JP5128517B2 - Diversity communication device - Google Patents

Diversity communication device Download PDF

Info

Publication number
JP5128517B2
JP5128517B2 JP2009040346A JP2009040346A JP5128517B2 JP 5128517 B2 JP5128517 B2 JP 5128517B2 JP 2009040346 A JP2009040346 A JP 2009040346A JP 2009040346 A JP2009040346 A JP 2009040346A JP 5128517 B2 JP5128517 B2 JP 5128517B2
Authority
JP
Japan
Prior art keywords
base station
optical
remote base
signal
base stations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009040346A
Other languages
Japanese (ja)
Other versions
JP2010199784A (en
Inventor
貴史 丸山
達也 清水
一輝 丸田
淳 増野
征士 中津川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009040346A priority Critical patent/JP5128517B2/en
Publication of JP2010199784A publication Critical patent/JP2010199784A/en
Application granted granted Critical
Publication of JP5128517B2 publication Critical patent/JP5128517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

本発明は、集中基地局と互いに異なる位置に配置された複数の遠隔基地局とを光伝送路で接続し、各遠隔基地局が端末局から同一時刻、同一周波数で送信された信号(例えばTDMA信号、OFDMA信号)を集中基地局に転送し、集中基地局で各遠隔基地局からの信号をダイバーシチ合成受信するダイバーシチ通信装置に関する。   In the present invention, a central base station and a plurality of remote base stations arranged at different positions are connected by an optical transmission line, and each remote base station transmits a signal (for example, TDMA) transmitted from a terminal station at the same time and the same frequency. The present invention relates to a diversity communication apparatus that transfers signals to a centralized base station and receives signals from each remote base station by diversity combining at the centralized base station.

近年の無線通信では、利用可能な周波数の逼迫に伴い、より少ない周波数資源で効率的に通信を行う必要がある。一般に、通信可能な領域を面的に拡大するには、図7に示すように領域を区切り、領域ごとに基地局を配置し、各領域に互いに異なる周波数を割り当てることにより、互いに干渉の生じない通信を可能にする方法がある。この例では、各領域を六角形とし、中心の領域で周波数F1を用い、その周囲の領域では干渉を回避するために周波数F2〜F7を用いるために、合計で7種類の周波数が必要になる。しかし、実際の周波数資源は有限であるため、このような面的展開が必ずしも可能であるとは限らない。さらに、端末局が図7の各領域間を移動しても通信を維持するためには、端末局が通信する基地局を変更するハンドオーバ処理が発生し、システム構成が複雑になる。   In recent wireless communication, it is necessary to efficiently perform communication with fewer frequency resources as the available frequency becomes tighter. In general, in order to expand the communicable area in a plane, the areas are divided as shown in FIG. 7, base stations are arranged in each area, and different frequencies are assigned to the respective areas, so that no interference occurs. There are ways to enable communication. In this example, each region has a hexagonal shape, the frequency F1 is used in the central region, and the frequencies F2 to F7 are used in the surrounding region to avoid interference, so a total of seven types of frequencies are required. . However, since actual frequency resources are finite, such planar development is not always possible. Furthermore, in order to maintain communication even if the terminal station moves between the respective regions in FIG. 7, a handover process for changing the base station with which the terminal station communicates occurs, and the system configuration becomes complicated.

そこで、単一の周波数で通信可能な領域を面的に拡大するSFN(Single Frequency Network)が提案されている。SNFは、図8に示すように、各領域に単一の周波数F1を用いる遠隔基地局を配置し、光伝送路を介して各遠隔基地局を集中基地局に接続する構成である。本構成において、基地局から端末局へ信号を送信する下りリンクでは、集中基地局からの信号が各遠隔基地局に伝送され、各遠隔基地局から同時に送信されて端末局に到達する。端末局から基地局へ信号を送信する上りリンクでは、端末局から送信された信号が各遠隔基地局に受信され、さらに集中基地局に到達し、集中基地局でダイバーシチ合成される。この結果、単一の周波数を用いて通信可能な領域を面的に拡大することができる。また、遠隔基地局は、上りと下りの各信号を中継するだけの簡易な構成であるので、SFNは全体の装置コストを低減することができる。さらに、集中基地局では端末局が領域を移動しても、移動を認識せずに通信を維持することができるので、ハンドオーバ処理が不要になる。   In view of this, SFN (Single Frequency Network) has been proposed in which the area in which communication can be performed at a single frequency is expanded. As shown in FIG. 8, the SNF has a configuration in which remote base stations using a single frequency F1 are arranged in each region, and each remote base station is connected to a centralized base station via an optical transmission line. In this configuration, in the downlink in which a signal is transmitted from the base station to the terminal station, a signal from the concentrated base station is transmitted to each remote base station, and is simultaneously transmitted from each remote base station to reach the terminal station. In the uplink in which a signal is transmitted from the terminal station to the base station, the signal transmitted from the terminal station is received by each remote base station, further reaches the concentrated base station, and is diversity-combined at the concentrated base station. As a result, a communicable area using a single frequency can be expanded in a plane. Further, since the remote base station has a simple configuration that only relays uplink and downlink signals, the SFN can reduce the overall device cost. Further, even if the terminal station moves in the area at the centralized base station, communication can be maintained without recognizing the movement, so that the handover process becomes unnecessary.

図9は、SFNを実現する従来のダイバーシチ通信装置の構成例を示す。
図において、集中基地局10と遠隔基地局40a,40b,40cは、下りリンクの光伝送路30a,30b,30cおよび上りリンクの光伝送路31a,31b,31cを介して接続される。端末局60a,60bは、遠隔基地局40a,40b,40cに接続され、さらに集中基地局10に接続される。
FIG. 9 shows a configuration example of a conventional diversity communication apparatus that realizes SFN.
In the figure, the centralized base station 10 and the remote base stations 40a, 40b, 40c are connected via downlink optical transmission paths 30a, 30b, 30c and uplink optical transmission paths 31a, 31b, 31c. The terminal stations 60a and 60b are connected to the remote base stations 40a, 40b and 40c, and further connected to the centralized base station 10.

まず、下りリンクの信号について説明する。
集中基地局10は、外部のネットワーク100からのデータをネットワークインタフェース11で受信し、変調器12で無線信号に変換する。この無線信号と、制御部13で生成される遠隔基地局制御用の制御信号が合成器14で周波数多重される。なお、無線信号と制御信号は周波数が異なり、以下、無線信号周波数および制御信号周波数という。合成器14で周波数多重された信号は、E/O変換器15で光信号に変換され、送信用光カプラ16で分配され、それぞれ光伝送路30a,30b,30cを介して遠隔基地局40a,40b,40cに到達する。
First, downlink signals will be described.
The centralized base station 10 receives data from the external network 100 by the network interface 11 and converts it into a radio signal by the modulator 12. This radio signal and the control signal for remote base station control generated by the control unit 13 are frequency-multiplexed by the synthesizer 14. The radio signal and the control signal have different frequencies, and are hereinafter referred to as a radio signal frequency and a control signal frequency. The signal frequency-multiplexed by the synthesizer 14 is converted into an optical signal by the E / O converter 15 and distributed by the transmission optical coupler 16, and the remote base stations 40a, 40a, 40c are respectively transmitted through the optical transmission lines 30a, 30b, 30c. 40b and 40c are reached.

遠隔基地局40a(遠隔基地局40b,40cも同様)は、光伝送路30aから到達した光信号をO/E変換器41で電気信号に変換する。この電気信号のうち、無線信号周波数の信号は送信用増幅器42で増幅された後、スイッチ43、アンテナ44を介して無線信号として送信され、端末局60a,60bに受信される。また、制御信号周波数の信号は、スイッチ43の送受信の切り替え制御を行う(図示せず)。   The remote base station 40a (the same applies to the remote base stations 40b and 40c) converts the optical signal that has arrived from the optical transmission line 30a into an electrical signal by the O / E converter 41. Among these electrical signals, a signal having a radio signal frequency is amplified by the transmission amplifier 42, then transmitted as a radio signal via the switch 43 and the antenna 44, and received by the terminal stations 60a and 60b. In addition, the control signal frequency signal controls transmission / reception of the switch 43 (not shown).

次に、上りリンクの信号について説明する。
端末局60a,60bの送信信号は、遠隔基地局40a,40b,40cに到達する。遠隔基地局40a(遠隔基地局40b,40cも同様)は、アンテナ44で受信した信号をスイッチ43を介して受信用増幅器45aに入力し、受信用増幅器45で増幅された信号をE/O変換器46で光信号に変換し、光伝送路31aを介して集中基地局10に送出する。
Next, uplink signals will be described.
The transmission signals of the terminal stations 60a and 60b reach the remote base stations 40a, 40b and 40c. The remote base station 40a (the same applies to the remote base stations 40b and 40c) inputs the signal received by the antenna 44 to the reception amplifier 45a via the switch 43, and converts the signal amplified by the reception amplifier 45 to E / O conversion. It is converted into an optical signal by the device 46 and sent to the centralized base station 10 through the optical transmission path 31a.

集中基地局10には、遠隔基地局40aからの光信号とともに、遠隔基地局40b,40cからの光信号も到達する。これらの光信号は、それぞれO/E変換器18a,18b,18cで電気信号に変換され、それぞれ復調器19a,19b,19cで復調される。復調された各信号は、検波後合成器24で検波後ダイバーシチ合成した後に符号判定器20でバイナリデータに変換される。このバイナリデータは、ネットワークインタフェース11を介して外部のネットワーク100に送出される。   The central base station 10 also receives optical signals from the remote base stations 40b and 40c as well as optical signals from the remote base station 40a. These optical signals are converted into electrical signals by O / E converters 18a, 18b, and 18c, respectively, and demodulated by demodulators 19a, 19b, and 19c, respectively. Each demodulated signal is subjected to diversity combining after detection by a post-detection synthesizer 24 and then converted to binary data by a code determination unit 20. This binary data is sent to the external network 100 via the network interface 11.

なお、検波後合成器24では検波後ダイバーシチ合成法として、非特許文献1に記載されているレベルが高い信号を選択する選択合成や、位相を揃えて合成する等利得合成や、信号雑音比を最大にする最大比合成等が用いられる。   Note that the post-detection synthesizer 24 selects, as a post-detection diversity combining method, selective combining for selecting a signal with a high level described in Non-Patent Document 1, equal gain combining for combining the phases, and signal-to-noise ratio. Maximal ratio synthesis or the like that maximizes is used.

このような従来のダイバーシチ通信装置は、集中基地局10において、遠隔基地局の数と同数の受信系統を用意する必要があるため、SFNを用いた場合であってもコスト削減効果が十分でない。また、特許文献1のように、電気信号に変換された複数の遠隔基地局からの信号を合成する方法も提案されているが、この場合でも遠隔基地局と同数のO/E変換器が必要になる。   Such a conventional diversity communication apparatus needs to prepare the same number of reception systems as the number of remote base stations in the centralized base station 10, so that even if SFN is used, the cost reduction effect is not sufficient. Also, as in Patent Document 1, a method of combining signals from a plurality of remote base stations converted into electrical signals has been proposed, but even in this case, the same number of O / E converters as the remote base stations are required. become.

特開平11−252516号公報Japanese Patent Laid-Open No. 11-252516

斉藤洋一、ディジタル無線通信の変復調、電子情報通信学会、pp.189-193Yoichi Saito, Modulation and Demodulation of Digital Wireless Communication, IEICE, pp.189-193

図9のダイバーシチ通信装置は、集中基地局において遠隔基地局と同数の受信系統が必要となり、装置構成が大規模となり、装置コストが増加する問題があった。   The diversity communication apparatus of FIG. 9 requires the same number of reception systems as the remote base station in the concentrated base station, resulting in a problem that the apparatus configuration becomes large and the apparatus cost increases.

本発明は、集中基地局における受信系統の数を削減し、装置構成の簡易化および低コスト化を実現し、さらに高い通信品質を得ることができるダイバーシチ通信装置を提供することを目的とする。   It is an object of the present invention to provide a diversity communication device that can reduce the number of reception systems in a centralized base station, achieve a simplified device configuration and lower costs, and obtain higher communication quality.

本発明は、端末局と無線回線を介して接続される複数の遠隔基地局と、複数の遠隔基地局とそれぞれ光伝送路を介して接続される1つの集中基地局とを備え、集中基地局から送信される下りリンクの光信号を複数の遠隔基地局で受信し、複数の遠隔基地局が光信号を無線信号に変換して端末局に送信し、端末局から送信される上りリンクの無線信号を複数の遠隔基地局で受信し、複数の遠隔基地局が無線信号を光信号に変換して集中基地局に送信し、集中基地局で複数の遠隔基地局を介して伝送された端末局の送信信号をダイバーシチ合成して受信する構成であるダイバーシチ通信装置において、集中基地局は、複数の遠隔基地局から光伝送路を介して伝送された光信号のうち、隣接しない遠隔基地局からの光信号をそれぞれ1系統の光信号に検波前合成する2以上の受信用光カプラを備え、系統の光信号を電気信号に変換して復調処理を行い、各復調信号を検波後ダイバーシチ合成する構成であり、複数の遠隔基地局から集中基地局に接続される上りリンクの光伝送路は、各受信用光カプラに接続される光伝送路について、それぞれの光伝送路を介して伝送された同一端末局の送信信号に対応する光信号の検波前合成が可能な程度に遅延時間が調整された構成である。 The present invention comprises a plurality of remote base stations connected to a terminal station via a wireless line, and a single central base station connected to each of the plurality of remote base stations via an optical transmission line, The downlink optical signal transmitted from the mobile station is received by a plurality of remote base stations, the plurality of remote base stations convert the optical signal into a radio signal and transmitted to the terminal station, and the uplink radio signal transmitted from the terminal station A terminal station that receives signals at a plurality of remote base stations, converts the radio signals into optical signals, transmits the signals to the centralized base station, and transmits them to the centralized base station via the multiple remote base stations In the diversity communication device that is configured to receive and transmit diversity transmission signals, the centralized base station transmits optical signals transmitted from a plurality of remote base stations via an optical transmission line from remote base stations that are not adjacent to each other. each one line of the optical signal to an optical signal Comprises two or more receiving optical coupler for pre-detection combining, have rows demodulates the optical signal of each path is converted into an electric signal, and configured to post-detection diversity combining the demodulated signals, a plurality of remote base stations The uplink optical transmission line connected to the central base station corresponds to the transmission signal of the same terminal station transmitted via each optical transmission line for the optical transmission line connected to each receiving optical coupler. The delay time is adjusted to such an extent that optical signals can be combined before detection.

遠隔基地局は、上りリンクの無線信号の受信レベルを検出し、当該受信レベルが所定値を超える場合には集中基地局に対する光信号送信を行い、当該受信レベルが所定値以下場合には集中基地局に対する光信号送信停止を行う制御手段を備えてもよい。   The remote base station detects the reception level of the uplink radio signal, performs optical signal transmission to the centralized base station when the reception level exceeds a predetermined value, and transmits the optical signal to the centralized base station when the reception level is lower than the predetermined value. Control means for stopping optical signal transmission to the station may be provided.

遠隔基地局と端末局は、OFDMAを用いて同一時刻に複数の端末局が異なるサブキャリアを用いて無線通信を行う構成であり、遠隔基地局は、集中基地局から下りリンクの光信号に重畳して伝送される制御信号に応じて、集中基地局に対する光信号送信または光信号送信停止を行う制御手段を備え、集中基地局は、通信準備段階のときに、複数の遠隔基地局に光信号送信を指示する制御信号を送信し、遠隔基地局ごとに送信された光信号を復調して端末局に対応するサブキャリアごとの受信レベルを検出し、通信段階のときに、当該受信レベルが所定値を超える遠隔基地局に対して光信号送信を指示し、当該受信レベルレベルが所定値以下の遠隔基地局に対して光信号送信停止を指示する制御信号を送信する構成であってもよい。   The remote base station and the terminal station are configured so that a plurality of terminal stations perform wireless communication using different subcarriers at the same time using OFDMA, and the remote base station is superimposed on the downlink optical signal from the concentrated base station. Control means for performing optical signal transmission to the central base station or stopping optical signal transmission according to the control signal transmitted in the same manner, and the central base station transmits optical signals to a plurality of remote base stations during the communication preparation stage. A control signal for instructing transmission is transmitted, the optical signal transmitted for each remote base station is demodulated, and the reception level for each subcarrier corresponding to the terminal station is detected. A configuration may be adopted in which an optical signal transmission is instructed to a remote base station exceeding the value, and a control signal instructing an optical signal transmission stop is transmitted to a remote base station whose reception level level is a predetermined value or less.

また、制御手段は、端末局から送信された上りリンクの無線信号を光信号に変換するE/O変換器の電源をオンオフする構成であってもよい。   The control means may be configured to turn on / off the power of an E / O converter that converts an uplink radio signal transmitted from a terminal station into an optical signal.

本発明のダイバーシチ通信装置は、集中基地局で複数またはすべての遠隔基地局からの光信号を検波前合成し、検波前合成された光信号を電気信号に変換して復調する構成により、集中基地局の受信系統を遠隔基地局数より少ない数に集約することができる。これにより、装置構成の簡易化および低コスト化を実現することができる。   The diversity communication apparatus according to the present invention has a configuration in which a centralized base station combines optical signals from a plurality or all remote base stations before detection, converts the combined optical signals before detection into electrical signals, and demodulates them. The reception system of the stations can be aggregated to a number smaller than the number of remote base stations. Thereby, simplification and cost reduction of an apparatus structure are realizable.

本発明のダイバーシチ通信装置は、複数の遠隔基地局でそれぞれ受信した各端末局の受信レベルに基づいて、遠隔基地局からの光信号送信または光信号送信停止を制御する。これにより、信号受信レベルが小さい遠隔基地局で生じる雑音成分が集中基地局に到達せず、十分な信号電力を有する遠隔基地局からの光信号のみを検波前合成することができるので、検波前合成によっても高い通信品質を確保することができる。さらに、検波後ダイバーシチ合成を組合せることにより、さらに高い通信品質を確保することができる。   The diversity communication apparatus of the present invention controls the optical signal transmission from the remote base station or the optical signal transmission stop based on the reception level of each terminal station received by each of the plurality of remote base stations. As a result, noise components generated at a remote base station with a low signal reception level do not reach the centralized base station, and only optical signals from remote base stations having sufficient signal power can be synthesized before detection. High communication quality can be ensured by combining. Furthermore, higher communication quality can be ensured by combining diversity combining after detection.

本発明のダイバーシチ通信装置の実施例1の構成例を示す図である。It is a figure which shows the structural example of Example 1 of the diversity communication apparatus of this invention. 本発明のダイバーシチ通信装置の実施例2の構成例を示す図である。It is a figure which shows the structural example of Example 2 of the diversity communication apparatus of this invention. 本発明のダイバーシチ通信装置の実施例3の構成例を示す図である。It is a figure which shows the structural example of Example 3 of the diversity communication apparatus of this invention. 本発明のダイバーシチ通信装置の実施例4の構成例を示す図である。It is a figure which shows the structural example of Example 4 of the diversity communication apparatus of this invention. 本発明のダイバーシチ通信装置の実施例5の構成例を示す図である。It is a figure which shows the structural example of Example 5 of the diversity communication apparatus of this invention. 実施例5における上りリンクのサブキャリアごとの信号電力レベルの例を示す図である。FIG. 10 is a diagram illustrating an example of a signal power level for each uplink subcarrier in the fifth embodiment. 複数の周波数を用いた面的展開の例を示す図である。It is a figure which shows the example of the surface expansion | deployment using a some frequency. SFNを用いた面的展開の例を示す図である。It is a figure which shows the example of the planar expansion | deployment using SFN. SFNを実現する従来のダイバーシチ通信装置の構成例を示す図である。It is a figure which shows the structural example of the conventional diversity communication apparatus which implement | achieves SFN.

図1は、本発明のダイバーシチ通信装置の実施例1の構成例を示す。
図において、集中基地局10と遠隔基地局40a,40b,40cは、下りリンクの光伝送路30a,30b,30cおよび上りリンクの光伝送路31a,31b,31cを介して接続される。端末局60a,60bは、遠隔基地局40a,40b,40cを介して集中基地局10に接続される。
FIG. 1 shows a configuration example of Embodiment 1 of a diversity communication apparatus of the present invention.
In the figure, the centralized base station 10 and the remote base stations 40a, 40b, 40c are connected via downlink optical transmission paths 30a, 30b, 30c and uplink optical transmission paths 31a, 31b, 31c. The terminal stations 60a and 60b are connected to the centralized base station 10 via the remote base stations 40a, 40b, and 40c.

集中基地局10を構成するネットワークインタフェース11、変調器12、制御部13、合成器14、E/O変換器15、送信用光カプラ16、O/E変換器18、復調器19、符号判定器20は、図9に示す従来の集中基地局10と同じ機能を有する。遠隔基地局40a(遠隔基地局40b,40cも同様)を構成するO/E変換器41、送信用増幅器42、スイッチ43、受信用増幅器45、E/O変換器46は、図9に示す従来の遠隔基地局40aと同じ機能を有する。   Network interface 11, modulator 12, controller 13, synthesizer 14, E / O converter 15, transmission optical coupler 16, O / E converter 18, demodulator 19 and code determiner constituting the centralized base station 10 20 has the same function as the conventional centralized base station 10 shown in FIG. The O / E converter 41, the transmission amplifier 42, the switch 43, the reception amplifier 45, and the E / O converter 46 constituting the remote base station 40a (the same applies to the remote base stations 40b and 40c) are shown in FIG. Has the same function as the remote base station 40a.

本実施例の特徴は、集中基地局10に受信用光カプラ17を備え、各遠隔基地局40a,40b,40cから光伝送路31a,31b,31cを介して伝送された光信号を検波前合成し、1系統の光信号としてO/E変換器18に入力する構成にある。なお、光伝送路31a,31b,31cによる遅延時間は、受信用光カプラ17で検波前合成される各光信号において、シンボル間干渉が生じない範囲でほぼ等しくなるように調整されている。   A feature of the present embodiment is that the central base station 10 includes a receiving optical coupler 17 and combines optical signals transmitted from the remote base stations 40a, 40b, and 40c via the optical transmission paths 31a, 31b, and 31c before detection. In addition, the O / E converter 18 is configured to input one system of optical signals. Note that the delay times of the optical transmission lines 31a, 31b, and 31c are adjusted so as to be substantially equal to each other in a range in which inter-symbol interference does not occur in each optical signal combined before detection by the receiving optical coupler 17.

下りリンクの信号は従来構成と同様であり、集中基地局10から光伝送路30a,30b,30cを介して伝送された光信号は、各遠隔基地局40a,40b,40cで無線信号に変換して送信され、端末局60a,60bが受信する。   The downlink signals are the same as in the conventional configuration, and the optical signals transmitted from the centralized base station 10 via the optical transmission paths 30a, 30b, 30c are converted into radio signals by the remote base stations 40a, 40b, 40c. And are received by the terminal stations 60a and 60b.

次に、上りリンクの信号について説明する。
端末局60a,60bの送信信号は、従来構成と同様に、遠隔基地局40a,40b,40cで光信号に変換され、光伝送路31a,31b,31cを介して集中基地局10まで伝送される。集中基地局10は、遠隔基地局40a,40b,40cからの光信号を受信用光カプラ17で検波前合成し、1系統の光信号としてO/E変換器18に入力し、1系統の電気信号に変換して復調器19に入力する。復調器19で復調された信号は、符号判定器20でバイナリデータに変換され、さらにネットワークインタフェース11を介して外部のネットワーク100に送出される。
Next, uplink signals will be described.
The transmission signals of the terminal stations 60a and 60b are converted into optical signals by the remote base stations 40a, 40b, and 40c and transmitted to the centralized base station 10 through the optical transmission paths 31a, 31b, and 31c, as in the conventional configuration. . The centralized base station 10 synthesizes the optical signals from the remote base stations 40a, 40b, and 40c before detection by the receiving optical coupler 17 and inputs them to the O / E converter 18 as one system of optical signals. The signal is converted into a signal and input to the demodulator 19. The signal demodulated by the demodulator 19 is converted into binary data by the code determination unit 20 and further sent to the external network 100 via the network interface 11.

実施例1の構成では、上りリンクの光伝送路31a,31b,31cの遅延時間がほぼ等しくなるように調整することにより、遠隔基地局40a,40b,40cを介して伝送された3系統の光信号は受信用光カプラ17で検波前合成され、1系統の光信号として電気信号に変換して復調することができる。これにより、集中基地局10における受信系統のO/E変換器18および復調器19を遠隔基地局の数にかかわらず1系統に集約でき、装置構成の簡易化および低コスト化を実現することができる。   In the configuration of the first embodiment, the three systems of light transmitted via the remote base stations 40a, 40b, and 40c are adjusted by adjusting the delay times of the uplink optical transmission lines 31a, 31b, and 31c to be approximately equal. The signals are combined by the receiving optical coupler 17 before detection, converted into an electrical signal as a single system optical signal, and demodulated. As a result, the O / E converter 18 and the demodulator 19 of the reception system in the centralized base station 10 can be integrated into one system regardless of the number of remote base stations, and the simplification of the device configuration and the reduction in cost can be realized. it can.

図2は、本発明のダイバーシチ通信装置の実施例2の構成例を示す。
図において、集中基地局10と遠隔基地局40a,40b,40cは、下りリンクの光伝送路30a,30b,30cおよび上りリンクの光伝送路31a,31b,31cを介して接続される。端末局60a,60bは、遠隔基地局40a,40b,40cを介して集中基地局10に接続される。
FIG. 2 shows a configuration example of Embodiment 2 of the diversity communication apparatus of the present invention.
In the figure, the centralized base station 10 and the remote base stations 40a, 40b, 40c are connected via downlink optical transmission paths 30a, 30b, 30c and uplink optical transmission paths 31a, 31b, 31c. The terminal stations 60a and 60b are connected to the centralized base station 10 via the remote base stations 40a, 40b, and 40c.

集中基地局10を構成するネットワークインタフェース11、変調器12、制御部13、合成器14、E/O変換器15、送信用光カプラ16、O/E変換器18、復調器19a,19b、検波後合成器24、符号判定器20は、図9に示す従来の集中基地局10と同じ機能を有する。遠隔基地局40a(遠隔基地局40b,40cも同様)を構成するO/E変換器41、送信用増幅器42、スイッチ43a、アンテナ44a、受信用増幅器45a、E/O変換器46は、図9に示す従来の遠隔基地局40aと同じ機能を有する。   Network interface 11, modulator 12, controller 13, synthesizer 14, E / O converter 15, transmission optical coupler 16, O / E converter 18, demodulators 19a and 19b, detectors constituting the centralized base station 10 The post-synthesizer 24 and the code determination unit 20 have the same functions as the conventional centralized base station 10 shown in FIG. The O / E converter 41, the transmission amplifier 42, the switch 43a, the antenna 44a, the reception amplifier 45a, and the E / O converter 46 constituting the remote base station 40a (the same applies to the remote base stations 40b and 40c) are shown in FIG. The same function as the conventional remote base station 40a shown in FIG.

本実施例の特徴は、実施例1と同様に、集中基地局10の受信用光カプラ17で各遠隔基地局40a,40b,40cからの光信号を検波前合成し、1系統の光信号としてO/E変換器18に入力する構成とともに、各遠隔基地局40a,40b,40cにそれぞれ複数の受信系統を配置し、集中基地局10で複数の受信系統の信号を検波後ダイバーシチ合成する構成にある。そのために、集中基地局10に発振器21、フィルタ22a,22b、ミキサ23を備え、遠隔基地局40a(遠隔基地局40b,40cも同様)にアンテナ44b、スイッチ43b、受信用増幅器45b、フィルタ47a,47b、ミキサ48、合成器49を備える。   As in the first embodiment, the feature of this embodiment is that optical signals from the remote base stations 40a, 40b, and 40c are combined before detection by the receiving optical coupler 17 of the centralized base station 10 and are combined as one system of optical signals. In addition to the configuration that inputs to the O / E converter 18, a plurality of reception systems are arranged in each of the remote base stations 40a, 40b, and 40c, and the central base station 10 performs diversity combining after detection of signals of the plurality of reception systems. is there. For this purpose, the centralized base station 10 includes an oscillator 21, filters 22a and 22b, and a mixer 23. The remote base station 40a (the same applies to the remote base stations 40b and 40c) includes an antenna 44b, a switch 43b, a receiving amplifier 45b, a filter 47a, 47b, a mixer 48, and a synthesizer 49.

まず、下りリンクの信号について説明する。
集中基地局10では、合成器14で変調器12から出力される無線信号と、制御部13から出力される制御信号と、発振器21から出力される発振器信号とを周波数多重する。合成器14で周波数多重された信号は、E/O変換器15で光信号に変換され、送信用光カプラ16で分配され、それぞれ光伝送路30a,30b,30cを介して遠隔基地局40a,40b,40cに到達する。
First, downlink signals will be described.
In the centralized base station 10, the synthesizer 14 frequency multiplexes the radio signal output from the modulator 12, the control signal output from the control unit 13, and the oscillator signal output from the oscillator 21. The signal frequency-multiplexed by the synthesizer 14 is converted into an optical signal by the E / O converter 15 and distributed by the transmission optical coupler 16, and the remote base stations 40a, 40a, 40c are respectively transmitted through the optical transmission lines 30a, 30b, 30c. 40b and 40c are reached.

遠隔基地局40a(遠隔基地局40b,40cも同様)は、光伝送路30aから到達した光信号をO/E変換器41で電気信号に変換し、この電気信号をフィルタ47a,47bに入力する。フィルタ47a,47bは、無線信号と発振器信号を周波数分離して出力する。なお、制御信号を周波数分離する手段は省略している。フィルタ47aを通過した無線信号は、送信用増幅器42で増幅された後、スイッチ43a、アンテナ44aを介して送信され、端末局60a,60bに受信される。   The remote base station 40a (the same applies to the remote base stations 40b and 40c) converts the optical signal that has arrived from the optical transmission line 30a into an electrical signal by the O / E converter 41, and inputs this electrical signal to the filters 47a and 47b. . The filters 47a and 47b frequency-separate and output the radio signal and the oscillator signal. Note that means for frequency-separating the control signal is omitted. The radio signal that has passed through the filter 47a is amplified by the transmission amplifier 42, transmitted through the switch 43a and the antenna 44a, and received by the terminal stations 60a and 60b.

次に、上りリンクの信号について説明する。
端末局60a,60bの送信信号は、遠隔基地局40a,40b,40cに到達する。遠隔基地局40a(遠隔基地局40b,40cも同様)は、アンテナ44a,44bで受信した信号をそれぞれスイッチ43a,43bを介して受信用増幅器45a,45bに入力する。受信用増幅器45aで増幅された信号は合成器49に入力する。受信用増幅器45bで増幅された信号は、フィルタ47bを通過した発振器信号とミキサ48で乗算して合成器49に入力する。合成器49は、端末局60a,60bの送信信号と周波数変換された送信信号を周波数多重し、さらにE/O変換器15で光信号に変換し、光伝送路31aを介して集中基地局10に送出する。
Next, uplink signals will be described.
The transmission signals of the terminal stations 60a and 60b reach the remote base stations 40a, 40b and 40c. The remote base station 40a (the same applies to the remote base stations 40b and 40c) inputs the signals received by the antennas 44a and 44b to the receiving amplifiers 45a and 45b via the switches 43a and 43b, respectively. The signal amplified by the receiving amplifier 45a is input to the synthesizer 49. The signal amplified by the receiving amplifier 45b is multiplied by the oscillator signal that has passed through the filter 47b by the mixer 48 and input to the synthesizer 49. The synthesizer 49 frequency-multiplexes the transmission signals of the terminal stations 60a and 60b and the frequency-converted transmission signal, and further converts the signals to an optical signal by the E / O converter 15, and the centralized base station 10 via the optical transmission line 31a. To send.

集中基地局10は、遠隔基地局40a,40b,40cからの光信号を受信用光カプラ17で検波前合成し、1系統の光信号をO/E変換器18に入力して1系統の電気信号に変換し、この電気信号を2分岐してフィルタ22a,22bに入力する。フィルタ22a,22bは、各遠隔基地局のアンテナ44a,44bに受信し、周波数多重された送信信号を分離して出力する。フィルタ22aを通過した送信信号は復調器19aに入力して復調され、検波後合成器24に入力する。フィルタ22bを通過した周波数変換された送信信号は、ミキサ23で発振器21から出力される発振器信号と乗算して元の周波数に戻され、復調器19bに入力して復調され、検波後合成器24に入力する。復調器19a,19bでそれぞれ復調された送信信号は、検波後合成器24で検波後ダイバーシチ合成される。検波後合成器24の出力信号は、符号判定器20でバイナリデータに変換され、さらにネットワークインタフェース11を介して外部のネットワーク100に送出される。   The centralized base station 10 synthesizes the optical signals from the remote base stations 40a, 40b and 40c by the receiving optical coupler 17 before detection, and inputs one system of optical signals to the O / E converter 18 for one system of electricity. This is converted into a signal, and this electric signal is branched into two and input to the filters 22a and 22b. The filters 22a and 22b receive the antennas 44a and 44b of each remote base station and separate and output the frequency-multiplexed transmission signals. The transmission signal that has passed through the filter 22a is input to the demodulator 19a, demodulated, and input to the synthesizer 24 after detection. The frequency-converted transmission signal that has passed through the filter 22b is multiplied by the oscillator signal output from the oscillator 21 by the mixer 23 to return to the original frequency, input to the demodulator 19b, demodulated, and after detection, the combiner 24. To enter. The transmission signals demodulated by the demodulators 19a and 19b are subjected to diversity combining after detection by the post-detection combiner 24. An output signal of the post-detection synthesizer 24 is converted into binary data by the sign determination unit 20 and further sent to the external network 100 via the network interface 11.

実施例2の構成では、上りリンクの光伝送路31a,31b,31cの遅延時間がほぼ等しくなるように調整することにより、遠隔基地局40a,40b,40cを介して伝送された3系統の光信号は受信用光カプラ17で検波前合成され、1系統の光信号として電気信号に変換する。さらに、上りリンクの送信信号は、遠隔基地局40a,40b,40cでそれぞれ複数の受信系統で受信され、かつ各受信系統の信号を周波数多重して集中基地局10に伝送し、集中基地局10で各受信系統の信号を周波数分離し、一方の受信系統の信号を元の周波数に変換してそれぞれ復調する。これにより、集中基地局10における受信系統のO/E変換器18および復調器19を遠隔基地局の数にかかわらず1系統および2系統に集約でき、装置構成の簡易化および低コスト化を実現することができる。さらに、それぞれの復調信号を検波後ダイバーシチ合成することにより、上りリンクの通信品質を向上させることができる。   In the configuration of the second embodiment, the three systems of light transmitted through the remote base stations 40a, 40b, and 40c are adjusted by adjusting the delay times of the uplink optical transmission lines 31a, 31b, and 31c to be substantially equal. The signals are combined by the receiving optical coupler 17 before detection and converted into an electrical signal as a single optical signal. Further, the uplink transmission signal is received by the remote base stations 40a, 40b, and 40c by a plurality of reception systems, and the signals of each reception system are frequency-multiplexed and transmitted to the centralized base station 10. Thus, the signals of the respective receiving systems are frequency-separated, and the signal of one receiving system is converted to the original frequency and demodulated. As a result, the O / E converter 18 and the demodulator 19 of the receiving system in the centralized base station 10 can be integrated into one system and two systems regardless of the number of remote base stations, thereby realizing simplification of the device configuration and cost reduction. can do. Furthermore, uplink communication quality can be improved by combining each demodulated signal with diversity after detection.

なお、集中基地局10のミキサ23と、遠隔基地局40aのミキサ48は、発振器21から出力される発振器信号を乗算する構成であるので、発振器21の精度に起因した変動は相殺される。   Note that the mixer 23 of the centralized base station 10 and the mixer 48 of the remote base station 40 a are configured to multiply the oscillator signal output from the oscillator 21, so fluctuations due to the accuracy of the oscillator 21 are canceled out.

図3は、本発明のダイバーシチ通信装置の実施例3の構成例を示す。
図において、集中基地局10と遠隔基地局40a,40b,40c,40dは、下りリンクの光伝送路30a,30b,30c,30dおよび上りリンクの光伝送路31a,31b,31c31dを介して接続される。端末局60a,60bは、遠隔基地局40a,40b,40c,40dを介して集中基地局10に接続される。
FIG. 3 shows a configuration example of Embodiment 3 of the diversity communication apparatus of the present invention.
In the figure, the centralized base station 10 and the remote base stations 40a, 40b, 40c, 40d are connected via downlink optical transmission paths 30a, 30b, 30c, 30d and uplink optical transmission paths 31a, 31b, 31c31d. The The terminal stations 60a and 60b are connected to the centralized base station 10 via remote base stations 40a, 40b, 40c and 40d.

集中基地局10を構成するネットワークインタフェース11、変調器12、制御部13、合成器14、E/O変換器15、送信用光カプラ16、O/E変換器18a,18b、復調器19a,19b、検波後合成器24、符号判定器20は、図9に示す従来の集中基地局10と同じ機能を有する。遠隔基地局40a(遠隔基地局40b,40c,40dも同様)を構成するO/E変換器41、送信用増幅器42、スイッチ43、アンテナ44、受信用増幅器45、E/O変換器46は、図9に示す従来の遠隔基地局40aと同じ機能を有する。   Network interface 11, modulator 12, controller 13, combiner 14, E / O converter 15, transmission optical coupler 16, O / E converters 18a and 18b, and demodulators 19a and 19b constituting the centralized base station 10 The post-detection combiner 24 and the sign determination unit 20 have the same functions as those of the conventional centralized base station 10 shown in FIG. The O / E converter 41, the transmission amplifier 42, the switch 43, the antenna 44, the reception amplifier 45, and the E / O converter 46 constituting the remote base station 40a (the same applies to the remote base stations 40b, 40c, and 40d) It has the same function as the conventional remote base station 40a shown in FIG.

本実施例の特徴は、集中基地局10に遠隔基地局数未満の受信用光カプラ17a,17bを備え、各遠隔基地局40a,40b,40c,40dからの光信号のうち、受信用光カプラ17a,17bでそれぞれ隣接しない遠隔基地局からの光信号を検波前合成し、それぞれ別系統の光信号を電気信号に変換し、それぞれ復調後に検波後ダイバーシチ合成する構成にある。なお、ここでは受信用光カプラ17aに収容される光伝送路31aと光伝送路31cの遅延時間、受信用光カプラ17bに収容される光伝送路31bと光伝送路31dの遅延時間は、それぞれ検波前合成される各光信号において、シンボル間干渉が生じない範囲でほぼ等しくなるように調整されているものとする。   The feature of the present embodiment is that the centralized base station 10 includes optical couplers 17a and 17b for receiving less than the number of remote base stations, and among the optical signals from the remote base stations 40a, 40b, 40c and 40d, the optical coupler for receiving In 17a and 17b, optical signals from remote base stations that are not adjacent to each other are combined before detection, optical signals of different systems are converted into electrical signals, and diversity combining after detection is performed after demodulation. Here, the delay times of the optical transmission path 31a and the optical transmission path 31c accommodated in the receiving optical coupler 17a, and the delay times of the optical transmission path 31b and the optical transmission path 31d accommodated in the receiving optical coupler 17b are respectively It is assumed that the optical signals combined before detection are adjusted so as to be substantially equal within a range where no intersymbol interference occurs.

下りリンクの信号は実施例1と同様であり、集中基地局10から光伝送路30a,30b,30c,30dを介して伝送された光信号は、各遠隔基地局40a,40b,40c,40dで無線信号に変換して送信され、端末局60a,60bが受信する。   The downlink signals are the same as those in the first embodiment, and the optical signals transmitted from the centralized base station 10 via the optical transmission lines 30a, 30b, 30c, and 30d are transmitted from the remote base stations 40a, 40b, 40c, and 40d. It is converted into a radio signal and transmitted, and received by the terminal stations 60a and 60b.

次に、上りリンクの信号について説明する。
端末局60a,60bの送信信号は、実施例1と同様に、遠隔基地局40a,40b,40c,40dで光信号に変換され、光伝送路31a,31b,31c,31dを介して集中基地局10まで伝送される。集中基地局10は、遠隔基地局40a,40cからの光信号を受信用光カプラ17aで検波前合成し、遠隔基地局40b,40dからの光信号を受信用光カプラ17bで検波前合成し、それぞれ1系統の光信号としてO/E変換器18a,18bに入力し、それぞれ1系統の電気信号に変換して復調器19a,19bに入力する。復調器19a,19bでそれぞれ復調された送信信号は、検波後合成器24で検波後ダイバーシチ合成される。検波後合成器24の出力信号は、符号判定器20でバイナリデータに変換され、さらにネットワークインタフェース11を介して外部のネットワーク100に送出される。
Next, uplink signals will be described.
Similarly to the first embodiment, the transmission signals of the terminal stations 60a and 60b are converted into optical signals by the remote base stations 40a, 40b, 40c, and 40d, and are concentrated base stations through the optical transmission lines 31a, 31b, 31c, and 31d. 10 is transmitted. The centralized base station 10 combines the optical signals from the remote base stations 40a and 40c with the receiving optical coupler 17a before detection, and combines the optical signals from the remote base stations 40b and 40d with the receiving optical coupler 17b before detection. Each is input to the O / E converters 18a and 18b as one optical signal, converted into one electric signal, and input to the demodulators 19a and 19b. The transmission signals demodulated by the demodulators 19a and 19b are subjected to diversity combining after detection by the post-detection combiner 24. An output signal of the post-detection synthesizer 24 is converted into binary data by the sign determination unit 20 and further sent to the external network 100 via the network interface 11.

実施例3の構成では、上りリンクの光伝送路31a,31cの遅延時間、光伝送路31b,31dの遅延時間がそれぞれほぼ等しくなるように調整することにより、遠隔基地局40a,40cを介して伝送された2系統の光信号は受信用光カプラ17aで検波前合成され、遠隔基地局40b,40dを介して伝送された2系統の光信号は受信用光カプラ17bで検波前合成され、それぞれ1系統の光信号として電気信号に変換して復調する。これにより、集中基地局10における受信系統のO/E変換器18および復調器19を遠隔基地局の数未満に集約でき、装置構成の簡易化および低コスト化を実現することができる。さらに、それぞれの復調信号を検波後ダイバーシチ合成することにより、通信品質を向上させることができる。   In the configuration of the third embodiment, the delay times of the uplink optical transmission lines 31a and 31c and the delay times of the optical transmission lines 31b and 31d are adjusted so as to be approximately equal to each other via the remote base stations 40a and 40c. The transmitted two optical signals are combined before detection by the receiving optical coupler 17a, and the two optical signals transmitted via the remote base stations 40b and 40d are combined before detection by the receiving optical coupler 17b. It is demodulated by converting it into an electrical signal as a single optical signal. Thereby, the O / E converter 18 and the demodulator 19 of the reception system in the centralized base station 10 can be aggregated to less than the number of remote base stations, and simplification of the apparatus configuration and cost reduction can be realized. Furthermore, communication quality can be improved by combining the demodulated signals with diversity after detection.

なお、実施例1の構成では、例えば遠隔基地局40a,40bの中間に端末局60aが存在する場合、遠隔基地局40a,40bから集中基地局10に伝送された光信号が受信用光カプラ17で検波前合成する際に相殺され、端末局60aの送信信号を復元できなくなる可能性があった。実施例3の構成では、隣接する遠隔基地局からの光信号が異なる受信用光カプラに入力される。すなわち、各受信用光カプラでは、隣接しない複数の遠隔基地局からの光信号を検波前合成することになるので、端末局が隣接する遠隔基地局の中間位置にあっても信号は相殺されず、上りリンクの送信信号の伝送が可能になる。また、仮に隣接しない複数の遠隔基地局(40a,40c)からの光信号が検波前合成する際に相殺される状況でも、その間にある遠隔基地局(40b)からの光信号が他方の受信用光カプラに入力されるので、検波後ダイバーシチ合成によって上りリンクの送信信号の通信品質を確保することができる。   In the configuration of the first embodiment, for example, when the terminal station 60 a exists between the remote base stations 40 a and 40 b, the optical signal transmitted from the remote base stations 40 a and 40 b to the centralized base station 10 is received by the receiving optical coupler 17. Therefore, there is a possibility that the transmission signal of the terminal station 60a cannot be restored due to cancellation when combining before detection. In the configuration of the third embodiment, optical signals from adjacent remote base stations are input to different receiving optical couplers. That is, each receiving optical coupler synthesizes optical signals from a plurality of non-adjacent remote base stations before detection, so that the signal is not canceled even if the terminal station is at an intermediate position between adjacent remote base stations. The transmission of the uplink transmission signal becomes possible. Even in a situation where optical signals from a plurality of remote base stations (40a, 40c) that are not adjacent to each other are canceled when they are combined before detection, the optical signal from the remote base station (40b) between them is used for receiving the other. Since it is input to the optical coupler, the communication quality of the uplink transmission signal can be ensured by diversity combining after detection.

ところで、実施例1〜3の集中基地局10の受信用光カプラ17の検波前合成では、近傍に端末局が存在しない遠隔基地局、すなわち通信に関与しない遠隔基地局からの光信号も含めて合成するため、雑音が増大して通信品質が劣化する恐れがあった。   By the way, in the pre-detection combining of the receiving optical coupler 17 of the centralized base station 10 according to the first to third embodiments, optical signals from a remote base station having no terminal station nearby, that is, a remote base station not involved in communication are included. As a result of the synthesis, there is a risk that noise will increase and communication quality will deteriorate.

ここで、光信号の雑音について説明する。一般に光伝送では、E/O変換器(レーザダイオードなど)の光出力の揺らぎに起因するレーザノイズ、O/E変換器(フォトダイオードなど)で発生する検出電流の揺らぎに起因するショットノイズ、O/E変換器の後段の抵抗や増幅器に起因する熱雑音が付加される。一般に、E/O変換器から光伝送路を介してO/E変換器までに付加される雑音電力は、無線信号の受信用増幅器として用いられる低雑音増幅器で発生する雑音電力に比べて非常に大きい。このため、端末局から遠い遠隔基地局のE/O変換器の入力において、すでに雑音電力と比較して信号電力が小さい場合には、この遠隔基地局からは主に雑音が光信号として伝送される。集中基地局10の受信用光カプラ17では、このような雑音が主体の光信号と、十分な信号電力を有する遠隔基地局からの光信号を検波前合成することになり、本来の通信品質が劣化する。この課題を解決するための構成について以下に説明する。   Here, the noise of the optical signal will be described. In general, in optical transmission, laser noise caused by fluctuations in the optical output of an E / O converter (such as a laser diode), shot noise caused by fluctuations in detection current generated in the O / E converter (such as a photodiode), O Thermal noise due to the resistor and amplifier at the subsequent stage of the / E converter is added. In general, noise power added from an E / O converter to an O / E converter via an optical transmission line is much higher than noise power generated by a low noise amplifier used as a radio signal receiving amplifier. large. For this reason, when the signal power is already small compared with the noise power at the input of the E / O converter of the remote base station far from the terminal station, the noise is mainly transmitted as an optical signal from the remote base station. The In the receiving optical coupler 17 of the centralized base station 10, the optical signal mainly composed of such noise and the optical signal from the remote base station having sufficient signal power are combined before detection, and the original communication quality is improved. to degrade. A configuration for solving this problem will be described below.

図4は、本発明のダイバーシチ通信装置の実施例4の構成例を示す。
本実施例の特徴は、図1に示す実施例1の構成において、遠隔基地局40a(遠隔基地局40b,40cも同様)の受信用増幅器45から出力される信号電力レベルに応じて、E/O変換器46の電源投入動作を制御する制御部50を備えたところにある。その他の構成は、実施例1と同様である。
FIG. 4 shows a configuration example of Embodiment 4 of the diversity communication apparatus of the present invention.
The feature of the present embodiment is that, in the configuration of the first embodiment shown in FIG. 1, the E / E is determined according to the signal power level output from the receiving amplifier 45 of the remote base station 40a (the same applies to the remote base stations 40b and 40c). A control unit 50 for controlling the power-on operation of the O converter 46 is provided. Other configurations are the same as those of the first embodiment.

下りリンクの信号は実施例1と同様であるので、上りリンクの信号について説明する。 端末局60a,60bの送信信号は、遠隔基地局40a,40b,40cに到達する。遠隔基地局40a(遠隔基地局40b,40cも同様)は、アンテナ44で受信した信号をスイッチ43を介して受信用増幅器45に入力し、受信用増幅器45で増幅された信号をE/O変換器46で光信号に変換し、光伝送路31aを介して集中基地局10に送出する。ここで、制御部50は、受信用増幅器45の出力信号を検波し、その信号電力レベルを検出する。さらに、制御部50は、E/O変換器46の雑音電力レベル(既定値)と受信用増幅器45の信号電力レベルを比較し、信号伝送に必要な信号電力レベルが得られている場合にE/O変換器46の電源投入を行う。   Since the downlink signal is the same as that in the first embodiment, the uplink signal will be described. The transmission signals of the terminal stations 60a and 60b reach the remote base stations 40a, 40b and 40c. The remote base station 40a (the same applies to the remote base stations 40b and 40c) inputs the signal received by the antenna 44 to the reception amplifier 45 through the switch 43, and converts the signal amplified by the reception amplifier 45 into E / O conversion. It is converted into an optical signal by the device 46 and sent to the centralized base station 10 through the optical transmission path 31a. Here, the control unit 50 detects the output signal of the receiving amplifier 45 and detects the signal power level. Further, the control unit 50 compares the noise power level (predetermined value) of the E / O converter 46 with the signal power level of the receiving amplifier 45, and when the signal power level necessary for signal transmission is obtained, E The power of the / O converter 46 is turned on.

すなわち、遠隔基地局40aの近傍に端末局60aがあって十分な信号電力レベルであれば、E/O変換器46で光信号に変換し、光伝送路31aを介して集中基地局10に送出する。一方、遠隔基地局40aの遠方に端末局60aがあって信号電力レベルが小さく、相対的に雑音電力レベルが大きい場合には、E/O変換器46は動作せず光信号は送出されない。これにより、通信に関与しない遠隔基地局で生じる雑音成分が集中基地局10に到達せず、十分な信号電力を有する遠隔基地局からの光信号のみを検波前合成することになるので、高い通信品質を確保することができる。   That is, if there is a terminal station 60a in the vicinity of the remote base station 40a and the signal power level is sufficient, it is converted into an optical signal by the E / O converter 46 and transmitted to the centralized base station 10 via the optical transmission line 31a. To do. On the other hand, when the terminal station 60a is located far from the remote base station 40a and the signal power level is small and the noise power level is relatively large, the E / O converter 46 does not operate and no optical signal is transmitted. As a result, noise components generated in remote base stations not involved in communication do not reach the centralized base station 10, and only optical signals from remote base stations having sufficient signal power are synthesized before detection. Quality can be ensured.

なお、実施例4の構成は、実施例2および実施例3の構成にも同様に適用することができる。   The configuration of the fourth embodiment can be similarly applied to the configurations of the second and third embodiments.

図5は、本発明のダイバーシチ通信装置の実施例5の構成例を示す。
本実施例の特徴は、図4に示す実施例4の構成において、集中基地局10の制御部13で各遠隔基地局40a,40b,40cにおける端末局ごとの受信レベルを把握し、各遠隔基地局40a,40b,40cのE/O変換器46の電源投入動作を制御する制御信号を生成し、各遠隔基地局40a,40b,40cの制御部50が当該制御信号を抽出し、それぞれのE/O変換器46の電源投入動作を制御するところにある。
FIG. 5 shows a configuration example of Embodiment 5 of the diversity communication apparatus of the present invention.
The feature of this embodiment is that, in the configuration of Embodiment 4 shown in FIG. 4, the control unit 13 of the centralized base station 10 grasps the reception level for each terminal station in each remote base station 40a, 40b, 40c, and A control signal for controlling the power-on operation of the E / O converter 46 of the stations 40a, 40b, and 40c is generated, and the control unit 50 of each remote base station 40a, 40b, and 40c extracts the control signal, and each E The power-on operation of the / O converter 46 is controlled.

本実施例では、同一時刻に複数の端末局が異なるサブキャリアを用いて通信を行うOFDMA(Orthogonal Frequency Division Multiple Access) を用いるものとする。   In this embodiment, it is assumed that OFDMA (Orthogonal Frequency Division Multiple Access) in which a plurality of terminal stations perform communication using different subcarriers at the same time is used.

下りリンクの信号は実施例1と同様であるので、上りリンクの信号について説明する。端末局60aは、図6(a) に示すように2本のサブキャリアを用いて信号を送信している。端末局60bは、図6(b) に示すように、端末局60aとは異なる2本のサブキャリアを用いて信号を送信している。   Since the downlink signal is the same as that in the first embodiment, the uplink signal will be described. The terminal station 60a transmits a signal using two subcarriers as shown in FIG. 6 (a). As shown in FIG. 6B, the terminal station 60b transmits a signal using two subcarriers different from the terminal station 60a.

まず、通信準備段階では、集中基地局10の制御部13は、各遠隔基地局40a,40b,40cのE/O変換器46の電源を例えば順番に投入する制御信号を送信し、遠隔基地局ごとに各端末局60a,60bからの受信レベルを把握する。図6(c) は、遠隔基地局40aのE/O変換器46の電源のみを投入した場合の受信レベルを示し、端末局60aからの信号電力レベルが十分に得られている状態を示す。図6(d) は、遠隔基地局40bのE/O変換器46の電源のみを投入した場合の受信レベルを示し、端末局60bからの信号電力レベルが十分に得られている状態を示す。図6(e) は、遠隔基地局40cのE/O変換器46の電源のみを投入した場合の受信レベルを示し、端末局60a,60bのいずれの信号電力レベルも十分でなく、雑音電力レベルが高くなる状態を示す。以上の状態から、集中基地局10の制御部13では、遠隔基地局40aの近傍に端末局60aがあり、遠隔基地局40bの近傍に端末局60bがあるものと推定できる。   First, in the communication preparation stage, the control unit 13 of the centralized base station 10 transmits a control signal for sequentially turning on the power of the E / O converter 46 of each remote base station 40a, 40b, 40c, for example. The reception level from each terminal station 60a, 60b is grasped every time. FIG. 6C shows the reception level when only the power of the E / O converter 46 of the remote base station 40a is turned on, and shows a state where the signal power level from the terminal station 60a is sufficiently obtained. FIG. 6 (d) shows the reception level when only the E / O converter 46 of the remote base station 40b is turned on, and shows a state where the signal power level from the terminal station 60b is sufficiently obtained. FIG. 6 (e) shows the reception level when only the power of the E / O converter 46 of the remote base station 40c is turned on. The signal power levels of the terminal stations 60a and 60b are not sufficient, and the noise power level. Shows a state in which becomes higher. From the above state, it can be estimated that the control unit 13 of the centralized base station 10 has the terminal station 60a in the vicinity of the remote base station 40a and the terminal station 60b in the vicinity of the remote base station 40b.

次に通信段階では、集中基地局10の制御部13は、遠隔基地局40a,40bのE/O変換器46の電源を投入する制御信号を送信し、遠隔基地局の40cのE/O変換器46の電源を断とする制御信号を送信する。これにより、端末局60a,60bの送信信号は、遠隔基地局40a,40bを介して集中基地局10に到達し、受信用光カプラ17で検波前合成して電気信号に変換すると、図6(f) のように端末局60a,60bの送信信号を高い受信レベルで得ることができ、かつ雑音の重畳を抑圧することができる。   Next, in the communication stage, the control unit 13 of the centralized base station 10 transmits a control signal for turning on the E / O converter 46 of the remote base stations 40a and 40b, and the E / O conversion of the remote base station 40c. A control signal for turning off the power of the device 46 is transmitted. As a result, the transmission signals of the terminal stations 60a and 60b reach the centralized base station 10 via the remote base stations 40a and 40b, and are combined by the receiving optical coupler 17 before detection and converted into electrical signals. As shown in f), the transmission signals of the terminal stations 60a and 60b can be obtained at a high reception level, and noise superposition can be suppressed.

これにより、集中基地局10における受信系統のO/E変換器18および復調器19を遠隔基地局の数にかかわらず1系統に集約でき、装置構成の簡易化および低コスト化を実現することができる。さらに、雑音が主体となる遠隔基地局からの送信を停止することにより、集中基地局10で検波前合成しても通信品質の劣化を回避することができる。   As a result, the O / E converter 18 and the demodulator 19 of the reception system in the centralized base station 10 can be integrated into one system regardless of the number of remote base stations, and the simplification of the device configuration and the reduction in cost can be realized. it can. Furthermore, by stopping transmission from a remote base station mainly composed of noise, it is possible to avoid deterioration in communication quality even if the concentrated base station 10 combines before detection.

なお、実施例5の構成は、実施例2および実施例3の構成にも同様に適用することができる。
また、本発明のダイバーシチ通信装置では、OFDMAを用いて端末局60a,60bの多重、すなわちユーザ多重を行ってもよい。
The configuration of the fifth embodiment can be similarly applied to the configurations of the second and third embodiments.
In the diversity communication apparatus of the present invention, multiplexing of the terminal stations 60a and 60b, that is, user multiplexing may be performed using OFDMA.

本発明のダイバーシチ通信装置は、集中基地局の受信系統を遠隔基地局数より少ない数に集約することができ、装置構成の簡易化および低コスト化を実現することができる。   The diversity communication apparatus of the present invention can consolidate the reception systems of the concentrated base stations to a number smaller than the number of remote base stations, and can realize simplification of the apparatus configuration and cost reduction.

本発明のダイバーシチ通信装置は、十分な信号電力を有する遠隔基地局からの光信号のみを検波前合成することができるので、検波前合成によっても高い通信品質を確保することができる。さらに、検波後ダイバーシチ合成を組合せることにより、さらに高い通信品質を確保することができる。   Since the diversity communication apparatus of the present invention can combine only optical signals from remote base stations having sufficient signal power before detection, high communication quality can be ensured even by combining before detection. Furthermore, higher communication quality can be ensured by combining diversity combining after detection.

10 集中基地局
11 ネットワークインタフェース
12 変調器
13 制御部
14 合成器
15 E/O変換器
16 送信用光カプラ
17 受信用光カプラ
18 O/E変換器
19 復調器
20 符号判定器
21 発振器
22 フィルタ
23 ミキサ
24 検波後合成器
30 下りリンクの光伝送路
31 上りリンクの光伝送路
40 遠隔基地局
41 O/E変換器
42 送信用増幅器
43 スイッチ
44 アンテナ
45 受信用増幅器
46 E/O変換器
47 フィルタ
48 ミキサ
49 合成器
50 制御部
60 端末局
100 ネットワーク
DESCRIPTION OF SYMBOLS 10 Central base station 11 Network interface 12 Modulator 13 Control part 14 Synthesizer 15 E / O converter 16 Optical coupler for transmission 17 Optical coupler for reception 18 O / E converter 19 Demodulator 20 Code determination device 21 Oscillator 22 Filter 23 Mixer 24 Post-detection combiner 30 Downlink optical transmission path 31 Uplink optical transmission path 40 Remote base station 41 O / E converter 42 Transmitting amplifier 43 Switch 44 Antenna 45 Receiving amplifier 46 E / O converter 47 Filter 48 mixer 49 synthesizer 50 control unit 60 terminal station 100 network

Claims (4)

端末局と無線回線を介して接続される複数の遠隔基地局と、
前記複数の遠隔基地局とそれぞれ光伝送路を介して接続される1つの集中基地局とを備え、
前記集中基地局から送信される下りリンクの光信号を前記複数の遠隔基地局で受信し、前記複数の遠隔基地局が光信号を無線信号に変換して前記端末局に送信し、前記端末局から送信される上りリンクの無線信号を前記複数の遠隔基地局で受信し、前記複数の遠隔基地局が無線信号を光信号に変換して前記集中基地局に送信し、前記集中基地局で前記複数の遠隔基地局を介して伝送された前記端末局の送信信号をダイバーシチ合成して受信する構成であるダイバーシチ通信装置において、
前記集中基地局は、前記複数の遠隔基地局から前記光伝送路を介して伝送された光信号のうち、隣接しない前記遠隔基地局からの光信号をそれぞれ1系統の光信号に検波前合成する2以上の受信用光カプラを備え、系統の光信号を電気信号に変換して復調処理を行い、各復調信号を検波後ダイバーシチ合成する構成であり、
前記複数の遠隔基地局から前記集中基地局に接続される上りリンクの光伝送路は、前記各受信用光カプラに接続される光伝送路について、それぞれの光伝送路を介して伝送された同一端末局の送信信号に対応する光信号の検波前合成が可能な程度に遅延時間が調整された構成である
ことを特徴とするダイバーシチ通信装置。
A plurality of remote base stations connected to the terminal station via a wireless line;
One centralized base station connected to each of the plurality of remote base stations via an optical transmission path,
The downlink optical signals transmitted from the centralized base station are received by the plurality of remote base stations, the plurality of remote base stations convert the optical signals into radio signals and transmit to the terminal station, and the terminal station Uplink radio signals transmitted from the plurality of remote base stations are received by the plurality of remote base stations, the plurality of remote base stations convert radio signals into optical signals and transmitted to the centralized base station, and In the diversity communication device that is configured to receive and combine diversity transmission signals of the terminal station transmitted through a plurality of remote base stations,
The centralized base station, among the plurality of transmitted optical signals via the optical transmission path from the remote base station, synthesized before detection in the optical signal of each one system the optical signal from the not adjacent said remote base station It comprises two or more receiving optical coupler, have rows demodulates the optical signal of each path is converted into an electric signal, and configured to post-detection diversity combining the demodulated signals,
The uplink optical transmission lines connected to the centralized base station from the plurality of remote base stations are the same as the optical transmission lines connected to the receiving optical couplers, transmitted through the respective optical transmission lines. A diversity communication apparatus, characterized in that the delay time is adjusted to such an extent that pre-detection synthesis of optical signals corresponding to transmission signals of a terminal station is possible.
請求項1に記載のダイバーシチ通信装置において、
前記遠隔基地局は、前記上りリンクの無線信号の受信レベルを検出し、当該受信レベルが所定値を超える場合には前記集中基地局に対する光信号送信を行い、当該受信レベルが所定値以下場合には前記集中基地局に対する光信号送信停止を行う制御手段を備えた
ことを特徴とするダイバーシチ通信装置。
The diversity communication device according to claim 1,
The remote base station detects a reception level of the uplink radio signal, and when the reception level exceeds a predetermined value, transmits the optical signal to the centralized base station, and when the reception level is equal to or lower than a predetermined value. A diversity communication apparatus characterized by comprising control means for stopping optical signal transmission to the central base station.
請求項1に記載のダイバーシチ通信装置において、
前記遠隔基地局と前記端末局は、OFDMA(Orthogonal Frequency Division Multiple Access) を用いて同一時刻に前記複数の端末局が異なるサブキャリアを用いて無線通信を行う構成であり、
前記遠隔基地局は、前記集中基地局から前記下りリンクの光信号に重畳して伝送される制御信号に応じて、前記集中基地局に対する光信号送信または光信号送信停止を行う制御手段を備え、
前記集中基地局は、通信準備段階のときに、前記複数の遠隔基地局に光信号送信を指示する制御信号を送信し、前記遠隔基地局ごとに送信された光信号を復調して前記端末局に対応するサブキャリアごとの受信レベルを検出し、通信段階のときに、当該受信レベルが所定値を超える遠隔基地局に対して光信号送信を指示し、当該受信レベルレベルが所定値以下の遠隔基地局に対して光信号送信停止を指示する制御信号を送信する構成である
ことを特徴とするダイバーシチ通信装置。
The diversity communication device according to claim 1,
The remote base station and the terminal station are configured to perform wireless communication using different subcarriers in the plurality of terminal stations at the same time using OFDMA (Orthogonal Frequency Division Multiple Access),
The remote base station comprises control means for performing optical signal transmission to the central base station or optical signal transmission stop according to a control signal transmitted from the central base station superimposed on the downlink optical signal,
The centralized base station transmits a control signal instructing transmission of an optical signal to the plurality of remote base stations during a communication preparation stage, and demodulates the optical signal transmitted for each of the remote base stations to thereby transmit the terminal station The reception level for each sub-carrier corresponding to is detected, and at the communication stage, an optical signal transmission is instructed to a remote base station whose reception level exceeds a predetermined value, and the remote level whose reception level is lower than the predetermined value is instructed. A diversity communication apparatus characterized by transmitting a control signal that instructs a base station to stop optical signal transmission.
請求項または請求項に記載のダイバーシチ通信装置において、
前記制御手段は、前記端末局から送信された上りリンクの無線信号を光信号に変換するE/O変換器の電源をオンオフする構成である
ことを特徴とするダイバーシチ通信装置。
In the diversity communication device according to claim 2 or 3 ,
The diversity communication apparatus, wherein the control means is configured to turn on / off a power of an E / O converter that converts an uplink radio signal transmitted from the terminal station into an optical signal.
JP2009040346A 2009-02-24 2009-02-24 Diversity communication device Expired - Fee Related JP5128517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009040346A JP5128517B2 (en) 2009-02-24 2009-02-24 Diversity communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009040346A JP5128517B2 (en) 2009-02-24 2009-02-24 Diversity communication device

Publications (2)

Publication Number Publication Date
JP2010199784A JP2010199784A (en) 2010-09-09
JP5128517B2 true JP5128517B2 (en) 2013-01-23

Family

ID=42824075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040346A Expired - Fee Related JP5128517B2 (en) 2009-02-24 2009-02-24 Diversity communication device

Country Status (1)

Country Link
JP (1) JP5128517B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053317B2 (en) * 2009-03-12 2012-10-17 日本電信電話株式会社 Wireless communication system and wireless communication method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3380435B2 (en) * 1996-08-23 2003-02-24 株式会社エヌ・ティ・ティ・ドコモ RAKE receiver
JPH11252616A (en) * 1998-03-04 1999-09-17 Kokusai Electric Co Ltd Optical conversion repeater
JP3352981B2 (en) * 1999-08-10 2002-12-03 独立行政法人通信総合研究所 Communications system
JP2001094491A (en) * 1999-09-24 2001-04-06 Toshiba Corp Wireless communication system
JP4741064B2 (en) * 2000-11-01 2011-08-03 Kddi株式会社 Optical code division multiple access transmission / reception system
JP4020597B2 (en) * 2001-05-30 2007-12-12 三菱電機株式会社 Burst light output monitoring method and apparatus
JP4821546B2 (en) * 2006-09-29 2011-11-24 沖電気工業株式会社 Optical transmission system
JP2008118394A (en) * 2006-11-02 2008-05-22 Kansai Electric Power Co Inc:The Wireless base station and phase difference adjustment method of wireless base station
JP2007228603A (en) * 2007-03-20 2007-09-06 Toshiba Corp Radio communication base station device, receiver for optical transmission of radio signal and transceiver for optical transmission of radio signal

Also Published As

Publication number Publication date
JP2010199784A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
US6252548B1 (en) Transceiver arrangement for a smart antenna system in a mobile communication base station
US20100136900A1 (en) Radio Relay Device and Method
US20120189078A1 (en) Dual polarization antenna and method for transmitting and receiving signal using the same
CN105830514A (en) Method for acquiring channel state information in fdd mimo wireless networks
JP2010087828A (en) Near mimo repeater device, near mimo portable remote terminal device and near mimo radio communication method
JP5645848B2 (en) Wireless receiver
JP2002246965A (en) Information transmission method and system, transmitter and receiver
JP4405499B2 (en) Wireless communication system, base station apparatus, and wireless communication method
JP5884737B2 (en) Wireless communication device
JP2008118337A (en) Wireless communication system, wireless communication method, and terminal
JP4063550B2 (en) Wireless communication device
KR20090039946A (en) Apparatus and method for receiving signal in multiple input multiple output system
JP2004129066A (en) Multiband radio
JP4153866B2 (en) Wireless communication system, base station apparatus, and wireless communication method
JP2010268224A (en) Diversity communication equipment
JP5329482B2 (en) Diversity communication system
JP6035120B2 (en) Energy consumption reduction method and wireless communication terminal
JP5128517B2 (en) Diversity communication device
WO2011030803A1 (en) Wireless communication apparatus and wireless communication method
JP4955324B2 (en) Wireless communication system
CN107769831B (en) Base station and operation method thereof
CN111817761A (en) Multiple input multiple output transmission and reception
JP5465609B2 (en) Diversity communication system
JP2001102979A (en) Mobile radio communication system
KR100283076B1 (en) Cdma donor base-station apparatus operating remote base-station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees