JP5135663B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5135663B2
JP5135663B2 JP2004306278A JP2004306278A JP5135663B2 JP 5135663 B2 JP5135663 B2 JP 5135663B2 JP 2004306278 A JP2004306278 A JP 2004306278A JP 2004306278 A JP2004306278 A JP 2004306278A JP 5135663 B2 JP5135663 B2 JP 5135663B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
recess
insulating film
trench
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004306278A
Other languages
Japanese (ja)
Other versions
JP2006120807A (en
Inventor
達司 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2004306278A priority Critical patent/JP5135663B2/en
Publication of JP2006120807A publication Critical patent/JP2006120807A/en
Application granted granted Critical
Publication of JP5135663B2 publication Critical patent/JP5135663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

この発明は、ダイオード、MOSFET(MOS型電界効果トランジスタ)、IGBT(絶縁ゲート型バイポーラトランジスタ)およびバイポーラトランジスタなどの高耐圧の半導体装置に関し、特にその耐圧構造に関する。   The present invention relates to a high breakdown voltage semiconductor device such as a diode, MOSFET (MOS field effect transistor), IGBT (insulated gate bipolar transistor), and bipolar transistor, and more particularly to its breakdown voltage structure.

高耐圧が要求される縦型半導体装置では、半導体チップの外周部での漏れ電流を抑えながら安定的に耐圧を確保するためにフィールドプレート電極やガードリングなどを用いた耐圧構造が半導体チップの外周部に形成される。ただし、耐圧構造が形成される領域は導通時にもほとんど電流の流れない無効領域であるため、半導体チップに占める面積(耐圧構造の占有面積)は小さいことが望ましい。この耐圧構造について開示されている内容をつぎに説明する。
例えば、非特許文献1および非特許文献2では、半導体チップの外周部にトレンチを形成し、このトレンチ側壁と耐圧をもつpn接合面を直交させ、トレンチの側壁と底面に絶縁膜を被覆させることで、耐圧構造の占有面積を減少させている。
また、特許文献1は、半導体チップの外周部にトレンチを形成し、このトレンチ側壁と耐圧をもつpn接合面を直交させ、トレンチ内を絶縁膜で充填し、この絶縁膜上に絶縁膜の一部を覆うようにフィールドプレート電極を形成して、耐圧構造の占有面積(幅)を減少させている。
特許第3031282号公報 Proceedings of ISPSD’02,pp257−260 Proceedings of ISPSD’03,pp199−202
In vertical semiconductor devices that require high breakdown voltage, a breakdown voltage structure using field plate electrodes, guard rings, etc. is used to ensure stable breakdown voltage while suppressing leakage current at the outer periphery of the semiconductor chip. Formed in the part. However, since the region where the withstand voltage structure is formed is an ineffective region in which almost no current flows even when conducting, it is desirable that the area occupied by the semiconductor chip (occupied area of the withstand voltage structure) is small. The content disclosed about this pressure | voltage resistant structure is demonstrated below.
For example, in Non-Patent Document 1 and Non-Patent Document 2, a trench is formed in the outer peripheral portion of a semiconductor chip, the trench side wall and a pn junction surface having a withstand voltage are orthogonal to each other, and an insulating film is coated on the side wall and bottom surface of the trench. Thus, the area occupied by the pressure-resistant structure is reduced.
Further, in Patent Document 1, a trench is formed in the outer peripheral portion of a semiconductor chip, the trench side wall and a pn junction surface having a withstand voltage are orthogonal to each other, the trench is filled with an insulating film, and an insulating film is formed on the insulating film. A field plate electrode is formed so as to cover the portion, and the occupied area (width) of the pressure-resistant structure is reduced.
Japanese Patent No. 3031282 Proceedings of ISPSD'02, pp257-260 Proceedings of ISPSD '03, pp 199-202

しかし、前記のトレンチを用いた耐圧構造は、その耐圧構造の占有面積の減少には有効であるが、トレンチ内に充填した絶縁膜が表面に露出するため、露出した絶縁膜の表面に外部電荷が付着すると、この外部電荷で電位分布が歪められ、電界集中を起こして耐圧が低下する。
図10は、酸化膜上に付着した外部電荷量と耐圧の関係を示す図である。この酸化膜上のフィールドプレート電極の長さLを20μmとし、トレンチの幅Wを60μmとした場合のシミュレーション図である。
外部電荷が付着しない場合の耐圧を100%とした場合、酸化膜表面に付着した外部電荷量が+0.5×1012×1.6×10-19 C/cm2 の場合は、耐圧比は93%に低下し、+1×1012×1.6×10-19 C/cm2 の場合は、耐圧比は80%に低下する。この+1×1012×1.6×10-19 C/cm2 の電荷量は、実使用時の環境下で最も多い場合を想定したものである。
However, the breakdown voltage structure using the trench is effective in reducing the occupied area of the breakdown voltage structure, but since the insulating film filled in the trench is exposed on the surface, external charges are exposed on the surface of the exposed insulating film. If this occurs, the potential distribution is distorted by this external charge, causing electric field concentration and lowering the breakdown voltage.
FIG. 10 is a diagram showing the relationship between the amount of external charge deposited on the oxide film and the breakdown voltage. FIG. 6 is a simulation diagram when the length L of the field plate electrode on the oxide film is 20 μm and the width W of the trench is 60 μm.
Assuming that the withstand voltage when no external charge is attached is 100%, and the external charge amount attached to the oxide film surface is + 0.5 × 10 12 × 1.6 × 10 −19 C / cm 2 , the withstand voltage ratio is In the case of + 1 × 10 12 × 1.6 × 10 −19 C / cm 2 , the breakdown voltage ratio decreases to 80%. This charge amount of + 1 × 10 12 × 1.6 × 10 −19 C / cm 2 is assumed to be the largest in the actual use environment.

また、半導体チップの外周部に形成されたトレンチは機械的ダメージを受けやすく、この機械的ダメージでトレンチ内の酸化膜やトレンチ周囲の半導体基板にクラックなどが発生すると、耐圧が低下する。
この発明の目的は、前記の課題を解決して、外部電荷の影響を排除し、占有面積が小さなく、安定な高い耐圧で、信頼性の高い耐圧構造を有する半導体装置を提供することにある。
In addition, the trench formed in the outer peripheral portion of the semiconductor chip is easily damaged by mechanical damage. When the mechanical damage causes a crack or the like in the oxide film in the trench or the semiconductor substrate around the trench, the breakdown voltage is lowered.
An object of the present invention is to solve the above-described problems, and to provide a semiconductor device having a high withstand voltage structure that eliminates the influence of external charges, has a small occupied area, has a stable high withstand voltage, and is highly reliable. .

前記の目的を達成するために、
(1)第1導電型の第1半導体層の第1主面の表面層に選択的に形成される第2導電型の第2半導体層と、
前記第1半導体層の第2主面側にて前記第1半導体層と接し前記第1半導体層よりも高濃度の第1導電型の第3半導体層と、
前記第1半導体層の第1主面の表面層にて前記第2半導体層の外周部に形成される耐圧構造部と、
該耐圧構造部にて前記第1半導体層の外周側端部から内周側に離間し、且つ前記第1半導体層の第1主面から前記第1半導体層を貫通し前記第3半導体層の内部に達するとともに前記第2半導体層の外周側に形成されるトレンチと、
該トレンチ内に形成される絶縁膜と、
該絶縁膜に形成される凹部と、
前記トレンチ内の絶縁膜の内周側上面を覆い且つ前記凹部の上面開口部に達するとともに該上面開口部から前記凹部の内部に屈曲し、前記凹部の深さ方向に延在して底部で終端することによって前記凹部を充填するように形成される導電膜と、
前記第2半導体層上に形成され、前記導電膜と同電位となるように該導電膜に接する第1主電極と、
前記第3半導体層の主面のうち前記第1半導体層と接する側とは反対側の主面に形成される第2主電極とを有し、
前記第2半導体層の外周端が前記トレンチに接し、
前記第1半導体層の厚さは前記第2半導体層の拡散深さの10倍よりも厚く、
前記凹部の底部に達する前記導電膜の深さが、前記第2半導体層の拡散深さよりも深く、且つ前記第3半導体層よりも浅いとともに、前記第2半導体層の拡散深さの2倍〜10倍である構成とする。
(2)第1導電型の第1半導体層の第1主面の表面層に選択的に形成される第2導電型の第2半導体層と、
前記第1半導体層の第2主面側にて前記第1半導体層と接し前記第1半導体層よりも高濃度の第1導電型の第3半導体層と、
前記第1半導体層の第1主面の表面層にて前記第2半導体層の外周部に形成される耐圧構造部と、
該耐圧構造部にて前記第1半導体層の外周側端部から内周側に離間し、且つ前記第1半導体層の第1主面から前記第1半導体層を貫通し前記第3半導体層の内部に達するとともに前記第2半導体層よりも外周側に形成されるトレンチと、
該トレンチ内に形成される第1の絶縁膜と、
該第1の絶縁膜に形成される凹部と、
前記第2半導体層と前記第1の絶縁膜の間の第1半導体層上に形成される第2の絶縁膜と、
前記トレンチ内の第1の絶縁膜の内周側上面を覆い且つ前記凹部の上面開口部に達するとともに該上面開口部から前記凹部の内部に屈曲し、前記凹部の深さ方向に延在して底部で終端することによって前記凹部を充填するように形成される導電膜と、
前記第2半導体層上および前記第2の絶縁膜上に形成され、前記導電膜と同電位となるように該導電膜に接する第1主電極と、
前記第3半導体層の主面のうち前記第1半導体層と接する側とは反対側の主面に形成される第2主電極とを有し、
前記第2半導体層の外周端は前記トレンチと離間し、
前記第1半導体層の厚さは前記第2半導体層の拡散深さの10倍よりも厚く、
前記凹部の底部に達する前記導電膜の深さが、前記第2半導体層の拡散深さよりも深く、且つ前記第3半導体層よりも浅いとともに、前記第2半導体層の拡散深さの2倍〜10倍である構成とする。
(3)前記第半導体層が半導体基板であり、前記第1半導体層が前記半導体基板上に形成したエピタキシャル成長層であってもよい。
(4)前記導電膜が金属またはポリシリコンであってもよい。
(5)(1)〜(3)の半導体装置の製造方法において、前記絶縁膜または前記第1の絶縁膜が酸化膜であって、前記第1半導体層の第1主面から該第1半導体層の内部へ向かって溝を複数個形成する工程と、該溝に接する前記第1半導体層表面と該溝に挟まれた前記第1半導体層全域を酸化膜化する工程と、該酸化膜に凹部を形成し、前記凹部に導電膜を形成するか、もしくは前記酸化膜上全面に導電膜を形成する工程を有する製造方法とする。
(6)記溝格子状、島状およびストライプ状のいずれかであってもよい。
(7)前記の酸化膜化が、前記第1半導体層を熱酸化することで行われてもよい。
(8)前記導電膜を金属またはポリシリコンとしてもよい。
To achieve the above objective,
(1) a second semiconductor layer of a second conductivity type selectively formed on the surface layer of the first main surface of the first semiconductor layer of the first conductivity type;
A third semiconductor layer of a first conductivity type in contact with the first semiconductor layer on the second main surface side of the first semiconductor layer and having a higher concentration than the first semiconductor layer;
A pressure-resistant structure portion formed on an outer peripheral portion of the second semiconductor layer in a surface layer of the first main surface of the first semiconductor layer;
The pressure-resistant structure portion is spaced from the outer peripheral side end of the first semiconductor layer to the inner peripheral side, and penetrates the first semiconductor layer from the first main surface of the first semiconductor layer. A trench that reaches the inside and is formed on the outer peripheral side of the second semiconductor layer;
An insulating film formed in the trench;
A recess formed in the insulating film;
Covers the upper surface on the inner peripheral side of the insulating film in the trench, reaches the upper surface opening of the recess, bends from the upper surface opening into the recess, extends in the depth direction of the recess, and terminates at the bottom A conductive film formed to fill the recess by
A first main electrode formed on the second semiconductor layer and in contact with the conductive film so as to have the same potential as the conductive film;
A second main electrode formed on a main surface opposite to a side in contact with the first semiconductor layer of the main surface of the third semiconductor layer;
An outer peripheral edge of the second semiconductor layer is in contact with the trench;
The thickness of the first semiconductor layer is greater than 10 times the diffusion depth of the second semiconductor layer,
The depth of the conductive film reaching the bottom of the recess is deeper than the diffusion depth of the second semiconductor layer and shallower than the third semiconductor layer, and twice the diffusion depth of the second semiconductor layer. The configuration is 10 times.
(2) a second conductivity type second semiconductor layer selectively formed on a surface layer of the first main surface of the first conductivity type first semiconductor layer;
A third semiconductor layer of a first conductivity type in contact with the first semiconductor layer on the second main surface side of the first semiconductor layer and having a higher concentration than the first semiconductor layer;
A pressure-resistant structure portion formed on an outer peripheral portion of the second semiconductor layer in a surface layer of the first main surface of the first semiconductor layer;
The pressure-resistant structure portion is spaced from the outer peripheral side end of the first semiconductor layer to the inner peripheral side, and penetrates the first semiconductor layer from the first main surface of the first semiconductor layer. A trench that reaches the inside and is formed on the outer peripheral side of the second semiconductor layer;
A first insulating film formed in the trench;
A recess formed in the first insulating film;
A second insulating film formed on the first semiconductor layer between the second semiconductor layer and the first insulating film;
Covers the inner peripheral upper surface of the first insulating film in the trench, reaches the upper surface opening of the recess, bends from the upper surface opening into the recess, and extends in the depth direction of the recess. A conductive film formed to fill the recess by terminating at the bottom;
A first main electrode formed on the second semiconductor layer and the second insulating film and in contact with the conductive film so as to have the same potential as the conductive film;
A second main electrode formed on a main surface opposite to a side in contact with the first semiconductor layer of the main surface of the third semiconductor layer;
The outer peripheral edge of the second semiconductor layer is separated from the trench,
The thickness of the first semiconductor layer is greater than 10 times the diffusion depth of the second semiconductor layer,
The depth of the conductive film reaching the bottom of the recess is deeper than the diffusion depth of the second semiconductor layer and shallower than the third semiconductor layer, and twice the diffusion depth of the second semiconductor layer. The configuration is 10 times.
(3) The third semiconductor layer may be a semiconductor substrate, and the first semiconductor layer may be an epitaxial growth layer formed on the semiconductor substrate.
(4) The conductive film may be metal or polysilicon.
(5) In the method of manufacturing a semiconductor device according to (1) to (3), the insulating film or the first insulating film is an oxide film, and the first semiconductor is formed from the first main surface of the first semiconductor layer. Forming a plurality of grooves toward the inside of the layer; forming a surface of the first semiconductor layer in contact with the grooves; and forming an oxide film on the entire area of the first semiconductor layer sandwiched between the grooves; and The manufacturing method includes a step of forming a recess and forming a conductive film in the recess or forming a conductive film on the entire surface of the oxide film.
(6) before Kimizo lattice shape may be any of the island-like and stripe.
(7) The oxide film may be formed by thermally oxidizing the first semiconductor layer.
(8) The conductive film may be metal or polysilicon.

この発明において、半導体チップの外周部にトレンチを形成し、このトレンチ内に絶縁膜を充填し、この絶縁膜に凹部を掘って、その凹部内にフィールドプレート電極を形成することで、電位分布の歪みを抑制し、外部電荷の影響を排除して、電界集中を防止して、占有面積が小さく、高く安定した耐圧で高い信頼性を確保できる耐圧構造を有する半導体装置とすることができる。
また、トレンチ内に充填される絶縁膜上全面をフィールドプレート電極で被覆することで、電位分布の歪みを抑制し、外部電荷の影響を排除して、電界集中を防止して、占有面積が小さく、高く安定した耐圧で高い信頼性を確保できる耐圧構造を有する半導体装置とすることができる。特に、トレンチ上にフィールドプレート電極を被覆することで、トレンチ近傍の機械的強度が強くなり、トレンチでの機械的ダメージを防止することができる。
In the present invention, a trench is formed in the outer peripheral portion of the semiconductor chip, an insulating film is filled in the trench, a recess is dug in the insulating film, and a field plate electrode is formed in the recess, thereby generating a potential distribution. A semiconductor device having a withstand voltage structure that can suppress distortion, eliminate the influence of external charges, prevent electric field concentration, have a small occupation area, and can secure high reliability with a high and stable withstand voltage.
In addition, by covering the entire surface of the insulating film filled in the trench with a field plate electrode, the distortion of the potential distribution is suppressed, the influence of external charges is eliminated, the electric field concentration is prevented, and the occupied area is reduced. Thus, a semiconductor device having a breakdown voltage structure capable of ensuring high reliability with a high and stable breakdown voltage can be obtained. In particular, by covering the trench with the field plate electrode, the mechanical strength in the vicinity of the trench is increased, and mechanical damage in the trench can be prevented.

以下に本発明の実施形態を説明する。以下でnまたはpを冠記した領域では、それぞれ電子、正孔が多数キャリアであることを意味している。上付き文字の+は比較的高不純物濃度、−は低不純物濃度であることを示している。すべての実施例において第1導電型をn型に、第2導電型をp型に規定しているが、これが逆の場合であっても実施形態は同様である。フィールドプレート電極は金属またはポリシリコンを用いることができる。   Embodiments of the present invention will be described below. In the region where n or p is mentioned below, it means that electrons and holes are majority carriers, respectively. The superscript + indicates a relatively high impurity concentration and-indicates a low impurity concentration. In all the examples, the first conductivity type is defined as n-type and the second conductivity type is defined as p-type, but the embodiment is the same even if this is the opposite. The field plate electrode can be made of metal or polysilicon.

図1は、この発明の第1実施例の半導体装置の要部断面図である。n+ ドレイン層となるn+ 半導体基材1上にnドリフト層となるnエピタキシャル層2を形成したn半導体基板100の第1主面の表面からn+ 半導体基材に達するトレンチ3を形成し、トレンチ3内を絶縁膜4で充填し、この絶縁膜4に凹部5を形成する。このトレンチ3に接するように、n半導体基板100の表面層(nエピタキシャル層1の表面層)にpウェル領域6を形成し、このpウェル領域6の表面層にn+ ソース領域7とp+ コンタクト領域8を形成する。このn+ ソース領域7とn半導体基板100に挟まれたpウェル領域6上にゲート絶縁膜9を介してゲート電極10を形成する。n+ ソース領域7上とp+ コンタクト領域8上にソース電極12を形成し、このソース電極12の電位に固定するために、ソース電極12と接続するフィールドプレート電極13を絶縁膜3上と絶縁膜3の凹部5に形成し、n半導体基板100の第2主面(n+ ドレイン領域となるn+ 半導体基材1の裏面)にドレイン電極14を形成する。
FIG. 1 is a cross-sectional view of a main part of a semiconductor device according to a first embodiment of the present invention. A trench 3 reaching the n + semiconductor substrate 1 from the surface of the first main surface of the n semiconductor substrate 100 in which the n epitaxial layer 2 serving as the n drift layer is formed on the n + semiconductor substrate 1 serving as the n + drain layer is formed. Then, the trench 3 is filled with the insulating film 4, and the recess 5 is formed in the insulating film 4. A p well region 6 is formed in the surface layer of n semiconductor substrate 100 (surface layer of n epitaxial layer 1) so as to be in contact with trench 3, and n + source region 7 and p + are formed in the surface layer of p well region 6. Contact region 8 is formed. A gate electrode 10 is formed on the p well region 6 sandwiched between the n + source region 7 and the n semiconductor substrate 100 via a gate insulating film 9. A source electrode 12 is formed on the n + source region 7 and the p + contact region 8, and the field plate electrode 13 connected to the source electrode 12 is insulated from the insulating film 3 in order to fix the source electrode 12 at a potential. formed in the recess 5 of the film 3 to form the drain electrode 14 on the second main surface of the n semiconductor substrate 100 (n + drain region to become n + back surface of the semiconductor substrate 1).

尚、ここでは、n半導体基板100はn+ 半導体基材1上(n+ ドレイン領域となる)にnエピタキシャル層2を形成したエピタキシャル基板を用いたが、単結晶のn半導体基板を用いて、その第1主面の表面層にpウェル領域6、第2主面の表面層にn+ ドレイン領域を形成しても構わない。
ここで、前記の絶縁膜4の表面に付着する外部電荷量を−1×1012×1.60×10-19 C/cm2 〜+1×1012×1.60×10-19 C/cm2 とした場合の耐圧を、pウェル領域6とnエピタキシャル層2のpn接合が無限にフラットな場合で、外部電荷15がない場合のアバランシェ電圧を理想耐圧として、その理想耐圧に対する比(理想耐圧比)として表す。
絶縁膜4内のフィールドプレート電極の長さをXとし、pウェル領域6の拡散深さをeとしたとき、X/eが2倍〜10倍の範囲で理想耐圧比が80%以上となる。通常の耐圧設計においては理想耐圧比が80%以上あれば、実素子においては十分な耐圧が確保できる。尚、前記の外部電荷量の範囲は実使用時の環境下で考えられる範囲である。
Here, the n semiconductor substrate 100 is an epitaxial substrate in which the n epitaxial layer 2 is formed on the n + semiconductor substrate 1 (which becomes the n + drain region), but a single crystal n semiconductor substrate is used. The p well region 6 may be formed on the surface layer of the first main surface, and the n + drain region may be formed on the surface layer of the second main surface.
Here, the amount of external charge adhering to the surface of the insulating film 4 is −1 × 10 12 × 1.60 × 10 −19 C / cm 2 to + 1 × 10 12 × 1.60 × 10 −19 C / cm. When the pn junction between the p-well region 6 and the n epitaxial layer 2 is infinitely flat and the avalanche voltage when there is no external charge 15 is an ideal withstand voltage, the ratio to the ideal withstand voltage (ideal withstand voltage) Ratio).
Assuming that the length of the field plate electrode in the insulating film 4 is X and the diffusion depth of the p-well region 6 is e, the ideal withstand voltage ratio is 80% or more when X / e is in the range of 2 to 10 times. . In an ordinary voltage design, if the ideal withstand voltage ratio is 80% or more, a sufficient withstand voltage can be secured in an actual device. The range of the external charge amount is a range that can be considered in an actual use environment.

前記のXが小さくなり過ぎると、外部電荷の影響を強く受けて耐圧が大幅に低下し、Xが大きくなり過ぎると、外部電荷の影響は少なくなるが、むしろ、n+ ドレイン領域(n+ 半導体基材1)にフィールドプレート電極の先端13aが近づき過ぎて、電位分布が歪み耐圧が低下する。
図2は、図1の半導体装置の絶縁膜内のフィールドプレート電極の長さと耐圧の関係を示すシミュレーション図である。横軸は凹部5のフィールドプレート電極の長さXとpウェル領域6の拡散深さeに対する比X/eで示し、縦軸は理想耐圧比で示す。また、トレンチの幅をf、絶縁膜4の表面の幅をh、gで示し、hはフィールドプレート電極13が被覆している絶縁膜4の表面の幅で、gは絶縁膜4が露出している表面の幅である。具体的諸元は、f=10μm、g=h=2.5μm、e=3.5μmで、nエピタキシャル層2の厚さは50μmである。Xは0μm〜38.5μmの範囲で変化させた。
When X is too small, the withstand voltage is greatly affected by the external charge, and the breakdown voltage is greatly reduced. When X is too large, the influence of the external charge is reduced, but rather the n + drain region (n + semiconductor The tip 13a of the field plate electrode gets too close to the substrate 1), and the potential distribution is distorted and the breakdown voltage is lowered.
FIG. 2 is a simulation diagram showing the relationship between the length of the field plate electrode in the insulating film of the semiconductor device of FIG. 1 and the breakdown voltage. The horizontal axis represents the ratio X / e of the length X of the field plate electrode in the recess 5 to the diffusion depth e of the p-well region 6, and the vertical axis represents the ideal withstand voltage ratio. Further, the width of the trench is indicated by f, the width of the surface of the insulating film 4 is indicated by h and g, h is the width of the surface of the insulating film 4 covered with the field plate electrode 13, and g is the exposure of the insulating film 4. The width of the surface. Specific specifications are f = 10 μm, g = h = 2.5 μm, e = 3.5 μm, and the thickness of the n epitaxial layer 2 is 50 μm. X was changed in the range of 0 μm to 38.5 μm.

通常、素子耐圧は理想耐圧の80%以上に設定するため、この理想耐圧比が80%以上とするためには、図2からX/eを2倍〜10倍とするとよい。
このように、X/eを2倍から10倍とすることで、pウェル領域6とnエピタキシャル層2(n半導体基板100)のpn接合に逆電圧を印加したときのpウェル領域6もしくはnエピタキシャル層2内での等電位線の不規則な曲がりが小さくなって、このpn接合とトレンチとの接点で発生する電界集中が起きにくくなり、占有面積の小さな耐圧構造で安定な高い耐圧を確保できる。
また、図2において、絶縁膜4の表面に付着する外部電荷量が−1×1012×1.60×10-19 C/cm2 〜+1×1012×1.60×10-19 C/cm2 の範囲でも変化しないことが分かった。これはフィールドプレート電極13が電界集中が起こり易い側の絶縁膜4上を被覆し、外部電荷15をフィールドプレート電極13が遮断する働きがあるためである。
Normally, the element withstand voltage is set to 80% or more of the ideal withstand voltage, and in order to set the ideal withstand voltage ratio to 80% or more, X / e is preferably set to 2 to 10 times from FIG.
Thus, by setting X / e to 2 to 10 times, the p well region 6 or n when the reverse voltage is applied to the pn junction between the p well region 6 and the n epitaxial layer 2 (n semiconductor substrate 100). The irregular bending of equipotential lines in the epitaxial layer 2 is reduced, electric field concentration generated at the contact point between the pn junction and the trench is less likely to occur, and a stable high breakdown voltage is ensured with a breakdown voltage structure with a small occupied area. it can.
In FIG. 2, the amount of external charge adhering to the surface of the insulating film 4 is −1 × 10 12 × 1.60 × 10 −19 C / cm 2 to + 1 × 10 12 × 1.60 × 10 −19 C / It was found that there was no change even in the cm 2 range. This is because the field plate electrode 13 covers the insulating film 4 on the side where electric field concentration is likely to occur, and the field plate electrode 13 functions to block the external charges 15.

尚、前記のフィールドプレート電極13はソース電極12と接続しているが、フィールドプレート電極13とソース電極12の距離が充分短ければ、等価的にソース電位に固定されるので必ずしも接続していなくても構わない。   The field plate electrode 13 is connected to the source electrode 12. However, if the distance between the field plate electrode 13 and the source electrode 12 is sufficiently short, the field plate electrode 13 is not necessarily connected because it is equivalently fixed to the source potential. It doesn't matter.

図3は、この発明の第2実施例の半導体装置の要部断面図である。図1との違いは、pウェル領域6をトレンチ3から離して形成した点である。フィールドプレート電極13はフィールド絶縁膜である層間絶縁膜17を介して形成される。この層間絶縁膜17は絶縁膜4と同時に形成してもよい。
この場合も、図1と同様に、絶縁膜4の凹部5にフィールドプレート電極13を形成することで、電位分布の歪みが補正されて、電界集中が防止されて、占有面積の小さな耐圧構造で安定な高い耐圧を確保できる。
FIG. 3 is a cross-sectional view of the main part of the semiconductor device according to the second embodiment of the present invention. The difference from FIG. 1 is that the p-well region 6 is formed away from the trench 3. The field plate electrode 13 is formed via an interlayer insulating film 17 which is a field insulating film. This interlayer insulating film 17 may be formed simultaneously with the insulating film 4.
Also in this case, similarly to FIG. 1, by forming the field plate electrode 13 in the recess 5 of the insulating film 4, the distortion of the potential distribution is corrected, the electric field concentration is prevented, and the breakdown voltage structure with a small occupied area is obtained. A stable high breakdown voltage can be secured.

図4は、この発明の第3実施例の半導体装置の要部断面図である。図1との違いは、トレンチ3内を充填する絶縁膜4上全面にフィールドプレート電極13を被覆した点である。フィールドプレート電極13の先端13aがトレンチ3外側のnエピタキシャル層2(n半導体基板100)と接触して、耐圧低下が起こらないように、トレンチ3外側のnエピタキシャル層2上に層間絶縁膜16を形成し、この層間絶縁膜16上にフィールドプレート電極の末端13aが位置するようにする。
トレンチ3を充填した絶縁膜4上全面(上全面とは、層間絶縁膜16で覆われている部分があるので、上面の投影領域のことである)をフィールドプレート電極13で覆うため、外部電荷15の影響を受けず、占有面積が小さく、安定した高い耐圧と高い信頼性を確保できる耐圧構造とすることができる。
FIG. 4 is a cross-sectional view of the main part of the semiconductor device according to the third embodiment of the present invention. The difference from FIG. 1 is that the field plate electrode 13 is covered on the entire surface of the insulating film 4 filling the trench 3. An interlayer insulating film 16 is formed on the n epitaxial layer 2 outside the trench 3 so that the tip 13a of the field plate electrode 13 is in contact with the n epitaxial layer 2 (n semiconductor substrate 100) outside the trench 3 and the breakdown voltage is not lowered. Then, the end 13a of the field plate electrode is positioned on the interlayer insulating film 16.
Since the field plate electrode 13 covers the entire upper surface of the insulating film 4 filled with the trench 3 (the upper entire surface is a projection region on the upper surface because there is a portion covered with the interlayer insulating film 16), the external charge 15, the occupation area is small, a stable high breakdown voltage and high reliability can be secured.

さらに、フィールドプレート電極13が、機械的強度の弱いトレンチ3部を補強する働きをするので、トレンチ3部での機械的ダメージに対して強い耐圧構造とすることができる。   Furthermore, since the field plate electrode 13 functions to reinforce the trench 3 portion having a low mechanical strength, a pressure-resistant structure that is strong against mechanical damage in the trench 3 portion can be obtained.

図5は、この発明の第4実施例の半導体装置の要部断面図である。図4との違いは図3と同様に、pウェル領域6をトレンチ3から離して形成した点である。この場合も、トレンチ3を充填した絶縁膜4上全面をフィールドプレート電極13で覆うため、外部電荷15の影響を受けず、占有面積が小さく、安定した高い耐圧と高い信頼性を確保できる耐圧構造とすることができる。
さらに、フィールドプレート電極13が、機械的強度の弱いトレンチ3部を補強する働きをするので、トレンチ3部での機械的ダメージに対して強い耐圧構造とすることができる。
FIG. 5 is a sectional view showing the principal part of a semiconductor device according to the fourth embodiment of the present invention. The difference from FIG. 4 is that the p-well region 6 is formed away from the trench 3 as in FIG. Also in this case, since the entire surface of the insulating film 4 filled with the trench 3 is covered with the field plate electrode 13, it is not affected by the external charge 15, has a small occupation area, and can secure a stable high breakdown voltage and high reliability. It can be.
Furthermore, since the field plate electrode 13 functions to reinforce the trench 3 portion having a low mechanical strength, a pressure-resistant structure that is strong against mechanical damage in the trench 3 portion can be obtained.

図6は、この発明の第5実施例の半導体装置の要部断面図である。図4において、トレンチ3内の絶縁膜4に外部電荷15aが入り込んだ場合でもトレンチ3側壁にp型となる不純物、例えば、ボロンをイオン注入し、イオン注入層18を形成することで、トレンチ3側壁のnエピタキシャル層2の実効的な不純物濃度を低下させるか、反転層を形成することで、電位分布の歪みを補正して、耐圧低下を防止することができる。
nエピタキシャル層2の不純物濃度が2.5×1014cm-3で、外部電荷量が+1×1012×1.60×10-1C/cm2 である場合に、例えば、ボロンの不純物濃度のピーク値を5×1014cm-3以上にすることで耐圧低下が防止される。また、ボロンの不純物濃度が高すぎると、電位分布が乱れるため、ボロンの不純物濃度のピーク値が1×1016cm-3以下とするとよい。
FIG. 6 is a cross-sectional view of the principal part of the semiconductor device according to the fifth embodiment of the present invention. In FIG. 4, even when the external charge 15a enters the insulating film 4 in the trench 3, a p-type impurity, for example, boron is ion-implanted into the sidewall of the trench 3 to form the ion-implanted layer 18, thereby forming the trench 3 By reducing the effective impurity concentration of the n-type epitaxial layer 2 on the side wall or forming an inversion layer, the distortion of the potential distribution can be corrected to prevent the breakdown voltage from decreasing.
When the impurity concentration of the n epitaxial layer 2 is 2.5 × 10 14 cm −3 and the external charge amount is + 1 × 10 12 × 1.60 × 10 −1 C / cm 2 , for example, the impurity concentration of boron By reducing the peak value of 5 × 10 14 cm −3 or more, a decrease in breakdown voltage is prevented. Further, if the boron impurity concentration is too high, the potential distribution is disturbed, so the peak value of the boron impurity concentration is preferably 1 × 10 16 cm −3 or less.

図7は、ボロンの不純物濃度のピーク値と耐圧の関係を示す図である。縦軸は理想耐圧比(%)で表した。外部電荷量が+1×1012×1.60×10-1C/cm2 である場合である。
ボロンの不純物濃度のピーク値が5×1014cm-3〜1×1016cm-3の範囲で理想耐圧比80%以上を確保できる。尚、図1、図3においても、このボロンを打ち込む方法は有効である。
FIG. 7 is a graph showing the relationship between the peak value of the impurity concentration of boron and the breakdown voltage. The vertical axis represents the ideal withstand voltage ratio (%). This is a case where the external charge amount is + 1 × 10 12 × 1.60 × 10 −1 C / cm 2 .
An ideal breakdown voltage ratio of 80% or more can be ensured when the peak value of the impurity concentration of boron is in the range of 5 × 10 14 cm −3 to 1 × 10 16 cm −3 . In FIGS. 1 and 3, this boron implantation method is also effective.

図8は、この発明の第6実施例の半導体装置の製造方法を示す図であり、同図(a)〜同図(d)は工程順に示した要部製造工程断面図である。この製造方法は、トレンチ内に絶縁膜である酸化膜を充填する方法の一例であり、図1、図3〜図5に適用できる製造方法である。
まず、n+ 半導体基材1上にnエピタキシャル層2を形成したn半導体基板100を用意する。ICP−RIE(Inductively Coupled Plasma Reactive Ion Etching)によりn半導体基板100であるシリコンを格子状(短冊状も含む)もしくは柱状に残し、n+ 半導体基材1に達するようにエッチングして微小溝21を形成する。但しこのとき、次の工程で酸化されるシリコンの幅6×aと酸化後の酸化膜領域幅bとの間に(6×a)/b=1/2.2〜1/2.3が成り立つようにする(同図(a))。
FIGS. 8A to 8D are views showing a method of manufacturing a semiconductor device according to a sixth embodiment of the present invention. FIGS. 8A to 8D are cross-sectional views showing the main part manufacturing steps shown in the order of steps. This manufacturing method is an example of a method for filling an oxide film that is an insulating film in a trench, and is a manufacturing method applicable to FIGS. 1 and 3 to 5.
First, an n semiconductor substrate 100 in which an n epitaxial layer 2 is formed on an n + semiconductor substrate 1 is prepared. ICP-RIE (Inductively Coupled Plasma Reactive Ion Etching) leaves the silicon as the n semiconductor substrate 100 in a lattice shape (including a strip shape) or a column shape, and etches to reach the n + semiconductor substrate 1 to form the minute groove 21. Form. However, at this time, (6 × a) /b=1/2.2 to 1 / 2.3 between the width 6 × a of silicon oxidized in the next step and the oxide film region width b after oxidation. It is made to hold (the figure (a)).

つぎに、エッチング工程で残されたシリコン柱22を熱処理によって完全に酸化(一例として、不精溝21の幅1.5μm、シリコン柱22の幅1.2μmで、1000℃、10時間のパイロ酸化)して、等価的なトレンチ24(前記のトレンチ3に相当する)を充填する酸化膜23を形成する(同図(b))。
つぎに、CVD(Chemical Vapor Deposition)法で酸化膜25を堆積させることで、酸化膜23の表面の凹部を完全に埋める(同図(c))。
つぎに、酸化膜25の全表面26を平坦化する(同図(d))。
以上により、空洞や凹凸無く一体化した幅の広い酸化膜27が形成される。このようにして等価的にトレンチ24内を充填した、平坦化された酸化膜27を有するn半導体基板100が完成する。このn半導体基板100(ウェハ)を用いて、前記の第1〜第5実施例の半導体装置を製作すると、占有面積が小さく、安定した高い耐圧と高い信頼性を確保する耐圧構造を有する半導体装置を得ることができる。
Next, the silicon pillar 22 left in the etching process is completely oxidized by heat treatment (for example, pyrooxidation is performed at 1000 ° C. for 10 hours with a width of 1.5 μm of the inferior groove 21 and a width of 1.2 μm of the silicon pillar 22). Then, an oxide film 23 filling the equivalent trench 24 (corresponding to the trench 3 described above) is formed (FIG. 5B).
Next, by depositing the oxide film 25 by a CVD (Chemical Vapor Deposition) method, the concave portion on the surface of the oxide film 23 is completely filled (FIG. 3C).
Next, the entire surface 26 of the oxide film 25 is planarized ((d) in the figure).
As a result, a wide oxide film 27 is formed which is integrated without any cavities or irregularities. In this manner, the n semiconductor substrate 100 having the planarized oxide film 27 that is equivalently filled in the trench 24 is completed. When the semiconductor device of the first to fifth embodiments is manufactured using the n semiconductor substrate 100 (wafer), a semiconductor device having a withstand voltage structure that has a small occupation area and ensures a stable high withstand voltage and high reliability. Can be obtained.

尚、図6の半導体装置の場合は、絶縁膜を充填する前にトレンチ側壁にボロンをイオン注入するため、微小溝ではその幅が狭いため、側壁へのイオン注入が困難となり、図8の微小溝内の絶縁膜を形成する方法は採用できない。そのため、図6の半導体装置では広いトレンチを形成した後、CVD法などでトレンチ内に絶縁膜を堆積させる方法が採用される。勿論、この製造方法は図6の半導体装置の場合と同様に図1、図3〜図5の半導体装置の場合にも採用できる。
図9は、図8の微小溝の平面形状であり、同図(a)は複数個の微小溝を形成し、シリコン柱で微小溝が囲まれた場合、同図(b)は微小溝を格子状(短冊状の格子も含む)に形成し、シリコン柱が微小溝で囲まれて島状になっている場合である。同図(a)の微小溝21および同図(b)のシリコン柱22が細長いストライプ状としてもよい。これらのシリコン柱22を熱酸化して、あたかも広いトレンチ(等価的なトレンチ)内に充填される酸化膜のような、幅の広い酸化膜を形成することができる。
In the case of the semiconductor device of FIG. 6, since boron is ion-implanted into the trench sidewall before filling the insulating film, the width of the minute groove is narrow, so that the ion implantation into the sidewall becomes difficult. A method of forming an insulating film in the trench cannot be adopted. For this reason, in the semiconductor device of FIG. 6, after forming a wide trench, a method of depositing an insulating film in the trench by a CVD method or the like is employed. Of course, this manufacturing method can be adopted in the case of the semiconductor device of FIGS. 1 and 3 to 5 as well as the case of the semiconductor device of FIG.
FIG. 9 is a plan view of the microgroove of FIG. 8. FIG. 9A shows a plurality of microgrooves, and when the microgroove is surrounded by silicon pillars, FIG. This is a case where it is formed in a lattice shape (including a strip-like lattice) and the silicon pillar is surrounded by minute grooves to form an island shape. The micro grooves 21 in FIG. 6A and the silicon pillars 22 in FIG. These silicon pillars 22 can be thermally oxidized to form a wide oxide film such as an oxide film filled in a wide trench (equivalent trench).

この発明の第1実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 1st Example of this invention. 図1の半導体装置の絶縁膜内のフィールドプレート電極の長さと耐圧の関係を示すシミュレーション図1 is a simulation diagram showing the relationship between the length of the field plate electrode in the insulating film of the semiconductor device of FIG. この発明の第2実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 2nd Example of this invention この発明の第3実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 3rd Example of this invention. この発明の第4実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 4th Example of this invention. この発明の第5実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 5th Example of this invention ボロンの不純物濃度のピーク値と耐圧の関係を示す図Figure showing the relationship between the peak value of impurity concentration of boron and the withstand voltage この発明の第6実施例の半導体装置の製造方法を示す図であり、(a)〜(d)は工程順に示した要部製造工程断面図It is a figure which shows the manufacturing method of the semiconductor device of 6th Example of this invention, (a)-(d) is principal part manufacturing process sectional drawing shown to process order 図8の微小溝の平面形状を示す図The figure which shows the planar shape of the micro groove of FIG. 酸化膜上に付着した外部電荷量と耐圧の関係を示す図Diagram showing the relationship between the amount of external charge deposited on the oxide film and the breakdown voltage

符号の説明Explanation of symbols

1 n+ 半導体基材(n+ ドレイン層)
2 nエピタキシャル層(nドリフト層)
3 トレンチ
4 絶縁膜
5 凹部
6 pウェル領域
7 n+ ソース領域
8 p+ コンタクト領域
9 ゲート絶縁膜
10 ゲート電極
11 層間絶縁膜
12 ソース電極
13 フィールドプレート電極
13a フィールドプレート電極の先端
14 ドレイン電極
15、15a 外部電荷
16 層間絶縁膜
17 層間絶縁膜(フィールド絶縁膜)
18 イオン注入層
21 微小溝
22 シリコン柱
23、25、27 酸化膜
24 等価的なトレンチ
26 全表面
100 n半導体基板
1 n + semiconductor substrate (n + drain layer)
2 n epitaxial layer (n drift layer)
3 trench 4 insulating film 5 recess 6 p well region 7 n + source region 8 p + contact region 9 gate insulating film 10 gate electrode 11 interlayer insulating film 12 source electrode 13 field plate electrode 13a tip of field plate electrode 14 drain electrode 15, 15a External charge 16 Interlayer insulation film 17 Interlayer insulation film (field insulation film)
18 Ion implantation layer 21 Micro groove 22 Silicon pillar 23, 25, 27 Oxide film 24 Equivalent trench 26 Whole surface 100 n Semiconductor substrate

Claims (8)

第1導電型の第1半導体層の第1主面の表面層に選択的に形成される第2導電型の第2半導体層と、
前記第1半導体層の第2主面側にて前記第1半導体層と接し前記第1半導体層よりも高濃度の第1導電型の第3半導体層と、
前記第1半導体層の第1主面の表面層にて前記第2半導体層の外周部に形成される耐圧構造部と、
該耐圧構造部にて前記第1半導体層の外周側端部から内周側に離間し、且つ前記第1半導体層の第1主面から前記第1半導体層を貫通し前記第3半導体層の内部に達するとともに前記第2半導体層の外周側に形成されるトレンチと、
該トレンチ内に形成される絶縁膜と、
該絶縁膜に形成される凹部と、
前記トレンチ内の絶縁膜の内周側上面を覆い且つ前記凹部の上面開口部に達するとともに該上面開口部から前記凹部の内部に屈曲し、該凹部内部の深さ方向に延在して該凹部の底部で終端することによって該凹部を充填するように形成される導電膜と、
前記第2半導体層上に形成され、前記導電膜と同電位となるように該導電膜に接する第1主電極と、
前記第3半導体層の主面のうち前記第1半導体層と接する側とは反対側の主面に形成される第2主電極とを有し、
前記第2半導体層の外周端が前記トレンチに接し、
前記第1半導体層の厚さは前記第2半導体層の拡散深さの10倍よりも厚く、
前記凹部の底部に達する前記導電膜の深さが、前記第2半導体層の拡散深さよりも深く、且つ前記第3半導体層よりも浅いとともに、前記第2半導体層の拡散深さの2倍〜10倍であることを特徴とする半導体装置。
A second conductivity type second semiconductor layer selectively formed on the surface layer of the first main surface of the first conductivity type first semiconductor layer;
A third semiconductor layer of a first conductivity type in contact with the first semiconductor layer on the second main surface side of the first semiconductor layer and having a higher concentration than the first semiconductor layer;
A pressure-resistant structure portion formed on an outer peripheral portion of the second semiconductor layer in a surface layer of the first main surface of the first semiconductor layer;
The pressure-resistant structure portion is spaced from the outer peripheral side end of the first semiconductor layer to the inner peripheral side, and penetrates the first semiconductor layer from the first main surface of the first semiconductor layer. A trench that reaches the inside and is formed on the outer peripheral side of the second semiconductor layer;
An insulating film formed in the trench;
A recess formed in the insulating film;
Covers the upper surface on the inner peripheral side of the insulating film in the trench, reaches the upper surface opening of the recess, bends from the upper surface opening to the inside of the recess, and extends in the depth direction inside the recess to form the recess A conductive film formed to fill the recess by terminating at the bottom of
A first main electrode formed on the second semiconductor layer and in contact with the conductive film so as to have the same potential as the conductive film;
A second main electrode formed on a main surface opposite to a side in contact with the first semiconductor layer of the main surface of the third semiconductor layer;
An outer peripheral edge of the second semiconductor layer is in contact with the trench;
The thickness of the first semiconductor layer is greater than 10 times the diffusion depth of the second semiconductor layer,
The depth of the conductive film reaching the bottom of the recess is deeper than the diffusion depth of the second semiconductor layer and shallower than the third semiconductor layer, and twice the diffusion depth of the second semiconductor layer. A semiconductor device characterized by being 10 times.
第1導電型の第1半導体層の第1主面の表面層に選択的に形成される第2導電型の第2半導体層と、
前記第1半導体層の第2主面側にて前記第1半導体層と接し前記第1半導体層よりも高濃度の第1導電型の第3半導体層と、
前記第1半導体層の第1主面の表面層にて前記第2半導体層の外周部に形成される耐圧構造部と、
該耐圧構造部にて前記第1半導体層の外周側端部から内周側に離間し、且つ前記第1半導体層の第1主面から前記第1半導体層を貫通し前記第3半導体層の内部に達するとともに前記第2半導体層よりも外周側に形成されるトレンチと、
該トレンチ内に形成される第1の絶縁膜と、
該第1の絶縁膜に形成される凹部と、
前記第2半導体層と前記第1の絶縁膜の間の第1半導体層上に形成される第2の絶縁膜と、
前記トレンチ内の第1の絶縁膜の内周側上面を覆い且つ前記凹部の上面開口部に達するとともに該上面開口部から前記凹部の内部に屈曲し、該凹部内部の深さ方向に延在して底部で終端することによって該凹部を充填するように形成される導電膜と、
前記第2半導体層上および前記第2の絶縁膜上に形成され、前記導電膜と同電位となるように該導電膜に接する第1主電極と、
前記第3半導体層の主面のうち前記第1半導体層と接する側とは反対側の主面に形成される第2主電極とを有し、
前記第2半導体層の外周端は前記トレンチと離間し、
前記第1半導体層の厚さは前記第2半導体層の拡散深さの10倍よりも厚く、
前記凹部の底部に達する前記導電膜の深さが、前記第2半導体層の拡散深さよりも深く、且つ前記第3半導体層よりも浅いとともに、前記第2半導体層の拡散深さの2倍〜10倍であることを特徴とする半導体装置。
A second conductivity type second semiconductor layer selectively formed on the surface layer of the first main surface of the first conductivity type first semiconductor layer;
A third semiconductor layer of a first conductivity type in contact with the first semiconductor layer on the second main surface side of the first semiconductor layer and having a higher concentration than the first semiconductor layer;
A pressure-resistant structure portion formed on an outer peripheral portion of the second semiconductor layer in a surface layer of the first main surface of the first semiconductor layer;
The pressure-resistant structure portion is spaced from the outer peripheral side end of the first semiconductor layer to the inner peripheral side, and penetrates the first semiconductor layer from the first main surface of the first semiconductor layer. A trench that reaches the inside and is formed on the outer peripheral side of the second semiconductor layer;
A first insulating film formed in the trench;
A recess formed in the first insulating film;
A second insulating film formed on the first semiconductor layer between the second semiconductor layer and the first insulating film;
Covers the inner peripheral upper surface of the first insulating film in the trench, reaches the upper surface opening of the recess, bends from the upper surface opening into the recess, and extends in the depth direction inside the recess. A conductive film formed to fill the recess by terminating at the bottom;
A first main electrode formed on the second semiconductor layer and the second insulating film and in contact with the conductive film so as to have the same potential as the conductive film;
A second main electrode formed on a main surface opposite to a side in contact with the first semiconductor layer of the main surface of the third semiconductor layer;
The outer peripheral edge of the second semiconductor layer is separated from the trench,
The thickness of the first semiconductor layer is greater than 10 times the diffusion depth of the second semiconductor layer,
The depth of the conductive film reaching the bottom of the recess is deeper than the diffusion depth of the second semiconductor layer and shallower than the third semiconductor layer, and twice the diffusion depth of the second semiconductor layer. A semiconductor device characterized by being 10 times.
前記第半導体層が半導体基板であり、前記第1半導体層が前記半導体基板上に形成したエピタキシャル成長層であることを特徴とする請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the third semiconductor layer is a semiconductor substrate, and the first semiconductor layer is an epitaxially grown layer formed on the semiconductor substrate. 前記導電膜が金属またはポリシリコンであることを特徴とする請求項1〜3のいずれか一項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the conductive film is metal or polysilicon. 請求項1〜3に記載の半導体装置の製造方法において、前記絶縁膜または前記第1の絶縁膜が酸化膜であって、前記第1半導体層の第1主面から該第1半導体層の内部へ向かって溝を複数個形成する工程と、該溝に接する前記第1半導体層表面と該溝に挟まれた前記第1半導体層全域を酸化膜化する工程と、該酸化膜に凹部を形成し、前記凹部に導電膜を形成する工程を有することを特徴とする半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film or the first insulating film is an oxide film, and the inside of the first semiconductor layer from the first main surface of the first semiconductor layer. A step of forming a plurality of grooves toward the surface, a step of forming an oxide film on the surface of the first semiconductor layer in contact with the groove and the entire area of the first semiconductor layer sandwiched between the grooves, and forming a recess in the oxide film And a method of manufacturing a semiconductor device, comprising forming a conductive film in the recess. 前記溝を格子状、島状およびストライプ状のいずれかとすることを特徴とする請求項5に記載の半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 5, wherein the groove is in a lattice shape, an island shape, or a stripe shape. 前記の酸化膜化が、前記第1半導体層を熱酸化することで行われることを特徴とする請求項5または6に記載の半導体装置の製造方法。   7. The method of manufacturing a semiconductor device according to claim 5, wherein the oxide film is formed by thermally oxidizing the first semiconductor layer. 前記導電膜が金属またはポリシリコンであることを特徴とする請求項5〜7のいずれか一項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 5, wherein the conductive film is a metal or polysilicon.
JP2004306278A 2004-10-21 2004-10-21 Semiconductor device and manufacturing method thereof Active JP5135663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306278A JP5135663B2 (en) 2004-10-21 2004-10-21 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306278A JP5135663B2 (en) 2004-10-21 2004-10-21 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006120807A JP2006120807A (en) 2006-05-11
JP5135663B2 true JP5135663B2 (en) 2013-02-06

Family

ID=36538416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306278A Active JP5135663B2 (en) 2004-10-21 2004-10-21 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5135663B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10249720B2 (en) 2016-02-26 2019-04-02 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US11127822B2 (en) 2016-02-26 2021-09-21 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124362A (en) * 2006-11-15 2008-05-29 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
US8198678B2 (en) * 2009-12-09 2012-06-12 Infineon Technologies Austria Ag Semiconductor device with improved on-resistance
JP5530992B2 (en) 2011-09-16 2014-06-25 株式会社東芝 Power semiconductor device
JP6107430B2 (en) * 2012-06-08 2017-04-05 豊田合成株式会社 Semiconductor device
JP6379778B2 (en) 2014-07-15 2018-08-29 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3031282B2 (en) * 1997-03-31 2000-04-10 日本電気株式会社 Semiconductor device
JP4164892B2 (en) * 1997-06-30 2008-10-15 株式会社デンソー Semiconductor device and manufacturing method thereof
US5998833A (en) * 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6413822B2 (en) * 1999-04-22 2002-07-02 Advanced Analogic Technologies, Inc. Super-self-aligned fabrication process of trench-gate DMOS with overlying device layer
JP2000349288A (en) * 1999-06-09 2000-12-15 Fuji Electric Co Ltd Vertical mosfet
GB9917099D0 (en) * 1999-07-22 1999-09-22 Koninkl Philips Electronics Nv Cellular trench-gate field-effect transistors
JP4150496B2 (en) * 2000-12-28 2008-09-17 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP2003037267A (en) * 2001-05-18 2003-02-07 Fuji Electric Co Ltd Manufacturing method for semiconductor device
JP3701227B2 (en) * 2001-10-30 2005-09-28 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP4289123B2 (en) * 2003-10-29 2009-07-01 富士電機デバイステクノロジー株式会社 Semiconductor device
WO2005065385A2 (en) * 2003-12-30 2005-07-21 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP3875245B2 (en) * 2004-07-26 2007-01-31 株式会社東芝 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10249720B2 (en) 2016-02-26 2019-04-02 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US11127822B2 (en) 2016-02-26 2021-09-21 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2006120807A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US11257944B2 (en) Semiconductor device and semiconductor device manufacturing method
JP5449094B2 (en) Semiconductor device
JP4414863B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP5089284B2 (en) Semiconductor device having a space-saving edge structure
TWI509809B (en) High density trench-based power mosfets with self-aligned active contacts and method for making such devices
JP5136578B2 (en) Semiconductor device
JP5701802B2 (en) Power semiconductor device
JP2007189192A (en) Semiconductor device
JP6092749B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2008098593A (en) Semiconductor device and manufacturing method thereof
JP5767857B2 (en) Trench-type MOSFET and manufacturing method thereof
WO2011024842A1 (en) Semiconductor device
JP6193163B2 (en) Insulated gate semiconductor device
JP2007123570A (en) Semiconductor device
TWI633674B (en) Semiconductor device and manufacturing method of semiconductor device
JP2016021547A (en) Semiconductor device manufacturing method
JP4735414B2 (en) Insulated gate semiconductor device
JP2012089824A (en) Semiconductor element and manufacturing method thereof
JP2013069852A (en) Semiconductor device
JP2014078689A (en) Power semiconductor device and method of manufacturing the same
EP2763181B1 (en) Semiconductor device and method for producing semiconductor device
JP5135663B2 (en) Semiconductor device and manufacturing method thereof
JP3875245B2 (en) Semiconductor device
JP2008306022A (en) Semiconductor device
JP2016134546A (en) Semiconductor device and manufacturing method of the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Ref document number: 5135663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250