JP5121214B2 - Tube group thinning inspection device and inspection method - Google Patents

Tube group thinning inspection device and inspection method Download PDF

Info

Publication number
JP5121214B2
JP5121214B2 JP2006320269A JP2006320269A JP5121214B2 JP 5121214 B2 JP5121214 B2 JP 5121214B2 JP 2006320269 A JP2006320269 A JP 2006320269A JP 2006320269 A JP2006320269 A JP 2006320269A JP 5121214 B2 JP5121214 B2 JP 5121214B2
Authority
JP
Japan
Prior art keywords
probe
group
thinning
test tube
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006320269A
Other languages
Japanese (ja)
Other versions
JP2008134141A (en
Inventor
行雄 野間崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006320269A priority Critical patent/JP5121214B2/en
Publication of JP2008134141A publication Critical patent/JP2008134141A/en
Application granted granted Critical
Publication of JP5121214B2 publication Critical patent/JP5121214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波を用いて管群の検査を行う装置に係わり、特に管と管の間隔が狭く構成されたボイラなどの熱交換器管に発生した減肉などを評価するのに好適な管群減肉検査装置に関する。   The present invention relates to an apparatus for inspecting a tube group using ultrasonic waves, and is particularly suitable for evaluating a thinning generated in a heat exchanger tube such as a boiler having a narrow interval between tubes. The present invention relates to a tube group thinning inspection apparatus.

ボイラ等の熱交換器管は、外面が火炎に曝されるため外面に腐食減肉が発生する。また、停止時には内部を循環していた蒸気が水に変態するため内面にも腐食減肉が発生し、漏洩事故につながることがあるので定期検査が必要不可欠となるが管と管の間隔が狭く構成されているため検査員が近づき目視点検や超音波肉厚測定を直接行うことは困難である。そのため、従来はケーブルの先端に取り付けた超音波探触子を圧力水で熱交換器管の内部に送り込み熱交換器管の内側から肉厚測定をしている(特許文献1を参照)。   Since heat exchanger tubes such as boilers are exposed to a flame on the outer surface, corrosion thinning occurs on the outer surface. Moreover, since the steam circulating inside transforms into water when it stops, corrosion thinning may occur on the inner surface, leading to a leakage accident, so periodic inspection is indispensable, but the interval between the tubes is narrow. Since it is configured, it is difficult for an inspector to approach and directly perform visual inspection and ultrasonic thickness measurement. Therefore, conventionally, an ultrasonic probe attached to the tip of the cable is sent into the heat exchanger tube with pressure water to measure the thickness from the inside of the heat exchanger tube (see Patent Document 1).

一方、被検管の外面からラム波を送信し、減肉部からの反射信号を受信することで長距離を一括検査する装置も公開されている。例えば、特許文献2には、複数の送信子の試験体への接触状態をチェックし、そのチェック結果に基づいて受信信号に補正をかけ、補正後のデータを合成することにより、単一モードのラム波を送信したのと等価な状態を実現した超音波探傷装置が示されている。   On the other hand, an apparatus that performs a batch inspection of a long distance by transmitting a Lamb wave from the outer surface of the test tube and receiving a reflected signal from the thinned portion is also disclosed. For example, in Patent Document 2, the contact state of a plurality of transmitters to a test body is checked, the received signal is corrected based on the check result, and the corrected data is synthesized, thereby combining the single mode. An ultrasonic flaw detector that realizes a state equivalent to transmitting a Lamb wave is shown.

また、特許文献3には、被検管の外周に沿って等間隔に配置された4個の送受信子群から構成される送受信子群二対を設け、合計8個の送受信子群から一つを送信用の送受信子群として選択するとともに一つ以上を受信用の送受信子群として選択し、前記送信用および受信用の送受信子群の組合せを変えて複数回の送受信を行い、この結果得られた複数の受信信号を最低次ねじれモードが支配的になるまで足し合わせて、足し合わせた信号間の最大振幅の比から各送受信子群の接触状態に対応する補正係数を求め、この補正係数に基づいて前記複数の受信信号をそれぞれ補正し、合成して時間シフト処理を施して受信信号の方向を識別する超音波探傷装置が示されている。
特開昭63−187152号公報 特開2003−57212号公報 特開2004−347549号公報
Further, in Patent Document 3, two pairs of transmitter / receiver groups composed of four transmitter / receiver groups arranged at equal intervals along the outer periphery of the test tube are provided, one from a total of eight transmitter / receiver groups. Are selected as a transmitter / receiver group for transmission and one or more are selected as a transmitter / receiver group for transmission, and transmission / reception is performed a plurality of times by changing the combination of the transmitter / receiver group for transmission. The received multiple received signals are added until the lowest order torsion mode becomes dominant, and a correction coefficient corresponding to the contact state of each transmitter / receiver group is obtained from the ratio of the maximum amplitude between the added signals. 1 shows an ultrasonic flaw detector that corrects and combines the plurality of received signals based on the above and performs a time shift process to identify the direction of the received signal.
JP-A-63-187152 JP 2003-57212 A JP 2004-347549 A

上述した特許文献1に示されている管の自動超音波探傷システムでは、ケーブルの先端に取り付けた超音波探触子を圧力水で熱交換器管の内部に送り込むために必要となる機器(例えば、挿入軸、挿入軸移動装置、圧力水噴出ノズル、ワイャー制御装置、ケーブル収納装置、圧力水供給ポンプ、圧力水流量調整及び流れ方向制御装置等)が大掛かりとなり、さらには管の全長に亘り超音波探触子を送りながら肉厚測定する必要があるため、検査に多大な時間が掛かるという課題があった。   In the automatic ultrasonic flaw detection system for a pipe shown in Patent Document 1 described above, an apparatus (for example, a device required for sending an ultrasonic probe attached to the tip of a cable into the heat exchanger pipe with pressure water) , Insertion shaft, insertion shaft moving device, pressure water ejection nozzle, wire control device, cable storage device, pressure water supply pump, pressure water flow rate adjustment and flow direction control device, etc.), and over the entire length of the pipe Since it is necessary to measure the thickness while feeding the acoustic probe, there is a problem that it takes a long time for the inspection.

また、上述した特許文献2では、単一モードラム波を試験体に送信することが重要であり、試験体に対する接触状態が複数の励振デバイス間で全て同じにする必要があるとしたうえで、その具体例は示されず、この代案として、送信用として選択された送受信子群から受信用として選択された送受信子群へ直接伝播して受信されたラム波の振幅レベルから求めた送受信子群の接触面におけるラム波送受信効率で各受信データを補正することで送受信子群の接触状態が均一である場合の受信データと等価な受信データを得る方法が示されている。   Further, in Patent Document 2 described above, it is important to transmit a single-mode Lamb wave to the test body, and the contact state with respect to the test body needs to be the same among a plurality of excitation devices. The specific example is not shown, and as an alternative, the transceiver group obtained from the amplitude level of the Lamb wave directly propagated from the transceiver group selected for transmission to the transceiver group selected for reception is received. There is shown a method of obtaining reception data equivalent to reception data when the contact state of the transmitter / receiver group is uniform by correcting each reception data with the Lamb wave transmission / reception efficiency on the contact surface.

ここで、送受信子群の接触面におけるラム波送受信効率の算出に用いられているラム波は2次元の波動伝播形態で伝播・受信されたものであり、これに対して補正される各受信データは3次元の波動伝播形態で伝播・受信されたラム波であるので補正誤差が大きく成ると言う課題があった。   Here, the Lamb wave used for calculating the Lamb wave transmission / reception efficiency on the contact surface of the transceiver group is propagated and received in a two-dimensional wave propagation form, and each received data corrected for this is received. Has a problem that the correction error increases because it is a Lamb wave propagated and received in a three-dimensional wave propagation form.

また、被検管の端面で反射したラム波の振幅レベルから求めた送受信子群の接触面におけるラム波送受信効率で各受信データを補正し、送受信子群の接触状態が均一である場合の受信データと等価な受信データを得ようとしているが、検査領域内に管端がない場合の配慮がなく、後述するように管端が存在しないボイラ熱交換器管の管群検査には適用できないと言う課題がある。   In addition, each received data is corrected by the Lamb wave transmission / reception efficiency at the contact surface of the transceiver group obtained from the amplitude level of the Lamb wave reflected from the end face of the test tube, and reception when the contact state of the transceiver group is uniform Received data equivalent to the data, but there is no consideration when there is no pipe end in the inspection area, and it cannot be applied to the tube group inspection of boiler heat exchanger tubes that do not have a pipe end as described later. There is a problem to say.

また、被検管には多数の減肉が発生することがあるが、このような場合、上述した特許文献3に示されている装置では減肉からの受信信号の方向を識別できない場合がある。この例を図8、図9を用いて説明する。なお説明に用いる符号、称号は特許文献3と統一しているので同じ意味をもつ。図8は特許文献3に係る超音波探傷装置の一部分を示し、4個の送受信子群4a〜4dで構成される送受信子群4Aの左に減肉2a1と減肉2a2が、また4個の送受信子群4e〜4hで構成される送受信子群4Bの右に減肉2b1と減肉2b2が管に存在している場合を想定している。ここで、送受信子群4Aと送受信子群4Bの間隔L3、送受信子群4Aと減肉2a1の間隔L2、減肉2a1と減肉2a2の間隔L1、送受信子群4Bと減肉2b1の間隔L4、減肉2b1と減肉2b2の間隔L5は等しいものと仮定している。   In addition, many thinnings may occur in the test tube. In such a case, the apparatus shown in Patent Document 3 described above may not be able to identify the direction of the received signal from the thinning. . This example will be described with reference to FIGS. In addition, since the code | symbol and title used for description are united with patent document 3, it has the same meaning. FIG. 8 shows a part of the ultrasonic flaw detector according to Patent Document 3, and a thinning 2a1 and a thinning 2a2 are provided on the left of a transceiver group 4A composed of four transceiver groups 4a to 4d. It is assumed that the thinning 2b1 and the thinning 2b2 are present in the pipe to the right of the transceiver group 4B composed of the transceiver groups 4e to 4h. Here, an interval L3 between the transceiver group 4A and the transceiver group 4B, an interval L2 between the transceiver group 4A and the thinning 2a1, an interval L1 between the thinning 2a1 and the thinning 2a2, and an interval L4 between the transceiver group 4B and the thinning 2b1. The interval L5 between the thinning 2b1 and the thinning 2b2 is assumed to be equal.

以上のような設定において、特許文献3の図3に示されているステップ115の処理によって得られるであろうと推察されるデータAA’、BB’、CC’、DD’は図9に示す概念となり、データAA’では減肉2a2と減肉2b1の受信信号が重なり、データBB’では減肉2a1と減肉2b1および減肉2a2と減肉2b2の受信信号が、データCC’では減肉2a1と減肉2b1および減肉2a2と減肉2b2の受信信号が、データDD’では減肉2a1と減肉2b2の受信信号がそれぞれ重なり合うため、ステップ116においてデータAA’、BB’、CC’、DD’に対して時間シフト処理を行っても重なり合った減肉信号からは各減肉の方向を識別することは困難である。   In the above settings, the data AA ′, BB ′, CC ′, DD ′, which are assumed to be obtained by the process of step 115 shown in FIG. 3 of Patent Document 3, are the concept shown in FIG. In the data AA ′, the reception signals of the thinning 2a2 and the thinning 2b1 overlap, in the data BB ′ the reception signals of the thinning 2a1 and the thinning 2b1, and the thinning 2a2 and the thinning 2b2, and in the data CC ′, the thinning 2a1. Since the received signals of the thinning 2b1 and the thinning 2a2 and the thinning 2b2 are overlapped with the reception signals of the thinning 2a1 and the thinning 2b2 in the data DD ′, respectively, the data AA ′, BB ′, CC ′, DD ′ are overlapped in the step 116. However, even if the time shift process is performed, it is difficult to identify the direction of each thinning from the overlapped thinning signals.

そこで本発明の課題は、大規模な装置を使わなくても熱交換器管の検査が短時間ででき、また熱交換器管に発生する減肉を高精度で評価できる管群減肉検査装置と検査方法を提供することである。   Therefore, an object of the present invention is to provide a tube group thinning inspection apparatus that can inspect heat exchanger pipes in a short time without using a large-scale apparatus and can accurately evaluate the thinning generated in the heat exchanger pipes. And provide inspection methods.

上記本発明の課題は、次の構成によって解決される。   The problem of the present invention is solved by the following configuration.

請求項1記載の発明は、被検管(1)の軸芯方向に伝播する複数の周波数のうちから適宜選択した特定の周波数の水平偏波の横波を送信し、その反射波を受信する偶数個の探触子ユニット(27a〜27d)からなる甲探触子群と該甲探触子群を構成する探触子数と同数の探触子ユニット(28a〜28d)からなる乙探触子群を内包し、被検管(1)の外表面に取り付けられるホルダ(13)と、甲乙一対の探触子群をそれぞれ構成する偶数個の探触子ユニット(27a〜27d、28a〜28d)から送信される水平偏波の横波を被検管(1)に伝達するために、前記探触子ユニット(27a〜27d、28a〜28d)と被検管(1)の間に設けられる音響結合部材(33a〜33d、34a〜34d)と、甲乙一対の探触子群からそれぞれ送信された被検管(1)の前記水平偏波の横波を反射させるために、ホルダ(13)の両端にそれぞれ設けた感度補償試験体(15a、15b)と、上記被検管(1)を伝播する送受信信号のうち外面変位を伴う信号を選択的に吸収するための振動吸収部材(17)と、加圧流体の流体圧によって甲乙一対の探触子群を構成する各探触子ユニット(27a〜27d、28a〜28d)を単独でそれぞれ被検管(1)の外表面に押し付けるための圧着手段(A)と、甲探触子群を構成する偶数個の探触子ユニット(27a〜27d)に前記特定の周波数の励振信号を送る励振信号発生部(19)と、励振信号発生部(19)から送られてくる前記特定の周波数の励振信号を180度位相制御する励振信号位相制御部(21)と、励振信号位相制御部(21)から送られてくる前記特定の周波数の信号にP/C時間(C:被検管を伝播する水平偏波の横波の速度(m/sec)、P:甲乙一対の探触子群の間隔(m))の遅延を与え、乙探触子群を構成する偶数個の探触子ユニット(28a〜28d)に前記周波数の励振信号を送るための励振信号遅延制御部(20)と、甲乙一対の探触子群をそれぞれ構成する偶数個の探触子ユニット(27a〜27d、28a〜28d)でそれぞれ受信した感度補償試験体(15a、15b)からの少なくとも一方からの反射信号を参照して加圧流体圧を制御して圧着手段(A)に送信する機能と、甲の探触子群で受信した信号と乙の探触子群で受信した信号とを加算して得られた前記周波数の受信信号に基づき、予め作成されている減肉評価用のデータベース(25)を参照して被検管(1)に存在する減肉の評価を行い、表示部(26)に表す機能を有する受信信号処理部(22)とを有する管群減肉検査装置である。   The invention according to claim 1 is an even number for transmitting a horizontally polarized horizontal wave of a specific frequency appropriately selected from a plurality of frequencies propagating in the axial direction of the test tube (1) and receiving the reflected wave. A former probe group composed of a single probe unit (27a to 27d) and a second probe composed of the same number of probe units (28a to 28d) as the number of probes constituting the former probe group. A holder (13) that encloses the group and is attached to the outer surface of the test tube (1), and an even number of probe units (27a to 27d, 28a to 28d) that respectively constitute the pair of probes B and B The acoustic coupling provided between the probe units (27a to 27d, 28a to 28d) and the test tube (1) in order to transmit the horizontally polarized transverse waves transmitted from the test tube (1) to the test tube (1) From the members (33a to 33d, 34a to 34d) and the pair of probes In order to reflect the horizontally polarized transverse wave of the test tube (1) transmitted to each of the test tubes (1), sensitivity compensation test bodies (15a, 15b) provided at both ends of the holder (13), and the test tube ( 1) A vibration absorbing member (17) for selectively absorbing a signal accompanied by an outer surface displacement among transmission / reception signals propagating in the above (1), and each probe constituting the pair of probes A and B by the fluid pressure of the pressurized fluid Crimping means (A) for individually pressing the child units (27a to 27d, 28a to 28d) against the outer surface of the test tube (1), and an even number of probe units constituting the upper probe group (27a to 27d) an excitation signal generator (19) for sending the excitation signal of the specific frequency, and excitation for phase-controlling the excitation signal of the specific frequency sent from the excitation signal generator (19) by 180 degrees Signal phase controller (21) and excitation signal The signal of the specific frequency sent from the phase control unit (21) includes the P / C time (C: the velocity of the transverse wave of the horizontally polarized wave propagating through the test tube (m / sec), P: the pair of probes B An excitation signal delay control unit for giving a delay of the interval (m) between the transducer groups and sending an excitation signal of the frequency to the even number of probe units (28a to 28d) constituting the transducer group (b). 20) and at least one of the sensitivity compensation test bodies (15a, 15b) respectively received by the even number of probe units (27a-27d, 28a-28d) constituting the pair of probes A and B respectively. The function of controlling the pressurized fluid pressure with reference to the reflected signal and transmitting it to the crimping means (A) is added to the signal received by the former probe group and the signal received by the second probe group. Based on the received signal of the frequency obtained in the Tube group thinning having a received signal processing unit (22) having a function represented in the display unit (26) by evaluating the thinning existing in the test tube (1) with reference to the database (25) Inspection equipment.

請求項2記載の発明は、甲乙一対の探触子群を内包したホルダ(13)は、分割可能に構成され、被検管(1)の任意の位置に取り付け自在であり、甲乙一対の探触子群を構成する各探触子ユニット(27a〜27d、28a〜28d)は、被検管(1)の外周線上の等間隔位置から同時かつ同位相で入射する水平偏波の横波を送信する振動素子(31a〜31d、32a〜32d)をそれぞれ備えた請求項1に記載の管群減肉検査装置である。   According to the second aspect of the present invention, the holder (13) including the pair of probes B and B is configured to be separable and can be attached to any position of the test tube (1). Each probe unit (27a-27d, 28a-28d) constituting the transducer group transmits horizontal waves of horizontal polarization incident simultaneously and in the same phase from the equidistant positions on the outer circumference of the test tube (1). It is a pipe group thinning inspection apparatus of Claim 1 provided with the vibration element (31a-31d, 32a-32d) to perform, respectively.

請求項3記載の発明は、音響結合部材(33a〜33d、34a〜34d)は、甲乙一対の探触子群を構成する全ての探触子ユニット(27a〜27d、28a〜28d)の被検管(1)に接する側に設けられ、被検管(1)の表面凹凸状態に応じてなじみ易い材質に交換可能な構成であり、その音響インピーダンス値が探触子ユニット(27a〜27d、28a〜28d)を構成する振動素子(31a〜31d、32a〜32d)および被検管(1)の音響インピーダンス値に近似している請求項1に記載の管群減肉検査装置である。   According to a third aspect of the present invention, the acoustic coupling members (33a to 33d, 34a to 34d) are tested for all the probe units (27a to 27d, 28a to 28d) that constitute the pair of probes B and B. It is provided on the side in contact with the tube (1), and can be replaced with a material that can be easily adapted according to the surface irregularity state of the test tube (1), and its acoustic impedance value is the probe unit (27a to 27d, 28a). It is a pipe group thinning inspection apparatus of Claim 1 which approximates the acoustic impedance value of the vibration element (31a-31d, 32a-32d) which comprises -28d), and a test tube (1).

請求項4記載の発明は、振動吸収部材(17)は、被検管(1)の外表面と直接接する弾性体(35)を備え、分割可能な構成であり、被検管(1)の任意の位置に取り付け自在である請求項1に記載の管群減肉検査装置である。   According to a fourth aspect of the present invention, the vibration absorbing member (17) includes an elastic body (35) that is in direct contact with the outer surface of the test tube (1). 2. The tube group thinning inspection apparatus according to claim 1, which can be attached at an arbitrary position.

請求項5記載の発明は、圧着手段(A)は、圧力流体を生成する圧力流体発生部(24)と、該圧力流体の圧力を受信信号処理部(22)からの制御信号によって制御する流体圧制御部(23)と、ホルダ(13)内に設けたシリンダ(11a〜11d、12a〜12d)とを備え、該シリンダ(11a〜11d、12a〜12d)が振動素子(31a〜31d、32a〜32d)を被検管(1)の表面へ押圧するピストンの機能を備えている請求項1に記載の管群減肉検査装置である。   According to the fifth aspect of the present invention, the pressure-bonding means (A) includes a pressure fluid generator (24) that generates a pressure fluid, and a fluid that controls the pressure of the pressure fluid by a control signal from the reception signal processor (22). A pressure control unit (23) and cylinders (11a to 11d, 12a to 12d) provided in the holder (13) are provided, and the cylinders (11a to 11d, 12a to 12d) are vibration elements (31a to 31d, 32a). It is a pipe group thinning inspection apparatus of Claim 1 provided with the function of the piston which presses -32d) to the surface of a test tube (1).

請求項6記載の発明は、励振信号遅延制御部(20)は、励振信号位相制御部(21)から送られてくる励振信号にP/C時間(C:被検管(1)を伝播する水平偏波の横波の速度(m/sec)、P:甲乙一対の探触子群の間隔(m))の遅延を与えて乙探触子群を構成する探触子ユニット(28a〜28d)に送り、受信信号処理部(22)が、甲探触子群を構成する探触子ユニット(27a〜27d)で受信した信号と乙探触子群を構成する探触子ユニット(28a〜28d)で受信した信号をP/C時間だけ時間シフトさせた信号として加算する機能を有することを特徴とする請求項1に記載の管群減肉検査装置である。 According to the sixth aspect of the present invention, the excitation signal delay control unit (20) propagates the P / C time (C: test tube (1)) to the excitation signal sent from the excitation signal phase control unit (21). Probe units (28a to 28d) constituting the probe group by giving a delay of the horizontal wave velocity (m / sec) of the horizontally polarized wave, P: the interval (m) between the pair of probe pairs. the feed, the reception signal processing unit (22), probe unit constituting the signal and Party B probe group that has been received by the probe unit constituting Kinoesagu probe group (27a-27d) (28a to 28d 2. The tube group thinning inspection apparatus according to claim 1, which has a function of adding the signal received in step 1) as a signal shifted in time by P / C time .

請求項7記載の発明は、データベース(25)は、特定の周波数における受信信号の振幅比をパラメータとした減肉径と深さの比率、および特定の周波数における受信信号の振幅と減肉位置をパラメータとする欠損率の相関関係とを示すデータを備えている請求項1に記載の管群減肉検査装置である。   According to the seventh aspect of the present invention, the database (25) includes the ratio of the thinning diameter and the depth with the amplitude ratio of the received signal at the specific frequency as a parameter, and the amplitude and the thinning position of the received signal at the specific frequency. The tube group thinning inspection apparatus according to claim 1, further comprising data indicating a correlation of a defect rate as a parameter.

請求項記載の発明は、請求項1記載の管群減肉検査装置の甲探触子群の探触子ユニット(27a〜27d)からの送信信号を被検管(1)の減肉位置から反射して甲探触子群の探触子ユニット(27a〜27d)で受信させ、甲探触子群の探触子ユニット(27a〜27d)からの送信信号を乙探触子群の探触子ユニット(28a〜28d)でP/C時間(C:被検管を伝播する水平偏波の横波の速度(m/sec)、P:甲乙一対の探触子群の間隔(m))だけ遅延させて受信させ、甲探触子群の探触子ユニット(27a〜27d)で受信した被検管(1)の減肉位置から反射した信号に乙探触子群の探触子ユニット(28a〜28d)で受した前記信号をP/C時間だけ時間シフトさせた信号として加算して減肉位置からの高次モード波の振幅を1以下とし、最低次ねじれモード波の受信信号の振幅を2倍として、予め作成されている減肉評価用のデータベース(25)を参照して被検管(1)の減肉の評価をすることを特徴とする管群減肉検査方法である。 According to the eighth aspect of the present invention , the transmission signal from the probe unit (27a to 27d) of the upper probe group of the tube group thinning inspection apparatus according to the first aspect is used as the thinning position of the test tube (1). Is reflected by the probe unit (27a to 27d) of the upper probe group, and a transmission signal from the probe unit (27a to 27d) of the upper probe group is detected by the probe unit group. P / C time in the transducer unit (28a to 28d) (C: velocity of the transverse wave of the horizontally polarized wave propagating through the test tube (m / sec), P: distance between the probe group of the pair A and B (m)) The probe unit of the Otsu probe group is reflected on the signal reflected from the thinning position of the test tube (1) received by the probe unit (27a to 27d) of the instep probe group. order mode from the thinning position the signal received at (28a to 28d) by adding a signal obtained by only a time shift P / C time The amplitude of the wave is set to 1 or less, the amplitude of the received signal of the lowest-order torsional mode wave is doubled, and the thickness reduction of the test tube (1) is performed with reference to the database (25) prepared in advance for thickness reduction evaluation This is a tube group thinning inspection method characterized by

請求項記載の発明は、甲乙一対の探触子群をそれぞれ構成する偶数個の探触子ユニット(27a〜27d、28a〜28d)から被検管(1)の軸芯方向に伝播する特定の周波数の水平偏波の横波をそれぞれ送信し、反射信号を参照する側の感度補償試験体(15b)からの反射波を探触子ユニット(27a〜27d、28a〜28d)で受信し、該反射波を参照して圧着手段(A)による探触子ユニット(27a〜27d、28a〜28d)の被検管(1)方向への押付け流体圧を順次補正して探触子ユニット(27a〜27d、28a〜28d)で発生させ、被検管(1)に伝達させる送信信号の伝達効率を制御して、被検管(1)を伝播する送信信号の強度を互いに均一にすることを特徴とする請求項8記載の管群減肉検査方法である。 According to the ninth aspect of the present invention, the specific propagating in the axial direction of the test tube (1) from the even number of probe units (27a to 27d, 28a to 28d) respectively constituting the pair of probes B and B. Each of the horizontal waves of the horizontally polarized wave having the above frequency is transmitted, and the reflected waves from the sensitivity compensation test body (15b) on the side of referring to the reflected signal are received by the probe units (27a to 27d, 28a to 28d), The probe unit (27a to 27d) is corrected by sequentially correcting the pressing fluid pressure of the probe units (27a to 27d, 28a to 28d) in the direction of the test tube (1) with reference to the reflected wave (A). 27d, characterized in that it is generated by 28a to 28d), by controlling the transmission efficiency of the transmission signal to be transmitted to the test tube (1), to each other uniform intensity of transmission signals propagating through the test tube (1) tube bundle thinning inspection method der according to claim 8, .

請求項1、6、8記載の発明によれば、本発明の管群減肉検査装置は、大規模な装置を使わなくても熱交換器管などの被検管1の減肉検査が短時間でできるようになった。また被検管1に発生する減肉を高精度で評価できるようになった。また、甲探触子群から送信される水平偏波の横波のうち、乙探触子群の方向に進む信号は位相制御され、かつP/C時間遅延送信される乙探触子群からの送信信号と干渉を生じ相殺され、甲探触子群から送信される水平偏波の横波は反乙探触子群の方向(180度反対側の方向)のみに伝播するので受信信号が探触子ユニット27a〜27d、28a〜28dの左右どちらの方向からのものであるかを識別する必要がない。そのため左方向からのノイズと識別してノイズ処理するという容易でない処理を行う必要が無く、被検管1の減肉の検査精度が向上する。さらに、被検管1の任意の位置に取り付けた感度補償試験体15a,15bからの受信信号が得られるので、管端がない被検管1でも減肉検査できる。 According to the first, sixth, and eighth aspects of the present invention, the tube group thinning inspection apparatus according to the present invention can shorten the thinning inspection of the test tube 1 such as a heat exchanger tube without using a large-scale apparatus. I can do it in time. Also Tsu name to the thinning that occurs test tube 1 can be evaluated with high accuracy. In addition, among the horizontally polarized waves transmitted from the former probe group, the signals traveling in the direction of the second probe group are phase-controlled and transmitted from the second probe group that is transmitted with a P / C time delay. Interference with the transmitted signal cancels out, and the horizontally polarized waves transmitted from the Instep probe group propagate only in the direction of the anti-B probe group (direction opposite to 180 degrees), so the received signal is probed. It is not necessary to identify the left and right directions of the child units 27a to 27d and 28a to 28d. Therefore, it is not necessary to perform an easy process of identifying the noise from the left direction and performing noise processing, and the inspection accuracy of the thinning of the test tube 1 is improved. Further, since the received signals from the sensitivity compensation test bodies 15a and 15b attached to arbitrary positions of the test tube 1 can be obtained, the thinning inspection can be performed even on the test tube 1 having no tube end.

請求項2に記載の発明によれば、分割可能なホルダ13を被検管1の任意の位置に取り付け自在であるので、被検管1に管外からの取付が可能となり、取り付け時間が短縮でき、管の切断なども不要である。(もし分割していなければ管を切断して、一方をよけておいて管に差し込むことになる。)また、各分割ホルダ13にそれぞれ設けられた甲探触子群と乙探触子群の被検管1への取付位置が被検管1の任意の位置に取り付け自在である。 According to the second aspect of the present invention, the separable holder 13 can be attached to any position of the test tube 1, so that it can be attached to the test tube 1 from the outside of the tube, and the installation time is shortened. It is possible to cut the tube. (If it is not divided, the tube is cut and one side is separated and inserted into the tube.) In addition, the former probe group and the second probe group respectively provided in each divided holder 13 mounted position of the subject pipe 1 of Ru freely der attached to any position of the test tube 1.

請求項3記載の発明によれば、音響結合部材33a〜33d、34a〜34dが甲乙一対の探触子群を構成する全ての探触子ユニット27a〜27d、28a〜28dの前面に位置する被検管1の外表面側に具備され、被検管1の表面凹凸状態に応じてなじみ易い材料のものと交換を可能としているので、探触子ユニット27a〜27d、28a〜28dの被検管1に対する接触状態が全ての探触子ユニット27a〜27d、28a〜28d間で同一とすることができ、また音響結合部材33a〜33d、34a〜34dの音響インピーダンス値は探触子ユニット27a〜27d、28a〜28dを構成する振動素子31a〜31d、32a〜32dおよび被検管1の音響インピーダンス値に近似しているので探触子ユニット27a〜27d、28a〜28dから送信される電気機械変換された水平偏波の横波を効率良く被検管1に伝達できる。   According to the third aspect of the present invention, the acoustic coupling members 33a to 33d and 34a to 34d are covered on the front surface of all the probe units 27a to 27d and 28a to 28d constituting the pair of probes A and B. Since the test tube 1 is provided on the outer surface side and can be exchanged with a material that is easily adapted to the surface unevenness of the test tube 1, the test tubes of the probe units 27a to 27d and 28a to 28d 1 can be made the same between all the probe units 27a to 27d and 28a to 28d, and the acoustic impedance values of the acoustic coupling members 33a to 33d and 34a to 34d are the probe units 27a to 27d. 28a to 28d, the transducer units 27a to 27d are approximated to the acoustic impedance values of the vibrating elements 31a to 31d, 32a to 32d and the test tube 1. The electromechanical converted shear horizontal polarization is transmitted from 28a~28d efficiently transferred to the test tube 1.

請求項4記載の発明によれば、振動吸収部材17は、分割可能な構成であるので被検管1の任意の位置に取り付け自在である。また、振動吸収部材17に設けられる弾性体35は被検管1の外面変位を伴いながら被検管1を伝播する高次モード信号を吸収・減衰させ、また被検管1の外面変位を伴わずに被検管1を伝播する最低次ねじれモード信号を、ほぼ減衰なく通過させるので受信信号のSN比を従来より向上させる効果がある。   According to the fourth aspect of the present invention, the vibration absorbing member 17 can be attached to an arbitrary position of the test tube 1 because the vibration absorbing member 17 can be divided. Further, the elastic body 35 provided in the vibration absorbing member 17 absorbs and attenuates higher-order mode signals propagating through the test tube 1 while accompanying the outer surface displacement of the test tube 1, and also involves the outer surface displacement of the test tube 1. Therefore, since the lowest-order torsional mode signal propagating through the test tube 1 is allowed to pass through almost without attenuation, there is an effect of improving the SN ratio of the received signal as compared with the conventional technique.

また、乙探触子群を構成する探触子ユニット28a〜28dで受信した信号をP/C時間分シフトして甲探触子群を構成する探触子ユニット27a〜27dで受信した信号と加算する受信信号処理部の機能は高次モード(最低時ねじれモード以外)の受信信号を相殺できるのでSN比の高い検査結果を表示部に表すことができる作用がある。   Further, the signals received by the probe units 27a to 27d constituting the upper probe group by shifting the signals received by the probe units 28a to 28d constituting the second probe group by P / C time. The function of the received signal processing unit to add can cancel the received signals in the higher order mode (other than the lowest torsional mode), so that the test result with a high S / N ratio can be displayed on the display unit.

請求項5、記載の発明によれば、圧着手段Aにより被験管1の外表面への各探触子ユニット27a〜27d、28a〜28dを押し付けている流体圧(振動素子31a〜31d、32a〜32dの被験管1の外表面への押し付け強度)を制御することで感度補償試験体15a、15bからの反射信号レベルが同一となるので、各々の探触子ユニット27a〜27d、28a〜28dから送信される水平偏波の横波を被検管1に均一強度で伝達できる。 According to the inventions of claims 5 and 9 , fluid pressure (vibration elements 31a to 31d, 32a) pressing the probe units 27a to 27d and 28a to 28d against the outer surface of the test tube 1 by the crimping means A The intensity of the reflected signal from the sensitivity compensation test bodies 15a and 15b becomes the same by controlling the intensity of pressing to the outer surface of the test tube 1 of -32d, so that each of the probe units 27a-27d, 28a-28d It is possible to transmit a horizontally polarized transverse wave transmitted from 1 to the test tube 1 with uniform intensity.

請求項7記載の発明によれば、データベース25は特定の周波数における受信信号の振幅比をパラメータとした減肉径と深さの比率、および特定の周波数における受信信号の振幅と減肉位置をパラメータとする欠損率の相関関係とを示すので、受信信号処理部22が、探触子ユニット27a〜27dおよび探触子ユニット28a〜28dを例えば、40KHzと120KHzの特定周波数で励振することによって得られる受信信号を基にデータベース25を参照して、被検管1の減肉評価を行うことができる。   According to the seventh aspect of the present invention, the database 25 sets the ratio of the thinning diameter and the depth using the amplitude ratio of the received signal at a specific frequency as a parameter, and the amplitude and the thinning position of the received signal at a specific frequency as parameters. The reception signal processing unit 22 is obtained by exciting the probe units 27a to 27d and the probe units 28a to 28d at specific frequencies of 40 KHz and 120 KHz, for example. The thinning evaluation of the test tube 1 can be performed with reference to the database 25 based on the received signal.

本発明の実施の形態に係わる管群減肉検査装置について図面を参照しながら説明する。 図1は本発明の実施の形態に係わる管群減肉検査装置の構成を示す図である。図2は図1の管群減肉検査装置の探触子群の詳細構成を示す図であり、図2(a)は甲探触子群の断面図であり、図2(b)は乙探触子群の断面図である。また、図3は図1の管群減肉検査装置の振動吸収部材17の構成を示す断面図である。   A tube group thinning inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a tube group thinning inspection apparatus according to an embodiment of the present invention. 2 is a diagram showing a detailed configuration of the probe group of the tube group thinning inspection apparatus of FIG. 1, FIG. 2 (a) is a sectional view of the former probe group, and FIG. It is sectional drawing of a probe group. 3 is a cross-sectional view showing the configuration of the vibration absorbing member 17 of the tube group thinning inspection apparatus of FIG.

図1において、外径60.5mm、肉厚3.9mmの熱交換器管1は全長20mにもおよぶため、短い管同士を突き合わせ溶接2で継ぎ足し、曲がり部5を有している。そして、熱交換器管1の両端には管寄せ3a、3bが隅肉溶接4a、4bによって取り付けられている。また、熱交換器管1には減肉6が存在している。   In FIG. 1, the heat exchanger tube 1 having an outer diameter of 60.5 mm and a wall thickness of 3.9 mm has a total length of 20 m, and therefore, short tubes are joined together by butt welding 2 and have a bent portion 5. The headers 3a and 3b are attached to both ends of the heat exchanger tube 1 by fillet welds 4a and 4b. Further, a thinning 6 exists in the heat exchanger tube 1.

このような構造の熱交換器管1の外面に4個の探触子ユニット27a、27b、27c、27dで構成した甲探触子群と4個の探触子ユニット28a、28b、28c、28dで構成した乙探触子群を内包した2分割された帯状のホルダ13が熱交換器管1の外周に巻かれてホルダ13の端部同時が4本のボルト14によって任意の位置に取り付けられている。   On the outer surface of the heat exchanger tube 1 having such a structure, a group of upper probes composed of four probe units 27a, 27b, 27c, 27d and four probe units 28a, 28b, 28c, 28d. A band-shaped holder 13 that is divided into two and includes a group of OT probes configured as described above is wound around the outer periphery of the heat exchanger tube 1, and the end of the holder 13 is attached at an arbitrary position by four bolts 14. ing.

ホルダ13内の前記各探触子ユニット27a〜27d、28a〜28d内にはそれぞれシリンダ11a〜11d、12a〜12dを備えている。該シリンダ11a〜11d、12a〜12dは、探触子ユニット27a〜27d、28a〜28dに組み込まれた振動素子31a〜31d、32a〜32dをそれぞれ被検管1の外表面へ押圧するピストンの機能を備えている。   Cylinders 11a to 11d and 12a to 12d are provided in the probe units 27a to 27d and 28a to 28d in the holder 13, respectively. The cylinders 11a to 11d and 12a to 12d function as pistons that press the vibration elements 31a to 31d and 32a to 32d incorporated in the probe units 27a to 27d and 28a to 28d to the outer surface of the test tube 1, respectively. It has.

そして、ホルダ13の取付部の両側の熱交換器管1の外面には2分割された感度補償試験体15aと感度補償試験体15bがそれぞれ4本のボルト16a、ボルト16bによって取り付けられている。   And the sensitivity compensation test body 15a and the sensitivity compensation test body 15b divided into two are attached to the outer surface of the heat exchanger tube 1 on both sides of the attachment portion of the holder 13 by four bolts 16a and 16b, respectively.

さらに、振動吸収部材17が4本のボルト18によって熱交換器管1の外面に取り付けられており、該振動吸収部材17に内側で熱交換器管1の外面に接する位置に設けた弾性ゴム35は、熱交換器管1の外面変位を伴いながら熱交換器管1を伝播する高次モード信号を吸収・減衰させ、また熱交換器管1の外面変位を伴わず熱交換器管1を伝播する最低次ねじれモード信号を、ほぼ減衰なく通過させる効果がある。なお、弾性ゴム35はシリコーンを主原料とするゲル状素材から得られたものが好ましい。   Further, the vibration absorbing member 17 is attached to the outer surface of the heat exchanger tube 1 by four bolts 18, and an elastic rubber 35 provided at a position in contact with the outer surface of the heat exchanger tube 1 inside the vibration absorbing member 17. Absorbs and attenuates higher-order mode signals propagating through the heat exchanger tube 1 with the outer surface displacement of the heat exchanger tube 1, and propagates through the heat exchanger tube 1 without the outer surface displacement of the heat exchanger tube 1. The lowest-order torsional mode signal to be transmitted is effectively passed without attenuation. The elastic rubber 35 is preferably obtained from a gel material made mainly of silicone.

励振信号発生部19には甲探触子群を構成する4個の探触子ユニット27a〜27dが直接かつ並列に接続されているので4個の探触子ユニット27a〜27dを同時かつ同位相で励振させることができる。一方、乙探触子群を構成する4個の探触子ユニット28a〜28dは、それぞれが互いに並列に接続され、励振信号遅延制御部20と励振信号位相制御部21を介して励振信号発生部19と接続している。前記励振信号遅延制御部20と励振信号位相制御部21は乙探触子群の4個の探触子ユニット28a〜28dに対して位相制御と遅延制御を加え、同時かつ同位相で励振をさせることができる。なお、乙探触子群を構成する探触子ユニット28a〜28dに極性が反転したものを採用すれば、励振信号位相制御部21を省略しても同じ効果が得られる。   Since the four probe units 27a to 27d constituting the upper probe group are connected directly and in parallel to the excitation signal generator 19, the four probe units 27a to 27d are simultaneously and in phase. Can be excited. On the other hand, the four probe units 28a to 28d constituting the second probe group are connected in parallel to each other, and an excitation signal generator is provided via the excitation signal delay controller 20 and the excitation signal phase controller 21. 19 is connected. The excitation signal delay control unit 20 and the excitation signal phase control unit 21 apply phase control and delay control to the four probe units 28a to 28d of the second probe group, and excite them simultaneously and in the same phase. be able to. In addition, if what reverse polarity is employ | adopted for the probe units 28a-28d which comprise the Otsu probe group, even if the excitation signal phase control part 21 is abbreviate | omitted, the same effect will be acquired.

受信信号処理部22は甲探触子群を構成する探触子ユニット27a〜27dのそれぞれが個別に受信した感度補償試験体15bからの反射信号と、乙探触子群を構成する探触子ユニット28a〜28dのそれぞれが個別に受信した感度補償試験体15bからの反射信号を受けて、加圧流体発生部24で生成した空気圧を制御する信号を流体圧制御部23に送るものである。   The received signal processing unit 22 receives the reflected signal from the sensitivity compensation test body 15b individually received by each of the probe units 27a to 27d constituting the upper probe group and the probe constituting the second probe group. Each of the units 28 a to 28 d receives the reflection signal from the sensitivity compensation test body 15 b received individually, and sends a signal for controlling the air pressure generated by the pressurized fluid generator 24 to the fluid pressure controller 23.

流体圧制御部23は受信信号処理部22から授かった各探触子ユニット27a〜27d、28a〜28d毎の制御信号によって加圧流体発生部24からの空気圧を制御し、探触子ユニット27a〜27dに収まっているシリンダ11a、11b、11c、11dおよび探触子ユニット28a〜28dに収まっているシリンダ12a、12b、12c、12dに送ることで探触子ユニット27a〜27dおよび探触子ユニット28a〜28dの熱交換器管1に対する圧着力をそれぞれ独立制御することができる。   The fluid pressure control unit 23 controls the air pressure from the pressurized fluid generating unit 24 according to the control signal for each of the probe units 27a to 27d and 28a to 28d received from the reception signal processing unit 22, and the probe units 27a to 27d. The probe units 27a to 27d and the probe unit 28a are sent to the cylinders 12a, 12b, 12c and 12d contained in the cylinders 11a, 11b, 11c and 11d and the probe units 28a to 28d contained in the cylinder 27a. The crimping force on the heat exchanger tube 1 of ~ 28d can be independently controlled.

さらに、受信信号処理部22は甲探触子群を構成している探触子ユニット27a〜27dで受信した信号乙探触子群を構成している探触子ユニット28a〜28dで受信した信号と加算することができる。そのうえ、受信信号処理部22は探触子ユニット27a〜27dおよび探触子ユニット28a〜28dを従来から管群減肉検査用に常用されている40KHzと120KHzの周波数で励振することによって得られる受信信号を基にデータベース25を参照して減肉評価を行う機能を有する。 Further, the reception signal processing unit 22 receives the signals received by the probe units 27a to 27d constituting the upper probe group and the probe units 28a to 28d constituting the second probe group. Can be added to the signal. In addition, the reception signal processing unit 22 receives the probe units 27a to 27d and the probe units 28a to 28d by exciting them at frequencies of 40 KHz and 120 KHz, which are conventionally used for tube group thinning inspection. It has a function of performing the thinning evaluation with reference to the database 25 based on the signal.

表示部26は、受信信号処理部22における処理結果を表示するものであり、熱交換器管1の減肉の有無、減肉の位置、減肉の径と深さの比率や断面減肉率といった内容を表示する。   The display unit 26 displays the processing result in the reception signal processing unit 22, whether or not the heat exchanger tube 1 is thinned, the position of the thinning, the ratio of the thinning diameter and depth, and the cross-sectional thinning rate. Is displayed.

なお、探触子ユニット27a〜27dおよび探触子ユニット28a〜28dの数はそれぞれ4個に限定するものではなく、探触子ユニット27a〜27dと探触子ユニット28a〜28dでそれぞれ熱交換器管1の全周を覆うことが望ましい。従って、その数は探触子ユニット27a〜27dおよび探触子ユニット28a〜28dの幅や熱交換器管1の外径に応じて増減すればよい。また、励振周波数は40KHzと120KHzの2種類に限定するものではなく低周波数とその2倍〜5倍の比率の高周波数のものが好ましい。   The numbers of the probe units 27a to 27d and the probe units 28a to 28d are not limited to four, and the probe units 27a to 27d and the probe units 28a to 28d are respectively heat exchangers. It is desirable to cover the entire circumference of the tube 1. Therefore, the number may be increased or decreased according to the width of the probe units 27a to 27d and the probe units 28a to 28d and the outer diameter of the heat exchanger tube 1. Further, the excitation frequency is not limited to two types of 40 KHz and 120 KHz, but preferably a low frequency and a high frequency having a ratio of 2 to 5 times the low frequency.

次に図2を参照し、甲探触子群および乙探触子群の構成を詳説する。
ホルダ13には探触子ユニット27a〜27d内にシリンダ11a〜11dが付与され、その中に振動素子31a〜31dが収まっている。また、探触子ユニット28a〜28d内にシリンダ12a〜12d及び振動素子32a〜32dが収まっている。
Next, referring to FIG. 2, the configurations of the former probe group and the second probe group will be described in detail.
The holder 13 is provided with cylinders 11a to 11d in the probe units 27a to 27d, and the vibration elements 31a to 31d are accommodated therein. The cylinders 12a to 12d and the vibration elements 32a to 32d are accommodated in the probe units 28a to 28d.

図2に示す空間部に外部から空気が流入し(空気圧の場合)、それぞれのシリンダ11a〜11d、12a〜12dと個々に被検管1の外表面方向の押圧力を調整する。各シリンダ11a〜11d、12a〜12dの先端には振動素子31a〜31d、32a〜32dが埋め込まれており、さらに振動素子31a〜31d、32a〜32dと被検管1の外表面間には後述する箔状(0.2mm厚程度)の音響結合部材33a〜33d、34a〜34dが置かれている。音響結合部材33a〜33d、34a〜34dの役目は、平板状の振動素子31a〜31d、32a〜32dが管1の外表面と線接触になるのでそのなじみを改善して多少面接触に持っていくためのものである。   Air flows from the outside into the space shown in FIG. 2 (in the case of air pressure), and the pressing force in the direction of the outer surface of each of the cylinders 11a to 11d and 12a to 12d is individually adjusted. Vibrating elements 31a to 31d and 32a to 32d are embedded in the tips of the cylinders 11a to 11d and 12a to 12d, respectively, and between the vibrating elements 31a to 31d and 32a to 32d and the outer surface of the test tube 1 will be described later. Foil-like (about 0.2 mm thick) acoustic coupling members 33a to 33d and 34a to 34d are placed. The roles of the acoustic coupling members 33a to 33d and 34a to 34d are to improve the familiarity of the plate-like vibrating elements 31a to 31d and 32a to 32d with the outer surface of the tube 1 and bring them into surface contact somewhat. It is for going.

そして、シリンダ11a〜11dの外周にはシール材29a、29b、29c、29d、が備わっており、また、シリンダ12a〜12dの外周にはシール材30a、30b、30c、30dが備わっており、各シール材29a〜29d、30a〜30dはそれぞれ流体圧制御部23から探触子ユニット27a〜27d、28a〜28d内のシリンダ11a〜11d、12a〜12dとケーシング間に送られてくる圧搾空気の被検管表面方向への漏洩を防止している。   The outer circumferences of the cylinders 11a to 11d are provided with sealing materials 29a, 29b, 29c and 29d, and the outer circumferences of the cylinders 12a to 12d are provided with sealing materials 30a, 30b, 30c and 30d. The sealing materials 29a to 29d and 30a to 30d are respectively covered with compressed air sent from the fluid pressure control unit 23 between the cylinders 11a to 11d and 12a to 12d in the probe units 27a to 27d and 28a to 28d and the casing. Leakage toward the test tube surface is prevented.

そのためシリンダ11a〜11d、12a〜12dはピストンの機能を有する。さらにシリンダ11a〜11dの前面(熱交換器管1に接する面)には熱交換器管1の音響インピーダンス値と振動素子31a、31b、31c、31dの音響インピーダンス値に近似した音響インピーダンス値を有し、かつ延性を有する銀合金の音響結合部材33a〜33dが着脱可能に取り付けられており、また、シリンダ12a〜12dの前面には熱交換器管1の音響インピーダンス値と振動素子32a、32b、32c、32dの音響インピーダンス値に近似した音響インピーダンス値を有し、かつ延性を有する銀合金の音響結合部材34a〜34dが着脱可能に取り付けられている。そのため、探触子ユニット27a〜27d、28a〜28dから送信される水平偏波の横波を効率よく熱交換器管1に伝達できる。   Therefore, the cylinders 11a to 11d and 12a to 12d have a piston function. Further, the front surfaces of the cylinders 11a to 11d (surfaces in contact with the heat exchanger tube 1) have acoustic impedance values that approximate the acoustic impedance value of the heat exchanger tube 1 and the acoustic impedance values of the vibration elements 31a, 31b, 31c, and 31d. The ductile silver alloy acoustic coupling members 33a to 33d are detachably attached to the front surfaces of the cylinders 12a to 12d and the acoustic impedance value of the heat exchanger tube 1 and the vibration elements 32a and 32b. Acoustic coupling members 34a to 34d made of silver alloy having acoustic impedance values approximate to the acoustic impedance values of 32c and 32d and having ductility are detachably attached. Therefore, the horizontally polarized transverse waves transmitted from the probe units 27 a to 27 d and 28 a to 28 d can be efficiently transmitted to the heat exchanger tube 1.

なお、音響結合部材33a〜33d、34a〜34dは銀合金に限定するものではなく、音響インピーダンス値が振動素子31a〜31d、32a〜32dと熱交換器管1のそれに近似し、かつ振動素子31a〜31d、32a〜32dから熱交換器管1に送信する波の送信の安定化のために、熱交換器管1の表面凹凸になじみよい延性を有する材料が適しており(線接触では断続となる場合がある。)、例えば亜鉛、錫、銅、鉛を採用することも可能である。   The acoustic coupling members 33a to 33d and 34a to 34d are not limited to silver alloys, and the acoustic impedance values are similar to those of the vibration elements 31a to 31d, 32a to 32d and the heat exchanger tube 1, and the vibration element 31a. In order to stabilize the transmission of waves transmitted to the heat exchanger tube 1 from ˜31d and 32a to 32d, a material having ductility that is suitable for the surface irregularities of the heat exchanger tube 1 is suitable (intermittent in line contact) For example, zinc, tin, copper, lead may be employed.

次に、図4を参照し、熱交換器管1の減肉評価に用いるデータベース25の構成を説明する。
熱交換器管1の減肉6は受信信号の振幅レベルを基に断面欠損率(断面欠損率=減肉断面積/熱交換器管健全部の断面積)で評価するのが一般的であり、欠損率が同一であっても検出された減肉6が浅くて径の大きい形態なのか、深くて径の小さい形態なのかの判断が難しい面がある。しかし、減肉6での反射率と励振周波数には相関関係があることから、これらをパラメータとしたデータベース25を参照し、精度よく減肉評価するものである。
Next, with reference to FIG. 4, the structure of the database 25 used for the thinning evaluation of the heat exchanger pipe | tube 1 is demonstrated.
The thinning 6 of the heat exchanger tube 1 is generally evaluated by the cross-sectional defect rate (cross-sectional defect rate = thinning cross-sectional area / cross-sectional area of the heat exchanger tube healthy part) based on the amplitude level of the received signal Even if the defect rate is the same, it is difficult to judge whether the detected thinning 6 is shallow and has a large diameter or a deep and small diameter. However, since there is a correlation between the reflectance at the thinning 6 and the excitation frequency, the thinning evaluation is performed with reference to the database 25 using these as parameters.

図4(a)は受信信号振幅比(振動素子31a〜31d、32a〜32dを40KHzの周波数で励振した場合に得られる受信信号の振幅と振動素子31a〜31d、32a〜32dを120KHzの周波数で励振した場合に得られる受信信号の振幅の比)と減肉径と深さの比を表すデータベース25、図4(b)、図4(c)は120KHzと40KHzの周波数で振動素子31a〜31d、32a〜32dをそれぞれ励振した場合の受信信号振幅と減肉位置の関係から欠損率を求めるデータベース25である。   FIG. 4A shows a reception signal amplitude ratio (the amplitude of the reception signal obtained when the vibration elements 31a to 31d and 32a to 32d are excited at a frequency of 40 KHz and the vibration elements 31a to 31d and 32a to 32d at a frequency of 120 KHz. The database 25 representing the ratio of the amplitude of the received signal obtained when excited) and the ratio of the thinned diameter to the depth, FIGS. 4B and 4C are the vibration elements 31a to 31d at the frequencies of 120 KHz and 40 KHz. , 32a to 32d, a database 25 for obtaining a defect rate from the relationship between the received signal amplitude and the thinning position.

次に、上記構成からなる熱交換器管1の管群の検査装置の動作を探触子ユニット(振動素子)圧着力補正フローと減肉検査フローに分けて図面を参照しながら説明する。
図5は本発明の管群の検査装置による探触子ユニット(振動素子)圧着力補正フローを示している。
ステップS1において、励振信号発生部19は探触子ユニット27a〜27d、28a〜28dを励振する基本となる励振信号を発生する。励振信号の波形としてはサイン波、矩形波、三角波、ランプアップ波、ランプダウン波などのパルス波が発生可能であるが、熱交換器管1の減肉6の評価精度を重視する場合は狭帯域特性をもつサイン波の適用が望まれる。また周波数は、熱交換器管1を検査する長さや検出するべき減肉のサイズに応じて決めればよく、図1に示すような熱交換器管1の減肉検査に対しては例えば50KHz〜200KHzの範囲で2種類の周波数を選択するが、探触子ユニット27a〜27d、28a〜28dの圧着力補正では、このうち、いずれか1種類の周波数の励振信号を甲探触子群を構成する探触子ユニット27a〜27dと励振信号位相制御部21に送信する。
Next, the operation of the inspection apparatus for the tube group of the heat exchanger tube 1 having the above-described configuration will be described with reference to the drawing, divided into a probe unit (vibration element) pressure bonding force correction flow and a thinning inspection flow.
FIG. 5 shows a probe unit (vibration element) pressure-bonding force correction flow by the tube group inspection apparatus of the present invention.
In step S1, the excitation signal generator 19 generates an excitation signal that is a basis for exciting the probe units 27a to 27d and 28a to 28d. As a waveform of the excitation signal, a pulse wave such as a sine wave, a rectangular wave, a triangular wave, a ramp-up wave, and a ramp-down wave can be generated, but is narrow when importance is attached to the evaluation accuracy of the thinning 6 of the heat exchanger tube 1. Application of a sine wave having band characteristics is desired. The frequency may be determined according to the length of the heat exchanger tube 1 to be inspected or the size of the thinning to be detected. For the thinning inspection of the heat exchanger tube 1 as shown in FIG. Two types of frequencies are selected in the range of 200 KHz, but in the crimping force correction of the probe units 27a to 27d and 28a to 28d, one of these types of excitation signals constitutes the instep probe group. To the probe units 27 a to 27 d and the excitation signal phase controller 21.

次に、ステップS2において、甲探触子群を構成する探触子ユニット27a〜27dに組み込まれた振動素子31a〜31dは分極軸と電界軸が直交していることから、厚みすべりの振動動作をするため、励振信号発生部19から送られてきた励振信号(電気信号)を水平偏波の横波に変換する。   Next, in step S2, since the vibration elements 31a to 31d incorporated in the probe units 27a to 27d constituting the upper probe group have the polarization axis and the electric field axis orthogonal to each other, the vibration operation of thickness sliding is performed. Therefore, the excitation signal (electric signal) sent from the excitation signal generator 19 is converted into a horizontally polarized horizontal wave.

次に、ステップS3において、振動素子31a〜31dは音響インピーダンス値が探触子ユニット27a〜27dおよび熱交換器管1の音響インピーダンス値と近似し、かつ熱交換器管1の凹凸になじみ易い材料でできた各音響結合部材33a、33b、33c、33dを介して熱交換器管1と接しているため、振動素子31a〜31dで電気機械変換された水平偏波の横波を効率良く熱交換器管1に入射させる効果がある。   Next, in step S <b> 3, the vibration elements 31 a to 31 d have materials whose acoustic impedance values approximate to the acoustic impedance values of the probe units 27 a to 27 d and the heat exchanger tube 1, and are easily compatible with the unevenness of the heat exchanger tube 1. Since the acoustic coupling members 33a, 33b, 33c, and 33d are in contact with the heat exchanger tube 1, the horizontally polarized transverse waves that are electromechanically converted by the vibration elements 31a to 31d are efficiently converted into heat exchangers. There is an effect of being incident on the tube 1.

次に、ステップS4において、熱交換器管1を伝播した水平偏波の横波は感度補償試験体15b、突き合わせ溶接2、曲がり部5、減肉6、隅肉溶接4bで反射され探触子ユニット27a〜27dで受信される。なお、感度補償試験体15a方向の信号は予め位置及び波形がわかっているので、その後の信号処理により消去できる(本ステップの説明では省略している。)。   Next, in step S4, the horizontally polarized transverse wave propagated through the heat exchanger tube 1 is reflected by the sensitivity compensation test body 15b, the butt weld 2, the bent portion 5, the thinning 6, and the fillet weld 4b, and the probe unit. 27a-27d. Note that the position and waveform of the signal in the direction of the sensitivity compensation test specimen 15a are known in advance, and can be deleted by subsequent signal processing (omitted in the description of this step).

次に、ステップS5において、探触子ユニット27a〜27dで受信された反射信号は音響結合部材33a〜33dを介して振動素子31a〜31dに伝わり音響電気変換される。ステップS6では、受信信号処理部22は探触子ユニット27a〜27dから送られてくる受信信号のうち、探触子ユニット27aから送られてくる受信信号を選択する。そして、選択した受信信号の中から感度補償試験体15bからの反射信号にゲートを設定し、振幅を検知して、この振幅が予め決めていた高さになるような制御信号を流体圧制御部23へ送る。   Next, in step S5, the reflected signals received by the probe units 27a to 27d are transmitted to the vibration elements 31a to 31d via the acoustic coupling members 33a to 33d and are subjected to acoustoelectric conversion. In step S6, the reception signal processing unit 22 selects a reception signal transmitted from the probe unit 27a among reception signals transmitted from the probe units 27a to 27d. Then, a gate is set to the reflected signal from the sensitivity compensation test body 15b from the selected received signal, the amplitude is detected, and a control signal is set so that the amplitude becomes a predetermined height. Send to 23.

なおゲートとは、特定の時間領域に発生する信号を取り出す手段であり、ゲートを設定するとは、実質的には既知である探触子ユニット27a〜27d又は28a〜28dから感度補償試験体15a又は15bまでの距離と水平偏波の横波が熱交換器管1を伝播する速度をもとに感度補償試験体15a又は15bからの受信信号が得られる時間を計算し、その時間領域に発生する信号を取り出す手段を設定する事である。   The gate is a means for extracting a signal generated in a specific time region. Setting the gate means that the sensitivity compensation test body 15a or the probe unit 27a to 27d or 28a to 28d, which is substantially known, is used. Based on the distance up to 15b and the speed at which the horizontally polarized transverse wave propagates through the heat exchanger tube 1, the time required to obtain the received signal from the sensitivity compensation test body 15a or 15b is calculated, and the signal generated in that time domain It is to set the means to take out.

次に、ステップS7において、流体圧制御部23は受信信号処理部22からの制御信号を受け、探触子ユニット27aのシリンダ11aに送る空気の圧力を補正する。その後、ステップS6に戻り、順次探触子ユニット27b〜27dを切り替え、シリンダ11b、11c、11dに送る空気圧を順次補正するステップを繰り返す。   Next, in step S7, the fluid pressure control unit 23 receives the control signal from the reception signal processing unit 22, and corrects the pressure of the air sent to the cylinder 11a of the probe unit 27a. Thereafter, the process returns to step S6, and the probe units 27b to 27d are sequentially switched, and the step of sequentially correcting the air pressure sent to the cylinders 11b, 11c, and 11d is repeated.

最終的に、感度補償試験体15bからの受信信号の振幅が甲探触子群を構成する探触子ユニット27a〜27dで予め決めていた高さになっていることを確認し、甲探触子群を構成する探触子ユニット27a〜27dの圧着力補正ステップを終了する。
なお、感度補償試験体15aからの反射信号は、送信信号が管1の右方向への信号を考慮するだけでよいために、本実施例では考慮する必要がない。
Finally, it is confirmed that the amplitude of the received signal from the sensitivity compensation test body 15b has a height determined in advance by the probe units 27a to 27d constituting the upper probe group. The crimping force correction step of the probe units 27a to 27d constituting the child group is finished.
Note that the reflection signal from the sensitivity compensation test body 15a need not be considered in this embodiment because the transmission signal only needs to consider the signal in the right direction of the tube 1.

こうして探触子ユニット27a〜27dで発生させて熱交換器管1に伝達させる送信信号の伝達効率を制御して、熱交換器管1に伝播する送信信号の強度を均一にする。   In this way, the transmission efficiency of the transmission signal generated by the probe units 27a to 27d and transmitted to the heat exchanger tube 1 is controlled, so that the intensity of the transmission signal propagated to the heat exchanger tube 1 is made uniform.

次に、乙探触子群を構成する探触子ユニット28a〜28dの圧着力補正ステップを説明する。 ステップS8において、励振信号位相制御部21で励振信号発生部19からの励振信号を180度位相反転して励振信号遅延制御部20に送る。次に、ステップS9において、位相制御された励振信号にP/C時間遅延を与えて乙探触子群を構成する探触子ユニット28a〜28dに送る。ここで、C:被検管を伝播する水平偏波の横波の速度(m/sec)、P:甲乙一対の探触子群の間隔(m)である。   Next, the crimping force correction step of the probe units 28a to 28d constituting the second probe group will be described. In step S <b> 8, the excitation signal phase controller 21 inverts the excitation signal from the excitation signal generator 19 by 180 degrees and sends it to the excitation signal delay controller 20. Next, in step S9, a P / C time delay is given to the phase-controlled excitation signal, and the signal is sent to the probe units 28a to 28d constituting the second probe group. Here, C is the velocity (m / sec) of the transverse wave of the horizontally polarized wave propagating through the test tube, and P is the distance (m) between the pair of probes B and B.

次に、ステップS10において、乙探触子群を構成する探触子ユニット28a〜28dに組み込まれた振動素子32a〜32dは分極軸と電界軸が直交していることから厚みすべりの振動動作をするため、励振信号遅延制御部20から送られてきた励振信号(電気信号)を水平偏波の横波に変換する。   Next, in step S10, since the vibration elements 32a to 32d incorporated in the probe units 28a to 28d constituting the second probe group have a polarization axis and an electric field axis orthogonal to each other, the vibration operation of the thickness shear is performed. Therefore, the excitation signal (electric signal) sent from the excitation signal delay control unit 20 is converted into a horizontally polarized wave.

ステップS11では、振動素子32a〜32dは音響インピーダンス値が探触子ユニット28a〜28dおよび熱交換器管1の音響インピーダンス値と近似し、かつ熱交換器管1の凹凸になじみ易い材料でできた音響結合部材34a、34b、34c、34dをそれぞれ介して熱交換器管1と接しているため振動素子32a〜32dで電気機械変換された水平偏波の横波を効率良く熱交換器管1に入射させる効果がある。   In step S11, the vibration elements 32a to 32d are made of a material whose acoustic impedance value approximates the acoustic impedance values of the probe units 28a to 28d and the heat exchanger tube 1 and is easily adapted to the unevenness of the heat exchanger tube 1. Since it is in contact with the heat exchanger tube 1 through the acoustic coupling members 34a, 34b, 34c and 34d, the horizontally polarized transverse waves electromechanically converted by the vibration elements 32a to 32d are efficiently incident on the heat exchanger tube 1. There is an effect to make.

次にステップ12以下の説明の前に、図7を参照して甲探触子群を構成する櫛型探触子ユニット27a〜27dから送信され、熱交換器管1の左方向に伝播する信号が乙探触子群を構成する探触子ユニット28a〜28dからの送信信号によって相殺され、右方向のみに伝播する作用を説明する。   Next, before the description of step 12 and subsequent steps, signals transmitted from the comb-type probe units 27a to 27d constituting the upper probe group with reference to FIG. 7 and propagated in the left direction of the heat exchanger tube 1 Will be canceled by the transmission signals from the probe units 28a to 28d constituting the second probe group, and the effect of propagating only in the right direction will be described.

図7(a)は甲探触子群を構成する探触子ユニット27a〜27dからの励信された送信信号が熱交換器管1を伝播して減肉6(探触子ユニット27a〜27dからA間隔(m)離れた位置にある)で反射され、甲探触子群の探触子ユニット27a〜27dで受信される。また乙探触子群の探触子ユニット28a〜28dではP/C時間(C:熱交換器管1を伝播する水平偏波の横波の速度(m/sec)、P:甲乙一対の探触子群の間隔(m))の遅延後に受信される。   FIG. 7 (a) shows that the transmitted signals transmitted from the probe units 27a to 27d constituting the upper probe group propagate through the heat exchanger tube 1 to reduce the thickness 6 (probe units 27a to 27d). And is received by the probe units 27a to 27d of the upper probe group. Further, in the probe units 28a to 28d of the B probe group, the P / C time (C: the velocity of the transverse wave of the horizontal polarization propagating through the heat exchanger tube 1 (m / sec), P: the probe of the pair A and B. Received after a delay of child group interval (m)).

なお、このとき乙探触子群からの送信信号は、甲探触子群からの送信信号に対して位相と遅延を与えているので甲探触子群から熱交換器管1に入射される送信信号のうちで、図示左方向に伝播する送信信号は乙探触子群からの送信信号によって相殺される。従って
熱交換器管1には図示右方向のみに送信信号が伝播するので甲探触子群の探触子ユニット27a〜27dが受信した信号の方向性は識別する必要がない。
At this time, the transmission signal from the second probe group is incident on the heat exchanger tube 1 from the first probe group because a phase and a delay are given to the transmission signal from the first probe group. Among the transmission signals, the transmission signal propagating in the left direction in the figure is canceled by the transmission signal from the second probe group. Accordingly, since the transmission signal propagates only in the right direction in the drawing in the heat exchanger tube 1, it is not necessary to identify the directionality of the signals received by the probe units 27a to 27d of the upper probe group.

また、甲乙一対の探触子群を構成する探触子ユニット27a〜27d、28a〜28dからの励信された送信信号には分散特性を利用したSNの向上効果がある。すなわち、送受信信号には無限のモード波が混在するが、最低次ねじれモード波は唯一分散性がなく、減肉位置の評価の障害となるその他の高次モードは全て分散性を有するのでこの特性を利用してSN比の向上を実現できる。   Further, the transmitted signals excited from the probe units 27a to 27d and 28a to 28d constituting the pair of probes A and B have an effect of improving SN by using dispersion characteristics. In other words, infinite mode waves are mixed in the transmitted / received signal, but the lowest order torsional mode wave has no dispersibility, and all the other higher order modes that impede the evaluation of the thinning position have dispersibility. Can be used to improve the signal-to-noise ratio.

図7(b)には基本的には甲探触子群の探触子ユニット27a〜27dからの送信信号が減肉6で反射して、(A/C)+(A/C)=2(A/C)時間後に甲探触子群の探触子ユニット27a〜27dで受信され、乙探触子群の探触子ユニット28a〜28dでは(A/C)+(A/C)+(P/C)時間後に受信される。
なお、ここでCは熱交換器管1を伝播する送受信信号の音速である。
In FIG. 7B, basically, transmission signals from the probe units 27a to 27d of the instep probe group are reflected by the thinning 6, and (A / C) + (A / C) = 2. After (A / C) time, it is received by the probe units 27a to 27d of the former probe group, and (A / C) + (A / C) + is received by the probe units 28a to 28d of the second probe group. Received after (P / C) time.
Here, C is the speed of sound of a transmission / reception signal propagating through the heat exchanger tube 1.

ここで種々のモード波の音速を考慮した減肉6からの反射波の受信信号について説明する。
C1は最低次ねじれモード波の音速、C2は最低次ねじれモード波より速い高次モード波の音速、C3は最低次ねじれモード波より遅い高次モード波の音速とする。
甲探触子群の探触子ユニット27a〜27dが受信する減肉6からの反射信号は最低次ねじれモード波の場合は2(A/C1)時間後に受信され、最低次ねじれモード波より速い高次モード波の場合は2(A/C2)時間後に受信され、最低次ねじれモード波より遅い高次モード波の場合は2(A/C3)時間後に受信される。
Here, the reception signal of the reflected wave from the thinning 6 in consideration of the sound speed of various mode waves will be described.
C1 is the speed of sound of the lowest order torsional mode wave, C2 is the speed of sound of the higher order mode wave faster than the lowest order torsional mode wave, and C3 is the speed of sound of the higher order mode wave slower than the lowest order torsional mode wave.
The reflected signal from the thinning 6 received by the probe units 27a to 27d of the instep probe group is received after 2 (A / C1) hours in the case of the lowest order torsional mode wave, and is faster than the lowest order torsional mode wave. The higher-order mode wave is received after 2 (A / C2) time, and the higher-order mode wave later than the lowest-order torsional mode wave is received after 2 (A / C3) time.

また、乙探触子群の探触子ユニット28a〜28dが受信する減肉6からの反射信号は最低次ねじれモード波の場合は、2(A/C1)+(P/C1)時間後に受信され、最低次ねじれモード波より速い高次モード波の場合は2(A/C2)+(P/C2)時間後、最低次ねじれモード波より遅い高次モード波の場合は2(A/C3)+(P/C3)時間後にそれぞれ受信される。従って△t2’<△t2”、△t3’<△t3”の関係が成立する。   In addition, the reflected signal from the thinning 6 received by the probe units 28a to 28d of the second probe group is received after 2 (A / C1) + (P / C1) time in the case of the lowest order torsional mode wave. 2 (A / C2) + (P / C2) time after a higher order mode wave faster than the lowest order torsional mode wave, and 2 (A / C3) after a higher order mode wave slower than the lowest order torsional mode wave ) + (P / C3) time, respectively. Therefore, the relationships Δt2 ′ <Δt2 ″ and Δt3 ′ <Δt3 ”are established.

ここで
△t2’=2(A/C1)−2(A/C2)
△t2”=2(A/C1)+(P/C1)−{2(A/C2)+(P/C2)}
△t3’=2(A/C3)−2(A/C1)
△t3”=2(A/C3)+(P/C3)−{2(A/C1)+(P/C1)}
△t2”=2(A/C1)+(P/C1)−{2(A/C2)+(P/C2)}
Where Δt2 ′ = 2 (A / C1) −2 (A / C2)
Δt2 ″ = 2 (A / C1) + (P / C1) − {2 (A / C2) + (P / C2)}
Δt3 ′ = 2 (A / C3) −2 (A / C1)
Δt3 ″ = 2 (A / C3) + (P / C3) − {2 (A / C1) + (P / C1)}
Δt2 ″ = 2 (A / C1) + (P / C1) − {2 (A / C2) + (P / C2)}

このため、甲探触子群を構成する探触子ユニット27a〜27dで受信した信号乙探触子群を構成する探触子ユニット28a〜28dによって受信した信号を(P/C1)時間だけ時間シフトして加算すれば、減肉6からの最低次ねじれモード波の受信信号の振幅は2倍になり、その他の高次モード波の振幅は1倍以下に減少するのでSN比の向上が実現できる。 For this reason, the signals received by the probe units 28a to 28d constituting the second probe group are added to the signals received by the probe units 27a to 27d constituting the former probe group for (P / C1) time. If the time shift is added, the amplitude of the received signal of the lowest-order torsional mode wave from the thinning 6 is doubled, and the amplitudes of the other higher-order mode waves are reduced to less than 1 times, so the SN ratio is improved. realizable.

図5に戻り、ステップ12以下の説明をする。
ステップS12において、熱交換器管1を伝播した水平偏波の横波は感度補償試験体15b、突き合わせ溶接2、曲がり部5、減肉6、隅肉溶接4bで反射され探触子ユニット28a〜28dで受信される。ここで、感度補償試験体15aからの反射信号が受信されていないことを確認することで、甲探触子群を構成する探触子ユニット27a〜27dの送信信号が図7の紙面上で左方向に伝播していないことが確認できる。
Returning to FIG. 5, step 12 and subsequent steps will be described.
In step S12, the horizontally polarized wave that has propagated through the heat exchanger tube 1 is reflected by the sensitivity compensation test body 15b, the butt weld 2, the bent portion 5, the thinning 6, and the fillet weld 4b, and the probe units 28a to 28d. Received at. Here, by confirming that the reflected signal from the sensitivity compensation test body 15a is not received, the transmission signals of the probe units 27a to 27d constituting the upper probe group are left on the paper surface of FIG. It can be confirmed that it does not propagate in the direction.

ステップS13においては、探触子ユニット28a〜28dで受信された反射信号は音響結合部材34a〜34dを介して振動素子32a〜32dに伝わり音響電気変換される。   In step S13, the reflected signals received by the probe units 28a to 28d are transmitted to the vibration elements 32a to 32d via the acoustic coupling members 34a to 34d and subjected to acoustoelectric conversion.

次に、ステップS14において、受信信号処理部22は探触子ユニット28a〜28dから送られてくる受信信号のうち、探触子ユニット28aから送られてくる受信信号を選択する。そして、選択した受信信号の中から感度補償試験体15bからの反射信号にゲートを設定し、振幅を検知して、この振幅が予め決めていた高さになるような制御信号を流体圧制御部23へ送る。   Next, in step S14, the reception signal processing unit 22 selects a reception signal transmitted from the probe unit 28a among the reception signals transmitted from the probe units 28a to 28d. Then, a gate is set to the reflected signal from the sensitivity compensation test body 15b from the selected received signal, the amplitude is detected, and a control signal is set so that the amplitude becomes a predetermined height. Send to 23.

次に、ステップS15において、流体圧制御部23は受信信号処理部22からの制御信号を受け、探触子ユニット28aのシリンダ12aに送る空気の圧力を補正する。その後はステップS14に戻り、順次、探触子ユニット28b〜28dを切り替え、シリンダ12b〜12dに送る空気圧の補正するステップを繰り返す。   Next, in step S15, the fluid pressure control unit 23 receives the control signal from the reception signal processing unit 22, and corrects the pressure of the air sent to the cylinder 12a of the probe unit 28a. Thereafter, the process returns to step S14, and the probe units 28b to 28d are sequentially switched, and the step of correcting the air pressure sent to the cylinders 12b to 12d is repeated.

最終的に、感度補償試験体15bからの受信信号の振幅が乙探触子群を構成する探触子ユニット28a〜28dで予め決めていた高さになっていること確認し、乙探触子群を構成する探触子ユニット28a〜28dの圧着力補正ステップを終了し、ステップS16で上記振動素子31a〜31d、32a〜32dの管1への圧着力補正が終了したので、感度補償試験体15a、15bを管1から取り外す。   Finally, it is confirmed that the amplitude of the received signal from the sensitivity compensation test body 15b is a height determined in advance by the probe units 28a to 28d constituting the second probe group. Since the crimping force correction step of the probe units 28a to 28d constituting the group is completed, and the crimping force correction to the tube 1 of the vibrating elements 31a to 31d and 32a to 32d is completed in step S16, the sensitivity compensation test specimen 15a and 15b are removed from the tube 1.

こうして探触子ユニット27a〜27d、28a〜28dを押付けている空気圧を制御することで、探触子ユニット27a〜27d、28a〜28dで発生させて熱交換器管1に伝達させる送信信号の伝達効率を制御して、熱交換器管1に伝播する送信信号の強度を均一にする。   In this way, by controlling the air pressure pressing the probe units 27a to 27d and 28a to 28d, transmission of transmission signals generated by the probe units 27a to 27d and 28a to 28d and transmitted to the heat exchanger tube 1 is performed. The efficiency is controlled to make the intensity of the transmission signal propagating to the heat exchanger tube 1 uniform.

以下に、減肉検査フローについて図6を参照しながら説明する。
減肉検査は2種類の周波数の励振信号で甲探触子群を構成する探触子ユニット27a〜27dと乙探触子群を構成する探触子ユニット28a〜28dを励振して得られた受信信号から減肉評価を行うものである。
Hereinafter, the thinning inspection flow will be described with reference to FIG.
The thinning inspection was obtained by exciting the probe units 27a to 27d constituting the upper probe group and the probe units 28a to 28d constituting the second probe group with excitation signals of two kinds of frequencies. The thinning evaluation is performed from the received signal.

先ずステップS101において、励振信号発生部19で120KHzの励振信号を発生し甲探触子群を構成する探触子ユニット27a〜27dと励振信号位相制御部21に送られる。   First, at step S101, an excitation signal of 120 KHz is generated by the excitation signal generator 19 and sent to the probe units 27a to 27d and the excitation signal phase controller 21 constituting the upper probe group.

ステップS2〜ステップS5およびステップS8〜ステップS13は探触子ユニット圧着力補正フローと同じ動作である。
次いでステップS102において、受信信号処理部22は甲探触子群を構成する探触子ユニット27a〜27dで受信した信号を加算合成する。また、ステップS103において、受信信号処理部22は乙探触子群を構成する探触子ユニット28a〜28dで受信した信号を加算合成する。
Steps S2 to S5 and Steps S8 to S13 are the same operation as the probe unit pressing force correction flow.
Next, in step S102, the reception signal processing unit 22 adds and synthesizes signals received by the probe units 27a to 27d constituting the upper probe group. In step S103, the reception signal processing unit 22 adds and synthesizes signals received by the probe units 28a to 28d constituting the second probe group.

次に、ステップS104において、受信信号処理部22では加算合成された受信信号にP/C時間シフトを加える。ここで、C:被検管を伝播する水平偏波の横波の速度(m/sec)、P:甲乙一対の探触子群の間隔(m)である。 Next, in step S104, adding P / C at better shift to the sum in the reception signal processing unit 22 the combined reception signal. Here, C is the velocity (m / sec) of the transverse wave of the horizontally polarized wave propagating through the test tube, and P is the distance (m) between the pair of probes B and B.

ステップS105では、受信信号処理部22でステップ102で得られた信号とステップS104で得られた信号を加算合計することで周波数に関する分散性をもたない有用な最低次ねじれモード信号が干渉・増幅され、さらに周波数に関する分散性をもつ無用な高次モード信号(最低次ねじれモード信号以外の信号)が干渉・減衰するのでSN比の向上効果が生じる。   In step S105, the reception signal processing unit 22 adds and sums the signal obtained in step 102 and the signal obtained in step S104, whereby a useful lowest-order torsional mode signal having no frequency dispersion is interfered and amplified. In addition, an unnecessary high-order mode signal (a signal other than the lowest-order torsional mode signal) having a frequency dispersibility interferes and attenuates, so that an effect of improving the S / N ratio occurs.

次に、ステップS201において励振信号発生部19で40KHzの励振信号を発生し、甲探触子群を構成する探触子ユニット27a〜27dと励振信号位相制御部21に送られる。
ステップS2〜ステップS5およびステップS8〜ステップS13は探触子ユニット圧着力補正フローと同じ動作である。
Next, in step S201, the excitation signal generator 19 generates an excitation signal of 40 KHz, which is sent to the probe units 27a to 27d and the excitation signal phase controller 21 that constitute the upper probe group.
Steps S2 to S5 and Steps S8 to S13 are the same operation as the probe unit pressing force correction flow.

次にステップS202において、受信信号処理部22は甲探触子群を構成する探触子ユニット27a〜27dで受信した信号を加算合成する。
さらにステップS203では受信信号処理部22は乙探触子群を構成する探触子ユニット28a〜28dで受信した信号を加算合成する。
Next, in step S202, the reception signal processing unit 22 adds and synthesizes signals received by the probe units 27a to 27d constituting the upper probe group.
Further, in step S203, the reception signal processing unit 22 adds and synthesizes signals received by the probe units 28a to 28d constituting the second probe group.

また、ステップS204において、受信信号処理部22は加算合成された受信信号にP/C時間シフトを加える。ここで、C:被検管を伝播する水平偏波の横波の速度(m/sec)、P:甲乙一対の探触子群の間隔(m)である。 Further, in step S204, the reception signal processing unit 22 adds the P / C at better shift in the received signal added synthesized. Here, C is the velocity (m / sec) of the transverse wave of the horizontally polarized wave propagating through the test tube, and P is the distance (m) between the pair of probes B and B.

次に、ステップS205では、受信信号処理部22はステップ202で得られた信号とステップS204で得られた信号を加算合計することで周波数に関する分散性をもたない有用な最低次ねじれモード信号は干渉・増幅され、また、周波数に関する分散性をもつ無用な高次モード信号(最低次ねじれモード信号以外の信号)は干渉・減衰するのでSN比の向上効果が生じる。   Next, in step S205, the received signal processing unit 22 adds and sums the signal obtained in step 202 and the signal obtained in step S204 to obtain a useful lowest order torsional mode signal having no frequency dispersion. Interference / amplification and useless high-order mode signals (signals other than the lowest-order torsional mode signal) having frequency-related dispersibility interfere and attenuate, resulting in an effect of improving the S / N ratio.

また、ステップS301において受信信号処理部22でデータベース25を参照し、ステップS105とステップS205で得られた信号から熱交換器管に存在する減肉6の位置、径、深さ、欠損率を評価する。ついでステップS302において、表示部26で受信信号処理部22からの情報で評価結果を表示する。   In step S301, the received signal processing unit 22 refers to the database 25 and evaluates the position, diameter, depth, and loss rate of the thinning 6 existing in the heat exchanger tube from the signals obtained in steps S105 and S205. To do. In step S302, the display unit 26 displays the evaluation result using information from the reception signal processing unit 22.

上記の例では、ボイラの熱交換器管の減肉6の検査について説明したが、本発明の管群減肉検査装置は被検体の材質や形状によって適用が制限されるものではなく、長さ数キロにもおよぶパイプラインなどを数十メートル単位で区切り順次検査する場合でも、広く適用できるものである。   In the above example, the inspection of the thinning 6 of the heat exchanger tube of the boiler has been described. However, the tube group thinning inspection apparatus of the present invention is not limited in application by the material and shape of the subject, and has a length. Even when a pipeline of several kilometers is divided into several tens of meters and sequentially inspected, it can be widely applied.

原子力発電のサポート的運用に移行しつつある火力発電設備は停止時間が長期化し、ボイラの伝熱管内に発生する孔食の問題が顕在化しつつあるので、本発明は産業上の利用可能性が高い。   Thermal power generation facilities that are shifting to support operation of nuclear power generation have prolonged downtime, and the problem of pitting corrosion occurring in the heat transfer tubes of boilers is becoming obvious, so the present invention has industrial applicability. high.

本発明の実施例に係わる管群減肉検査装置の構成を示す図である。It is a figure which shows the structure of the pipe group thinning inspection apparatus concerning the Example of this invention. 図1の管群減肉検査装置の探触子ユニットの詳細構成を示す図であり、図2(a)は甲探触子群の断面図、図2(b)は乙探触子群の断面図である。It is a figure which shows the detailed structure of the probe unit of the tube group thinning inspection apparatus of FIG. 1, Fig.2 (a) is sectional drawing of an instep probe group, FIG.2 (b) is the ot probe group. It is sectional drawing. 図1の管群減肉検査装置の振動吸収部材の構成を示す断面図である。It is sectional drawing which shows the structure of the vibrational absorption member of the pipe group thinning inspection apparatus of FIG. 図1の管群減肉検査装置のデータベースに記憶してある減肉評価曲線の一例を示し、図4(a)は受信信号振幅比と減肉径と深さの比の相関を、図4(b)は励振周波数120KHzにおける受信信号振幅と減肉位置から欠損率を評価する図、図4(c)は励振周波数40KHzにおける受信信号振幅と減肉位置から欠損率を評価する図である。An example of the thinning evaluation curve stored in the database of the tube group thinning inspection apparatus in FIG. 1 is shown. FIG. 4 (a) shows the correlation between the received signal amplitude ratio and the ratio of the thinning diameter to the depth. FIG. 4B is a diagram for evaluating the loss rate from the received signal amplitude and the thinning position at the excitation frequency of 120 KHz, and FIG. 4C is a diagram for evaluating the loss rate from the reception signal amplitude and the thinning position at the excitation frequency of 40 KHz. 図1の管群減肉検査装置の圧着力を補正するフローを示す図である。It is a figure which shows the flow which correct | amends the crimping | compression-bonding force of the pipe group thinning inspection apparatus of FIG. 図1の管群減肉検査装置でボイラの熱交換器管の減肉検査を行うフローを示す図である。It is a figure which shows the flow which performs the thinning inspection of the heat exchanger pipe | tube of a boiler with the pipe group thinning inspection apparatus of FIG. 図1の管群減肉検査装置の甲探触子群を構成する探触子から送信され熱交換器管の左右に伝播する信号のうち一方向に伝播する信号がる乙探触子群を構成する探触子が送信する信号によって相殺される作用を説明する図である。A group of transducers with signals transmitted in one direction out of signals transmitted from the probes constituting the former probe group of the tube group thinning inspection apparatus in FIG. It is a figure explaining the effect | action canceled by the signal which the probe which comprises comprises. 従来の超音波探傷装置に関する説明図である。It is explanatory drawing regarding the conventional ultrasonic flaw detector. 従来の超音波探傷装置に関するデータの概念を推察した図である。It is the figure which guessed the concept of the data regarding the conventional ultrasonic flaw detector.

符号の説明Explanation of symbols

1 熱交換器管 2 突き合わせ溶接
3a,3b 管寄せ 4a,4b 隅肉溶接
5 曲がり部 6 減肉部
11a〜11d、12a〜12d シリンダ
13 ホルダ 14、16a、16b、18 ボルト
15a,15b 感度補償試験体
17 振動吸収部材 19 励振信号発生部
20 励振信号遅延制御部 21 励振信号位相制御部
22 受信信号処理部 23 流体圧制御部
24 加圧流体発生部 25 データベース
26 表示部
27a〜27d 甲探触子群を構成する探触子ユニット
28a〜28d 乙探触子群を構成する探触子ユニット
29a〜29d、30a〜30d シール材
31a〜31d、32a〜32d 振動素子
33a〜33d、34a〜34d 音響結合部材
35 弾性ゴム
1 heat exchanger tube 2 butt weld 3a, 3b header 4a, 4b fillet weld
5 Bending part 6 Thinning part 11a-11d, 12a-12d Cylinder 13 Holder 14, 16a, 16b, 18 Bolt 15a, 15b Sensitivity compensation test piece 17 Vibration absorbing member 19 Excitation signal generating part 20 Excitation signal delay control part 21 Excitation signal Phase controller
22 Received Signal Processing Unit 23 Fluid Pressure Control Unit 24 Pressurized Fluid Generation Unit 25 Database 26 Display Unit
27a to 27d Probe units constituting the upper probe group
28a to 28d Probe units 29a to 29d and 30a to 30d constituting the Otsu probe group Sealing materials 31a to 31d and 32a to 32d Vibration elements
33a to 33d, 34a to 34d Acoustic coupling member 35 Elastic rubber

Claims (9)

被検管(1)の軸芯方向に伝播する複数の周波数のうちから適宜選択した特定の周波数の水平偏波の横波を送信し、その反射波を受信する偶数個の探触子ユニット(27a〜27d)からなる甲探触子群と該甲探触子群を構成する探触子数と同数の探触子ユニット(28a〜28d)からなる乙探触子群を内包し、被検管(1)の外表面に取り付けられるホルダ(13)と、
甲乙一対の探触子群をそれぞれ構成する偶数個の探触子ユニット(27a〜27d、28a〜28d)から送信される水平偏波の横波を被検管(1)に伝達するために、前記探触子ユニット(27a〜27d、28a〜28d)と被検管(1)の間に設けられる音響結合部材(33a〜33d、34a〜34d)と、
甲乙一対の探触子群からそれぞれ送信された被検管(1)の前記水平偏波の横波を反射させるために、ホルダ(13)の両端にそれぞれ設けた感度補償試験体(15a、15b)と、
上記被検管(1)を伝播する送受信信号のうち外面変位を伴う信号を選択的に吸収するための振動吸収部材(17)と、
加圧流体の流体圧によって甲乙一対の探触子群を構成する各探触子ユニット(27a〜27d、28a〜28d)を単独でそれぞれ被検管(1)の外表面に押し付けるための圧着手段(A)と、
甲探触子群を構成する偶数個の探触子ユニット(27a〜27d)に前記特定の周波数の励振信号を送る励振信号発生部(19)と、
励振信号発生部(19)から送られてくる前記特定の周波数の励振信号を180度位相制御する励振信号位相制御部(21)と、
励振信号位相制御部(21)から送られてくる前記特定の周波数の信号にP/C時間(C:被検管を伝播する水平偏波の横波の速度(m/sec)、P:甲乙一対の探触子群の間隔(m))の遅延を与え、乙探触子群を構成する偶数個の探触子ユニット(28a〜28d)に前記周波数の励振信号を送るための励振信号遅延制御部(20)と、
甲乙一対の探触子群をそれぞれ構成する偶数個の探触子ユニット(27a〜27d、28a〜28d)でそれぞれ受信した感度補償試験体(15a、15b)からの少なくとも一方からの反射信号を参照して加圧流体圧を制御して圧着手段(A)に送信する機能と、甲の探触子群で受信した信号と乙の探触子群で受信した信号とを加算して得られた前記周波数の受信信号に基づき、予め作成されている減肉評価用のデータベース(25)を参照して被検管(1)に存在する減肉の評価を行い、表示部(26)に表す機能を有する受信信号処理部(22)と、
を有することを特徴とする管群減肉検査装置。
An even number of probe units (27a) for transmitting a horizontally polarized transverse wave having a specific frequency appropriately selected from a plurality of frequencies propagating in the axial direction of the test tube (1) and receiving the reflected wave -27d) and the same number of probe units (28a-28d) as the number of probes constituting the former probe group are included, and the test tube A holder (13) attached to the outer surface of (1);
In order to transmit the horizontally polarized transverse waves transmitted from the even number of probe units (27a to 27d, 28a to 28d) constituting the pair of probes A and B to the test tube (1), Acoustic coupling members (33a-33d, 34a-34d) provided between the probe units (27a-27d, 28a-28d) and the test tube (1);
Sensitivity compensation test specimens (15a, 15b) provided at both ends of the holder (13) in order to reflect the horizontally polarized transverse waves of the test tube (1) transmitted from the pair of probe A and B respectively. When,
A vibration absorbing member (17) for selectively absorbing a signal accompanied by an outer surface displacement among transmission / reception signals propagating through the test tube (1);
Pressure bonding means for pressing each of the probe units (27a to 27d, 28a to 28d) constituting the pair of probe pairs by the fluid pressure of the pressurized fluid independently against the outer surface of the test tube (1). (A) and
An excitation signal generator (19) for sending an excitation signal of the specific frequency to an even number of probe units (27a to 27d) constituting the upper probe group;
An excitation signal phase controller (21) for phase-controlling the excitation signal of the specific frequency sent from the excitation signal generator (19) by 180 degrees;
The P / C time (C: velocity of the transversely polarized wave propagating through the test tube (m / sec), P: pair of Kootoi pair in the signal of the specific frequency sent from the excitation signal phase controller (21) Excitation signal delay control for giving a delay of the distance (m) between the probe groups and sending the excitation signals of the above frequency to the even number of probe units (28a to 28d) constituting the second probe group Part (20);
Refer to the reflected signals from at least one of the sensitivity compensation test bodies (15a, 15b) received by the even number of probe units (27a-27d, 28a-28d) that respectively constitute the pair of probes B and B Obtained by adding the signal received by the former probe group and the function received by the former probe group and the function of controlling the pressurized fluid pressure and transmitting it to the crimping means (A). The function of evaluating the thinning existing in the test tube (1) with reference to the database (25) for thinning evaluation prepared in advance based on the received signal of the frequency, and displaying it on the display unit (26) A received signal processing unit (22) having:
A tube group thinning inspection apparatus characterized by comprising:
甲乙一対の探触子群を内包したホルダ(13)は、分割可能に構成され、被検管(1)の任意の位置に取り付け自在であり、甲乙一対の探触子群を構成する各探触子ユニット(27a〜27d、28a〜28d)は、被検管(1)の外周線上の等間隔位置から同時かつ同位相で入射する水平偏波の横波を送信する振動素子(31a〜31d、32a〜32d)をそれぞれ備えたことを特徴とする請求項1に記載の管群減肉検査装置。   The holder (13) enclosing the pair of probes A and B is configured to be separable and can be attached to any position of the test tube (1). The tentacle units (27a to 27d, 28a to 28d) are vibrating elements (31a to 31d, 31a to 31d, which transmit horizontal waves of horizontal polarization incident simultaneously and in the same phase from equidistant positions on the outer circumference of the test tube (1). 32. The tube group thinning inspection apparatus according to claim 1, further comprising 32a to 32d). 音響結合部材(33a〜33d、34a〜34d)は、甲乙一対の探触子群を構成する全ての探触子ユニット(27a〜27d、28a〜28d)の被検管(1)に接する側に設けられ、被検管(1)の表面凹凸状態に応じてなじみ易い材質に交換可能な構成であり、その音響インピーダンス値が探触子ユニット(27a〜27d、28a〜28d)を構成する振動素子(31a〜31d、32a〜32d)および被検管(1)の音響インピーダンス値に近似していることを特徴とする請求項1に記載の管群減肉検査装置。   The acoustic coupling members (33a to 33d, 34a to 34d) are arranged on the side in contact with the test tube (1) of all the probe units (27a to 27d, 28a to 28d) constituting the pair of probes A and B. A vibration element that is provided and can be replaced with a material that can be easily adapted to the surface roughness of the test tube (1), and whose acoustic impedance value constitutes the probe unit (27a to 27d, 28a to 28d) The pipe group thinning inspection apparatus according to claim 1, which approximates the acoustic impedance values of (31a to 31d, 32a to 32d) and the test tube (1). 振動吸収部材(17)は、被検管(1)の外表面と直接接する弾性体(35)を備え、分割可能な構成であり、被検管(1)の任意の位置に取り付け自在であることを特徴とする請求項1に記載の管群減肉検査装置。   The vibration absorbing member (17) includes an elastic body (35) that is in direct contact with the outer surface of the test tube (1), is configured to be split, and can be attached to any position of the test tube (1). The tube group thinning inspection apparatus according to claim 1. 圧着手段(A)は、圧力流体を生成する圧力流体発生部(24)と、該圧力流体の圧力を受信信号処理部(22)からの制御信号によって制御する流体圧制御部(23)と、ホルダ(13)内に設けたシリンダ(11a〜11d、12a〜12d)とを備え、該シリンダ(11a〜11d、12a〜12d)が振動素子(31a〜31d、32a〜32d)を被検管(1)の表面へ押圧するピストンの機能を備えていることを特徴とする請求項1に記載の管群減肉検査装置。   The pressure-bonding means (A) includes a pressure fluid generator (24) that generates a pressure fluid, a fluid pressure controller (23) that controls the pressure of the pressure fluid by a control signal from the reception signal processor (22), Cylinders (11a to 11d, 12a to 12d) provided in the holder (13), and the cylinders (11a to 11d, 12a to 12d) connect the vibration elements (31a to 31d, 32a to 32d) with test tubes ( The pipe group thinning inspection apparatus according to claim 1, wherein the pipe group thinning inspection apparatus has a function of a piston that presses against a surface of 1). 励振信号遅延制御部(20)は、励振信号位相制御部(21)から送られてくる励振信号にP/C時間(C:被検管(1)を伝播する水平偏波の横波の速度(m/sec)、P:甲乙一対の探触子群の間隔(m))の遅延を与えて乙探触子群を構成する探触子ユニット(28a〜28d)に送り、受信信号処理部(22)が、甲探触子群を構成する探触子ユニット(27a〜27d)で受信した信号と乙探触子群を構成する探触子ユニット(28a〜28d)で受信した信号を前記P/C時間だけ時間シフトさせた信号として加算する機能を有することを特徴とする請求項1に記載の管群減肉検査装置。 The excitation signal delay control unit (20) transmits the excitation signal sent from the excitation signal phase control unit (21) to the P / C time (C: the velocity of the transversely polarized wave propagating through the test tube (1) ( m / sec), P: a distance between the pair of probe groups B and B (m)) is sent to the probe units (28a to 28d) constituting the probe group, and the received signal processing unit ( 22), wherein the signals received by the probe unit constituting Kinoesagu probe group (probe unit constituting the signal and Party B probe group received in 27a-27d) (28a to 28d) P 2. The tube group thinning inspection apparatus according to claim 1, which has a function of adding as a signal shifted by a time of / C time . データベース(25)は、特定の周波数における受信信号の振幅比をパラメータとした減肉径と深さの比率、および特定の周波数における受信信号の振幅と減肉位置をパラメータとする欠損率の相関関係とを示すデータを備えていることを特徴とする請求項1に記載の管群減肉検査装置。   The database (25) shows the correlation between the ratio of the thinning diameter and the depth using the amplitude ratio of the received signal at a specific frequency as a parameter, and the loss rate using the amplitude of the received signal and the thinning position at a specific frequency as a parameter. The tube group thinning inspection apparatus according to claim 1, comprising data indicating: 請求項1記載の管群減肉検査装置の甲探触子群の探触子ユニット(27a〜27d)からの送信信号を被検管(1)の減肉位置から反射して甲探触子群の探触子ユニット(27a〜27d)で受信させ、
甲探触子群の探触子ユニット(27a〜27d)からの送信信号を乙探触子群の探触子ユニット(28a〜28d)でP/C時間(C:被検管を伝播する水平偏波の横波の速度(m/sec)、P:甲乙一対の探触子群の間隔(m))だけ遅延させて受信させ、
甲探触子群の探触子ユニット(27a〜27d)で受信した被検管(1)の減肉位置から反射した信号に乙探触子群の探触子ユニット(28a〜28d)で受信した前記信号をP/C時間だけ時間シフトさせた信号として加算して減肉位置からの高次モード波の振幅を1以下とし、最低次ねじれモード波の受信信号の振幅を2倍として、予め作成されている減肉評価用のデータベース(25)を参照して被検管(1)の減肉の評価をすることを特徴とする管群減肉検査方法。
The former probe is reflected by reflecting the transmission signal from the probe unit (27a to 27d) of the former probe group of the former group of tube thinning inspection apparatus according to claim 1 from the thinning position of the test tube (1). Group probe units (27a-27d)
The transmission signal from the probe unit (27a to 27d) of the former probe group is transmitted to the probe unit (28a to 28d) of the second probe group for P / C time (C: horizontal propagation through the test tube). Receive the wave by delaying by the velocity of the transverse wave of polarized wave (m / sec), P: the distance between the pair of probes B and B (m)),
The signals reflected from the thinning position of the test tube (1) received by the probe unit (27a to 27d) of the former probe group are received by the probe unit (28a to 28d) of the Otsu probe group. The amplitude of the higher order mode wave from the thinning position is set to 1 or less and the amplitude of the received signal of the lowest order twist mode wave is doubled in advance by adding the above signals as a signal shifted by P / C time. A tube group thinning inspection method characterized by evaluating the thinning of the test tube (1) with reference to the prepared database (25) for thinning evaluation .
乙一対の探触子群をそれぞれ構成する偶数個の探触子ユニット(27a〜27d、28a〜28d)から被検管(1)の軸芯方向に伝播する特定の周波数の水平偏波の横波をそれぞれ送信し、反射信号を参照する側の感度補償試験体(15b)からの反射波を探触子ユニット(27a〜27d、28a〜28d)で受信し、該反射波を参照して圧着手段(A)による探触子ユニット(27a〜27d、28a〜28d)の被検管(1)方向への押付け流体圧を順次補正して探触子ユニット(27a〜27d、28a〜28d)で発生させ、被検管(1)に伝達させる送信信号の伝達効率を制御して、被検管(1)を伝播する送信信号の強度を互いに均一にすることを特徴とする請求項8記載の管群減肉検査方法。 An even number of probe units constituting Party Otsu pair of probes groups, respectively (27a-27d, 28a to 28d) from the horizontal polarization of a particular frequency which propagates in the axial direction of the test tube (1) Transverse waves are transmitted, the reflected waves from the sensitivity compensation test body (15b) on the side referring to the reflected signal are received by the probe units (27a to 27d, 28a to 28d), and the reflected waves are referred to and crimped. With the probe units (27a to 27d, 28a to 28d), the pressing fluid pressure in the direction of the test tube (1) of the probe units (27a to 27d, 28a to 28d) by means (A) is corrected sequentially. The transmission signal transmitted and transmitted to the test tube (1) is controlled to make the intensity of the transmission signals propagating through the test tube (1) uniform with each other . Tube group thinning inspection method.
JP2006320269A 2006-11-28 2006-11-28 Tube group thinning inspection device and inspection method Expired - Fee Related JP5121214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320269A JP5121214B2 (en) 2006-11-28 2006-11-28 Tube group thinning inspection device and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320269A JP5121214B2 (en) 2006-11-28 2006-11-28 Tube group thinning inspection device and inspection method

Publications (2)

Publication Number Publication Date
JP2008134141A JP2008134141A (en) 2008-06-12
JP5121214B2 true JP5121214B2 (en) 2013-01-16

Family

ID=39559093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320269A Expired - Fee Related JP5121214B2 (en) 2006-11-28 2006-11-28 Tube group thinning inspection device and inspection method

Country Status (1)

Country Link
JP (1) JP5121214B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075499A (en) * 2009-10-01 2011-04-14 Toshiba Corp Method and device for inspecting reduced-thickness of piping using electromagnetic ultrasonic wave
US20120053895A1 (en) * 2010-08-18 2012-03-01 Noam Amir Method and system for evaluating the condition of a collection of similar elongated hollow objects
JP2018072188A (en) * 2016-10-31 2018-05-10 株式会社日立パワーソリューションズ Nondestructive inspection system using guide wave, and nondestructive inspection method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173755A (en) * 1983-03-23 1984-10-01 Mitsubishi Electric Corp Plate wave transmitter and receiver
JPH04213054A (en) * 1990-12-07 1992-08-04 Sumitomo Metal Ind Ltd Test piece for plate ultrasonic wave flaw detection and manufacture thereof
JP3889938B2 (en) * 2001-05-18 2007-03-07 シャープ株式会社 Solar cell internal crack inspection system
JP3704070B2 (en) * 2001-08-17 2005-10-05 三菱電機株式会社 Ultrasonic flaw detector
JP4108535B2 (en) * 2003-05-26 2008-06-25 三菱電機株式会社 Ultrasonic flaw detector
JP2005291962A (en) * 2004-03-31 2005-10-20 Toshiba Corp Ultrasonic remote flaw detection apparatus

Also Published As

Publication number Publication date
JP2008134141A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
EP2598866B1 (en) Ultrasonic pipe inspection with signal processing arrangement
US20070186655A1 (en) Methods and apparatus for porosity measurement
JP4589280B2 (en) Pipe inspection method using guide wave and pipe inspection apparatus
JP4686378B2 (en) Pipe inspection device
Liu et al. Guided waves based diagnostic imaging of circumferential cracks in small-diameter pipe
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
CN108548869B (en) Nuclear power station polyethylene pipe phased array ultrasonic detection method
Ma et al. The reflection of guided waves from simple dents in pipes
JP5121214B2 (en) Tube group thinning inspection device and inspection method
JP5663319B2 (en) Guide wave inspection method and apparatus
US10048225B2 (en) Apparatus and method for inspection of tubes in a boiler
JP2009075101A (en) Method and apparatus for detecting defect in tooth of generator rotor
JP4625747B2 (en) Piping inspection device and piping inspection method
JP5669023B2 (en) Method for adjusting flaw detection sensitivity of ultrasonic probe
JP3704070B2 (en) Ultrasonic flaw detector
JP5193720B2 (en) Non-contact aerial ultrasonic tube ultrasonic inspection apparatus and method
JP5297791B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2008139325A (en) Ultrasonic flaw detector
CN106442719A (en) Pipeline bended waveguide detection method and system based on spiral comb type transducer
JP2016027321A (en) Ultrasonic inspection method and probe installation fixture
JP2014062758A (en) Method and device for nondestructive inspection using guide wave
CN108414620A (en) Path is deep than special-shaped inner wall of the pipe circumferential crack rayleigh waves inspection method
JP3668936B2 (en) Ultrasonic flaw detector
EP4107521A1 (en) Ultrasonic probe couplant monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees