAHARD GPHシリーズ(フェノールービフェニレン型フェノール樹脂)、同じく日本化薬株式会社製 NC−3000シリーズ、CER−3000−Lなどが挙げられる。   In such a background, phenol-biphenylene type phenol resin and its reaction product with epihalohydrin are attracting attention as promising candidates. These require addition of an inorganic filler, but give a cured product having excellent flame retardance even under halogen-free and phosphorus-free conditions. Commercially available products include MEH-7851 series (phenol-biphenylene type phenol resin) manufactured by Meiwa Kasei Kogyo Co., Ltd., KAYAHARD GPH series (phenol-biphenylene type phenol resin) manufactured by Nippon Kayaku Co., Ltd., NC- 3000 series, CER-3000-L, and the like.

特開2003−113225号公報JP 2003-113225 A 特開2001−200031号公報JP 2001-200031 A

しかしながら近年、特に金属への密着性、および強靭性が重要視されており、これらの改善が急務となっている。   In recent years, however, adhesion to metals and toughness have been emphasized, and these improvements are urgently needed.

本発明者らは前記課題を解決するため鋭意研究の結果、本発明を完成した。即ち、本発明は、
(1)
式(1)

Figure 0005142180
(式中、nは繰り返し数を示す。)
で表されるフェノール−ビフェニレン型フェノールアラルキル樹脂であって、ゲルパーミエーションクロマトグラフィーの測定においてn=1とn=2の間に現れるピークPの面積比がn=1のピーク面積に対し、0.015倍以上0.2倍未満であることを特徴とするフェノール樹脂およびエポキシ樹脂を含有するエポキシ樹脂組成物、
(2)
フェノール樹脂の繰り返し数nの平均値が1.01〜3.5(ゲルパーミエーションクロマトグラフィーより算出)である上記(1)記載のエポキシ樹脂組成物、
(3)
nの平均値が1.1〜3.0である上記(2)記載のエポキシ樹脂組成物、
(4)
式(1)
Figure 0005142180
(式中、nは繰り返し数を示す。)
フェノール−ビフェニレン型フェノールアラルキル樹脂において以下条件1に示すゲルパーミエーションクロマトグラフィーの測定においてn=1とn=2の間に現れるピークPの面積比がn=1のピーク面積に対し、0.015倍以上0.2倍未満であるフェノール樹脂とエピハロヒドリンとを反応させることにより得られるエポキシ樹脂、
(5)
上記(4)に記載のエポキシ樹脂を含有してなるエポキシ樹脂組成物、
(6)
エポキシ樹脂が、上記(4)に記載のエポキシ樹脂である上記(1)〜(3)のいずれか1項に記載のエポキシ樹脂組成物、
(7)
上記(1)〜(3)、(5)、(6)のいずれか一項に記載のエポキシ樹脂組成物を硬化してなる硬化物、
に関する。 The present inventors have completed the present invention as a result of intensive studies in order to solve the above problems. That is, the present invention
(1)
Formula (1)
Figure 0005142180
(In the formula, n represents the number of repetitions.)
The area ratio of the peak P that appears between n = 1 and n = 2 in the measurement of gel permeation chromatography is 0 with respect to the peak area of n = 1. An epoxy resin composition containing a phenol resin and an epoxy resin, wherein the epoxy resin composition is .015 times or more and less than 0.2 times;
(2)
The epoxy resin composition according to the above (1), wherein the average value of the phenol resin repeating number n is 1.01 to 3.5 (calculated from gel permeation chromatography),
(3)
The epoxy resin composition according to the above (2), wherein the average value of n is 1.1 to 3.0,
(4)
Formula (1)
Figure 0005142180
(In the formula, n represents the number of repetitions.)
In the phenol-biphenylene type phenol aralkyl resin, the area ratio of the peak P appearing between n = 1 and n = 2 in the measurement of gel permeation chromatography shown in the following condition 1 is 0.015 with respect to the peak area of n = 1. An epoxy resin obtained by reacting a phenol resin and an epihalohydrin that are at least twice and less than 0.2 times,
(5)
An epoxy resin composition comprising the epoxy resin according to (4) above,
(6)
The epoxy resin composition according to any one of (1) to (3), wherein the epoxy resin is an epoxy resin according to (4) above,
(7)
Hardened | cured material formed by hardening | curing the epoxy resin composition as described in any one of said (1)-(3), (5), (6),
About.

本発明のエポキシ樹脂組成物は、その硬化物において強靭性、金属への密着性に優れた特性を有し、半導体封止材、及び基板材料(プリント配線板、ビルドアップ基板などの積層板、あるいは熱硬化もしくは感光性ソルダーレジスト)、接着剤(基板の張り合わせ等)に有用である。   The epoxy resin composition of the present invention has characteristics that are excellent in toughness and adhesion to metal in the cured product, semiconductor sealing material, and substrate materials (printed wiring boards, laminated boards such as build-up boards, Alternatively, it is useful for thermosetting or photosensitive solder resist) and adhesives (such as bonding of substrates).

本発明のエポキシ樹脂組成物(A)はエポキシ樹脂、および式(1)   The epoxy resin composition (A) of the present invention comprises an epoxy resin and a formula (1)

Figure 0005142180
(式中、nは繰り返し数を示す。)
で表されるフェノール−ビフェニレン型フェノールアラルキル樹脂を含有する。該フェノール−ビフェニレン型フェノールアラルキル樹脂は、そのゲルパーミエーションクロマトグラフィー(GPC)の測定結果において、以下の図1に示すような2官能体(n=1)と3官能体(n=2)の間にピーク(以下、ピークPという)が見られる。
Figure 0005142180
(In the formula, n represents the number of repetitions.)
The phenol-biphenylene type phenol aralkyl resin represented by these is contained. The phenol-biphenylene type phenol aralkyl resin has a bifunctional (n = 1) and trifunctional (n = 2) as shown in FIG. 1 in the gel permeation chromatography (GPC) measurement results. A peak (hereinafter referred to as peak P) is observed between them.

Figure 0005142180
Figure 0005142180

本発明はこのピークPに着目することで物性の改善を行ったものである。
具体的にはピークPの面積比がn=1のピーク面積に対し、0.015倍以上0.2倍未満であることを特徴とするフェノール樹脂であり、さらに好ましくは0.02倍以上0.17倍未満である。
また本ピークPは分解能の良いGPCでないと検出できず、具体例としては下記条件のカラムを使用することが好ましい。
機種:Shodex SYSTEM−21
カラム:KF−802、KF−802.5(×2本)+KF−803 (計4本)
連結溶離液:THF(テトラヒドロフラン); 1ml/min.40℃
検出:RI
サンプル:約0.4%THF溶液 (20μlインジェクト)
In the present invention, physical properties are improved by paying attention to this peak P.
Specifically, the phenol resin is characterized in that the area ratio of the peak P is 0.015 times or more and less than 0.2 times the peak area of n = 1, more preferably 0.02 times or more and 0. Less than 17 times.
The peak P cannot be detected unless it is GPC with good resolution. As a specific example, it is preferable to use a column under the following conditions.
Model: Shodex SYSTEM-21
Column: KF-802, KF-802.5 (x 2) + KF-803 (4 in total)
Linked eluent: THF (tetrahydrofuran); 1 ml / min. 40 ° C
Detection: RI
Sample: About 0.4% THF solution (20 μl injection)

以下、ピークPについて詳細に説明する。
ピークPに該当する化合物は前記式(1)の構造は有さず、ビフェニル基を含有する化合物の混合物であると推定される。ピークPは、本発明におけるフェノール−ビフェニレン型フェノールアラルキル樹脂の好ましい製法である、下記式(2)で表される化合物を主成分とする化合物とフェノールとの反応の際に、式(2)に含有される副成分とフェノールとの反応生成物や、ェノール−ビフェニレン型フェノールアラルキル樹脂を高温にさらした際(あるいは空気酸化の際)に部分的に結合が切れたものなどの変性物等が考えられる。
Hereinafter, the peak P will be described in detail.
The compound corresponding to the peak P does not have the structure of the formula (1) and is presumed to be a mixture of compounds containing a biphenyl group. The peak P is a preferable method for producing the phenol-biphenylene type phenol aralkyl resin in the present invention. In the reaction of a compound mainly composed of a compound represented by the following formula (2) with phenol, the peak P is expressed by the formula (2). and reaction products of secondary components and phenol contained, phenol - biphenylene type phenol aralkyl resin upon exposure to high temperature modified products, such as those partially bonded to (or during air oxidation) has expired and the like Conceivable.

Figure 0005142180
(式中、Lは脱離基を示し、ハロゲン原子、C1〜C4のアルコキシメチル基、フェノキシ基、水酸基のいずれかを示す。)
Figure 0005142180
(In the formula, L represents a leaving group and represents any one of a halogen atom, a C1-C4 alkoxymethyl group, a phenoxy group, and a hydroxyl group.)

一般的に、高純度の化合物を使用することで物性が向上するということは知られているが、本発明においては純度を下げることで耐熱性等を保持したまま、密着性、靭性等の物性の改善が認められた。   In general, it is known that physical properties are improved by using a high-purity compound, but in the present invention, physical properties such as adhesion and toughness are maintained while maintaining heat resistance and the like by reducing purity. Improvement was observed.

本発明において使用するフェノール−ビフェニレン型フェノールアラルキル樹脂(以下、フェノール樹脂(a)という)の式(1)における繰り返し数nに特に制限は無いが、n平均値が1.01〜3.5が好ましく、より好ましくは1.1〜3.0である(GPCによる測定値)。nの平均値が3.5を超える場合、ピークPの効果はあまり顕著ではなく、わかりづらい。   There is no particular limitation on the number of repetitions n in the formula (1) of the phenol-biphenylene type phenol aralkyl resin (hereinafter referred to as phenol resin (a)) used in the present invention, but the n average value is 1.01 to 3.5. Preferably, it is 1.1-3.0 (measured value by GPC). When the average value of n exceeds 3.5, the effect of the peak P is not so remarkable and is difficult to understand.

フェノール樹脂(a)は例えば前記式(2)に記載のビスメチレンビフェニル化合物とフェノールとの反応を例えば特許文献1や、特許文献2に記載された方法に準じて行えばよい。   For example, the phenol resin (a) may be prepared by reacting the bismethylene biphenyl compound described in the formula (2) with phenol in accordance with, for example, the methods described in Patent Document 1 and Patent Document 2.

フェノール樹脂(a)の製法の一例を以下に示す。
前記式(2)に表される化合物としてはビスメトキシメチルビフェニル、ビスエトキシエチルビフェニル、ビスヒドロキシメチルビフェニル、ビスクロロメチルビフェニル、ビスブロモメチルビフェニル、ビスフェノキシメチルビフェニル等のビフェニル誘導体が挙げられる。式(2)の化合物の一般的な製造方法としてはビフェニルとホルムアルデヒド(もしくはその誘導体)および酸(塩酸、臭化水素等)をハロゲン化金属存在下反応させ、ここからさらに精製することで、ビスハロゲノメチルビフェニルが得られる。さらにこのハロゲン原子をアルコール、もしくは水で置換することでビスヒドロキシ体、ビスアルコキシ体が得られる。これらは適宜蒸留、再結晶等の手法により精製される。本発明においては、この際の精製の度合いにおいて、純度が80〜97%であるビフェニル化合物を選び使用することが好ましい。
An example of the manufacturing method of a phenol resin (a) is shown below.
Examples of the compound represented by the formula (2) include biphenyl derivatives such as bismethoxymethylbiphenyl, bisethoxyethylbiphenyl, bishydroxymethylbiphenyl, bischloromethylbiphenyl, bisbromomethylbiphenyl, and bisphenoxymethylbiphenyl. As a general method for producing the compound of formula (2), biphenyl is reacted with formaldehyde (or a derivative thereof) and an acid (hydrochloric acid, hydrogen bromide, etc.) in the presence of a metal halide, and further purified from this. Halogenomethylbiphenyl is obtained. Further, by substituting this halogen atom with alcohol or water, a bishydroxy compound or a bisalkoxy compound can be obtained. These are appropriately purified by techniques such as distillation and recrystallization. In the present invention, it is preferable to select and use a biphenyl compound having a purity of 80 to 97% in the degree of purification at this time.

式(2)のビフェニル化合物に対するフェノールの使用量は式(2)の化合物1モルに対して通常1.5〜30モルであるが、特に1.5〜20モルが好ましい。   Although the usage-amount of the phenol with respect to the biphenyl compound of Formula (2) is 1.5-30 mol normally with respect to 1 mol of compounds of Formula (2), 1.5-20 mol is especially preferable.

この反応においては、必要により酸触媒を用いる。酸触媒としては種々のものが使用できるが塩酸、臭化水素、硫酸、p−トルエンスルホン酸、シュウ酸等の有機あるいは無機酸、塩化第二錫、塩化亜鉛、塩化第二鉄等のフリーデルクラフツ型触媒等が挙げられる。酸の種類によってその配向性が変わるため、必要に応じて適宜選択するべきである。関係性については定かではないが、酸性度が高いものの方がよりフェノールに対し、パラ配向性となる場合が多い。これら酸触媒の使用量は触媒の種類により異なるが、式(2)の化合物に対して0.0005〜100重量%の範囲内で適正量を添加すれば良い。(ただ反応させるだけであれば0.0005〜0.01でもかまわないが、反応制御を行うにあたり、相当量の触媒が必要となる場合もある。)本反応において、特に脱離基Lがハロゲン原子である場合、触媒の添加はしなくても反応の進行に伴い、ハロゲン化水素が発生し、これが触媒として働くことで反応は進行する。   In this reaction, an acid catalyst is used if necessary. Various acid catalysts can be used, but organic or inorganic acids such as hydrochloric acid, hydrogen bromide, sulfuric acid, p-toluenesulfonic acid, oxalic acid, Friedel such as stannic chloride, zinc chloride, ferric chloride, etc. Examples include crafts type catalysts. Since the orientation varies depending on the type of acid, it should be selected as necessary. The relationship is not clear, but those with higher acidity are often more para-oriented to phenol. The amount of the acid catalyst used varies depending on the type of the catalyst, but an appropriate amount may be added within the range of 0.0005 to 100% by weight with respect to the compound of the formula (2). (If it is only allowed to react, 0.0005 to 0.01 may be used, but a considerable amount of catalyst may be required for controlling the reaction.) In this reaction, the leaving group L is particularly halogenated. When it is an atom, hydrogen halide is generated as the reaction proceeds without adding a catalyst, and the reaction proceeds as this acts as a catalyst.

本反応において配向性を制御するため、塩基性化合物を添加してもかまわない。具体的には特開2003−301031号公報に記載の手法に基づく方法が好ましい。   In order to control the orientation in this reaction, a basic compound may be added. Specifically, a method based on the method described in JP-A-2003-301031 is preferable.

反応温度は通常40〜200℃、好ましくは50〜150℃である。反応時間は0.5〜20時間、好ましくは1〜15時間である。反応は、全原料を一括投入して昇温しながら行っても、フェノールを予め一定の温度に保った状態で式(2)の化合物を逐次添加して行っても良い。また、反応は無溶媒でも実施できるが、反応に直接関与しないトルエン、モノクロロベンゼン、ジクロロベンゼン、低級アルコール等の有機化合物を溶媒として用いることもできる。   The reaction temperature is usually 40 to 200 ° C, preferably 50 to 150 ° C. The reaction time is 0.5 to 20 hours, preferably 1 to 15 hours. The reaction may be performed while charging all the raw materials at once, or may be performed by sequentially adding the compound of formula (2) in a state where phenol is kept at a constant temperature in advance. The reaction can be carried out without a solvent, but organic compounds such as toluene, monochlorobenzene, dichlorobenzene, lower alcohol and the like which are not directly involved in the reaction can also be used as a solvent.

式(2)で示される化合物のうち、Lが塩素原子の場合、反応中生成する塩酸ガスは窒素ガス等の不活性ガスを流すことによって系外へ除去するか、減圧状態にして除去しても構わない。   Of the compounds represented by formula (2), when L is a chlorine atom, the hydrochloric acid gas generated during the reaction is removed from the system by flowing an inert gas such as nitrogen gas, or removed under reduced pressure. It doesn't matter.

反応終了後、必要に応じて反応中生成した塩化水素や酸触媒等の不純物を中和、水洗を行うことによって取り除く。その後、未反応フェノールや溶媒を回収することにより目的とするフェノール樹脂(a)を得ることができる。未反応フェノール化合物や溶媒の回収は加熱減圧下で留去するのが好ましい。水蒸気を吹き込んで、水蒸気蒸留で留去することも可能である。   After completion of the reaction, impurities such as hydrogen chloride and acid catalyst generated during the reaction are removed by neutralization and washing as necessary. Then, the target phenol resin (a) can be obtained by collect | recovering unreacted phenol and a solvent. The unreacted phenol compound and the solvent are preferably distilled off under heating and reduced pressure. It is also possible to blow off water vapor and distill it off with water vapor distillation.

本発明のエポキシ樹脂組成物(A)において、前記フェノール樹脂(a)はエポキシ樹脂の硬化剤として働く、該フェノール樹脂(a)は他のエポキシ樹脂硬化剤と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂組成物(A)の硬化剤中に占める割合は5重量%以上が好ましく、特に10重量%以上が好ましい。   In the epoxy resin composition (A) of the present invention, the phenol resin (a) serves as a curing agent for the epoxy resin, and the phenol resin (a) can be used in combination with another epoxy resin curing agent. When used in combination, the proportion of the epoxy resin composition (A) of the present invention in the curing agent is preferably 5% by weight or more, particularly preferably 10% by weight or more.

本発明のエポキシ樹脂組成物(A)において前記フェノール樹脂(a)以外に併用して使用できる硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、フェノールを除くフェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物、フェノールを除くフェノール類と芳香族ジクロロメチル類(α,α’−ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物、フェノールを除くフェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、及びこれらの変性物、イミダゾ−ル、トリフルオロボラン−アミン錯体、グアニジン誘導体などが挙げられるがこれらに限定されることはない。   Examples of the curing agent that can be used in combination with the phenol resin (a) in the epoxy resin composition (A) of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like. Is mentioned. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride. Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic acid anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.), phenols (phenol, alkyl substituted phenol, aromatic substituted phenol, naphthol, alkyl substituted naphthol, di Droxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.) Polycondensates, phenols and polymers of various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.) , Phenols and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone) , Acetophenone, benzophenone, etc.), phenols excluding phenol and aromatic dimethanols (benzenedimethanol, biphenyldimethanol, etc.), phenols excluding phenol and aromatic dichloromethyl Products (α, α'-dichloroxylene, bischloromethylbiphenyl, etc.), phenols excluding phenol and aromatic bisalkoxymethyls (bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, etc.) ), Polycondensates of bisphenols and various aldehydes, and modified products thereof, imidazoles, trifluoroborane-amine complexes, guanidine derivatives, and the like, but are not limited thereto.

本発明のエポキシ樹脂組成物(A)において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.5〜1.5当量が好ましく、0.6〜1.2当量が特に好ましい。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全になり良好な硬化物性が得られない恐れがある。   In the epoxy resin composition (A) of the present invention, the amount of the curing agent used is preferably 0.5 to 1.5 equivalents, particularly preferably 0.6 to 1.2 equivalents relative to 1 equivalent of the epoxy group of the epoxy resin. . When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of an epoxy group, curing may be incomplete and good cured properties may not be obtained.

本発明のエポキシ樹脂組成物(A)に使用できるエポキシ樹脂の具体例としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物、フェノール類と芳香族ジクロロメチル類(α,α’−ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物、フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、アルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。また後述するが、本発明のエポキシ樹脂組成物に使用できるフェノール樹脂をエピハロヒドリンと反応させて得られるエポキシ樹脂を使用することは好ましい。これらは単独で用いてもよく、2種以上を用いてもよい。   Specific examples of the epoxy resin that can be used in the epoxy resin composition (A) of the present invention include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.), phenols (phenol, alkyl-substituted phenol, aromatic Group-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde) , Crotonaldehyde, cinnamaldehyde, etc.), phenols and various diene compounds Polymers with dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc., phenols and ketones (acetone, methyl ethyl ketone, methyl) Polycondensates with isobutyl ketone, acetophenone, benzophenone, etc.), polycondensates with phenols and aromatic dimethanols (benzene dimethanol, biphenyl dimethanol, etc.), phenols and aromatic dichloromethyls (α, α Polycondensates with '-dichloroxylene, bischloromethylbiphenyl, etc.), phenols and aromatic bisalkoxymethyls (bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenol) Glycidyl ether epoxy resin, alicyclic epoxy resin, glycidyl amine epoxy resin, glycidyl ester epoxy, glycidylated alcohols, etc. Examples thereof include, but are not limited to, epoxy resins that are usually used. Moreover, although mentioned later, it is preferable to use the epoxy resin obtained by making the phenol resin which can be used for the epoxy resin composition of this invention react with epihalohydrin. These may be used alone or in combination of two or more.

また必須成分であるフェノール樹脂(a)、エポキシ樹脂以外に硬化促進剤を併用しても差し支えない。用いうる硬化促進剤としては、例えば、2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類、2−(ジメチルアミノメチル)フェノール、トリエチレンジアミン、トリエタノールアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン、ジフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類、オクチル酸スズなどの金属化合物、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。硬化促進剤を使用する場合の使用量はエポキシ樹脂100重量部に対して0.01〜15重量部が必要に応じ用いられる。   In addition to the phenol resin (a) and the epoxy resin, which are essential components, a curing accelerator may be used in combination. Examples of the curing accelerator that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, triethylenediamine, Triethanolamine, tertiary amines such as 1,8-diazabicyclo (5,4,0) undecene-7, organic phosphines such as triphenylphosphine, diphenylphosphine and tributylphosphine, metal compounds such as tin octylate, Tetraphenylphosphonium / tetraphenylborate, tetrasubstituted phosphonium / tetrasubstituted borate such as tetraphenylphosphonium / ethyltriphenylborate, 2-ethyl-4-methylimidazole / tetraphenylborate, N-methylmol Such as tetraphenyl boron salts such as phosphorus-tetraphenylborate and the like. When the curing accelerator is used, the amount used is 0.01 to 15 parts by weight based on 100 parts by weight of the epoxy resin, if necessary.

更に、本発明のエポキシ樹脂組成物(A)には、必要に応じて無機充填剤やシランカップリング材、離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤は、用途によりその使用量は異なるが、例えば半導体の封止剤用途に使用する場合はエポキシ樹脂組成物(A)の硬化物の耐熱性、耐湿性、力学的性質、難燃性などの面からエポキシ樹脂組成物(A)中で20重量%以上占める割合で使用するのが好ましく、より好ましくは30重量%以上であり、40〜95重量%を占める割合で使用するのがより好ましい。 Furthermore, various compounding agents such as inorganic fillers, silane coupling materials, release agents, pigments, and various thermosetting resins may be added to the epoxy resin composition (A) of the present invention as necessary. it can. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These may be used alone or in combination of two or more. The amount of these inorganic fillers varies depending on the use. For example, when used for a semiconductor encapsulant, the heat resistance, moisture resistance, mechanical properties, flame retardancy of the cured product of the epoxy resin composition (A) It is preferable to use it in the ratio which occupies 20 weight% or more in an epoxy resin composition (A) from surfaces, such as property, More preferably, it is 30 weight% or more, and it is used in the ratio which occupies 40 to 95 weight%. More preferred.

更に本発明のエポキシ樹脂組成物(A)には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネート樹脂(もしくはそのプレポリマー)、シリコーンゲル、シリコーンオイル、並びにシリカ、アルミナ、炭酸カルシウム、石英粉、アルミニウム粉末、グラファイト、タルク、クレー、酸化鉄、酸化チタン、窒化アルミニウム、アスベスト、マイカ、ガラス粉末、ガラス繊維、ガラス不織布または、カーボン繊維等の無機充填材、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。   Furthermore, the epoxy resin composition (A) of the present invention can contain known additives as required. Specific examples of additives that can be used include polybutadiene and its modified products, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluorine resin, maleimide compound, cyanate resin (or its prepolymer), silicone Gel, silicone oil, silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, glass powder, glass fiber, glass nonwoven fabric or carbon fiber Inorganic fillers such as, surface treatment agents for fillers such as silane coupling agents, release agents, colorants such as carbon black, phthalocyanine blue, and phthalocyanine green.

本発明のエポキシ樹脂組成物(A)は、上記各成分を均一に混合することにより得られる。そして、本発明のエポキシ樹脂組成物(A)は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば、エポキシ樹脂と硬化剤、並びに必要により硬化促進剤及び無機充填剤、配合剤、各種熱硬化性樹脂とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合することより本発明の硬化性樹脂組成物を得て、その硬化性樹脂組成物を溶融注型法あるいはトランスファー成型法やインジェクション成型法、圧縮成型法などによって成型し、更に80〜200℃で2〜10時間に加熱することにより硬化物を得ることができる。   The epoxy resin composition (A) of the present invention can be obtained by uniformly mixing the above components. And the epoxy resin composition (A) of this invention can be easily made into the hardened | cured material by the method similar to the method known conventionally. For example, an epoxy resin and a curing agent and, if necessary, a curing accelerator and an inorganic filler, a compounding agent, and various thermosetting resins are mixed thoroughly using an extruder, kneader, roll, etc. as necessary until uniform. Thus, the curable resin composition of the present invention is obtained, and the curable resin composition is molded by a melt casting method, a transfer molding method, an injection molding method, a compression molding method, or the like, and further at 80 to 200 ° C. A cured product can be obtained by heating for 10 hours.

また本発明のエポキシ樹脂組成物(A)は場合により溶剤を含んでいてもよい。溶剤を含むエポキシ樹脂組成物(エポキシ樹脂ワニス)はガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のエポキシ樹脂組成物の硬化物とすることができる。このエポキシ樹脂組成物の溶剤含量は、本発明のエポキシ樹脂組成物(A)と該溶剤の総量に対して通常10〜70重量%、好ましくは15〜70重量%程度である。また、該溶剤を含むエポキシ樹脂組成物(A)は下記ワニスとしても使用できる。該溶剤としては例えばγ−ブチロラクトン類、N−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド、N,N−ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、好ましくは低級アルキレングリコールモノ又はジ低級アルキルエーテル、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、好ましくは2つのアルキル基が同一でも異なってもよいジ低級アルキルケトン、トルエン、キシレンなどの芳香族系溶剤が挙げられる。これらは単独で合っても、また2以上の混合溶媒であってもよい。   In addition, the epoxy resin composition (A) of the present invention may optionally contain a solvent. An epoxy resin composition (epoxy resin varnish) containing a solvent is formed by hot press-molding a prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, or paper and drying by heating. By this, it can be set as the hardened | cured material of the epoxy resin composition of this invention. The solvent content of the epoxy resin composition is usually about 10 to 70% by weight, preferably about 15 to 70% by weight, based on the total amount of the epoxy resin composition (A) of the present invention and the solvent. Moreover, the epoxy resin composition (A) containing this solvent can also be used as the following varnish. Examples of the solvent include amide solvents such as γ-butyrolactone, N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N, N-dimethylimidazolidinone, tetra Sulfones such as methylene sulfone, ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, preferably lower alkylene glycol mono or di-lower alkyl ether, methyl ethyl ketone, Ketone-based solvents such as methyl isobutyl ketone, preferably di-lower alkyl ketones in which two alkyl groups may be the same or different; Emissions, and aromatic solvents such as xylene. These may be used alone or in combination of two or more.

また、剥離フィルム上に前記ワニスを塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤を得ることが出来る。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。   Moreover, a sheet-like adhesive can be obtained by applying the varnish on a release film, removing the solvent under heating, and performing B-stage. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.

本発明で得られる硬化物は各種用途に使用できる。詳しくはエポキシ樹脂等の熱硬化性樹脂が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。   The cured product obtained in the present invention can be used for various applications. Specifically, general applications in which a thermosetting resin such as an epoxy resin is used can be mentioned. For example, adhesives, paints, coating agents, molding materials (including sheets, films, FRPs, etc.), insulating materials (printed boards, In addition to sealing agents, etc., additives to other resins and the like can be mentioned.

接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。   Examples of the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).

封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。   As sealing agents, potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip For example, underfill for QFP, BGA, CSP, etc., and sealing (including reinforcing underfill) can be used.

また、フェノール樹脂(a)とエピハリヒドリンとを反応させることで本発明のエポキシ樹脂(b)を得ることが出来る。
以下に本発明のエポキシ樹脂(b)を得る反応について記載する。
Moreover, the epoxy resin (b) of this invention can be obtained by making a phenol resin (a) and epihalidin react.
The reaction for obtaining the epoxy resin (b) of the present invention is described below.

本発明のエポキシ樹脂(b)はフェノール樹脂(a)を原料とし、エピハロヒドリンと反応させることにより得られる。エピハロヒドリンとしてはエピクロルヒドリン、α-メチルエピクロルヒドリン、γ-メチルエピクロルヒドリン、エピブロモヒドリン等が使用でき、本発明においては工業的に入手が容易なエピクロルヒドリンが好ましい。エピハロヒドリンの使用量は使用するフェノール樹脂(a)の水酸基1モルに対し通常3.0〜20モル、好ましくは3.0〜10モルである。   The epoxy resin (b) of the present invention is obtained by reacting with an epihalohydrin using the phenol resin (a) as a raw material. As the epihalohydrin, epichlorohydrin, α-methylepichlorohydrin, γ-methylepichlorohydrin, epibromohydrin and the like can be used. In the present invention, epichlorohydrin which is easily available industrially is preferable. The usage-amount of epihalohydrin is 3.0-20 mol normally with respect to 1 mol of hydroxyl groups of the phenol resin (a) to be used, Preferably it is 3.0-10 mol.

上記反応において使用しうるアルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等が挙げられ、固形物を利用してもよく、その水溶液を使用してもよい。水溶液を使用する場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びエピハロヒドリンを留出させ、更に分液して水を除去し、エピハロヒドリンを反応系内に連続的に戻す方法でもよい。アルカリ金属水酸化物の使用量はフェノール樹脂(a)の水酸基1モルに対して通常0.8〜2.0モルであり、好ましくは0.9〜1.5モルである。   Examples of the alkali metal hydroxide that can be used in the above reaction include sodium hydroxide, potassium hydroxide, and the like, and a solid substance may be used or an aqueous solution thereof may be used. When using an aqueous solution, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system, and water and epihalohydrin are continuously distilled off under reduced pressure or normal pressure, and further separated to remove water. Alternatively, the epihalohydrin may be continuously returned to the reaction system. The usage-amount of an alkali metal hydroxide is 0.8-2.0 mol normally with respect to 1 mol of hydroxyl groups of a phenol resin (a), Preferably it is 0.9-1.5 mol.

反応を促進するためにテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加することは好ましい。4級アンモニウム塩の使用量としては使用するフェノール樹脂(a)の水酸基1モルに対し通常0.1〜15gであり、好ましくは0.2〜10gである。   In order to accelerate the reaction, it is preferable to add a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride as a catalyst. The amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to 10 g, based on 1 mol of the hydroxyl group of the phenol resin (a) used.

この際、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等の非プロトン性極性溶媒などを添加して反応を行うことが反応進行上好ましい。   At this time, it is preferable for the reaction to proceed by adding an aprotic polar solvent such as alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran and dioxane.

アルコール類を使用する場合、その使用量はエピハロヒドリンの使用量に対し通常2〜50重量%、好ましくは4〜20重量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの使用量に対し通常5〜100重量%、好ましくは10〜80重量%である。   When using alcohol, the amount of its use is 2-50 weight% normally with respect to the usage-amount of epihalohydrin, Preferably it is 4-20 weight%. Moreover, when using an aprotic polar solvent, it is 5-100 weight% normally with respect to the usage-amount of epihalohydrin, Preferably it is 10-80 weight%.

反応温度は通常30〜90℃であり、好ましくは35〜80℃である。反応時間は通常0.5〜10時間であり、好ましくは1〜8時間である。これらのエポキシ化反応の反応物を水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去する。   The reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C. The reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours. After the reaction product of these epoxidation reactions is washed with water or without washing with water, the epihalohydrin, the solvent and the like are removed under heating and reduced pressure.

また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、回収したエポキシ樹脂(b)をトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて反応を行い、閉環を確実なものにすることも出来る。この場合アルカリ金属水酸化物の使用量はエポキシ化に使用したビスフェノール類とビフェノール類のトータルの水酸基1モルに対して通常0.01〜0.3モル、好ましくは0.05〜0.2モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。   Further, in order to obtain an epoxy resin with less hydrolyzable halogen, the recovered epoxy resin (b) is dissolved in a solvent such as toluene or methyl isobutyl ketone, and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is dissolved. The reaction can be carried out by adding an aqueous solution to ensure ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, based on 1 mol of the total hydroxyl group of bisphenols and biphenols used for epoxidation. It is. The reaction temperature is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 2 hours.

反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下溶剤を留去することにより本発明のエポキシ樹脂(b)が得られる。   After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin (b) of the present invention.

本発明のエポキシ樹脂(b)は常温で固体の樹脂状、もしくは結晶性エポキシ樹脂であり、その軟化点、あるいは融点は通常40〜200℃、好ましい条件下で調製されたものは、40〜180℃となる。40℃以下である場合、半固形で取り扱いが難しい。200℃を超える場合、組成物化する際に混練が困難である等の問題が生じる。また、そのエポキシ当量は通常200〜400g/eq、好ましい条件下で調製されたものは、230〜330g/eqとなる。   The epoxy resin (b) of the present invention is a resinous or crystalline epoxy resin that is solid at room temperature, and its softening point or melting point is usually 40 to 200 ° C., and those prepared under preferred conditions are 40 to 180. It becomes ℃. When it is 40 ° C. or lower, it is semi-solid and difficult to handle. When it exceeds 200 ° C., problems such as difficulty in kneading occur when forming a composition. Moreover, the epoxy equivalent is 200-400 g / eq normally, and what was prepared on preferable conditions will be 230-330 g / eq.

本発明のエポキシ樹脂(b)はエポキシアクリレート、およびその誘導体、カーボネート樹脂、オキサゾリドン樹脂等へ誘導することができる。感光性樹脂組成物の添加剤等として使用することもできる。   The epoxy resin (b) of the present invention can be derived into epoxy acrylate and its derivatives, carbonate resins, oxazolidone resins and the like. It can also be used as an additive for the photosensitive resin composition.

本発明のエポキシ樹脂(b)は硬化剤と組み合わせることでエポキシ樹脂組成物(B)とすることができる。以下、本発明のエポキシ樹脂(b)を使用するエポキシ樹脂組成物(B)について説明する。本発明のエポキシ樹脂組成物(B)において、本発明のエポキシ樹脂(b)は単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、本発明のエポキシ樹脂(b)のエポキシ樹脂中に占める割合は5重量%以上が好ましく、特に10重量%以上が好ましい。   The epoxy resin (b) of the present invention can be made into an epoxy resin composition (B) by combining with a curing agent. Hereinafter, the epoxy resin composition (B) using the epoxy resin (b) of the present invention will be described. In the epoxy resin composition (B) of the present invention, the epoxy resin (b) of the present invention can be used alone or in combination with other epoxy resins. When used in combination, the proportion of the epoxy resin (b) of the present invention in the epoxy resin is preferably 5% by weight or more, particularly preferably 10% by weight or more.

本発明のエポキシ樹脂(b)と併用されうる他のエポキシ樹脂の具体例としては、前述のエポキシ樹脂組成物(A)に記載のエポキシ樹脂と同様である。   Specific examples of other epoxy resins that can be used in combination with the epoxy resin (b) of the present invention are the same as the epoxy resins described in the above-mentioned epoxy resin composition (A).

本発明のエポキシ樹脂組成物において硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物、フェノール類と芳香族ジクロロメチル類(α,α’−ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物、フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、及びこれらの変性物、イミダゾ−ル、トリフルオロボラン−アミン錯体、グアニジン誘導体などが挙げられるがこれらに限定されることはない。また硬化剤としてフェノール樹脂(a)を使用することは好ましい。   Examples of the curing agent in the epoxy resin composition of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like. Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from linolenic acid and ethylenediamine, phthalic anhydride, triethylene anhydride. Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic acid anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.), phenols (phenol, alkyl substituted phenol, aromatic substituted phenol, naphthol, alkyl substituted naphthol, di Droxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.) and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.) Polycondensates, phenols and polymers of various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.) , Phenols and ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone) , Acetophenone, benzophenone, etc.), polycondensates of phenols and aromatic dimethanols (benzene dimethanol, biphenyl dimethanol, etc.), phenols and aromatic dichloromethyls (α, α ' -Polycondensates with dichloroxylene, bischloromethylbiphenyl, etc.) Polycondensates with phenols and aromatic bisalkoxymethyls (bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, etc.), bisphenols And polycondensates of aldehydes, and modified products thereof, imidazoles, trifluoroborane-amine complexes, guanidine derivatives, and the like, but are not limited thereto. Moreover, it is preferable to use a phenol resin (a) as a hardening | curing agent.

本発明のエポキシ樹脂組成物(B)において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.5〜1.5当量が好ましく、0.6〜1.2当量が特に好ましい。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全になり良好な硬化物性が得られない恐れがある。   In the epoxy resin composition (B) of the present invention, the amount of the curing agent used is preferably 0.5 to 1.5 equivalents, particularly preferably 0.6 to 1.2 equivalents, based on 1 equivalent of the epoxy group of the epoxy resin. . When less than 0.5 equivalent or more than 1.5 equivalent with respect to 1 equivalent of an epoxy group, curing may be incomplete and good cured properties may not be obtained.

また本発明のエポキシ樹脂組成物(B)には、必要に応じて硬化促進剤無機充填剤やシランカップリング材、離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂、添加剤等を添加することができる。用いうる物としては前述のエポキシ樹脂組成物(A)に記載の物と同様である。また組成物(B)の製造方法、硬化方法、およびその用途に関してもエポキシ樹脂組成物(A)に記載と同様である。   In addition, the epoxy resin composition (B) of the present invention may include various compounding agents such as a curing accelerator inorganic filler, a silane coupling material, a release agent, and a pigment, various thermosetting resins and additives as necessary. Etc. can be added. The thing which can be used is the same as the thing as described in the above-mentioned epoxy resin composition (A). The production method, curing method, and use of the composition (B) are the same as described in the epoxy resin composition (A).

次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また実施例において、エポキシ当量はJIS K−7236、軟化点はJIS K−7234に準じた方法で測定した。またピークPの検出はゲルパーミエーションクロマトグラフィーで測定を行った。(条件は前述のとおり)   EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples. Moreover, in the Example, the epoxy equivalent was measured by the method according to JIS K-7236, and the softening point according to JIS K-7234. The detection of peak P was measured by gel permeation chromatography. (Conditions as described above)

合成例1
フェノール樹脂(a1)
温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、4,4’−ビスメトキシメチルビフェニル(純度94%)242部、フェノール188部を仕込み、硫酸ジエチル7.2部を滴下した。反応温度を160℃に保ちながら3時間反応を行なった。副生するメタノールは系外に留去しながら反応を行なった。反応終了後、冷却し、トルエン300部を加え、水洗を行った後、有機層より、トルエン、過剰のフェノールを加熱減圧下留居することでフェノール樹脂(a1)を得た。物性値に関しては下記表1に示す。
Synthesis example 1
Phenolic resin (a1)
While purging a flask equipped with a thermometer, condenser, fractionator, and stirrer with nitrogen purge, 242 parts of 4,4′-bismethoxymethylbiphenyl (purity 94%) and 188 parts of phenol were charged, and diethyl sulfate 7. Two parts were added dropwise. The reaction was carried out for 3 hours while maintaining the reaction temperature at 160 ° C. By-product methanol was reacted while distilling out of the system. After completion of the reaction, the reaction mixture was cooled, 300 parts of toluene was added and washed with water. From the organic layer, toluene and excess phenol were retained under heating and reduced pressure to obtain a phenol resin (a1). The physical property values are shown in Table 1 below.

合成例2
フェノール樹脂(a2)
合成例1において4,4’−ビスメトキシメチルビフェニルの純度を92%に、フェノールの使用量を209部にした以外は同様に合成を行った。物性値に関しては下記表1に示す。
Synthesis example 2
Phenolic resin (a2)
Synthesis was performed in the same manner as in Synthesis Example 1 except that the purity of 4,4′-bismethoxymethylbiphenyl was 92% and the amount of phenol used was 209 parts. The physical property values are shown in Table 1 below.

合成例3
フェノール樹脂(a3)
温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、フェノール188部を仕込み、80℃に保持した後、4,4’−ビスクロロメチルビフェニル(純度92%)251部を4時間かけて分割添加した。さらに反応温度を80℃で4時間反応させた。副生する塩酸は系外に窒素除去しながら反応を行なった。反応終了後、冷却し、トルエン300部を加え、水洗を行った後、有機層より、トルエン、過剰のフェノールを加熱減圧下留居することでフェノール樹脂(a3)を得た。物性値に関しては下記表1に示す。
Synthesis example 3
Phenolic resin (a3)
A flask equipped with a thermometer, a condenser tube, a fractionator tube, and a stirrer was purged with nitrogen, charged with 188 parts of phenol and maintained at 80 ° C., and then 4,4′-bischloromethylbiphenyl (purity 92%) 251 parts were added in portions over 4 hours. Further, the reaction was carried out at 80 ° C. for 4 hours. By-product hydrochloric acid was reacted while removing nitrogen out of the system. After completion of the reaction, the reaction mixture was cooled, 300 parts of toluene was added and washed with water. From the organic layer, toluene and excess phenol were retained under heating and reduced pressure to obtain a phenol resin (a3). The physical property values are shown in Table 1 below.

合成例4
フェノール樹脂(a4)
合成例1において4,4’−ビスメトキシメチルビフェニルの純度を92%に、フェノールの使用量を311部にした以外は同様に合成を行った。物性値に関しては下記表1に示す。
Synthesis example 4
Phenolic resin (a4)
Synthesis was performed in the same manner as in Synthesis Example 1 except that the purity of 4,4′-bismethoxymethylbiphenyl was 92% and the amount of phenol used was 311 parts. The physical property values are shown in Table 1 below.

合成例5
フェノール樹脂(a5)
合成例1において4,4’−ビスメトキシメチルビフェニルの純度を92%に、フェノールの使用量を402部にした以外は同様に合成を行った。物性値に関しては下記表1に示す。
Synthesis example 5
Phenolic resin (a5)
Synthesis was performed in the same manner as in Synthesis Example 1 except that the purity of 4,4′-bismethoxymethylbiphenyl was 92% and the amount of phenol used was 402 parts. The physical property values are shown in Table 1 below.

合成例6
フェノール樹脂(a6)
合成例2において4,4’−ビスクロロメチルビフェニルの純度を94%に、フェノールの使用量を1413部にした以外は同様に合成を行った。物性値に関しては下記表1に示す。
Synthesis Example 6
Phenolic resin (a6)
Synthesis was performed in the same manner as in Synthesis Example 2 except that the purity of 4,4′-bischloromethylbiphenyl was 94% and the amount of phenol used was 1413 parts. The physical property values are shown in Table 1 below.

合成例7
フェノール樹脂(a7)
合成例5において4,4’−ビスメトキシメチルビフェニルの純度を98%にした以外は同様に合成を行った。物性値に関しては下記表1に示す。
Synthesis example 7
Phenolic resin (a7)
The synthesis was performed in the same manner as in Synthesis Example 5 except that the purity of 4,4′-bismethoxymethylbiphenyl was 98%. The physical property values are shown in Table 1 below.

合成例8
フェノール樹脂(a8)
合成例4において4,4’−ビスメトキシメチルビフェニルの純度を98%にした以外は同様に合成を行った。物性値に関しては下記表1に示す。
Synthesis Example 8
Phenolic resin (a8)
The synthesis was conducted in the same manner as in Synthesis Example 4 except that the purity of 4,4′-bismethoxymethylbiphenyl was 98%. The physical property values are shown in Table 1 below.

Figure 0005142180
*a9;明和化成株式会社製 MEH−7851SS
Figure 0005142180
* A9; MEH-7851SS manufactured by Meiwa Kasei Co., Ltd.

実施例1、2、比較例1、2
下記表2に示すフェノール樹脂を用い、下記表2に示す配合比(重量部)で配合した。トランスファー成型(175℃ 60秒)により樹脂成形体を得、これをさらに160℃で2時間、更に180℃で8時間かけて硬化させた。
Examples 1 and 2 and Comparative Examples 1 and 2
Using the phenol resin shown in the following Table 2, it mix | blended with the compounding ratio (part by weight) shown in the following Table 2. A resin molding was obtained by transfer molding (175 ° C. 60 seconds), and further cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours.

Figure 0005142180
*NC−3000;日本化薬株式会社製 エポキシ樹脂 エポキシ当量277g/eq.軟化点 57℃
*TPP;硬化促進剤 トリフェニルホスフィン 北興化学株式会社製
Figure 0005142180
* NC-3000: Nippon Kayaku Co., Ltd. epoxy resin Epoxy equivalent 277 g / eq. Softening point 57 ℃
* TPP: Curing accelerator Triphenylphosphine made by Hokuko Chemical Co., Ltd.

得られた硬化物の物性を測定した結果を表3に示す。なお、物性値の測定は以下の方法で行った。
TMA熱機械測定装置:真空理工(株)製 TM−7000
昇温速度:2℃/min.
IZOD耐衝撃試験:JIS K−6911
ピール強度:JIS K−6911
金属密着性:2.5x5.0cmのSUS304,アルミ板を1.25cm重ね、前記エポキシ樹脂組成物をクリップで挟み込み、160℃で2時間、更に180℃で8時間かけて硬化させた物について引っ張りせん断試験を行った。5回の平均値。

Figure 0005142180
Table 3 shows the results of measuring the physical properties of the obtained cured product. The physical property values were measured by the following methods.
TMA thermomechanical measuring device: TM-7000, manufactured by Vacuum Riko Co., Ltd.
Temperature increase rate: 2 ° C./min.
IZOD impact resistance test: JIS K-6911
Peel strength: JIS K-6911
Metal adhesion: SUS304 of 2.5 × 5.0 cm, 1.25 cm of aluminum plate, sandwiched with the above-mentioned epoxy resin composition, and pulled about a material cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours. A shear test was performed. Average of 5 times.
Figure 0005142180

以上の結果から、本発明のエポキシ樹脂は耐熱性を保持し、かつ、破壊靱性、および密着性(ピール強度、金属密着性)において改善されていることが分かる。   From the above results, it can be seen that the epoxy resin of the present invention retains heat resistance and is improved in fracture toughness and adhesion (peel strength, metal adhesion).

参考例3
フェノール樹脂(a1)223部に対し、エピクロルヒドリン555部、メタノール100部を仕込み、撹拌下で65〜70℃まで昇温した後、還流条件化でフレーク状水酸化ナトリウム41部を90分かけて分割添加した。その後、更に70℃で1時間、後反応を行った。次いで水を150部加えて水洗を2回行い、加熱減圧下で油層から過剰のエピクロルヒドリンなどを除去した。残留分にメチルイソブチルケトン600部を加えて溶解し、70℃で30%水酸化ナトリウム水溶液10部を加えて1時間反応を行った。反応後、水洗を3回行い、生成塩などを除去した。加熱減圧下でメチルイソブチルケトンを留去することでエポキシ樹脂(b1)を得た。樹脂物性に関しては表4に示す。
Reference example 3
223 parts of phenolic resin (a1) was charged with 555 parts of epichlorohydrin and 100 parts of methanol, heated to 65-70 ° C. with stirring, and then divided into 41 parts of flaky sodium hydroxide over 90 minutes under reflux conditions. Added. Thereafter, the post reaction was further carried out at 70 ° C. for 1 hour. Subsequently, 150 parts of water was added and washed with water twice, and excess epichlorohydrin and the like were removed from the oil layer under heating and reduced pressure. The residue was dissolved by adding 600 parts of methyl isobutyl ketone, and 10 parts of a 30% aqueous sodium hydroxide solution was added at 70 ° C. for 1 hour. After the reaction, washing with water was performed 3 times to remove the generated salt and the like. It was obtained Dee epoxy resin distilling off the methyl isobutyl ketone (b1) by heating under reduced pressure. Table 4 shows the physical properties of the resin.

参考例4
フェノール樹脂(a2)218部に対し、エピクロルヒドリン555部、ジメチルスルホキシド140部を仕込み、撹拌下で40℃まで昇温した後、フレーク状水酸化ナトリウム41部を90分かけて分割添加した。その後、更に40℃で2時間、70℃で1時間、後反応を行った。加熱減圧下で油層から過剰のエピクロルヒドリンなどを除去した。残留分にメチルイソブチルケトン600部を加えて溶解し、水洗を行い、生成した塩を除去した。得られた有機層を70℃に保持し、さらに30%水酸化ナトリウム水溶液10部を加えて1時間反応を行った。反応後、水洗を3回行い、生成塩などを除去した。加熱減圧下でメチルイソブチルケトンを留去することでエポキシ樹脂(b2)を得た。樹脂物性に関しては表4に示す。
Reference example 4
To 218 parts of the phenol resin (a2), 555 parts of epichlorohydrin and 140 parts of dimethyl sulfoxide were charged, and the temperature was raised to 40 ° C. with stirring. Then, 41 parts of flaky sodium hydroxide was added in portions over 90 minutes. Thereafter, post-reaction was further performed at 40 ° C. for 2 hours and at 70 ° C. for 1 hour. Excess epichlorohydrin and the like were removed from the oil layer under heating and reduced pressure. The residue was dissolved by adding 600 parts of methyl isobutyl ketone, washed with water, and the generated salt was removed. The obtained organic layer was kept at 70 ° C., and further 10 parts of 30% aqueous sodium hydroxide solution was added to react for 1 hour. After the reaction, washing with water was performed 3 times to remove the generated salt and the like. It was obtained Dee epoxy resin distilling off the methyl isobutyl ketone (b2) by heating under reduced pressure. Table 4 shows the physical properties of the resin.

実施例5
フェノール樹脂(a1)223部をフェノール樹脂(a3)221部に変えた以外は実施例3と同様に合成を行い、本発明のエポキシ樹脂(b3)を得た。樹脂物性に関しては表4に示す。
Example 5
Synthesis was performed in the same manner as in Example 3 except that 223 parts of the phenol resin (a1) was changed to 221 parts of the phenol resin (a3) to obtain the epoxy resin (b3) of the present invention. Table 4 shows the physical properties of the resin.

実施例6
フェノール樹脂(a1)223部をフェノール樹脂(a4)207部に変えた以外は実施例3と同様に合成を行い、本発明のエポキシ樹脂(b4)を得た。樹脂物性に関しては表4に示す。
Example 6
The epoxy resin (b4) of the present invention was obtained by synthesizing in the same manner as in Example 3 except that 223 parts of the phenol resin (a1) was changed to 207 parts of the phenol resin (a4). Table 4 shows the physical properties of the resin.

参考例7
フェノール樹脂(a1)223部をフェノール樹脂(a6)207部に変えた以外は実施例4と同様に合成を行い、エポキシ樹脂(b6)を得た。樹脂物性に関しては表4に示す。
Reference Example 7
Except that the phenol resin (a1) 223 parts were changed to a phenol resin (a6) 207 parts performing the same synthesis as in Example 4 to obtain d epoxy resin (b6). Table 4 shows the physical properties of the resin.

比較例3
フェノール樹脂(a1)223部をフェノール樹脂(a7)202部に変えた以外は実施例4と同様に合成を行い、比較用のエポキシ樹脂(b7)を得た。樹脂物性に関しては表4に示す。
Comparative Example 3
Synthesis was performed in the same manner as in Example 4 except that 223 parts of the phenol resin (a1) was changed to 202 parts of the phenol resin (a7) to obtain a comparative epoxy resin (b7). Table 4 shows the physical properties of the resin.

Figure 0005142180
Figure 0005142180

実施例8、比較例4
実施例6で得られた本発明のエポキシ樹脂(b4)、比較例として比較用エポキシ樹脂(b8)についてフェノールノボラック(明和化成工業株式会社製 フェノールノボラック 水酸基当量106g/eq. 以下HD1)を硬化剤とし、硬化促進剤としてトリフェニルホスフィン(TPP)を下記表5に示す配合比(重量部)で配合した。トランスファー成型(175℃ 60秒)により樹脂成形体を得、これをさらに160℃で2時間、更に180℃で8時間かけて硬化させた。
Example 8, Comparative Example 4
For the epoxy resin (b4) of the present invention obtained in Example 6 and a comparative epoxy resin (b8) as a comparative example, a phenol novolak (phenol novolak, hydroxyl equivalent 106 g / eq. Hereinafter HD1) manufactured by Meiwa Kasei Kogyo Co., Ltd. As a curing accelerator, triphenylphosphine (TPP) was blended at a blending ratio (parts by weight) shown in Table 5 below. A resin molding was obtained by transfer molding (175 ° C. 60 seconds), and further cured at 160 ° C. for 2 hours and further at 180 ° C. for 8 hours.

Figure 0005142180
Figure 0005142180

得られた硬化物の物性を測定した結果を表6に示す。なお、物性値の測定は以下の方法で行った。
IZOD耐衝撃試験:JIS K−6911
ピール強度:JIS K−6911
Table 6 shows the results of measuring the physical properties of the obtained cured product. The physical property values were measured by the following methods.
IZOD impact resistance test: JIS K-6911
Peel strength: JIS K-6911

Figure 0005142180
Figure 0005142180

以上の結果から、本発明のエポキシ樹脂は靭性、密着性において優れた特性を有することがわかる。   From the above results, it can be seen that the epoxy resin of the present invention has excellent properties in toughness and adhesion.

Claims (7)

純度80〜92%であるビフェニル化合物にフェノールを反応させて得られる、
式(1)
Figure 0005142180
(式中、nは繰り返し数を示し、平均値で1.01〜3.5である。)
で表されるフェノール−ビフェニレン型フェノールアラルキル樹脂であって、ゲルパーミエーションクロマトグラフィーの測定においてn=1とn=2の間に現れるピークPが2.5面積%以上であり、面積比がn=1のピーク面積に対し、0.015倍以上0.2倍未満であることを特徴とするフェノール樹脂およびエポキシ樹脂を含有するエポキシ樹脂組成物であって、エポキシ樹脂のエポキシ基1当量に対して、0.5〜1.5当量の前記フェノール樹脂を含有するエポキシ樹脂組成物。
Obtained by reacting a phenol with a biphenyl compound having a purity of 80 to 92%,
Formula (1)
Figure 0005142180
(In the formula, n represents the number of repetitions, and an average value is 1.01 to 3.5.)
The peak P appearing between n = 1 and n = 2 in the measurement of gel permeation chromatography is 2.5 area% or more, and the area ratio is n = 0.15 times or more and less than 0.2 times the peak area of 1, an epoxy resin composition containing a phenol resin and an epoxy resin, wherein 1 equivalent of epoxy groups of the epoxy resin An epoxy resin composition containing 0.5 to 1.5 equivalents of the phenol resin.
前記フェノール−ビフェニレン型フェノールアラルキル樹脂について、ゲルパーミエーションクロマトグラフィーの測定においてn=1とn=2の間に現れるピークPが2.5面積%〜3.5面積%である請求項1記載のエポキシ樹脂組成物。 The peak P appearing between n = 1 and n = 2 in the measurement of gel permeation chromatography for the phenol-biphenylene type phenol aralkyl resin is 2.5 area% to 3.5 area%. Epoxy resin composition. nの平均値が1.1〜3.0である請求項2記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 2, wherein an average value of n is 1.1 to 3.0. 純度80〜92%であるビフェニル化合物にフェノールを反応させて得られる、式(1)
Figure 0005142180
(式中、nは繰り返し数を示し、平均値で1.01〜3.5である。)
で表されるフェノール−ビフェニレン型フェノールアラルキル樹脂について、ゲルパーミエーションクロマトグラフィーの測定においてn=1とn=2の間に現れるピークPが2.5面積%以上であり、面積比がn=1のピーク面積に対し、0.015倍以上0.2倍未満であるフェノール樹脂とエピハロヒドリンとを反応させることにより得られるエポキシ樹脂。
Formula (1) obtained by reacting a phenol with a biphenyl compound having a purity of 80 to 92%
Figure 0005142180
(In the formula, n represents the number of repetitions, and an average value is 1.01 to 3.5.)
In the measurement of gel permeation chromatography, the peak P appearing between n = 1 and n = 2 is 2.5 area% or more, and the area ratio is n = 1. An epoxy resin obtained by reacting a phenol resin and an epihalohydrin that are 0.015 times or more and less than 0.2 times the peak area.
請求項4に記載のエポキシ樹脂及び硬化剤を含有してなるエポキシ樹脂組成物であって、エポキシ樹脂のエポキシ基1当量に対して、0.5〜1.5当量の硬化剤を含有するエポキシ樹脂組成物。 An epoxy resin composition comprising the epoxy resin according to claim 4 and a curing agent, wherein the epoxy resin contains 0.5 to 1.5 equivalents of a curing agent with respect to 1 equivalent of an epoxy group of the epoxy resin. Resin composition. エポキシ樹脂が、請求項4に記載のエポキシ樹脂である請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the epoxy resin is an epoxy resin according to claim 4. 請求項1〜3、5、6のいずれか一項に記載のエポキシ樹脂組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing the epoxy resin composition as described in any one of Claims 1-3, 5, 6.
JP2006138347A 2006-05-17 2006-05-17 Epoxy resin composition and cured product thereof Active JP5142180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138347A JP5142180B2 (en) 2006-05-17 2006-05-17 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138347A JP5142180B2 (en) 2006-05-17 2006-05-17 Epoxy resin composition and cured product thereof

Publications (3)

Publication Number Publication Date
JP2007308570A JP2007308570A (en) 2007-11-29
JP2007308570A5 JP2007308570A5 (en) 2009-05-07
JP5142180B2 true JP5142180B2 (en) 2013-02-13

Family

ID=38841732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138347A Active JP5142180B2 (en) 2006-05-17 2006-05-17 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP5142180B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472103B2 (en) * 2008-05-30 2014-04-16 ダイソー株式会社 Epoxy resin cured product and epoxy resin adhesive
KR101326934B1 (en) * 2011-08-31 2013-11-11 엘지이노텍 주식회사 Epoxy resin compound and radiant heat circuit board using the same
KR101385005B1 (en) * 2012-04-25 2014-04-16 국도화학 주식회사 EMC and epoxy composition
JP2019104821A (en) * 2017-12-12 2019-06-27 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured product of the same
CN116507659A (en) * 2021-03-18 2023-07-28 日本化药株式会社 Epoxy resin mixture, method for producing same, epoxy resin composition, and cured product thereof
CN117120503A (en) * 2021-07-30 2023-11-24 日本化药株式会社 Epoxy resin, curable resin composition, and cured product of curable resin composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212962A (en) * 2002-01-21 2003-07-30 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003213084A (en) * 2002-01-28 2003-07-30 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003301031A (en) * 2002-04-10 2003-10-21 Nippon Kayaku Co Ltd Phenolic resin, epoxy resin and method for preparation thereof, and resin composition
KR101090653B1 (en) * 2004-03-16 2011-12-07 스미토모 베이클라이트 가부시키가이샤 Epoxy resin composition and semiconductor device
JP5458573B2 (en) * 2006-03-07 2014-04-02 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP5366263B2 (en) * 2010-07-21 2013-12-11 日本化薬株式会社 Phenol aralkyl resin, epoxy resin composition and cured product thereof

Also Published As

Publication number Publication date
JP2007308570A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP5348740B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP6366504B2 (en) Epoxy resin, epoxy resin composition and cured product
JP5273762B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2001064340A (en) 4,4'-biphenydiyldimethylene-phenolic resin epoxy resin, epoxy resin composition, and its cured product
JP5386352B2 (en) Liquid epoxy resin, epoxy resin composition, and cured product
JP5142180B2 (en) Epoxy resin composition and cured product thereof
JP5127164B2 (en) Modified epoxy resin, epoxy resin composition, and cured product thereof
WO2008020594A1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JP5319289B2 (en) Epoxy resin and method for producing the same, and epoxy resin composition and cured product using the same
JP5127160B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP5322143B2 (en) Phenol resin, epoxy resin, epoxy resin composition, and cured product thereof
JP2008195843A (en) Phenolic resin, epoxy resin, epoxy resin composition, and cured product of the same
KR20010023189A (en) Polyhydric phenol compounds, epoxy resins, epoxy resin compositions and cured products thereof
JP3894628B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP5220488B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP4942384B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP3907140B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP2010053293A (en) Epoxy resin composition
JP5579300B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP6544815B2 (en) Epoxy resin, curable resin composition and cured product
JP4776446B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP4390179B2 (en) Method for producing modified epoxy resin
JP4311587B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2007045978A (en) Epoxy resin, epoxy resin composition, and cured product thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250