JP5127991B1 - Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus - Google Patents

Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus Download PDF

Info

Publication number
JP5127991B1
JP5127991B1 JP2012118554A JP2012118554A JP5127991B1 JP 5127991 B1 JP5127991 B1 JP 5127991B1 JP 2012118554 A JP2012118554 A JP 2012118554A JP 2012118554 A JP2012118554 A JP 2012118554A JP 5127991 B1 JP5127991 B1 JP 5127991B1
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
area
electrophotographic
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012118554A
Other languages
Japanese (ja)
Other versions
JP2013210594A (en
Inventor
孝治 高橋
弘規 植松
隆浩 満居
康裕 川井
孟 西田
英紀 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012118554A priority Critical patent/JP5127991B1/en
Priority to CN201280026647.0A priority patent/CN103562798B/en
Priority to US14/117,000 priority patent/US20140093281A1/en
Priority to PCT/JP2012/064339 priority patent/WO2012165642A1/en
Priority to KR1020137033933A priority patent/KR101576474B1/en
Priority to EP12792563.4A priority patent/EP2715454B1/en
Application granted granted Critical
Publication of JP5127991B1 publication Critical patent/JP5127991B1/en
Publication of JP2013210594A publication Critical patent/JP2013210594A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)

Abstract

【課題】画像流れが生じにくい電子写真感光体、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供する。
【解決手段】電子写真感光体の表面が、深さ0.5μm以上5μm以下かつ開口部最長径20μm以上80μm以下の複数の凹部と、該凹部以外の部分と、から形成されており、電子写真感光体の表面の任意の位置に、一辺500μmの正方形領域を配置したとき、一辺500μmの正方形領域における凹部の面積が10000μm以上90000μm以下であり、凹部以外の部分に含まれる平坦部の面積が80000μm以上240000μm以下である。
【選択図】なし
An electrophotographic photosensitive member that hardly causes image flow, a process cartridge having the electrophotographic photosensitive member, and an electrophotographic apparatus are provided.
The surface of an electrophotographic photosensitive member is formed of a plurality of recesses having a depth of 0.5 μm or more and 5 μm or less and a maximum opening diameter of 20 μm or more and 80 μm or less, and portions other than the recesses, and electrophotography at an arbitrary position of the surface of the photosensitive member, when placed a square area of one side 500 [mu] m, the area of the recesses in the square area of a side 500 [mu] m is at 10000 2 more 90000Myuemu 2 or less, the area of the flat portion contained in a portion other than the recess There is 80000μm 2 more 240000μm 2 below.
[Selection figure] None

Description

本発明は、電子写真感光体、プロセスカートリッジおよび電子写真装置に関する。   The present invention relates to an electrophotographic photosensitive member, a process cartridge, and an electrophotographic apparatus.

電子写真感光体の表面には、帯電やクリーニングなどの電気的外力や機械的外力が加えられるため、これらの外力に対する耐久性(耐摩耗性など)が要求される。   Since an electric external force such as charging or cleaning or a mechanical external force is applied to the surface of the electrophotographic photosensitive member, durability against such external force (such as wear resistance) is required.

この要求に対して、従来から、電子写真感光体の表面層に耐摩耗性の高い樹脂(硬化性樹脂など)を用いるなどの改良技術が用いられている。   In response to this requirement, conventionally, improved techniques such as using a highly wear-resistant resin (such as a curable resin) for the surface layer of the electrophotographic photosensitive member have been used.

一方、電子写真感光体の表面の耐摩耗性を高めることによって生じる課題として、画像流れが挙げられる。画像流れは、電子写真感光体の表面の帯電によって生じるオゾンや窒素酸化物などの酸化性ガスにより、電子写真感光体の表面層に用いられている材料が劣化したり、水分の吸着によって電子写真感光体の表面が低抵抗化したりすることが原因であると考えられている。そして、電子写真感光体の表面の耐摩耗性が高くなるほど、電子写真感光体の表面のリフレッシュ(劣化した材料や吸着した水分などの画像流れ原因物質の除去)がなされにくくなり、画像流れが発生しやすくなる。   On the other hand, a problem caused by increasing the wear resistance of the surface of the electrophotographic photosensitive member is image flow. In the image flow, the material used for the surface layer of the electrophotographic photosensitive member deteriorates due to an oxidizing gas such as ozone or nitrogen oxide generated by charging of the surface of the electrophotographic photosensitive member, or electrophotography occurs due to moisture adsorption. It is considered that the cause is that the surface of the photoreceptor is lowered in resistance. The higher the abrasion resistance of the surface of the electrophotographic photosensitive member, the more difficult the surface of the electrophotographic photosensitive member is refreshed (removal of materials that cause image flow such as deteriorated materials and adsorbed moisture), resulting in image flow. It becomes easy to do.

画像流れを改善する技術として、特許文献1には、乾式ブラスト処理または湿式ホーニング処理によって電子写真感光体の表面にディンプル形状の凹部を付与する技術が開示されている。特許文献1によれば、電子写真感光体の表面に複数のディンプル形状の凹部を設けることによって、初期から5000枚程度までの画像流れを抑制することができる。   As a technique for improving image flow, Patent Document 1 discloses a technique for providing a dimple-shaped recess on the surface of an electrophotographic photosensitive member by dry blasting or wet honing. According to Patent Document 1, by providing a plurality of dimple-shaped concave portions on the surface of the electrophotographic photosensitive member, it is possible to suppress image flow from the initial stage to about 5000 sheets.

また、特許文献2には、電子写真感光体の表面に、開口部の平均長軸径が3.0μmより大きく14.0μm以下の凹部を100μm四方あたり76個以上1000個以下設けることによって、高温高湿環境下でも初期から50000枚程度までのドット再現性を良好に維持する、すなわち画像流れを抑制する技術が開示されている。   Patent Document 2 discloses that the surface of the electrophotographic photosensitive member is provided with 76 to 1000 concave portions having an average major axis diameter of the opening larger than 3.0 μm and 14.0 μm or less per 100 μm square. There is disclosed a technique for maintaining good dot reproducibility from the initial stage to about 50,000 sheets even in a high humidity environment, that is, suppressing image flow.

また、特許文献3には、パターニングされた表面を有するイメージング部材が開示されている。   Patent Document 3 discloses an imaging member having a patterned surface.

特許第3938209号公報Japanese Patent No. 3938209 特開2007−233355号公報JP 2007-233355 A 特開2011−22578号公報JP 2011-22578 A

しかしながら、特許文献1に開示された技術では、比較的初期の画像流れが抑制されるに留まるうえ、帯電装置近傍で顕著に発生する画像流れに対しては改善の余地がある。また、高温高湿環境下で電子写真装置を数日間放置した場合に生じやすい起動直後の画像流れに対しても改善の余地が残っている。   However, with the technique disclosed in Patent Document 1, there is room for improvement with respect to the image flow that occurs remarkably in the vicinity of the charging device, as well as relatively early image flow is suppressed. In addition, there is still room for improvement with respect to the image flow immediately after startup, which is likely to occur when the electrophotographic apparatus is left for several days in a high temperature and high humidity environment.

また、特許文献2に開示された技術でも、帯電装置近傍で顕著に発生する画像流れに対しては、いまだ改善の余地があり、高温高湿環境下で電子写真装置を数日間放置した場合に生じやすい起動直後の画像流れに対しても改善の余地が残っている。   Further, even with the technique disclosed in Patent Document 2, there is still room for improvement with respect to image flow that occurs remarkably in the vicinity of the charging device, and when the electrophotographic apparatus is left in a high temperature and high humidity environment for several days. There is still room for improvement in the image flow immediately after startup, which is likely to occur.

また、特許文献3に開示された技術を用いても、帯電装置近傍で発生する画像流れや、高温高湿環境下で電子写真装置を数日間放置した場合に生じやすい起動直後の画像流れを抑制する効果は十分に得られなかった。   Even with the technique disclosed in Patent Document 3, it suppresses image flow that occurs near the charging device and image flow that occurs immediately after startup, which is likely to occur when an electrophotographic device is left for several days in a high-temperature, high-humidity environment. The effect to do was not fully obtained.

本発明の目的は、画像流れが生じにくい電子写真感光体、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することにある。   An object of the present invention is to provide an electrophotographic photosensitive member that hardly causes image flow, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.

本発明は、支持体および該支持体上に形成された感光層を有する電子写真感光体において、
該電子写真感光体の表面が、深さ0.5μm以上5μm以下かつ開口部最長径20μm以上80μm以下の複数の凹部と、該凹部以外の部分と、から形成されており、
該電子写真感光体の表面の任意の位置に一辺500μmの正方形領域を配置したとき、該一辺500μmの正方形領域における該凹部の面積が10000μm以上90000μm以下であり、該凹部以外の部分に含まれる平坦部の面積が80000μm以上240000μm以下である
ことを特徴とする電子写真感光体である。
The present invention relates to an electrophotographic photosensitive member having a support and a photosensitive layer formed on the support,
The surface of the electrophotographic photoreceptor is formed of a plurality of recesses having a depth of 0.5 μm or more and 5 μm or less and an opening longest diameter of 20 μm or more and 80 μm or less, and a portion other than the recesses,
When placing the square area of a side 500μm at an arbitrary position of the surface of the electrophotographic photosensitive member, the area of the recess in the square area of the one side 500μm is at 10000 2 more 90000Myuemu 2 or less, contained in a portion other than the recess The electrophotographic photosensitive member is characterized in that the flat portion has an area of 80000 μm 2 or more and 240000 μm 2 or less.

また、本発明は、支持体および該支持体上に形成された感光層を有する電子写真感光体において、
該電子写真感光体の表面のうち、少なくともクリーニング部材との接触領域が、深さ0.5μm以上5μm以下かつ開口部最長径20μm以上80μm以下の複数の凹部と、該凹部以外の部分と、から形成されており、
該クリーニング部材との接触領域の任意の位置に一辺500μmの正方形領域を配置したとき、該一辺500μmの正方形領域における該凹部の面積が10000μm以上90000μm以下であり、該凹部以外の部分に含まれる平坦部の面積が80000μm以上240000μm以下である
ことを特徴とする電子写真感光体である。
The present invention also relates to an electrophotographic photosensitive member having a support and a photosensitive layer formed on the support.
Of the surface of the electrophotographic photosensitive member, at least a contact region with a cleaning member includes a plurality of recesses having a depth of 0.5 μm or more and 5 μm or less and a maximum opening diameter of 20 μm or more and 80 μm or less, and portions other than the recesses Formed,
When placing the square area of a side 500μm at an arbitrary position of the contact area between the cleaning member, the area of the recess in the square area of the one side 500μm is at 10000 2 more 90000Myuemu 2 or less, contained in a portion other than the recess The electrophotographic photosensitive member is characterized in that the flat portion has an area of 80000 μm 2 or more and 240000 μm 2 or less.

また、本発明は、上記電子写真感光体と、該電子写真感光体に接触配置されたクリーニング部材を有するクリーニング手段とを一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジである。   Further, the present invention is characterized in that the electrophotographic photosensitive member and a cleaning means having a cleaning member disposed in contact with the electrophotographic photosensitive member are integrally supported and detachable from the main body of the electrophotographic apparatus. Process cartridge.

また、本発明は、上記電子写真感光体、ならびに、帯電手段、露光手段、現像手段、転写手段、および、該電子写真感光体に接触配置されたクリーニング部材を有するクリーニング手段を有することを特徴とする電子写真装置である。   The present invention also includes the electrophotographic photosensitive member, and a cleaning unit including a charging unit, an exposure unit, a developing unit, a transfer unit, and a cleaning member disposed in contact with the electrophotographic photosensitive unit. An electrophotographic apparatus.

本発明によれば、画像流れが生じにくい電子写真感光体、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することができる。   According to the present invention, it is possible to provide an electrophotographic photosensitive member that hardly causes image flow, a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.

(A)および(B)は、基準面、平坦部、凹部などの関係を模式的に示す図である。(A) And (B) is a figure which shows typically relations, such as a reference plane, a flat part, and a recessed part. (A)〜(G)は、電子写真感光体の表面の凹部の開口部の形状の例を示す図である。(A)-(G) is a figure which shows the example of the shape of the opening part of the recessed part of the surface of an electrophotographic photoreceptor. (A)〜(G)は、電子写真感光体の表面の凹部の断面形状の例を示す図である。(A)-(G) is a figure which shows the example of the cross-sectional shape of the recessed part of the surface of an electrophotographic photoreceptor. 電子写真感光体の表面に凹部を形成するための圧接形状転写加工装置の例を示す図である。It is a figure which shows the example of the press-contact shape transfer processing apparatus for forming a recessed part in the surface of an electrophotographic photoreceptor. 本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の例を示す図である。FIG. 2 is a diagram showing an example of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention. (A)〜(D)は、電子写真感光体の製造例で用いたモールドを示す図である。(A)-(D) are figures which show the mold used by the manufacture example of the electrophotographic photoreceptor. フィッティングの例を示す図である。It is a figure which shows the example of fitting. 電子写真感光体の表面層付近の断面観察を行った結果を示す図である。It is a figure which shows the result of having performed cross-sectional observation of the surface layer vicinity of an electrophotographic photoreceptor. 乾式ブラスト装置の例を示す図である。It is a figure which shows the example of a dry-type blasting apparatus. 狭小部分を説明するための図である。It is a figure for demonstrating a narrow part.

本発明の特許文献1に対する特徴は、電子写真感光体の表面における平坦部の面積の割合が多い点である。乾式ブラスト処理や湿式ホーニング処理を用いて電子写真感光体の表面にディンプル形状の凹部を設ける場合、電子写真感光体の表面に対してランダムに粒子を衝突させることになるため、凹部以外の部分のうち、平坦部の面積の割合はきわめて少なくなる。   The feature of the present invention with respect to Patent Document 1 is that the ratio of the area of the flat portion on the surface of the electrophotographic photosensitive member is large. When a dimple-shaped recess is provided on the surface of the electrophotographic photosensitive member using dry blasting or wet honing, particles are allowed to randomly collide with the surface of the electrophotographic photosensitive member. Of these, the ratio of the area of the flat portion is extremely small.

また、本発明の特許文献3に対する特徴についても、特許文献1に対する特徴と同様に、電子写真感光体の表面における平坦部の面積の割合が多い点である。   Also, the feature of the present invention with respect to Patent Document 3 is that, as with the feature with respect to Patent Document 1, the ratio of the area of the flat portion on the surface of the electrophotographic photosensitive member is large.

また、本発明の特許文献2に対する特徴は、開口部最長径(長軸径)の大きな凹部が電子写真感光体の表面に設けられている点と、この凹部の面積率が少ない点である。   In addition, the feature of the present invention with respect to Patent Document 2 is that a concave portion having a longest opening diameter (major axis diameter) is provided on the surface of the electrophotographic photosensitive member, and that the area ratio of the concave portion is small.

なお、本発明において、凹部の面積とは、電子写真感光体の表面を上から見たときの凹部の面積であり、凹部の開口部の面積を意味する。平坦部や凸部に関しても同様である。   In the present invention, the area of the recess is the area of the recess when the surface of the electrophotographic photosensitive member is viewed from above, and means the area of the opening of the recess. The same applies to flat portions and convex portions.

本発明者らの検討の結果、開口部最長径の大きな凹部(好ましくは、開口部最短径も大きな凹部)を電子写真感光体の表面に疎に配置し、かつ、当該凹部以外の部分の中でも特に平坦部の面積を多くとることによって、画像流れの抑制効果が飛躍的に向上することがわかった。   As a result of the study by the present inventors, a recess having a longest opening diameter (preferably a recess having a large opening shortest diameter) is sparsely arranged on the surface of the electrophotographic photosensitive member, and among other portions than the recess In particular, it has been found that the effect of suppressing the image flow is dramatically improved by increasing the area of the flat portion.

開口部最長径の大きな凹部を疎に配置することによって、クリーニングブレードのビビリが適度に抑制され、電子写真感光体の表面とクリーニングブレードの安定的な摺擦状態が作り出される。それとともに、凹部に対するクリーニングブレードの圧力は相対的に低くなるため、凹部以外の部分に対する圧力が相対的に高くなる。そして、圧力が高くなる凹部以外の中でも、電子写真感光体の表面の効率的なリフレッシュが行われやすい平坦部が多くなるようにすることによって、電子写真感光体の表面に付着した画像流れ原因物質の除去が行われやすくなる。本発明者らは、このようなメカニズムによって、画像流れの抑制効果が飛躍的に向上していると考えている。   By sparsely arranging the recesses having the longest longest diameter, chattering of the cleaning blade is moderately suppressed, and a stable rubbing state between the surface of the electrophotographic photosensitive member and the cleaning blade is created. At the same time, the pressure of the cleaning blade with respect to the recesses is relatively low, so that the pressure with respect to portions other than the recesses is relatively high. In addition to the concave portions where the pressure increases, the image flow causative substance adhering to the surface of the electrophotographic photosensitive member is increased by increasing the number of flat portions on which the surface of the electrophotographic photosensitive member can be efficiently refreshed. It becomes easy to be removed. The present inventors believe that the image flow suppression effect is dramatically improved by such a mechanism.

具体的には、本発明の電子写真感光体の表面には、深さ0.5μm以上5μm以下かつ開口部最長径20μm以上80μm以下の複数の凹部が設けられる。深さ0.5μm以上5μm以下かつ開口部最長径20μm以上80μm以下の複数の凹部を、以下「特定凹部」ともいう。そして、本発明において、特定凹部は、電子写真感光体の表面の任意の位置に一辺500μmの正方形領域(面積が250000μm)を配置したとき(すなわち、電子写真感光体の表面のどの位置に一辺500μmの正方形領域を配置しても)、その一辺500μmの正方形領域における特定凹部の面積が10000μm以上90000μm以下になるように、電子写真感光体の表面に設けられる。あるいは、本発明において、特定凹部は、電子写真感光体の表面のクリーニング部材との接触領域の任意の位置に一辺500μmの正方形領域(面積が250000μm)を配置したとき(すなわち、電子写真感光体の表面のクリーニング部材との接触領域のどの位置に一辺500μmの正方形領域を配置しても)、その一辺500μmの正方形領域における特定凹部の面積が10000μm以上90000μm以下になるように、電子写真感光体の表面に設けられる。なお、電子写真感光体の表面が曲面である場合(例えば、電子写真感光体が円筒状である場合、電子写真感光体の表面(周面)は周方向に曲がった曲面となっている。)、「電子写真感光体の表面の任意の位置に一辺500μmの正方形領域(面積が250000μm)を配置」するとは、その曲面を平面に補正した場合に、その平面において正方形になるような領域(面積が250000μm)を電子写真感光体の表面の任意の位置に配置するということを意味する。同様に、「電子写真感光体の表面のクリーニング部材との接触領域の任意の位置に一辺500μmの正方形領域(面積が250000μm)を配置」するとは、その曲面を平面に補正した場合に、その平面において正方形になるような領域(面積が250000μm)を電子写真感光体の表面のクリーニング部材との接触領域の任意の位置に配置するということを意味する。後述の一辺10μmの正方形領域に関しても同様である。 Specifically, the surface of the electrophotographic photosensitive member of the present invention is provided with a plurality of recesses having a depth of 0.5 μm or more and 5 μm or less and a maximum opening diameter of 20 μm or more and 80 μm or less. A plurality of recesses having a depth of 0.5 μm or more and 5 μm or less and an opening longest diameter of 20 μm or more and 80 μm or less are hereinafter also referred to as “specific recesses”. In the present invention, the specific concave portion has a side area of 500 μm on one side (area is 250,000 μm 2 ) at an arbitrary position on the surface of the electrophotographic photosensitive member (that is, on one side of the surface of the electrophotographic photosensitive member) be arranged 500μm square area of) the area of the particular recess in the square region of its side 500μm is to be 10000 2 more 90000Myuemu 2 or less, is provided on the surface of the electrophotographic photosensitive member. Alternatively, in the present invention, the specific recess is provided when a 500 μm square area (area: 250,000 μm 2 ) is arranged at an arbitrary position in the contact area with the cleaning member on the surface of the electrophotographic photoreceptor (that is, the electrophotographic photoreceptor). any position be placed a square area of one side 500μm in), such that the area of the particular recess in the square region of its side 500μm is 10000 2 more 90000Myuemu 2 or less, the electrophotographic of surface contact area between the cleaning member Provided on the surface of the photoreceptor. When the surface of the electrophotographic photosensitive member is a curved surface (for example, when the electrophotographic photosensitive member is cylindrical, the surface (circumferential surface) of the electrophotographic photosensitive member is a curved surface curved in the circumferential direction). , “Disposing a square region (area: 250,000 μm 2 ) having a side of 500 μm at an arbitrary position on the surface of the electrophotographic photosensitive member” means a region that becomes a square in the plane when the curved surface is corrected to a plane ( This means that an area of 250,000 μm 2 ) is arranged at an arbitrary position on the surface of the electrophotographic photosensitive member. Similarly, “arranging a square region (area: 250,000 μm 2 ) having a side of 500 μm at an arbitrary position in the contact region with the cleaning member on the surface of the electrophotographic photosensitive member” means that when the curved surface is corrected to a flat surface, It means that a region (area is 250,000 μm 2 ) that is square on the plane is arranged at an arbitrary position in the contact region with the cleaning member on the surface of the electrophotographic photosensitive member. The same applies to a square region having a side of 10 μm, which will be described later.

また、本発明の電子写真感光体の表面には、特定凹部に加えて平坦部が設けられる。そして、本発明において、平坦部は、電子写真感光体の表面の任意の位置に一辺500μmの正方形領域を配置したとき、その一辺500μmの正方形領域における平坦部の面積が80000μm以上240000μm以下になるように、電子写真感光体の表面に設けられる。 In addition to the specific recess, a flat portion is provided on the surface of the electrophotographic photosensitive member of the present invention. In the present invention, when a square region having a side of 500 μm is arranged at an arbitrary position on the surface of the electrophotographic photosensitive member, the area of the flat portion in the square region having a side of 500 μm is 80000 μm 2 or more and 240000 μm 2 or less. It is provided on the surface of the electrophotographic photosensitive member.

電子写真感光体の表面の特定凹部や平坦部などは、例えば、レーザー顕微鏡、光学顕微鏡、電子顕微鏡、原子力間顕微鏡などの顕微鏡を用いて観察することができる。   The specific concave portion or flat portion on the surface of the electrophotographic photosensitive member can be observed using a microscope such as a laser microscope, an optical microscope, an electron microscope, or an atomic force microscope.

レーザー顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製の超深度形状測定顕微鏡VK−8550、超深度形状測定顕微鏡VK−9000、超深度形状測定顕微鏡VK−9500、VK−X200
(株)菱化システム製の表面形状測定システムSurface Explorer SX−520DR型機
オリンパス(株)製の走査型共焦点レーザー顕微鏡OLS3000
レーザーテック(株)製のリアルカラーコンフォーカル顕微鏡オプリテクスC130
光学顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製のデジタルマイクロスコープVHX−500、デジタルマイクロスコープVHX−200
オムロン(株)製の3DデジタルマイクロスコープVC−7700
電子顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製の3Dリアルサーフェスビュー顕微鏡VE−9800、3Dリアルサーフェスビュー顕微鏡VE−8800
エスアイアイ・ナノテクノロジー(株)製の走査型電子顕微鏡コンベンショナル/Variable Pressure SEM
(株)島津製作所製の走査型電子顕微鏡SUPERSCAN SS−550
As the laser microscope, for example, the following devices can be used.
Keyence Corporation ultra-deep shape measurement microscope VK-8550, ultra-deep shape measurement microscope VK-9000, ultra-deep shape measurement microscope VK-9500, VK-X200
Surface shape measuring system Surface Explorer SX-520DR model manufactured by Ryoka System Co., Ltd. Scanning confocal laser microscope OLS3000 manufactured by Olympus Corporation
Real color confocal microscope Oplitex C130 manufactured by Lasertec Co., Ltd.
As the optical microscope, for example, the following devices can be used.
Digital microscope VHX-500, digital microscope VHX-200 manufactured by Keyence Corporation
3D digital microscope VC-7700 manufactured by OMRON Corporation
As the electron microscope, for example, the following devices can be used.
Keyence 3D Real Surface View Microscope VE-9800, 3D Real Surface View Microscope VE-8800
Scanning Electron Microscope Conventional / Variable Pressure SEM manufactured by SII NanoTechnology Co., Ltd.
Scanning electron microscope SUPERSCAN SS-550 manufactured by Shimadzu Corporation

原子力間顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製のナノスケールハイブリッド顕微鏡VN−8000
エスアイアイ・ナノテクノロジー(株)製の走査型プローブ顕微鏡NanoNaviステーション
(株)島津製作所製の走査型プローブ顕微鏡SPM−9600
As the atomic force microscope, for example, the following devices can be used.
KEYENCE nanoscale hybrid microscope VN-8000
Scanning Probe Microscope NanoNavi Station manufactured by SII Nano Technology Co., Ltd. Scanning Probe Microscope SPM-9600 manufactured by Shimadzu Corporation

上記一辺500μmの正方形領域の観察や、後述の一辺10μmの正方形領域の観察は、一辺500μmの正方形領域が収まるような倍率で行ってもよいし、より高い倍率で部分的な観察を行った後、ソフトを用いて複数の部分画像を連結するようにしてもよい。   The observation of the square area of 500 μm on one side and the observation of the square area of 10 μm on one side, which will be described later, may be performed at such a magnification that the square area of 500 μm on one side can be accommodated, or after partial observation at a higher magnification. A plurality of partial images may be connected using software.

一辺500μmの正方形領域における特定凹部および平坦部の判定(定義)などについて説明する。   The determination (definition) of the specific recessed portion and the flat portion in a square region having a side of 500 μm will be described.

まず、電子写真感光体の表面を顕微鏡で拡大観察する。例えば、電子写真感光体が円筒状である場合のように電子写真感光体の表面(周面)が周方向に曲がった曲面となっている場合は、その曲面の断面プロファイルを抽出し、曲線(電子写真感光体が円筒状であれば円弧)をフィッティングする。図7に、フィッティングの例を示す。図7に示す例は、電子写真感光体が円筒状である場合の例である。図7中、実線の701は電子写真感光体の表面(曲面)の断面プロファイルであり、破線の702は断面プロファイル701にフィッティングした曲線である。その曲線702が直線になるように断面プロファイル701の補正を行い、得られた直線を電子写真感光体の長手方向(周方向に直交する方向)に拡張した面を基準面とする。電子写真感光体が円筒状でない場合も、円筒状である場合と同様にして基準面を得る。   First, the surface of the electrophotographic photoreceptor is enlarged and observed with a microscope. For example, when the surface (circumferential surface) of the electrophotographic photosensitive member is a curved surface curved in the circumferential direction as in the case where the electrophotographic photosensitive member is cylindrical, a cross-sectional profile of the curved surface is extracted and a curved line ( If the electrophotographic photosensitive member is cylindrical, an arc) is fitted. FIG. 7 shows an example of fitting. The example shown in FIG. 7 is an example when the electrophotographic photosensitive member is cylindrical. In FIG. 7, a solid line 701 is a cross-sectional profile of the surface (curved surface) of the electrophotographic photosensitive member, and a broken line 702 is a curve fitted to the cross-sectional profile 701. The cross-sectional profile 701 is corrected so that the curve 702 becomes a straight line, and a surface obtained by extending the obtained straight line in the longitudinal direction (direction perpendicular to the circumferential direction) of the electrophotographic photosensitive member is used as a reference surface. Even when the electrophotographic photosensitive member is not cylindrical, the reference surface is obtained in the same manner as when the electrophotographic photosensitive member is cylindrical.

得られた基準面の0.2μm下方に位置し、基準面に平行な面を第二基準面とし、基準面の0.2μm上方に位置し、基準面に平行な面を第三基準面とする。上記一辺500μmの正方形領域のうち、第二基準面と第三基準面に挟まれる部分を当該正方形領域における平坦部とする。第三基準面よりも上に位置する部分を当該正方形領域における凸部とする。第二基準面よりも下に位置する部分を当該正方形領域における凹部とする。第二基準面から凹部の最低点までの距離を凹部の深さとする。第二基準面による凹部の断面を凹部の開口部とし、開口部を横切る線分のうち、最も長い線分の長さを凹部の開口部最長径とする。このようにして求めた深さが0.5μm以上5μm以下の範囲にあり、開口部最長径が20μm以上80μm以下の範囲にあるものが、凹部の中でも上記特定凹部に該当する。本発明における特定凹部の深さは、1μm以上5μm以下の範囲にあることが好ましい。また、凹部の開口部を挟む2本の平行線の距離が最も短くなるときの距離を凹部の開口部最短径とする。本発明における特定凹部の開口部最短径は、20μm以上80μm以下の範囲にあることが好ましい。   The surface that is located 0.2 μm below the obtained reference surface and is parallel to the reference surface is the second reference surface, the surface that is 0.2 μm above the reference surface and is parallel to the reference surface is the third reference surface. To do. Of the square region having a side of 500 μm, a portion sandwiched between the second reference surface and the third reference surface is defined as a flat portion in the square region. A portion located above the third reference plane is defined as a convex portion in the square area. A portion located below the second reference plane is defined as a recess in the square area. The distance from the second reference plane to the lowest point of the recess is defined as the depth of the recess. Let the cross section of the recessed part by a 2nd reference plane be an opening part of a recessed part, and let the length of the longest line segment among the line segments which cross the opening part be the opening part longest diameter of a recessed part. The depth thus obtained is in the range of 0.5 μm or more and 5 μm or less and the longest diameter of the opening is in the range of 20 μm or more and 80 μm or less corresponds to the specific recess among the recesses. The depth of the specific recess in the present invention is preferably in the range of 1 μm to 5 μm. Further, the distance when the distance between two parallel lines sandwiching the opening of the recess is the shortest is the shortest diameter of the opening of the recess. In the present invention, the shortest opening diameter of the specific recess is preferably in the range of 20 μm or more and 80 μm or less.

図1の(A)および(B)に、基準面1−1、平坦部(第二基準面1−2と第三基準面1−3に挟まれる部分)、凹部1−4(特定凹部)、凸部1−5などの関係を模式的に示す。図1の(A)および(B)は、上記補正後の断面プロファイルである。   1A and 1B, reference plane 1-1, flat portion (a portion sandwiched between second reference surface 1-2 and third reference surface 1-3), recess 1-4 (specific recess) , The relationship between the convex portions 1-5 and the like is schematically shown. 1A and 1B are cross-sectional profiles after the above correction.

図2(A)〜(G)に、特定凹部の開口部の形状(特定凹部を上から見たときの形状)の例を示す。また、図3(A)〜(G)に、特定凹部の断面形状の例を示す。   2A to 2G show examples of the shape of the opening of the specific recess (the shape when the specific recess is viewed from above). Moreover, the example of the cross-sectional shape of a specific recessed part is shown to FIG. 3 (A)-(G).

特定凹部の開口部の形状としては、例えば、図2(A)〜(G)に示すような、円、楕円、正方形、長方形、三角形、四角形、六角形などが挙げられる。また、特定凹部の断面形状としては、例えば、図3(A)〜(G)に示すような、三角形、四角形、多角形などのエッジを有するものや、連続した曲線からなる波型や、三角形、四角形、多角形のエッジの一部または全部を曲線に変形したものなどが挙げられる。   Examples of the shape of the opening of the specific recess include a circle, an ellipse, a square, a rectangle, a triangle, a quadrangle, and a hexagon as shown in FIGS. Moreover, as a cross-sectional shape of a specific recessed part, as shown to FIG. 3 (A)-(G), what has edges, such as a triangle, a square, a polygon, the waveform which consists of a continuous curve, and a triangle , Quadrilaterals, polygonal edges partially or entirely deformed into curves, and the like.

電子写真感光体の表面に設けられる複数の特定凹部は、すべてが同一の形状、開口部最長径、深さであってもよいし、異なる形状、開口部最長径、深さのものが混在していてもよい。   The plurality of specific recesses provided on the surface of the electrophotographic photosensitive member may all have the same shape, the longest diameter of the opening, and the depth, or may have different shapes, the longest diameter of the opening, and the depth. It may be.

上記特定凹部は、電子写真感光体の表面の全域に形成されていてもよいし、電子写真感光体の表面の一部分に形成されていてもよい。特定凹部が電子写真感光体の表面の一部分に形成される場合は、少なくともクリーニング部材との接触領域の全域には特定凹部が形成され
The specific recess may be formed on the entire surface of the electrophotographic photosensitive member, or may be formed on a part of the surface of the electrophotographic photosensitive member. If a particular recess is formed on a portion of the surface of the electrophotographic photosensitive member, Ru specific recesses formed on the whole area of the contact area with at least a cleaning member.

また、本発明において、電子写真感光体の表面に設けられる平坦部は、画像流れ原因物質の除去性を高める観点から、ある程度の大きさを持っていることが好ましく、狭小な平坦部(狭小部分)は少ないことが好ましい。具体的には、電子写真感光体の表面の任意の位置に配置される一辺500μmの正方形領域における平坦部のうち、一辺10μmの正方形領域を配置することができない狭小部分の面積の割合が、当該一辺500μmの正方形領域における平坦部の全面積に対して30%以下であることが好ましい。   In the present invention, the flat portion provided on the surface of the electrophotographic photosensitive member preferably has a certain size from the viewpoint of enhancing the removability of the image flow-causing substance, and the narrow flat portion (narrow portion) ) Is preferably small. Specifically, the ratio of the area of the narrow portion where the 10 μm side square region cannot be arranged among the flat portions in the 500 μm side square region arranged at an arbitrary position on the surface of the electrophotographic photosensitive member is It is preferably 30% or less with respect to the total area of the flat portion in a square region having a side of 500 μm.

図10は、狭小部分を説明するための図である。図10は、本発明の電子写真感光体の表面の一部を上から見たときの形状の例を示している。図10では、説明のしやすさのため、特定凹部でない部分がすべて平坦部である場合を例として挙げている。図10中、1001は電子写真感光体の表面の特定凹部であり、1002は電子写真感光体の表面の平坦部に配置された一辺10μmの正方形領域であり、1003は狭小部分(図中の黒く塗り潰している部分)である。正方形領域1002は、図中の破線の正方形で示すように、平坦部においてどのような向きに配置してもよい。平坦部において正方形領域1002をどのような向きにしても配置することができない部分が、平坦部における狭小部分1003となる。   FIG. 10 is a diagram for explaining a narrow portion. FIG. 10 shows an example of the shape when a part of the surface of the electrophotographic photosensitive member of the present invention is viewed from above. In FIG. 10, for ease of explanation, a case where all the portions that are not specific recesses are flat portions is taken as an example. In FIG. 10, reference numeral 1001 denotes a specific concave portion on the surface of the electrophotographic photosensitive member, 1002 denotes a square region having a side of 10 μm arranged on the flat portion of the surface of the electrophotographic photosensitive member, and 1003 denotes a narrow portion (black in the drawing). The part that is filled). The square region 1002 may be arranged in any direction on the flat portion as indicated by a broken-line square in the drawing. A portion where the square region 1002 cannot be arranged in any direction in the flat portion becomes a narrow portion 1003 in the flat portion.

また、平坦部における狭小部分の面積の割合は、画像流れ原因物質の除去性を均一にする観点から、電子写真感光体の表面においてある程度一様になっていることが好ましい。具体的には、電子写真感光体の表面の任意の50箇所に配置される一辺500μmの正方形領域において上記狭小部分の面積の割合をそれぞれ測定したときに、50個の測定値の標準偏差(狭小部分の標準偏差)が5%以下であることが好ましい。   In addition, the ratio of the area of the narrow portion in the flat portion is preferably uniform to some extent on the surface of the electrophotographic photosensitive member from the viewpoint of uniform removability of the image flow causing substance. Specifically, when the ratio of the area of the narrow portion is measured in each of the square areas of 500 μm on each side arranged at 50 arbitrary positions on the surface of the electrophotographic photosensitive member, the standard deviation (narrowness) of the 50 measured values is measured. The standard deviation of the part) is preferably 5% or less.

〈電子写真感光体の表面に凹部を形成する方法〉
形成するべき凹部に対応した凸部を有するモールドを電子写真感光体の表面に圧接し、形状転写を行うことにより、電子写真感光体の表面に凹部を形成することができる。
<Method of forming recesses on the surface of the electrophotographic photoreceptor>
By pressing the mold having convex portions corresponding to the concave portions to be formed on the surface of the electrophotographic photosensitive member and performing shape transfer, the concave portions can be formed on the surface of the electrophotographic photosensitive member.

図4に、電子写真感光体の表面に凹部を形成するための圧接形状転写加工装置の例を示す。
図4に示す圧接形状転写加工装置によれば、被加工物である電子写真感光体4−1を回転させながら、その表面(周面)に連続的にモールド4−2を接触させ、加圧することにより、電子写真感光体4−1の表面に凹部や平坦部を形成することができる。
FIG. 4 shows an example of a press-contact shape transfer processing apparatus for forming concave portions on the surface of the electrophotographic photosensitive member.
According to the press-contact shape transfer processing apparatus shown in FIG. 4, the mold 4-2 is continuously brought into contact with the surface (circumferential surface) and pressed while rotating the electrophotographic photosensitive member 4-1, which is a workpiece. Accordingly, a concave portion or a flat portion can be formed on the surface of the electrophotographic photosensitive member 4-1.

加圧部材4−3の材質としては、例えば、金属、金属酸化物、プラスチック、ガラスなどが挙げられる。これらの中でも、機械的強度、寸法精度、耐久性の観点から、ステンレス鋼(SUS)が好ましい。加圧部材4−3は、その上面にモールドが設置される。また、下面側の支持部材(不図示)および加圧システム(不図示)により、支持部材4−4に支持された電子写真感光体4−1の表面に、モールド4−2を所定の圧力で接触させることができる。また、支持部材4−4を加圧部材4−3に対して所定の圧力で押し付けてもよいし、支持部材4−4および加圧部材4−3を互いに押し付けてもよい。   Examples of the material of the pressure member 4-3 include metal, metal oxide, plastic, and glass. Among these, stainless steel (SUS) is preferable from the viewpoint of mechanical strength, dimensional accuracy, and durability. The pressure member 4-3 is provided with a mold on its upper surface. Further, the mold 4-2 is applied to the surface of the electrophotographic photoreceptor 4-1 supported by the support member 4-4 with a predetermined pressure by a support member (not shown) on the lower surface side and a pressure system (not shown). Can be contacted. Further, the support member 4-4 may be pressed against the pressure member 4-3 with a predetermined pressure, or the support member 4-4 and the pressure member 4-3 may be pressed against each other.

図4に示す例は、加圧部材4−3を移動させることにより、電子写真感光体4−1が従動または駆動回転しながら、その表面を連続的に加工する例である。さらに、加圧部材4−3を固定し、支持部材4−4を移動させることにより、または、支持部材4−4および加圧部材4−3の両者を移動させることにより、電子写真感光体4−1の表面を連続的に加工することもできる。   The example shown in FIG. 4 is an example in which the surface of the electrophotographic photosensitive member 4-1 is continuously processed while being driven or rotated by moving the pressing member 4-3. Further, the electrophotographic photosensitive member 4 is fixed by fixing the pressure member 4-3 and moving the support member 4-4, or by moving both the support member 4-4 and the pressure member 4-3. The surface of -1 can also be processed continuously.

なお、形状転写を効率的に行う観点から、モールド4−2や電子写真感光体4−1を加熱することが好ましい。   Note that it is preferable to heat the mold 4-2 and the electrophotographic photosensitive member 4-1, from the viewpoint of efficiently transferring the shape.

モールドとしては、例えば、微細な表面加工された金属や樹脂フィルムや、シリコンウエハーなどの表面にレジストによりパターニングをしたものや、微粒子が分散された樹脂フィルムや、微細な表面形状を有する樹脂フィルムに金属コーティングを施したものなどが挙げられる。   Examples of molds include metal and resin films with fine surface processing, those patterned on the surface of silicon wafers, etc., resin films with fine particles dispersed, and resin films with fine surface shapes. The thing which gave metal coating etc. are mentioned.

また、電子写真感光体に押し付けられる圧力を均一にする観点から、モールドと加圧部材との間に弾性体を設置することが好ましい。   Moreover, it is preferable to install an elastic body between the mold and the pressure member from the viewpoint of making the pressure pressed against the electrophotographic photosensitive member uniform.

〈電子写真感光体の構成〉
本発明の電子写真感光体は、支持体および支持体上に形成された感光層を有する。
<Configuration of electrophotographic photoreceptor>
The electrophotographic photoreceptor of the present invention has a support and a photosensitive layer formed on the support.

電子写真感光体の形状としては、例えば、円筒状、ベルト(エンドレスベルト)状、シート状などが挙げられる。   Examples of the shape of the electrophotographic photosensitive member include a cylindrical shape, a belt (endless belt) shape, and a sheet shape.

感光層は、電荷輸送物質と電荷発生物質を同一の層に含有する単層型感光層であってもよいし、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型(機能分離型)感光層であってもよい。電子写真特性の観点から、積層型感光層が好ましい。また、積層型感光層は、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層であってもよいし、支持体側から電荷輸送層、電荷発生層の順に積層した逆層型感光層であってもよい。電子写真特性の観点から、順層型感光層が好ましい。また、電荷発生層を積層構成としてもよいし、電荷輸送層を積層構成としてもよい。   The photosensitive layer may be a single-layer type photosensitive layer containing a charge transport material and a charge generation material in the same layer, or a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material. It may be a laminated type (functionally separated type) photosensitive layer separated. From the viewpoint of electrophotographic characteristics, a laminated photosensitive layer is preferred. Further, the laminated photosensitive layer may be a normal photosensitive layer in which the charge generation layer and the charge transport layer are laminated in this order from the support side, or a reverse layer in which the charge transport layer and the charge generation layer are laminated in this order from the support side. Type photosensitive layer. From the viewpoint of electrophotographic characteristics, a normal layer type photosensitive layer is preferred. In addition, the charge generation layer may have a stacked structure, and the charge transport layer may have a stacked structure.

支持体としては、導電性を示すもの(導電性支持体)であることが好ましい。支持体の材質としては、例えば、鉄、銅、金、銀、アルミニウム、亜鉛、チタン、鉛、ニッケル、スズ、アンチモン、インジウム、クロム、アルミニウム合金、ステンレスなどの金属(合金)が挙げられる。また、アルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金などを用いて真空蒸着によって形成した被膜を有する金属製支持体やプラスチック製支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子をプラスチックや紙に含浸してなる支持体や、導電性結着樹脂製の支持体を用いることもできる。   The support is preferably one that exhibits conductivity (conductive support). Examples of the material of the support include metals (alloys) such as iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, aluminum alloy, and stainless steel. In addition, a metal support or a plastic support having a film formed by vacuum deposition using aluminum, an aluminum alloy, an indium oxide-tin oxide alloy, or the like can also be used. In addition, a support obtained by impregnating plastic or paper with conductive particles such as carbon black, tin oxide particles, titanium oxide particles, and silver particles, or a support made of conductive binder resin can also be used.

支持体の表面は、レーザー光の散乱による干渉縞の抑制を目的として、切削処理、粗面化処理、アルマイト処理などを施してもよい。   The surface of the support may be subjected to cutting treatment, roughening treatment, alumite treatment, etc. for the purpose of suppressing interference fringes due to scattering of laser light.

支持体と、後述の下引き層または感光層(電荷発生層、電荷輸送層)との間には、レーザー光の散乱による干渉縞の抑制や、支持体の傷の被覆などを目的として、導電層を設けてもよい。   Conduction between the support and the undercoat layer or photosensitive layer (charge generation layer, charge transport layer), which will be described later, for the purpose of suppressing interference fringes due to scattering of laser light and covering scratches on the support. A layer may be provided.

導電層は、カーボンブラック、導電性顔料、抵抗調節顔料などを結着樹脂とともに分散処理することによって得られる導電層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。また、導電層用塗布液には、加熱、紫外線照射、放射線照射などにより硬化重合する化合物を添加してもよい。導電性顔料や抵抗調節顔料などを分散させてなる導電層は、その表面が粗面化される傾向にある。   The conductive layer can be formed by applying a coating solution for a conductive layer obtained by dispersing carbon black, a conductive pigment, a resistance adjusting pigment or the like together with a binder resin, and drying the obtained coating film. it can. Moreover, you may add to the coating liquid for conductive layers the compound which carries out hardening polymerization by heating, ultraviolet irradiation, radiation irradiation, etc. A conductive layer in which a conductive pigment, a resistance adjusting pigment or the like is dispersed tends to have a roughened surface.

導電層の膜厚は、0.2μm以上40μm以下であることが好ましく、1μm以上35μm以下であることがより好ましく、5μm以上30μm以下であることがより好ましい。   The thickness of the conductive layer is preferably 0.2 μm or more and 40 μm or less, more preferably 1 μm or more and 35 μm or less, and more preferably 5 μm or more and 30 μm or less.

導電層に用いられる結着樹脂としては、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体や、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。   Examples of the binder resin used for the conductive layer include polymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, and trifluoroethylene, polyvinyl alcohol, and polyvinyl acetal. , Polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, epoxy resin and the like.

導電性顔料および抵抗調節顔料としては、例えば、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレスなどの金属(合金)の粒子や、これらをプラスチックの粒子の表面に蒸着したものなどが挙げられる。また、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズがドープされている酸化インジウム、アンチモンやタンタルがドープされている酸化スズなどの金属酸化物の粒子を用いることもできる。これらは、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、混合するだけでもよいし、固溶体や融着の形にしてもよい。   Examples of the conductive pigment and the resistance adjusting pigment include particles of metals (alloys) such as aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, and those obtained by depositing these on the surface of plastic particles. . It is also possible to use metal oxide particles such as zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony or tantalum-doped tin oxide. it can. These may be used alone or in combination of two or more. When two or more types are used in combination, they may be mixed, or may be in the form of a solid solution or fusion.

支持体または導電層と感光層(電荷発生層、電荷輸送層)との間には、感光層の接着性改良、塗工性改良、支持体からの電荷注入性改良、感光層の電気的破壊に対する保護などを目的として、バリア機能や接着機能を有する下引き層(中間層)を設けてもよい。   Between the support or conductive layer and the photosensitive layer (charge generation layer, charge transport layer), improvement of adhesion of the photosensitive layer, improvement of coating property, improvement of charge injection from the support, electrical breakdown of the photosensitive layer An undercoat layer (intermediate layer) having a barrier function or an adhesive function may be provided for the purpose of protecting the film.

下引き層は、樹脂(結着樹脂)を溶剤に溶解させることによって得られる下引き層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。   The undercoat layer can be formed by applying a coating solution for an undercoat layer obtained by dissolving a resin (binder resin) in a solvent and drying the obtained coating film.

下引き層に用いられる樹脂としては、例えば、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわ、ゼラチンなどが挙げられる。   Examples of the resin used for the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, and copolymer nylon. , Glue, gelatin and the like.

下引き層の膜厚は、0.05μm以上7μm以下であることが好ましく、0.1μm以上2μm以下であることがより好ましい。   The thickness of the undercoat layer is preferably 0.05 μm or more and 7 μm or less, and more preferably 0.1 μm or more and 2 μm or less.

感光層に用いられる電荷発生物質としては、例えば、ピリリウム、チアピリリウム染料や、各種の中心金属および各種の結晶形(α、β、γ、ε、X型など)を有するフタロシアニン顔料や、アントアントロン顔料や、ジベンズピレンキノン顔料や、ピラントロン顔料や、モノアゾ、ジスアゾ、トリスアゾなどのアゾ顔料や、インジゴ顔料や、キナクリドン顔料や、非対称キノシアニン顔料や、キノシアニン顔料などが挙げられる。これら電荷発生物質は、1種のみ用いてもよく、2種以上用いてもよい。   Examples of the charge generating material used in the photosensitive layer include pyrylium and thiapyrylium dyes, phthalocyanine pigments having various central metals and various crystal forms (α, β, γ, ε, X type, etc.), and anthanthrone pigments. And dibenzpyrenequinone pigments, pyranthrone pigments, azo pigments such as monoazo, disazo, and trisazo, indigo pigments, quinacridone pigments, asymmetric quinocyanine pigments, and quinocyanine pigments. These charge generation materials may be used alone or in combination of two or more.

感光層に用いられる電荷輸送物質としては、例えば、ピレン化合物、N−アルキルカルバゾール化合物、ヒドラゾン化合物、N,N−ジアルキルアニリン化合物、ジフェニルアミン化合物、トリフェニルアミン化合物、トリフェニルメタン化合物、ピラゾリン化合物、スチリル化合物、スチルベン化合物などが挙げられる。   Examples of the charge transport material used in the photosensitive layer include pyrene compounds, N-alkylcarbazole compounds, hydrazone compounds, N, N-dialkylaniline compounds, diphenylamine compounds, triphenylamine compounds, triphenylmethane compounds, pyrazoline compounds, styryl. Compounds and stilbene compounds.

感光層が積層型感光層である場合、電荷発生層は、電荷発生物質を結着樹脂および溶剤とともに分散処理することによって得られた電荷発生層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。また、電荷発生層は、電荷発生物質の蒸着膜としてもよい。   When the photosensitive layer is a laminated photosensitive layer, the charge generation layer is obtained by applying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent, and applying the resulting coating film. It can be formed by drying. The charge generation layer may be a vapor generation film of a charge generation material.

電荷発生物質と結着樹脂の質量比は、1:0.3〜1:4の範囲であることが好ましい。   The mass ratio of the charge generation material and the binder resin is preferably in the range of 1: 0.3 to 1: 4.

分散処理方法としては、例えば、ホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター、ロールミルなどを用いる方法が挙げられる。   Examples of the dispersion treatment method include a method using a homogenizer, ultrasonic dispersion, ball mill, vibration ball mill, sand mill, attritor, roll mill, and the like.

電荷輸送層は、電荷輸送物質および結着樹脂を溶剤に溶解させることによって得られる電荷輸送層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。また、単独で成膜性を有する電荷輸送物質を用いる場合は、結着樹脂を用いずに電荷輸送層を形成することもできる。   The charge transport layer can be formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent, and drying the obtained coating film. In addition, in the case where a charge transport material having film-forming properties is used alone, the charge transport layer can be formed without using a binder resin.

電荷発生層および電荷輸送層に用いられる結着樹脂としては、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体や、ポリビニルアルコール、ポリビニルアセタール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。   Examples of the binder resin used for the charge generation layer and the charge transport layer include polymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, and trifluoroethylene, Examples include polyvinyl alcohol, polyvinyl acetal, polycarbonate, polyester, polysulfone, polyphenylene oxide, polyurethane, cellulose resin, phenol resin, melamine resin, silicon resin, and epoxy resin.

電荷発生層の膜厚は、5μm以下であることが好ましく、0.1〜2μmであることがより好ましい。   The thickness of the charge generation layer is preferably 5 μm or less, and more preferably 0.1 to 2 μm.

電荷輸送層の膜厚は、5〜50μmであることが好ましく、10〜35μmであることがより好ましい。   The thickness of the charge transport layer is preferably 5 to 50 μm, and more preferably 10 to 35 μm.

また、電子写真感光体の耐久性の向上の観点から、電子写真感光体の表面層を架橋有機高分子で構成することが好ましい。   Further, from the viewpoint of improving the durability of the electrophotographic photosensitive member, the surface layer of the electrophotographic photosensitive member is preferably composed of a crosslinked organic polymer.

本発明においては、例えば、電荷発生層上の電荷輸送層を電子写真感光体の表面層として架橋有機高分子で構成することができる。また、電荷発生層上の電荷輸送層上に第二電荷輸送層または保護層として架橋有機高分子で構成された表面層を形成することができる。また、架橋有機高分子で構成された表面層に要求される特性は、膜の強度と電荷輸送能力の両立であり、その観点から、電荷輸送物質または導電性粒子と、架橋重合性のモノマー/オリゴマーとを用いて表面層を形成することが好ましい。   In the present invention, for example, the charge transport layer on the charge generation layer can be composed of a crosslinked organic polymer as the surface layer of the electrophotographic photoreceptor. Further, a surface layer made of a crosslinked organic polymer can be formed on the charge transport layer on the charge generation layer as a second charge transport layer or a protective layer. In addition, the characteristics required for the surface layer composed of the crosslinked organic polymer are both the strength of the film and the charge transport capability. From this viewpoint, the charge transport material or the conductive particles and the crosslinkable monomer / It is preferable to form a surface layer using an oligomer.

電荷輸送物質としては、上述の電荷輸送物質を用いることができる。架橋重合性のモノマー/オリゴマーとしては、例えば、アクリロイルオキシ基やスチリル基などの連鎖重合性官能基を有する化合物や、水酸基、アルコキシシリル基、イソシアネート基などの逐次重合性官能基を有する化合物などが挙げられる。   As the charge transport material, the above-described charge transport materials can be used. Examples of the crosslinkable monomer / oligomer include a compound having a chain polymerizable functional group such as an acryloyloxy group and a styryl group, and a compound having a sequentially polymerizable functional group such as a hydroxyl group, an alkoxysilyl group and an isocyanate group. Can be mentioned.

また、膜の強度と電荷輸送能力の両立の観点から、同一分子内に電荷輸送性構造(好ましくは正孔輸送性構造)およびアクリロイルオキシ基の両方を有する化合物を用いることがより好ましい。   Further, from the viewpoint of achieving both the strength of the film and the charge transport capability, it is more preferable to use a compound having both a charge transport structure (preferably a hole transport structure) and an acryloyloxy group in the same molecule.

架橋硬化させる方法としては、例えば、熱、紫外線、放射線を用いる方法が挙げられる。   Examples of the crosslinking and curing method include a method using heat, ultraviolet rays, and radiation.

架橋有機高分子で構成された表面層の膜厚は、0.1〜30μmであることが好ましく、1〜10μmであることがより好ましい。   The film thickness of the surface layer composed of the crosslinked organic polymer is preferably 0.1 to 30 μm, and more preferably 1 to 10 μm.

電子写真感光体の各層には、添加剤を添加することができる。添加剤としては、例えば、酸化防止剤、紫外線吸収剤などの劣化防止剤や、フッ素原子含有樹脂粒子、アクリル樹脂粒子などの有機樹脂粒子や、シリカ、酸化チタン、アルミナなどの無機粒子などが挙げられる。   Additives can be added to each layer of the electrophotographic photoreceptor. Examples of additives include deterioration inhibitors such as antioxidants and ultraviolet absorbers, organic resin particles such as fluorine atom-containing resin particles and acrylic resin particles, and inorganic particles such as silica, titanium oxide, and alumina. It is done.

〈プロセスカートリッジおよび電子写真装置の構成〉
図5に、本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の例を示す。
<Configuration of process cartridge and electrophotographic apparatus>
FIG. 5 shows an example of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.

図5において、円筒状の本発明の電子写真感光体1は、軸2を中心に矢印方向に所定の周速度(プロセススピード)をもって回転駆動される。電子写真感光体1の表面は、回転過程において、帯電手段3(一次帯電手段:例えば、帯電ローラーなど)により、正または負の所定電位に均一に帯電される。次いで、露光手段(画像露光手段)(不図示)から照射される露光光(画像露光光)4を受ける。このようにして、電子写真感光体1の表面には、目的の画像情報に対応した静電潜像が形成されていく。   In FIG. 5, a cylindrical electrophotographic photosensitive member 1 of the present invention is driven to rotate around a shaft 2 at a predetermined peripheral speed (process speed) in the arrow direction. The surface of the electrophotographic photosensitive member 1 is uniformly charged to a predetermined positive or negative potential by a charging unit 3 (primary charging unit: for example, a charging roller) during the rotation process. Subsequently, the exposure light (image exposure light) 4 irradiated from an exposure means (image exposure means) (not shown) is received. In this way, an electrostatic latent image corresponding to the target image information is formed on the surface of the electrophotographic photoreceptor 1.

本発明は、放電を利用した帯電手段を用いた場合において、効果が特に大きい。   The present invention is particularly effective when a charging means using discharge is used.

電子写真感光体1の表面に形成された静電潜像は、次いで現像手段5内のトナー(不定形トナーまたは球形トナー)で現像(正規現像または反転現像)されてトナー像が形成される。電子写真感光体1の表面に形成されたトナー像が、転写手段(例えば、転写ローラーなど)6からの転写バイアスによって、転写材上に転写されていく。このとき、転写材Pは、転写材供給手段(不図示)から電子写真感光体1と転写手段6との間(当接部)に電子写真感光体1の回転と同期して取り出されて給送される。また、転写手段には、トナーの保有電荷とは逆極性のバイアス電圧がバイアス電源(不図示)から印加される。   The electrostatic latent image formed on the surface of the electrophotographic photoreceptor 1 is then developed (regular development or reversal development) with toner (indeterminate toner or spherical toner) in the developing means 5 to form a toner image. A toner image formed on the surface of the electrophotographic photosensitive member 1 is transferred onto a transfer material by a transfer bias from a transfer unit (for example, a transfer roller) 6. At this time, the transfer material P is taken out from the transfer material supply means (not shown) between the electrophotographic photoreceptor 1 and the transfer means 6 (contact portion) in synchronization with the rotation of the electrophotographic photoreceptor 1 and supplied. Sent. Further, a bias voltage having a polarity opposite to the charge held in the toner is applied to the transfer means from a bias power source (not shown).

トナー像が転写された転写材Pは、電子写真感光体の表面から分離されて定着手段8へ搬送されてトナー像の定着処理を受けることにより、画像形成物(プリント、コピー)として電子写真装置外へプリントアウトされる。   The transfer material P onto which the toner image has been transferred is separated from the surface of the electrophotographic photosensitive member, conveyed to the fixing means 8, and subjected to fixing processing of the toner image, whereby an electrophotographic apparatus is formed as an image formed product (print, copy). Printed out.

トナー像転写後の電子写真感光体1の表面は、電子写真感光体1の表面に接触配置(当接)されたクリーニング部材(クリーニングブレードなど)を有するクリーニング手段7によって転写残トナーなどの付着物の除去を受けて清浄面化される。さらに、前露光手段(不図示)からの前露光光(不図示)により除電処理された後、繰り返し画像形成に使用される。なお、図5に示すように、帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。   The surface of the electrophotographic photosensitive member 1 after the toner image is transferred is adhered to the surface of the electrophotographic photosensitive member 1 by the cleaning means 7 having a cleaning member (cleaning blade or the like) placed in contact (contacted) with the surface of the electrophotographic photosensitive member 1. As a result, the surface is cleaned. Further, after being subjected to charge removal processing by pre-exposure light (not shown) from a pre-exposure means (not shown), it is repeatedly used for image formation. As shown in FIG. 5, when the charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not necessarily required.

本発明においては、電子写真感光体1、帯電手段3、現像手段5およびクリーニング手段7などから選択される構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成してもよい。また、このプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱自在に構成してもよい。図5では、電子写真感光体1と、帯電手段3、現像手段5およびクリーニング手段7とを一体に支持してカートリッジ化して、電子写真装置本体のレールなどの案内手段10を用いて電子写真装置本体に着脱自在なプロセスカートリッジ9としている。   In the present invention, a plurality of constituent elements selected from the electrophotographic photosensitive member 1, the charging means 3, the developing means 5, the cleaning means 7 and the like are housed in a container and integrally combined as a process cartridge. May be. The process cartridge may be configured to be detachable from the main body of an electrophotographic apparatus such as a copying machine or a laser beam printer. In FIG. 5, the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5 and the cleaning unit 7 are integrally supported to form a cartridge, and the electrophotographic apparatus is used by using a guide unit 10 such as a rail of the electrophotographic apparatus main body. The process cartridge 9 is detachable from the main body.

露光光4は、電子写真装置が複写機やプリンターである場合、原稿からの反射光や透過光、または、センサーで原稿を読み取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイや液晶シャッターアレイの駆動などにより照射される光である。   When the electrophotographic apparatus is a copying machine or a printer, the exposure light 4 is a reflected light or transmitted light from a manuscript, or a manuscript is read by a sensor, converted into a signal, laser beam scanning performed in accordance with this signal, LED array, Light emitted by driving a liquid crystal shutter array or the like.

以下、具体的な実施例を挙げて、本発明をより詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。また、電子写真感光体を、以下単に「感光体」ともいう。また、以下のすべての例において、電子写真感光体の表面に形成された凹部の開口部の形状は、開口部最長径と開口部最短径が等しい円状である。   Hereinafter, the present invention will be described in more detail with reference to specific examples. In the examples, “part” means “part by mass”. Further, the electrophotographic photoreceptor is hereinafter simply referred to as “photoreceptor”. In all the following examples, the shape of the opening of the recess formed on the surface of the electrophotographic photosensitive member is a circle having the same longest opening diameter and shortest opening diameter.

(感光体A−1の製造例)
直径30.7mm、長さ370mmのアルミニウムシリンダーを支持体(円筒状支持体)とした。
(Example of photoconductor A-1 production)
An aluminum cylinder having a diameter of 30.7 mm and a length of 370 mm was used as a support (cylindrical support).

次に、酸化スズで被覆されている硫酸バリウム粒子(商品名:パストランPC1、三井金属鉱業(株)製)60部、酸化チタン粒子(商品名:TITANIX JR、テイカ(株)製)15部、レゾール型フェノール樹脂(商品名:フェノライト J−325、大日本インキ化学工業(株)製、固形分70質量%)43部、シリコーンオイル(商品名:SH28PA、東レ・ダウコーニング(株)(旧・東レシリコーン(株))製)0.015部、シリコーン樹脂粒子(商品名:トスパール120、モメンティブ・パフォーマンス・マテリアルズ社(旧・東芝シリコーン(株))製)3.6部、2−メトキシ−1−プロパノール50部、および、メタノール50部を、ボールミルに入れ、20時間分散処理することによって、導電層用塗布液を調製した。この導電層用塗布液を支持体上に浸漬塗布し、得られた塗膜を1時間140℃で加熱し、硬化させることによって、膜厚15μmの導電層を形成した。   Next, 60 parts of barium sulfate particles coated with tin oxide (trade name: Pastoran PC1, manufactured by Mitsui Kinzoku Mining Co., Ltd.), 15 parts of titanium oxide particles (trade name: TITANIX JR, manufactured by Teika Co., Ltd.), Resole type phenolic resin (trade name: Phenolite J-325, manufactured by Dainippon Ink & Chemicals, Inc., solid content 70 mass%) 43 parts, silicone oil (trade name: SH28PA, Toray Dow Corning Co., Ltd. (former・ Toray Silicone Co., Ltd.) 0.015 parts, silicone resin particles (trade name: Tospearl 120, Momentive Performance Materials (formerly Toshiba Silicone Co., Ltd.)) 3.6 parts, 2-methoxy A conductive layer coating solution is prepared by placing 50 parts of -1-propanol and 50 parts of methanol in a ball mill and dispersing the mixture for 20 hours. Prepared. The conductive layer coating solution was dip-coated on a support, and the resulting coating film was heated at 140 ° C. for 1 hour to cure, thereby forming a conductive layer having a thickness of 15 μm.

次に、共重合ナイロン(商品名:アミランCM8000、東レ(株)製)10部およびメトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、ナガセケムテックス(株)(旧・帝国化学産業(株))製)30部を、メタノール400部/n−ブタノール200部の混合溶剤に溶解させることによって、下引き層用塗布液を調製した。この下引き層用塗布液を導電層上に浸漬塗布し、得られた塗膜を30分間100℃で乾燥させることによって、膜厚0.45μmの下引き層を形成した。   Next, 10 parts of copolymer nylon (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) and methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, Nagase ChemteX Corporation (former Teikoku Chemical Industry ( Co.))) 30 parts was dissolved in a mixed solvent of 400 parts of methanol / 200 parts of n-butanol to prepare an undercoat layer coating solution. This undercoat layer coating solution was dip-coated on the conductive layer, and the resulting coating film was dried at 100 ° C. for 30 minutes to form an undercoat layer having a thickness of 0.45 μm.

次に、CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.4°および28.2°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)20部、下記構造式(1)で示されるカリックスアレーン化合物0.2部、

Figure 0005127991
ポリビニルブチラール(商品名:エスレックBX−1、積水化学工業(株)製)10部、および、シクロヘキサノン600部を、直径1mmガラスビーズを用いたサンドミルに入れ、4時間分散処理した後、酢酸エチル700部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を15分間80℃で乾燥させることによって、膜厚0.17μmの電荷発生層を形成した。 Next, 20 parts of a crystalline hydroxygallium phthalocyanine crystal (charge generation material) having strong peaks at 7.4 ° and 28.2 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction, the following structural formula 0.2 part of a calixarene compound represented by (1),
Figure 0005127991
10 parts of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 600 parts of cyclohexanone were placed in a sand mill using glass beads having a diameter of 1 mm and dispersed for 4 hours. A coating solution for a charge generation layer was prepared by adding parts. The charge generation layer coating solution was dip-coated on the undercoat layer, and the resulting coating film was dried at 80 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.17 μm.

次に、下記構造式(2)で示される化合物(電荷輸送物質(正孔輸送性化合物))70部、

Figure 0005127991
および、ポリカーボネート(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製、ビスフェノールZ型のポリカーボネート)100部を、モノクロロベンゼン600部/ジメトキシメタン200部の混合溶剤に溶解させることによって、電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を電荷発生層上に浸漬塗布し、得られた塗膜を30分間100℃で乾燥させることによって、膜厚15μmの電荷輸送層を形成した。 Next, 70 parts of a compound represented by the following structural formula (2) (charge transporting material (hole transporting compound)),
Figure 0005127991
Further, 100 parts of polycarbonate (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd., bisphenol Z-type polycarbonate) is dissolved in a mixed solvent of 600 parts of monochlorobenzene / 200 parts of dimethoxymethane to thereby form a charge transport layer. A coating solution was prepared. The charge transport layer coating solution was dip coated on the charge generation layer, and the resulting coating film was dried at 100 ° C. for 30 minutes to form a charge transport layer having a thickness of 15 μm.

次に、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)20部/1−プロパノール20部の混合溶剤を、ポリフロンフィルター(商品名:PF−040、アドバンテック東洋(株)製)で濾過した。その後、下記構造式(3)で示される正孔輸送性化合物90部、

Figure 0005127991
1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン70部、および、1−プロパノール70部を上記混合溶剤に加えた。これをポリフロンフィルター(商品名:PF−020、アドバンテック東洋(株)製)で濾過することによって、第二電荷輸送層(保護層)用塗布液を調製した。この第二電荷輸送層用塗布液を電荷輸送層上に浸漬塗布し、得られた塗膜を大気中において10分間50℃で乾燥させた。その後、窒素中において加速電圧150kV、ビーム電流3.0mAの条件で支持体(被照射体)を200rpmで回転させながら、1.6秒間電子線を塗膜に照射した。なお、このときの電子線の吸収線量を測定したところ、15kGyであった。引き続いて、窒素中において25℃から125℃まで30秒かけて昇温させ、塗膜の加熱を行った。電子線照射およびその後の加熱時の雰囲気の酸素濃度は15ppm以下であった。次に、大気中において25℃まで塗膜を自然冷却し、大気中において30分間100℃で加熱処理を行うことによって、膜厚5μmの第二電荷輸送層(保護層)を形成した。 Next, a mixed solvent of 20 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane (trade name: Zeolora H, manufactured by Nippon Zeon Co., Ltd.) / 20 parts of 1-propanol was added to polyflon. The mixture was filtered with a filter (trade name: PF-040, manufactured by Advantech Toyo Co., Ltd.). Thereafter, 90 parts of a hole transporting compound represented by the following structural formula (3),
Figure 0005127991
70 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane and 70 parts of 1-propanol were added to the mixed solvent. By filtering this with a polyflon filter (trade name: PF-020, manufactured by Advantech Toyo Co., Ltd.), a coating solution for a second charge transport layer (protective layer) was prepared. The coating solution for the second charge transport layer was dip coated on the charge transport layer, and the obtained coating film was dried at 50 ° C. for 10 minutes in the air. Thereafter, the coating film was irradiated with an electron beam for 1.6 seconds while rotating the support (object to be irradiated) at 200 rpm under the conditions of an acceleration voltage of 150 kV and a beam current of 3.0 mA in nitrogen. In addition, when the absorbed dose of the electron beam at this time was measured, it was 15 kGy. Subsequently, the temperature was raised from 25 ° C. to 125 ° C. over 30 seconds in nitrogen, and the coating film was heated. The oxygen concentration in the atmosphere during electron beam irradiation and subsequent heating was 15 ppm or less. Next, the coating film was naturally cooled to 25 ° C. in the air, and heat treatment was performed at 100 ° C. for 30 minutes in the air, thereby forming a second charge transport layer (protective layer) having a thickness of 5 μm.

このようにして、表面に凹部を形成する前の円筒状の電子写真感光体(凹部形成前の電子写真感光体)を作製した。   In this manner, a cylindrical electrophotographic photosensitive member (an electrophotographic photosensitive member before forming the concave portion) before forming the concave portion on the surface was produced.

・モールド圧接形状転写による凹部の形成
概ね図4に示す構成の圧接形状転写加工装置に、モールドとして概ね図6(A)に示す形状のモールド(本例においては、最長径(モールド上の凸部を上から見たときの最長径のこと。以下同じ。)Xm:50μm、距離(間隔)Y1:64μm、距離(間隔)Y2:77μm、高さH:2.0μmのドーム型形状)を設置し、作製した凹部形成前の電子写真感光体に対して表面加工を行った。加工時には、電子写真感光体の表面の温度が110℃になるように電子写真感光体およびモールドの温度を制御し、3.0MPaの圧力で電子写真感光体と加圧部材を押し付けながら、電子写真感光体を周方向に回転させて、電子写真感光体の表面(周面)の全面に凹部を形成した。
このようにして、表面に凹部を有する電子写真感光体を作製した。この電子写真感光体を「感光体A−1」とする。
Formation of concave portion by mold press-fitting shape transfer A press-fitting shape transfer processing apparatus having a structure shown in FIG. 4 is generally used as a mold with a mold having the shape shown in FIG. 6A (in this example, the longest diameter (the convex portion on the mold). (The same applies hereinafter.) Xm: 50 μm, distance (interval) Y1: 64 μm, distance (interval) Y2: 77 μm, height H: 2.0 μm dome shape) Then, surface processing was performed on the electrophotographic photosensitive member formed before forming the concave portion. At the time of processing, the temperature of the electrophotographic photosensitive member and the mold is controlled so that the surface temperature of the electrophotographic photosensitive member becomes 110 ° C., and the electrophotographic photosensitive member and the pressure member are pressed at a pressure of 3.0 MPa, The photosensitive member was rotated in the circumferential direction to form a recess on the entire surface (circumferential surface) of the electrophotographic photosensitive member.
Thus, an electrophotographic photosensitive member having a concave portion on the surface was produced. This electrophotographic photoreceptor is referred to as “photoreceptor A-1.”

・電子写真感光体の表面の観察
得られた電子写真感光体(感光体A−1)の表面を、レーザー顕微鏡((株)キーエンス製、商品名:VK−9500)で50倍レンズにより拡大観察し、上述のようにして電子写真感光体の表面に設けられた特定凹部および平坦部の判定を行った。観察時には、電子写真感光体の長手方向に傾きが無いように、また、周方向については、電子写真感光体の円弧の頂点にピントが合うように、調整を行った。一辺500μmの正方形領域は、拡大観察を行った画像を画像連結アプリケーションによって連結して得た。また、得られた結果については、付属の画像解析ソフトにより、画像処理高さデータを選択し、フィルタタイプメディアンでフィルタ処理を行った。
-Observation of the surface of the electrophotographic photosensitive member The surface of the obtained electrophotographic photosensitive member (photosensitive member A-1) was magnified and observed with a laser microscope (manufactured by Keyence Corporation, trade name: VK-9500) with a 50 × lens. Then, the specific concave portion and the flat portion provided on the surface of the electrophotographic photosensitive member were determined as described above. At the time of observation, adjustment was performed so that there is no inclination in the longitudinal direction of the electrophotographic photosensitive member, and the circumferential direction was focused on the apex of the arc of the electrophotographic photosensitive member. A square region having a side of 500 μm was obtained by connecting the enlarged images with an image connection application. Moreover, about the obtained result, image processing height data was selected with attached image analysis software, and the filter process was performed by the filter type median.

上記観察によって特定凹部の深さ、開口部最長径および面積ならびに平坦部の面積、平坦部における狭小部分の面積の割合およびその標準偏差などを求めた。結果を表1に示す。   By the above observation, the depth of the specific recess, the longest diameter and area of the opening, the area of the flat part, the ratio of the area of the narrow part in the flat part, the standard deviation thereof, and the like were obtained. The results are shown in Table 1.

なお、電子写真感光体(感光体A−1)の表面を、他のレーザー顕微鏡((株)キーエンス製、商品名:X−200)を用い、上記と同様の方法で観察を行ったところ、上記のレーザー顕微鏡(株)キーエンス製、商品名:VK−9500)を用いた場合と同様の結果が得られた。以下の例では、電子写真感光体(感光体A−1)の表面の観察に、レーザー顕微鏡((株)キーエンス製、商品名:VK−9500)および50倍レンズを用いた。   In addition, when the surface of the electrophotographic photosensitive member (photosensitive member A-1) was observed by the same method as described above using another laser microscope (manufactured by Keyence Corporation, trade name: X-200), The same results as those obtained using the above-mentioned Laser Microscope Keyence Co., Ltd. (trade name: VK-9500) were obtained. In the following examples, a laser microscope (manufactured by Keyence Corporation, trade name: VK-9500) and a 50 × lens were used to observe the surface of the electrophotographic photosensitive member (photosensitive member A-1).

(感光体A−2〜A−4の製造例)
感光体A−1の製造例において、モールドとして表1に示すモールドを用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体A−2」〜「感光体A−4」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。
(Production example of photoconductors A-2 to A-4)
In the production example of the photoreceptor A-1, an electrophotographic photoreceptor was produced in the same manner as in the production example of the photoreceptor A-1, except that the mold shown in Table 1 was used as the mold. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member A-2” to “photosensitive member A-4”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

(感光体A−5の製造例)
感光体A−1の製造例において、支持体(円筒状支持体)として直径84mm、長さ370mmのアルミニウムシリンダーを用い、モールドとして表1に示すモールドを用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体A−5」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。
(Example of production of photoconductor A-5)
In the production example of the photoconductor A-1, an aluminum cylinder having a diameter of 84 mm and a length of 370 mm was used as the support (cylindrical support), and the mold shown in Table 1 was used as the mold. An electrophotographic photosensitive member was produced in the same manner as in the production example. The obtained electrophotographic photosensitive member having recesses on the surface is referred to as “photosensitive member A-5”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

(感光体A−6〜A−22の製造例)
感光体A−1の製造例において、モールドとして表1に示すモールドを用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体A−6」〜「感光体A−22」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。
(Production example of photoconductors A-6 to A-22)
In the production example of the photoreceptor A-1, an electrophotographic photoreceptor was produced in the same manner as in the production example of the photoreceptor A-1, except that the mold shown in Table 1 was used as the mold. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member A-6” to “photosensitive member A-22”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

(感光体A−23の製造例)
感光体A−1の製造例と同様にして、支持体上に導電層、下引き層、電荷発生層、電荷輸送層を形成した。
(Production example of photoconductor A-23)
In the same manner as in the production example of the photoreceptor A-1, a conductive layer, an undercoat layer, a charge generation layer, and a charge transport layer were formed on the support.

次に、アルミナ粒子(平均粒径:0.1μm、商品名:LS−231、日本軽金属(株)製)10部、および、クロロベンゼン90部を混合して得られた混合液を、高圧分散機(商品名:マイクロフルイダイザーM−110EH、Microfluidics社製)に入れ、600kgf/cmの圧力で3回の分散処理を施した。さらに、この分散処理を行った混合液をポリフロンフィルター(商品名:PF−040、アドバンテック東洋(株)製)で濾過を行い、分散液を調製した。 Next, a mixture obtained by mixing 10 parts of alumina particles (average particle diameter: 0.1 μm, trade name: LS-231, manufactured by Nippon Light Metal Co., Ltd.) and 90 parts of chlorobenzene was mixed with a high-pressure disperser. (Product name: Microfluidizer M-110EH, manufactured by Microfluidics) was subjected to dispersion treatment three times at a pressure of 600 kgf / cm 2 . Furthermore, the dispersion liquid subjected to the dispersion treatment was filtered with a polyflon filter (trade name: PF-040, manufactured by Advantech Toyo Co., Ltd.) to prepare a dispersion liquid.

次に、上記構造式(2)で示される構造を有する化合物70部、ポリカーボネート(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製)100部、上記分散液200部、モノクロロベンゼン400部、および、ジメトキシメタン200部を混合することによって、第二電荷輸送層(保護層)用塗布液を調製した。この第二電荷輸送層用塗布液を電荷輸送層上にスプレー塗布し、得られた塗膜を20分間130℃で乾燥させることによって、膜厚5μmの第二電荷輸送層(保護層)を形成した。
このようにして、凹部形成前の電子写真感光体を作製した。
Next, 70 parts of the compound having the structure represented by the structural formula (2), 100 parts of polycarbonate (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics), 200 parts of the dispersion, 400 parts of monochlorobenzene, And the coating liquid for 2nd electric charge transport layers (protective layer) was prepared by mixing 200 parts of dimethoxymethane. The coating solution for the second charge transport layer is spray-coated on the charge transport layer, and the obtained coating film is dried at 130 ° C. for 20 minutes to form a second charge transport layer (protective layer) having a thickness of 5 μm. did.
In this way, an electrophotographic photosensitive member before formation of the recess was produced.

その後、モールドとして表1に示すモールドを用い、それ以外は感光体A−1の製造例と同様にして、凹部形成前の電子写真感光体の表面(周面)の全面に凹部を形成した。このようにして得られた表面に凹部を有する電子写真感光体を「感光体A−23」とする。   Thereafter, the mold shown in Table 1 was used as a mold, and other than that, a recess was formed on the entire surface (peripheral surface) of the electrophotographic photoreceptor before formation of the recess in the same manner as in the production example of the photoreceptor A-1. The electrophotographic photosensitive member having concave portions on the surface thus obtained is referred to as “photosensitive member A-23”.

感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。   The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

(感光体A−24の製造例)
感光体A−1の製造例において、支持体(円筒状支持体)として直径24mm、長さ260.5mmのアルミニウムシリンダーを用い、モールドとして表1に示すモールドを用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体A−24」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。
(Production example of photoconductor A-24)
In the production example of photoconductor A-1, photoconductor A- was used except that an aluminum cylinder having a diameter of 24 mm and a length of 260.5 mm was used as the support (cylindrical support) and the mold shown in Table 1 was used as the mold. In the same manner as in Production Example 1, an electrophotographic photosensitive member was produced. The obtained electrophotographic photosensitive member having concave portions on the surface is referred to as “photosensitive member A-24”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

(感光体A−25の製造例)
感光体A−1の製造例において、モールドとして表1に示すモールドを用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体A−25」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。
(Production example of photoconductor A-25)
In the production example of the photoreceptor A-1, an electrophotographic photoreceptor was produced in the same manner as in the production example of the photoreceptor A-1, except that the mold shown in Table 1 was used as the mold. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member A-25”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

(感光体A−26の製造例)
感光体A−1の製造例と同様にして、支持体上に導電層、下引き層、電荷発生層、電荷輸送層まで形成した。
次に、モールドとして表1に示すモールドを用いて電荷輸送層の表面に凹部を形成した後、感光体A−1の製造例と同様の方法で、膜厚2μmの第二電荷輸送層(保護層)を形成した。
このようにして、表面に凹部を有する電子写真感光体を作製した。この電子写真感光体を「感光体A−26」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。
(Production example of photoconductor A-26)
In the same manner as in the production example of the photoreceptor A-1, a conductive layer, an undercoat layer, a charge generation layer, and a charge transport layer were formed on the support.
Next, after forming a concave portion on the surface of the charge transport layer using the mold shown in Table 1 as a mold, a second charge transport layer (protection layer) having a thickness of 2 μm is formed in the same manner as in the production example of the photoreceptor A-1. Layer).
Thus, an electrophotographic photosensitive member having a concave portion on the surface was produced. This electrophotographic photosensitive member is designated as “photosensitive member A-26”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

(感光体A−27の製造例)
感光体A−1の製造例において、支持体(円筒状支持体)として直径30mm、長さ260.5mmのアルミニウムシリンダーを用い、モールドとして表1に示すモールドを用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体A−27」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。
(Production example of photoconductor A-27)
In the production example of photoconductor A-1, photoconductor A- was used except that an aluminum cylinder having a diameter of 30 mm and a length of 260.5 mm was used as the support (cylindrical support) and the mold shown in Table 1 was used as the mold. In the same manner as in Production Example 1, an electrophotographic photosensitive member was produced. The obtained electrophotographic photosensitive member having concave portions on the surface is referred to as “photosensitive member A-27”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

(感光体A−28〜A−30の製造例)
感光体A−1の製造例において、モールドとして表1に示すモールドを用い、加工時に電子写真感光体の表面の温度が表1に示す温度になるように電子写真感光体およびモールドの温度を制御した以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体A−28」〜「感光体A−30」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。
(Production example of photoconductors A-28 to A-30)
In the production example of the photoreceptor A-1, the mold shown in Table 1 is used as a mold, and the temperature of the electrophotographic photoreceptor and the mold is controlled so that the surface temperature of the electrophotographic photoreceptor becomes the temperature shown in Table 1 during processing. Except that, an electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member A-1. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member A-28” to “photosensitive member A-30”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

(感光体A−31の製造例)
感光体A−1の製造例と同様にして、支持体上に導電層、下引き層、電荷発生層、電荷輸送層を形成した。
次に、モールドとして表1に示すモールドを用いて電荷輸送層の表面に凹部を形成した後、感光体A−1の製造例と同様の方法で、膜厚2μmの第二電荷輸送層(保護層)を形成した。
このようにして、表面に凹部を有する電子写真感光体を作製した。この電子写真感光体を「感光体A−31」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。
(Production example of photoconductor A-31)
In the same manner as in the production example of the photoreceptor A-1, a conductive layer, an undercoat layer, a charge generation layer, and a charge transport layer were formed on the support.
Next, after forming a concave portion on the surface of the charge transport layer using the mold shown in Table 1 as a mold, a second charge transport layer (protection layer) having a thickness of 2 μm is formed in the same manner as in the production example of the photoreceptor A-1. Layer).
Thus, an electrophotographic photosensitive member having a concave portion on the surface was produced. This electrophotographic photosensitive member is designated as “photosensitive member A-31”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

(感光体A−32の製造例)
感光体A−1の製造例と同様にして、支持体上に導電層、下引き層、電荷発生層、電荷輸送層を形成した。
(Production example of photoconductor A-32)
In the same manner as in the production example of the photoreceptor A-1, a conductive layer, an undercoat layer, a charge generation layer, and a charge transport layer were formed on the support.

次に、分散剤としてのフッ素原子含有樹脂(商品名:GF−300、東亞合成(株)社製)0.5部を、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)30部/1−プロパノール30部の混合溶剤に溶解させた後、潤滑剤としてのポリテトラフルオロエチレン(商品名:ルブロンL−2、ダイキン工業(株)製)10部を加えた。これを高圧分散機(商品名:マイクロフルイダイザーM−110EH、米Microfluidics社製)に入れ、600kgf/cmの圧力で、4回の分散処理を施した。これをポリフロンフィルター(商品名:PF−040、アドバンテック東洋(株)製)で濾過することによって、潤滑剤分散液を得た。その後、上記構造式(3)で示される正孔輸送性化合物90部、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン70部、および、1−プロパノール70部を上記潤滑剤分散液に加えた。これをポリフロンフィルター(商品名:PF−020、アドバンテック東洋(株)製)で濾過することによって、第二電荷輸送層(保護層)用塗布液を調製した。この第二電荷輸送層用塗布液を電荷輸送層上に浸漬塗布し、得られた塗膜を大気中において10分間50℃で乾燥させた。その後、窒素中において加速電圧150kV、ビーム電流3.0mAの条件で支持体を200rpmで回転させながら、1.6秒間電子線を塗膜に照射した。なお、このときの電子線の吸収線量を測定したところ、15kGyであった。引き続いて、窒素中において25℃から125℃まで30秒かけて昇温させ、塗膜の加熱を行った。電子線照射およびその後の加熱硬化反応時の雰囲気の酸素濃度は15ppm以下であった。次に、大気中において25℃まで塗膜を自然冷却し、大気中において30分間100℃で加熱処理を行うことによって、膜厚5μmの第二電荷輸送層(保護層)を形成した。
このようにして、凹部形成前の電子写真感光体を作製した。
Next, 0.5 part of fluorine atom-containing resin (trade name: GF-300, manufactured by Toagosei Co., Ltd.) as a dispersant is added to 1,1,2,2,3,3,4-heptafluorocyclo. Polytetrafluoroethylene (trade name: Lubron L-2, Daikin) as a lubricant after dissolving in a mixed solvent of 30 parts of pentane (trade name: Zeolora H, manufactured by Nippon Zeon Co., Ltd.) and 30 parts of 1-propanol 10 parts of Kogyo Co., Ltd.) was added. This was put into a high-pressure disperser (trade name: Microfluidizer M-110EH, manufactured by Microfluidics, USA), and subjected to dispersion treatment four times at a pressure of 600 kgf / cm 2 . This was filtered with a polyflon filter (trade name: PF-040, manufactured by Advantech Toyo Co., Ltd.) to obtain a lubricant dispersion. Thereafter, 90 parts of the hole transporting compound represented by the structural formula (3), 70 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane and 70 parts of 1-propanol were lubricated. It was added to the agent dispersion. By filtering this with a polyflon filter (trade name: PF-020, manufactured by Advantech Toyo Co., Ltd.), a coating solution for a second charge transport layer (protective layer) was prepared. The coating solution for the second charge transport layer was dip coated on the charge transport layer, and the obtained coating film was dried at 50 ° C. for 10 minutes in the air. Thereafter, the coating film was irradiated with an electron beam for 1.6 seconds while rotating the support at 200 rpm under the conditions of an acceleration voltage of 150 kV and a beam current of 3.0 mA in nitrogen. In addition, when the absorbed dose of the electron beam at this time was measured, it was 15 kGy. Subsequently, the temperature was raised from 25 ° C. to 125 ° C. over 30 seconds in nitrogen, and the coating film was heated. The oxygen concentration in the atmosphere during electron beam irradiation and the subsequent heat curing reaction was 15 ppm or less. Next, the coating film was naturally cooled to 25 ° C. in the air, and heat treatment was performed at 100 ° C. for 30 minutes in the air, thereby forming a second charge transport layer (protective layer) having a thickness of 5 μm.
In this way, an electrophotographic photosensitive member before formation of the recess was produced.

その後、モールドとして表1に示すモールドを用い、それ以外は感光体A−1の製造例と同様にして、凹部形成前の電子写真感光体の表面の全面に凹部を形成した。このようにして得られた表面に凹部を有する電子写真感光体を「感光体A−32」とする。   Thereafter, the mold shown in Table 1 was used as a mold, and other than that, a recess was formed on the entire surface of the electrophotographic photoreceptor before formation of the recess in the same manner as in the production example of the photoreceptor A-1. The electrophotographic photosensitive member having concave portions on the surface thus obtained is referred to as “photosensitive member A-32”.

感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1に示す。   The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 1.

また、感光体A−32の表面層である第二電荷輸送層の近傍の断面観察を行ったところ、図8の(A)に示すように、第二電荷輸送層の表面だけでなく、電荷輸送層の表面(電荷輸送層と第二電荷輸送層との界面)にも対応する凹部が形成されていた。なお、感光体A−1〜A−31、ならびに、後述の感光体B−1〜B−10、感光体C−1〜C−3、感光体D−1、感光体E−1〜E−15、感光体E−17、および、感光体E−18〜E−25にも、第二電荷輸送層の表面だけでなく、電荷輸送層の表面にも対応する凹部が形成されていた。また。感光体A−32の表面には、図8の(B)に示すような凹部が形成されていた。図8の(B)中の白線の四角形は、一辺500μmの正方形領域である。   Further, when the cross section of the vicinity of the second charge transport layer, which is the surface layer of the photoreceptor A-32, was observed, as shown in FIG. Concave portions corresponding to the surface of the transport layer (interface between the charge transport layer and the second charge transport layer) were also formed. Photoconductors A-1 to A-31, and photoconductors B-1 to B-10, photoconductors C-1 to C-3, photoconductor D-1, and photoconductors E-1 to E- described later. 15, not only the surface of the second charge transport layer but also the surface of the charge transport layer was formed in the photoreceptor E-17 and the photoreceptors E-18 to E-25. Also. A recess as shown in FIG. 8B was formed on the surface of the photoreceptor A-32. A white line rectangle in FIG. 8B is a square region having a side of 500 μm.

(感光体A−33〜感光体A−80の製造例)
感光体A−1の製造例において、モールドとして表1〜3に示すモールドを用い、加工時に電子写真感光体の表面の温度が表1〜3に示す温度になるように電子写真感光体およびモールドの温度を制御した以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体A−33」〜「感光体A−80」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表1〜3に示す。
(Production example of photoconductor A-33 to photoconductor A-80)
In the production example of the photoreceptor A-1, the mold shown in Tables 1 to 3 was used as a mold, and the surface temperature of the electrophotographic photoreceptor was changed to the temperatures shown in Tables 1 to 3 during processing. An electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member A-1, except that the temperature was controlled. The obtained electrophotographic photosensitive members having concave portions on the surface are designated as “photosensitive member A-33” to “photosensitive member A-80”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Tables 1-3.

(感光体B−1の製造例)
感光体A−1の製造例において、支持体(円筒状支持体)として直径84mm、長さ370mmのアルミニウムシリンダーを用い、モールドとして概ね図6(B)に示す形状のランダム(誤差拡散法(Floyd&Steinberg法)による。)な凸部を配置したモールド(詳細は表4に示す。)を用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体B−1」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表4に示す。
(Example of photoconductor B-1 production)
In the production example of the photoreceptor A-1, an aluminum cylinder having a diameter of 84 mm and a length of 370 mm is used as a support (cylindrical support), and a random shape (error diffusion method (Floyd & Steinberg) having a shape shown in FIG. 6B is used as a mold. The electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member A-1, except that a mold (details are shown in Table 4) in which convex portions were arranged was used. The obtained electrophotographic photosensitive member having recesses on the surface is referred to as “photosensitive member B-1”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 4.

(感光体B−2〜B−6の製造例)
感光体A−1の製造例において、概ね図6(B)に示す形状のランダム(誤差拡散法(Floyd&Steinberg法)による。)な凸部を配置したモールド(詳細は表4に示す。)を用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体B−2」〜「感光体B−6」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表4に示す。
(Production example of photoconductors B-2 to B-6)
In the manufacture example of the photoreceptor A-1, a mold (details are shown in Table 4) in which random convex portions (by an error diffusion method (Floyd & Steinberg method)) having a shape shown in FIG. An electrophotographic photoreceptor was produced in the same manner as in Production Example of the photoreceptor A-1. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member B-2” to “photosensitive member B-6”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 4.

(感光体B−7の製造例)
感光体A−24の製造例において、概ね図6(B)に示す形状のランダム(誤差拡散法(Floyd&Steinberg法)による。)な凸部を配置したモールド(詳細は表4に示す。)を用いた以外は、感光体A−24の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体B−7」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表4に示す。
(Production example of photoconductor B-7)
In the manufacturing example of the photoreceptor A-24, a mold (details are shown in Table 4) in which random convex portions (by the error diffusion method (Floyd & Steinberg method)) having a shape shown in FIG. An electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member A-24 except for the above. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member B-7”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 4.

(感光体B−8の製造例)
感光体A−1の製造例において、概ね図6(B)に示す形状のランダム(誤差拡散法(Floyd&Steinberg法)による。)な凸部を配置したモールド(詳細は表4に示す。)を用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体B−8」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表4に示す。
(Production example of photoconductor B-8)
In the manufacture example of the photoreceptor A-1, a mold (details are shown in Table 4) in which random convex portions (by an error diffusion method (Floyd & Steinberg method)) having a shape shown in FIG. An electrophotographic photoreceptor was produced in the same manner as in Production Example of the photoreceptor A-1. The obtained electrophotographic photosensitive member having recesses on the surface is referred to as “photosensitive member B-8”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 4.

(感光体B−9〜感光体B−10の製造例)
感光体A−1の製造例において、概ね図6(B)に示す形状のランダム(誤差拡散法(Floyd&Steinberg法)による。)な凸部を配置したモールド(詳細は表4に示す。)を用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体B−9」〜「感光体B−10」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表4に示す。
(Production example of photoconductor B-9 to photoconductor B-10)
In the manufacture example of the photoreceptor A-1, a mold (details are shown in Table 4) in which random convex portions (by an error diffusion method (Floyd & Steinberg method)) having a shape shown in FIG. An electrophotographic photoreceptor was produced in the same manner as in Production Example of the photoreceptor A-1. The obtained electrophotographic photosensitive members having concave portions on the surface are designated as “photosensitive member B-9” to “photosensitive member B-10”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 4.

(感光体C−1〜C−3の製造例)
感光体A−1の製造例において、概ね図6(C)に示す形状の500μmピッチで凸部の配置が異なる領域を有するモールド(A領域の凸部:最長径Xm、距離(間隔)Y1、距離(間隔)Y2、B領域の凸部:最長径Xm、距離(間隔)Y3、距離(間隔)Y4を表5に示すようにそれぞれ配置した。詳細は表5に示す。)を用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体C−1」〜「感光体C−3」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表5に示す。
(Production example of photoreceptors C-1 to C-3)
In the production example of the photoreceptor A-1, a mold having a region having a different arrangement of the convex portions at a pitch of 500 μm having a shape shown in FIG. 6C (the convex portion of the A region: longest diameter Xm, distance (interval) Y1, The distance (interval) Y2, the convex portion of the B region: the longest diameter Xm, the distance (interval) Y3, and the distance (interval) Y4 are arranged as shown in Table 5. Details are shown in Table 5. Produced an electrophotographic photoreceptor in the same manner as in the production example of the photoreceptor A-1. The obtained electrophotographic photosensitive members having concave portions on the surface are referred to as “photosensitive member C-1” to “photosensitive member C-3”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 5.

(感光体D−1の製造例)
感光体A−1の製造例において、モールドとして概ね図6(D)に示す形状の最長径の異なる凸部が配置されたモールド(第一の凸部:最長径Xm:70μm、距離(間隔)Y1:126μm、距離(間隔)Y2:149μm、第二の凸部:最長径Xm:50μm、距離(間隔)Y3:90μm、距離(間隔)Y4:107μmとなるようにそれぞれ配置した。詳細は表6に示す。)を用いた以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体D−1」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表6に示す。
(Example of photoconductor D-1 production)
In the production example of the photoreceptor A-1, a mold in which convex portions having different longest diameters as shown in FIG. 6D are arranged as a mold (first convex portion: longest diameter Xm: 70 μm, distance (interval). Y1: 126 μm, distance (interval) Y2: 149 μm, second convex portion: longest diameter Xm: 50 μm, distance (interval) Y3: 90 μm, distance (interval) Y4: 107 μm. An electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member A-1, except that the composition was used. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member D-1.”
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 6.

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

(電子写真感光体の実機評価)
(実施例1)
感光体A−1を、評価装置であるキヤノン(株)製の電子写真装置(複写機)(商品名:iR−ADV C7055)の改造機のシアンステーションに装着し、以下のように試験および評価を行った。
まず、30℃/80%RH環境下で、電子写真感光体の暗部電位(Vd)が−700V、明部電位(Vl)が−200Vになるように帯電装置および画像露光装置の条件を設定し、電子写真感光体の初期電位を調整した。
次に、硬度77°のポリウレタンゴム製クリーニングブレードを、電子写真感光体の表面に対して当接角28°、当接圧30g/cmとなるように設定した。電子写真感光体用のヒーター(ドラムヒーター)をOFFにした状態で、30℃/80%RH環境下で、A4横の5%画像の評価用チャートを連続で50000枚出力し、電源を切った状態で30℃/80%RH環境下で3日間放置した。
3日間放置後、電子写真装置を起動し、A4横の出力解像度600dpiの1ドット−1スペースの画像形成を行い、帯電装置近傍の画像濃度とA4全面の画像再現性を以下のように評価した。結果を表7に示す。
A:帯電装置近傍において、ドットの乱れや飛び散りが無く(すなわち画像流れが無く)、画像再現性が良好である。
B:帯電装置近傍において、拡大観察した際にわずかにドットの乱れが見られるが、飛び散りは無く、その他の部分については画像再現性が良好である。
C:帯電装置近傍において、拡大観察した際にややドットの乱れや飛び散りを生じているが、その他の部分については画像再現性が良好である。
D:帯電装置近傍において、拡大観察した際にドットの乱れや飛び散りを生じているが、その他の部分については画像再現性が良好である。
E:帯電装置近傍については画像上白ぬけが発生しており、その他の部分についてもやや画像再現性が低い。
(Evaluation of actual electrophotographic photosensitive member)
Example 1
Photoreceptor A-1 is mounted on a cyan station of a modified machine of an electrophotographic apparatus (copier) (trade name: iR-ADV C7055) manufactured by Canon Inc., which is an evaluation apparatus, and tested and evaluated as follows. Went.
First, under the environment of 30 ° C./80% RH, the conditions of the charging device and the image exposure device are set so that the dark portion potential (Vd) of the electrophotographic photosensitive member is −700 V and the light portion potential (Vl) is −200 V. The initial potential of the electrophotographic photosensitive member was adjusted.
Next, a polyurethane rubber cleaning blade having a hardness of 77 ° was set so that the contact angle was 28 ° and the contact pressure was 30 g / cm with respect to the surface of the electrophotographic photosensitive member. With the electrophotographic photoreceptor heater (drum heater) turned off, 50000 images of 5% image evaluation charts were continuously output at 30 ° C / 80% RH, and the power was turned off. The sample was left in a 30 ° C./80% RH environment for 3 days.
After being left for 3 days, the electrophotographic apparatus was started up, and an image of 1 dot-1 space with an A4 horizontal output resolution of 600 dpi was formed, and the image density in the vicinity of the charging device and the image reproducibility of the entire A4 were evaluated as follows. . The results are shown in Table 7.
A: In the vicinity of the charging device, there is no dot disturbance or scattering (that is, no image flow), and the image reproducibility is good.
B: In the vicinity of the charging device, a slight dot disturbance is observed when magnified, but there is no scattering, and the image reproducibility is good for other portions.
C: In the vicinity of the charging device, the dots are slightly disturbed or scattered when magnified, but the image reproducibility is good for other portions.
D: Disturbance and scattering of dots occur in the vicinity of the charging device when magnified, but the image reproducibility is good for other portions.
E: Whitening occurs on the image in the vicinity of the charging device, and the image reproducibility is slightly low in other portions.

(実施例2〜384)
電子写真感光体として表7〜16に示すものを用い、クリーニングブレードの硬度および設定(当接角および当接圧)を表7〜16に示すようにした以外は、実施例1と同様にして電子写真感光体の実機評価を行った。結果を表7〜16に示す。
(Examples 2-384)
Except that the electrophotographic photosensitive member shown in Tables 7 to 16 was used and the hardness and settings (contact angle and contact pressure) of the cleaning blade were shown in Tables 7 to 16, the same as in Example 1. An actual evaluation of the electrophotographic photosensitive member was performed. The results are shown in Tables 7-16.

(実施例1001〜1020)
評価装置としてキヤノン(株)製の電子写真装置(POD機)(商品名:image PRESS C7000VP(コロナ帯電方式))の改造機を用い(電子写真感光体はシアンステーションに装着。)、電子写真感光体として表17に示すものを用い、クリーニングブレードの硬度および設定(当接角および当接圧)を表17に示すようにした以外は、実施例1と同様にして電子写真感光体の実機評価を行った。結果を表17に示す。
(Examples 1001 to 1020)
An electrophotographic apparatus (POD machine) manufactured by Canon Inc. (trade name: image PRESS C7000VP (corona charging method)) was used as the evaluation apparatus (the electrophotographic photosensitive member is mounted on the cyan station) and electrophotographic photosensitive member. An actual evaluation of the electrophotographic photosensitive member in the same manner as in Example 1 except that the materials shown in Table 17 were used and the hardness and settings (contact angle and contact pressure) of the cleaning blade were as shown in Table 17. Went. The results are shown in Table 17.

(実施例2001〜2019)
評価装置としてヒューレット・パッカード社製の電子写真装置(レーザービームプリンター)(商品名:Color LaserJet Enterprise CP4525dn)の改造機を用い(電子写真感光体はシアンステーションに装着。)、評価環境および3日間放置環境を30℃/80%RH環境から35℃/85%RH環境に変更し、評価用チャートの連続出力枚数を50000枚から10000枚に変更し、電子写真感光体として表18に示すものを用い、クリーニングブレードの硬度および設定(当接角および当接圧)を表18に示すようにした以外は、実施例1と同様にして電子写真感光体の実機評価を行った。結果を表18に示す。
(Examples 2001 to 2019)
An electrophotographic apparatus (laser beam printer) manufactured by Hewlett-Packard Co. (trade name: Color LaserJet Enterprise CP4525dn) was used as an evaluation apparatus (the electrophotographic photosensitive member is mounted on the cyan station), and the evaluation environment and left for 3 days. The environment was changed from 30 ° C./80% RH environment to 35 ° C./85% RH environment, the continuous output number of evaluation charts was changed from 50,000 to 10,000, and the electrophotographic photosensitive member shown in Table 18 was used. The actual evaluation of the electrophotographic photosensitive member was performed in the same manner as in Example 1 except that the hardness and settings (contact angle and contact pressure) of the cleaning blade were as shown in Table 18. The results are shown in Table 18.

(実施例3001〜3009)
評価装置としてヒューレット・パッカード社製の電子写真装置(レーザービームプリンター)(商品名:LaserJet Enterprise P3015dn)の改造機を用い(電子写真感光体はシアンステーションに装着。)、評価環境および3日間放置環境を30℃/80%RH環境から35℃/85%RH環境に変更し、評価用チャートの連続出力枚数を50000枚から10000枚に変更し、電子写真感光体として表19に示すものを用い、クリーニングブレードの硬度および設定(当接角および当接圧)を表19に示すようにした以外は、実施例1と同様にして電子写真感光体の実機評価を行った。結果を表19に示す。
(Examples 3001 to 3009)
As an evaluation apparatus, a modified machine of an electrophotographic apparatus (laser beam printer) (trade name: LaserJet Enterprise P3015dn) manufactured by Hewlett-Packard Co. is used (the electrophotographic photosensitive member is mounted on a cyan station), and an evaluation environment and a three-day standing environment. Was changed from a 30 ° C./80% RH environment to a 35 ° C./85% RH environment, the continuous output number of the evaluation chart was changed from 50,000 to 10,000, and the electrophotographic photosensitive member shown in Table 19 was used. The actual evaluation of the electrophotographic photosensitive member was performed in the same manner as in Example 1 except that the hardness and settings (contact angle and contact pressure) of the cleaning blade were as shown in Table 19. The results are shown in Table 19.

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

(感光体E−1の製造例)
感光体A−1と同様にして、支持体上に導電層、下引き層、電荷発生層、電荷輸送層および第二電荷輸送層(保護層)を形成して、凹部形成前の電子写真感光体を作製した。
(Example of photoconductor E-1 production)
In the same manner as the photoconductor A-1, a conductive layer, an undercoat layer, a charge generation layer, a charge transport layer, and a second charge transport layer (protective layer) are formed on the support to form an electrophotographic photosensitive film before forming a recess. The body was made.

次に、概ね図9に示す構成の乾式ブラスト装置を用いて乾式ブラスト処理を行い、電子写真感光体の表面(周面)の全面に複数のディンプル形状の凹部を形成した。図9中、101は粒子(研磨粒子)105の噴射ノズルであり、102は噴射ノズル101を固定するためのノズル固定治具であり、103はエア(圧縮空気)の導入経路であり、104は容器に貯留されている粒子(研磨粒子)105を噴射ノズル101に導くための経路であり、105は粒子(研磨粒子)であり、106はワーク107を支持するためのワーク支持部材であり、107はワーク(表面に凹部を形成する対象の電子写真感光体)であり、108は噴射ノズル101を支持するための噴射ノズル支持部材であり、109は噴射ノズル101を固定するための噴射ノズル固定治具である。   Next, dry blasting was performed using a dry blasting apparatus having a configuration shown in FIG. 9 to form a plurality of dimple-shaped recesses on the entire surface (circumferential surface) of the electrophotographic photosensitive member. In FIG. 9, 101 is an injection nozzle for particles (abrasive particles) 105, 102 is a nozzle fixing jig for fixing the injection nozzle 101, 103 is an air (compressed air) introduction path, and 104 is A path for guiding the particles (abrasive particles) 105 stored in the container to the injection nozzle 101, 105 is a particle (abrasive particles), 106 is a workpiece support member for supporting the workpiece 107, 107 Is a workpiece (an electrophotographic photosensitive member on which a concave portion is formed on the surface), 108 is an injection nozzle support member for supporting the injection nozzle 101, and 109 is an injection nozzle fixing treatment for fixing the injection nozzle 101. It is a tool.

このようにして、表面に凹部を有する電子写真感光体を作製した。この電子写真感光体を「感光体E−1」とする。   Thus, an electrophotographic photosensitive member having a concave portion on the surface was produced. This electrophotographic photosensitive member is designated as “photosensitive member E-1.”

・乾式ブラスト処理の条件
粒子(研磨粒子):平均粒径が30μmの球状ガラスビーズ(商品名:UB−01L(株)、ユニオン製)
エア(圧縮空気)吹き付け圧力:0.343MPa(3.5kgf/cm)噴射ノズル移動速度:430mm/s(図9中の上下矢印方向)
ワークの自転速度:288rpm(図9中の回転矢印方向)
噴射ノズルの吐出口とワークとの距離:100mm
粒子(研磨粒子)の吐出角度:90°
粒子(研磨粒子)の供給量:200g/min
ブラストの回数:片道×2回
なお、乾式ブラスト処理後、ワークの周面に残存付着した粒子(研磨粒子)を、圧縮エアの吹き付けにより除去した。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表20に示す。
-Dry blasting conditions Particles (abrasive particles): spherical glass beads with an average particle size of 30 μm (trade name: UB-01L, union)
Air (compressed air) spraying pressure: 0.343 MPa (3.5 kgf / cm 2 ) Injection nozzle moving speed: 430 mm / s (in the direction of the up and down arrows in FIG. 9)
Work rotation speed: 288 rpm (direction of rotation arrow in FIG. 9)
The distance between the discharge port of the injection nozzle and the workpiece: 100 mm
Particle (abrasive particle) discharge angle: 90 °
Supply amount of particles (abrasive particles): 200 g / min
Number of times of blasting: one way × 2 times After dry blasting, particles (abrasive particles) remaining on the peripheral surface of the workpiece were removed by blowing compressed air.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 20.

(感光体E−2〜E−9およびE−17の製造例)
感光体A−1の製造例において、モールドとして表20に示すモールドを用い、加工時に電子写真感光体の表面の温度が表20に示す温度になるように電子写真感光体およびモールドの温度を制御した以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体E−2」〜「感光体E−9」および「感光体E−17」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表20に示す。
(Production Examples of Photoconductors E-2 to E-9 and E-17)
In the production example of the photoreceptor A-1, the mold shown in Table 20 is used as a mold, and the temperature of the electrophotographic photoreceptor and the mold is controlled so that the surface temperature of the electrophotographic photoreceptor becomes the temperature shown in Table 20 during processing. Except that, an electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member A-1. The obtained electrophotographic photosensitive members having concave portions on the surface are referred to as “photosensitive member E-2” to “photosensitive member E-9” and “photosensitive member E-17”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 20.

(感光体E−10〜E−11の製造例)
感光体A−5の製造例において、モールドとして表20に示すモールドを用い、加工時に電子写真感光体の表面の温度が表20に示す温度になるように電子写真感光体およびモールドの温度を制御した以外は、感光体A−5の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体E−10」〜「感光体E−11」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表20に示す。
(Production example of photoconductors E-10 to E-11)
In the production example of the photoreceptor A-5, the mold shown in Table 20 is used as a mold, and the temperature of the electrophotographic photoreceptor and the mold is controlled so that the surface temperature of the electrophotographic photoreceptor becomes the temperature shown in Table 20 during processing. Except that, an electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member A-5. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member E-10” to “photosensitive member E-11”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 20.

(感光体E−12〜E−13の製造例)
感光体A−24の製造例において、モールドとして表20に示すモールドを用い、加工時に電子写真感光体の表面の温度が表20に示す温度になるように電子写真感光体およびモールドの温度を制御した以外は、感光体A−24の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体E−12」〜「感光体E−13」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表20に示す。
(Production example of photoconductors E-12 to E-13)
In the production example of the photoreceptor A-24, the mold shown in Table 20 is used as a mold, and the temperature of the electrophotographic photoreceptor and the mold is controlled so that the surface temperature of the electrophotographic photoreceptor becomes the temperature shown in Table 20 during processing. Except that, an electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member A-24. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member E-12” to “photosensitive member E-13”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 20.

(感光体E−14〜E−15の製造例)
感光体A−27の製造例において、モールドとして表20に示すモールドを用い、加工時に電子写真感光体の表面の温度が表20に示す温度になるように電子写真感光体およびモールドの温度を制御した以外は、感光体A−27の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体E−14」〜「感光体E−15」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表20に示す。
(Production Examples of Photoconductors E-14 to E-15)
In the production example of the photoreceptor A-27, the mold shown in Table 20 is used as a mold, and the temperature of the electrophotographic photoreceptor and the mold is controlled so that the surface temperature of the electrophotographic photoreceptor becomes the temperature shown in Table 20 during processing. An electrophotographic photosensitive member was produced in the same manner as in the production example of the photosensitive member A-27 except that. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member E-14” to “photosensitive member E-15”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 20.

(感光体E−16の製造例)
感光体A−1と同様にして、支持体上に導電層、下引き層、電荷発生層、電荷輸送層および第二電荷輸送層(保護層)を形成し、表面に凹部を有さない電子写真感光体を作製した。この電子写真感光体を「感光体E−16」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表20に示す。
(Production example of photoconductor E-16)
As in the case of the photoreceptor A-1, a conductive layer, an undercoat layer, a charge generation layer, a charge transport layer, and a second charge transport layer (protective layer) are formed on the support, and the surface has no recess. A photographic photoreceptor was prepared. This electrophotographic photosensitive member is designated as “photosensitive member E-16”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 20.

(感光体E−18〜E−25の製造例)
感光体A−1の製造例において、モールドとして表20に示すモールドを用い、加工時に電子写真感光体の表面の温度が表20に示す温度になるように電子写真感光体およびモールドの温度を制御し、2.5MPaの圧力で電子写真感光体と加圧部材を押し付けながら、電子写真感光体を周方向に回転させて、電子写真感光体の表面(周面)の全面に凹部を形成した以外は、感光体A−1の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体E−18」〜「感光体E−25」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表20に示す。
(Production example of photoconductors E-18 to E-25)
In the production example of the photoreceptor A-1, the mold shown in Table 20 is used as a mold, and the temperature of the electrophotographic photoreceptor and the mold is controlled so that the surface temperature of the electrophotographic photoreceptor becomes the temperature shown in Table 20 during processing. In addition, the electrophotographic photosensitive member is rotated in the circumferential direction while pressing the electrophotographic photosensitive member and the pressure member at a pressure of 2.5 MPa to form a recess on the entire surface (peripheral surface) of the electrophotographic photosensitive member. Produced an electrophotographic photoreceptor in the same manner as in the production example of the photoreceptor A-1. The obtained electrophotographic photosensitive member having concave portions on its surface is referred to as “photosensitive member E-18” to “photosensitive member E-25”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 20.

(感光体E−26の製造例)
感光体A−1と同様にして、支持体上に導電層、下引き層、電荷発生層、電荷輸送層まで形成した。
(Production example of photoconductor E-26)
In the same manner as the photoreceptor A-1, a conductive layer, an undercoat layer, a charge generation layer, and a charge transport layer were formed on the support.

次に、アクリルポリオール(商品名:JONCRYL−587、Johonson Polymers製)1.5部、メラミン樹脂(商品名:CYMEL−303、CytecIndustries製)2.1部、電荷輸送成分としてのN,N,N’,N’−テトラキス−[(4−ヒドロキシメチル)フェニル]−ビフェニル−4,4’−ジアミン(THM−TBD)1.16部/N,N’−ジフェニル−N,N’−ジ(3−ヒドロキシフェニル)−テルフェニル−ジアミン(DHTER)1.93部、および、酸触媒(商品名:Nacure5225、King Chemical Industries製)0.05部を、1−メトキシ−2−プロパノール20.9部に溶解させることによって、第二電荷輸送層(保護層)用塗布液を調製した。この第二電荷輸送層用塗布液を電荷輸送層上に浸漬塗布し、得られた塗膜を硬化させる前に、表20に示すモールドを用い、塗膜の表面温度を常温(25℃)に保った状態で、塗膜の表面にモールドの形状を転写した。次に、40分間140℃で熱硬化させることによって、膜厚6μmの第二電荷輸送層(保護層)を形成した。
このようにして、表面に凹部を有する電子写真感光体を作製した。この電子写真感光体を「感光体E−26」とする。
感光体A−1の製造例と同様にして、得られた電子写真感光体の表面の観察を行った。結果を表20に示す。
Next, 1.5 parts of acrylic polyol (trade name: JONCRYL-587, manufactured by Johnson Polymers), 2.1 parts of melamine resin (trade name: CYMEL-303, manufactured by Cytec Industries), N, N, N as charge transport components ', N'-tetrakis-[(4-hydroxymethyl) phenyl] -biphenyl-4,4'-diamine (THM-TBD) 1.16 parts / N, N'-diphenyl-N, N'-di (3 -Hydroxyphenyl) -terphenyl-diamine (DHTER) 1.93 parts, and acid catalyst (trade name: Nacure 5225, manufactured by King Chemical Industries) 0.05 part in 10.9 parts of 1-methoxy-2-propanol By dissolving, a coating solution for the second charge transport layer (protective layer) was prepared. Before dip-coating the coating solution for the second charge transport layer on the charge transport layer and curing the obtained coating film, the mold shown in Table 20 was used, and the surface temperature of the coating film was set to room temperature (25 ° C.). In the state kept, the shape of the mold was transferred to the surface of the coating film. Next, a second charge transport layer (protective layer) having a film thickness of 6 μm was formed by thermosetting at 140 ° C. for 40 minutes.
Thus, an electrophotographic photosensitive member having a concave portion on the surface was produced. This electrophotographic photosensitive member is designated as “photosensitive member E-26”.
The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in Production Example of the photoreceptor A-1. The results are shown in Table 20.

Figure 0005127991
Figure 0005127991

(比較例1〜25)
電子写真感光体として表21に示すものを用い、クリーニングブレードの硬度および設定(当接角および当接圧)を表21に示すようにした以外は、実施例1と同様にして電子写真感光体の実機評価を行った。結果を表21に示す。
(Comparative Examples 1-25)
The electrophotographic photosensitive member is the same as in Example 1 except that the electrophotographic photosensitive member shown in Table 21 is used and the hardness and setting (contact angle and contact pressure) of the cleaning blade are as shown in Table 21. The actual machine was evaluated. The results are shown in Table 21.

(比較例26〜27)
電子写真感光体として表21に示すものを用い、クリーニングブレードの硬度および設定(当接角および当接圧)を表21に示すようにした以外は、実施例1001と同様にして電子写真感光体の実機評価を行った。結果を表21に示す。
(Comparative Examples 26-27)
The electrophotographic photosensitive member is the same as in Example 1001 except that the electrophotographic photosensitive member shown in Table 21 is used and the hardness and settings (contact angle and contact pressure) of the cleaning blade are as shown in Table 21. The actual machine was evaluated. The results are shown in Table 21.

(比較例28〜29)
電子写真感光体として表21に示すものを用い、クリーニングブレードの硬度および設定(当接角および当接圧)を表21に示すようにした以外は、実施例2001と同様にして電子写真感光体の実機評価を行った。結果を表21に示す。
(Comparative Examples 28-29)
The electrophotographic photosensitive member is the same as in Example 2001 except that the electrophotographic photosensitive member shown in Table 21 is used and the hardness and setting (contact angle and contact pressure) of the cleaning blade are as shown in Table 21. The actual machine was evaluated. The results are shown in Table 21.

(比較例30〜31)
電子写真感光体として表21に示すものを用い、クリーニングブレードの硬度および設定(当接角および当接圧)を表21に示すようにした以外は、実施例3001と同様にして電子写真感光体の実機評価を行った。結果を表21に示す。
(Comparative Examples 30-31)
The electrophotographic photosensitive member is the same as in Example 3001, except that the electrophotographic photosensitive member shown in Table 21 is used and the hardness and setting (contact angle and contact pressure) of the cleaning blade are as shown in Table 21. The actual machine was evaluated. The results are shown in Table 21.

(比較例32〜85)
電子写真感光体として表21〜23に示すものを用い、クリーニングブレードの硬度および設定(当接角および当接圧)を表21〜23に示すようにした以外は、実施例1と同様にして電子写真感光体の実機評価を行った。結果を表21〜23に示す。
(Comparative Examples 32-85)
Except that the electrophotographic photosensitive member shown in Tables 21 to 23 was used and the hardness and setting (contact angle and contact pressure) of the cleaning blade were as shown in Tables 21 to 23, the same as in Example 1 An actual evaluation of the electrophotographic photosensitive member was performed. The results are shown in Tables 21-23.

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Figure 0005127991
Figure 0005127991

Claims (8)

支持体および該支持体上に形成された感光層を有する電子写真感光体において、
該電子写真感光体の表面が、深さ0.5μm以上5μm以下かつ開口部最長径20μm以上80μm以下の複数の凹部と、該凹部以外の部分と、から形成されており、
該電子写真感光体の表面の任意の位置に一辺500μmの正方形領域を配置したとき、該一辺500μmの正方形領域における該凹部の面積が10000μm以上90000μm以下であり、該凹部以外の部分に含まれる平坦部の面積が80000μm以上240000μm以下である
ことを特徴とする電子写真感光体。
In an electrophotographic photoreceptor having a support and a photosensitive layer formed on the support,
The surface of the electrophotographic photoreceptor is formed of a plurality of recesses having a depth of 0.5 μm or more and 5 μm or less and an opening longest diameter of 20 μm or more and 80 μm or less, and a portion other than the recesses,
When placing the square area of a side 500μm at an arbitrary position of the surface of the electrophotographic photosensitive member, the area of the recess in the square area of the one side 500μm is at 10000 2 more 90000Myuemu 2 or less, contained in a portion other than the recess The electrophotographic photosensitive member is characterized in that the area of the flat portion is 80000 μm 2 or more and 240000 μm 2 or less.
前記一辺500μmの正方形領域における前記平坦部のうち一辺10μmの正方形領域を配置することができない狭小部分の面積の割合が、前記一辺500μmの正方形領域における前記平坦部の全面積に対して30%以下である請求項1に記載の電子写真感光体。   The ratio of the area of the narrow portion where the 10 μm square area cannot be arranged in the flat area in the 500 μm square area is 30% or less with respect to the total area of the flat area in the 500 μm square area. The electrophotographic photosensitive member according to claim 1. 前記電子写真感光体の表面の任意の50箇所に配置される一辺500μmの正方形領域において前記狭小部分の面積の割合をそれぞれ測定したとき、50個の測定値の標準偏差が5%以下である請求項2に記載の電子写真感光体。   When the ratio of the area of the narrow portion is measured in a square region having a side of 500 μm arranged at an arbitrary 50 locations on the surface of the electrophotographic photosensitive member, the standard deviation of 50 measured values is 5% or less. Item 3. The electrophotographic photosensitive member according to Item 2. 支持体および該支持体上に形成された感光層を有する電子写真感光体において、
該電子写真感光体の表面のうち、少なくともクリーニング部材との接触領域が、深さ0.5μm以上5μm以下かつ開口部最長径20μm以上80μm以下の複数の凹部と、該凹部以外の部分と、から形成されており、
該クリーニング部材との接触領域の任意の位置に一辺500μmの正方形領域を配置したとき、該一辺500μmの正方形領域における該凹部の面積が10000μm以上90000μm以下であり、該凹部以外の部分に含まれる平坦部の面積が80000μm以上240000μm以下である
ことを特徴とする電子写真感光体。
In an electrophotographic photoreceptor having a support and a photosensitive layer formed on the support,
Of the surface of the electrophotographic photosensitive member, at least a contact region with a cleaning member includes a plurality of recesses having a depth of 0.5 μm or more and 5 μm or less and a maximum opening diameter of 20 μm or more and 80 μm or less, and portions other than the recesses Formed,
When placing the square area of a side 500μm at an arbitrary position of the contact area between the cleaning member, the area of the recess in the square area of the one side 500μm is at 10000 2 more 90000Myuemu 2 or less, contained in a portion other than the recess The electrophotographic photosensitive member is characterized in that the area of the flat portion is 80000 μm 2 or more and 240000 μm 2 or less.
前記一辺500μmの正方形領域における前記平坦部のうち一辺10μmの正方形領域を配置することができない狭小部分の面積の割合が、前記一辺500μmの正方形領域における前記平坦部の全面積に対して30%以下である請求項4に記載の電子写真感光体。   The ratio of the area of the narrow portion where the 10 μm square area cannot be arranged in the flat area in the 500 μm square area is 30% or less with respect to the total area of the flat area in the 500 μm square area. The electrophotographic photosensitive member according to claim 4. 前記クリーニング部材との接触領域の任意の50箇所に配置される一辺500μmの正方形領域において前記狭小部分の面積の割合をそれぞれ測定したとき、50個の測定値の標準偏差が5%以下である請求項5に記載の電子写真感光体。   A standard deviation of 50 measurement values is 5% or less when the area ratio of the narrow portion is measured in each of a square region having a side of 500 μm arranged at an arbitrary 50 locations of the contact area with the cleaning member. Item 6. The electrophotographic photosensitive member according to Item 5. 請求項1〜6のいずれか1項に記載の電子写真感光体と、該電子写真感光体に接触配置されたクリーニング部材を有するクリーニング手段とを一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカートリッジ。   The electrophotographic photosensitive member according to any one of claims 1 to 6 and a cleaning unit having a cleaning member disposed in contact with the electrophotographic photosensitive member are integrally supported and detachably attached to the main body of the electrophotographic apparatus. A process cartridge characterized by being. 請求項1〜6のいずれか1項に記載の電子写真感光体、ならびに、帯電手段、露光手段、現像手段、転写手段、および、該電子写真感光体に接触配置されたクリーニング部材を有するクリーニング手段を有することを特徴とする電子写真装置。   7. The electrophotographic photosensitive member according to claim 1, and a cleaning unit comprising a charging unit, an exposure unit, a developing unit, a transfer unit, and a cleaning member disposed in contact with the electrophotographic photosensitive member. An electrophotographic apparatus comprising:
JP2012118554A 2011-05-31 2012-05-24 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus Active JP5127991B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012118554A JP5127991B1 (en) 2011-05-31 2012-05-24 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
CN201280026647.0A CN103562798B (en) 2011-05-31 2012-05-28 Electrophotographic photosensitive element, handle box and electronic photographing device
US14/117,000 US20140093281A1 (en) 2011-05-31 2012-05-28 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
PCT/JP2012/064339 WO2012165642A1 (en) 2011-05-31 2012-05-28 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
KR1020137033933A KR101576474B1 (en) 2011-05-31 2012-05-28 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
EP12792563.4A EP2715454B1 (en) 2011-05-31 2012-05-28 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011122748 2011-05-31
JP2011122748 2011-05-31
JP2012043118 2012-02-29
JP2012043118 2012-02-29
JP2012118554A JP5127991B1 (en) 2011-05-31 2012-05-24 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012234907A Division JP2013210599A (en) 2011-05-31 2012-10-24 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Publications (2)

Publication Number Publication Date
JP5127991B1 true JP5127991B1 (en) 2013-01-23
JP2013210594A JP2013210594A (en) 2013-10-10

Family

ID=47692956

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012118554A Active JP5127991B1 (en) 2011-05-31 2012-05-24 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2012234907A Pending JP2013210599A (en) 2011-05-31 2012-10-24 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012234907A Pending JP2013210599A (en) 2011-05-31 2012-10-24 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Country Status (1)

Country Link
JP (2) JP5127991B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219450A (en) * 2013-05-01 2014-11-20 キヤノン株式会社 Image forming method
US9389521B2 (en) 2014-02-21 2016-07-12 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2016218318A (en) * 2015-05-22 2016-12-22 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2017134279A (en) * 2016-01-28 2017-08-03 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic device
EP3201691A4 (en) * 2014-09-30 2018-05-30 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993203B2 (en) * 2012-02-10 2015-03-31 Mitsubishi Chemical Corporation Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus
JP2016038577A (en) 2014-08-06 2016-03-22 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographing device
JP7240124B2 (en) * 2017-10-16 2023-03-15 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP7406427B2 (en) 2020-03-26 2023-12-27 キヤノン株式会社 Electrophotographic photoreceptors, process cartridges, and electrophotographic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093518A1 (en) * 2004-03-26 2005-10-06 Canon Kabushiki Kaisha Electrophotography photosensitive body, method for producing electrophotography photosensitive body, process cartridge, and electrophotograph
JP2007233354A (en) * 2006-01-31 2007-09-13 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
WO2009014262A1 (en) * 2007-07-26 2009-01-29 Canon Kabushiki Kaisha Electrophotographic photosensitive element, process cartridge, and electrophotographic device
JP2011022578A (en) * 2009-07-20 2011-02-03 Xerox Corp Imaging member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093518A1 (en) * 2004-03-26 2005-10-06 Canon Kabushiki Kaisha Electrophotography photosensitive body, method for producing electrophotography photosensitive body, process cartridge, and electrophotograph
JP2007233354A (en) * 2006-01-31 2007-09-13 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
WO2009014262A1 (en) * 2007-07-26 2009-01-29 Canon Kabushiki Kaisha Electrophotographic photosensitive element, process cartridge, and electrophotographic device
JP2011022578A (en) * 2009-07-20 2011-02-03 Xerox Corp Imaging member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219450A (en) * 2013-05-01 2014-11-20 キヤノン株式会社 Image forming method
US9389521B2 (en) 2014-02-21 2016-07-12 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
EP3201691A4 (en) * 2014-09-30 2018-05-30 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP2016218318A (en) * 2015-05-22 2016-12-22 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2017134279A (en) * 2016-01-28 2017-08-03 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic device

Also Published As

Publication number Publication date
JP2013210594A (en) 2013-10-10
JP2013210599A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
KR101576474B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5127991B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6562804B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6403586B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
EP2175321A1 (en) Electrophotographic photosensitive element, process cartridge, and electrophotographic device
JP6704739B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5318204B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4590484B2 (en) Electrophotographic apparatus and process cartridge
JP2016038577A (en) Electrophotographic photoreceptor, process cartridge and electrophotographing device
US20210302908A1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2010026240A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP6624952B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008292573A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2010008898A (en) Electrophotographic device
JP6723790B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP6132473B2 (en) Method for producing electrophotographic photosensitive member
JP2014066789A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP7146459B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2018087874A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP4921243B2 (en) Process cartridge and electrophotographic apparatus
JP2015102676A (en) Method for processing surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor
JP2017078804A (en) Electrophotographic device and process cartridge

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 5127991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3