JP5121047B2 - Spindle device using hydrodynamic bearing and radial hydrodynamic bearing - Google Patents

Spindle device using hydrodynamic bearing and radial hydrodynamic bearing Download PDF

Info

Publication number
JP5121047B2
JP5121047B2 JP2007286205A JP2007286205A JP5121047B2 JP 5121047 B2 JP5121047 B2 JP 5121047B2 JP 2007286205 A JP2007286205 A JP 2007286205A JP 2007286205 A JP2007286205 A JP 2007286205A JP 5121047 B2 JP5121047 B2 JP 5121047B2
Authority
JP
Japan
Prior art keywords
bearing
spindle
pad
dynamic pressure
hydrodynamic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007286205A
Other languages
Japanese (ja)
Other versions
JP2009115131A (en
Inventor
洋 水本
洋一 田添
繁 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Tottori University
Original Assignee
Nachi Fujikoshi Corp
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Tottori University filed Critical Nachi Fujikoshi Corp
Priority to JP2007286205A priority Critical patent/JP5121047B2/en
Publication of JP2009115131A publication Critical patent/JP2009115131A/en
Application granted granted Critical
Publication of JP5121047B2 publication Critical patent/JP5121047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)

Description

本発明は、ティルティングパッド軸受のような流体のくさび作用を利用した動圧軸受およびそれを用いたスピンドル装置に関する。より詳細には、工作機械等において、小径の研削砥石や切削工具を保持し高速・高精度で回転させるための高速スピンドルの支持軸受機構に関するものである。   The present invention relates to a hydrodynamic bearing using a wedge function of a fluid such as a tilting pad bearing and a spindle apparatus using the same. More specifically, the present invention relates to a support bearing mechanism for a high-speed spindle for holding a small-diameter grinding wheel or cutting tool and rotating it with high speed and high accuracy in a machine tool or the like.

小径の研削砥石や切削工具などを把持・駆動する高速スピンドルでは、最適な切削速度を維持するために工具径の減少とともにスピンドル回転数の増加を要求される。しかしながら、スピンドル回転数の増加に伴いスピンドルの振動振幅が増大し、結果として工具も振動するために加工精度の低下することが問題であった。   In a high-speed spindle that grips and drives a small-diameter grinding wheel or cutting tool, an increase in spindle rotation speed is required as the tool diameter decreases in order to maintain an optimum cutting speed. However, as the spindle rotation speed increases, the vibration amplitude of the spindle increases. As a result, the tool also vibrates, so that the processing accuracy is lowered.

スピンドルの回転精度維持・向上のためにはスピンドル支持軸受の精度の改善や軸受剛性の増加などが有効である。たとえば、転がり軸受を使用する場合には軸受に組み込まれる転動体の形状精度を改善することでスピンドルの振動を減少させられる。しかしながら、精密・超精密加工において許容できるスピンドル振動振幅はサブミクロンオーダであり、転がり軸受を用いたスピンドルで良好な加工結果を得られる運転可能な回転速度は高々30,000min-1程度である。そこで、工具径が1mmを下回り、50,000min-1、さらには100,000min-1を超えるような高速回転を必要とする場合には回転精度が高く、摩擦損失の少ない空気を作動流体とするすべり軸受の採用が適切であり、種々の形式の動圧軸受、静圧軸受が提案されている。 In order to maintain and improve the rotational accuracy of the spindle, it is effective to improve the accuracy of the spindle support bearing and increase the bearing rigidity. For example, when using a rolling bearing, the vibration of the spindle can be reduced by improving the shape accuracy of the rolling elements incorporated in the bearing. However, the allowable spindle vibration amplitude in precision / ultra-precision machining is on the order of submicron, and the operable rotation speed at which good machining results can be obtained with a spindle using a rolling bearing is at most about 30,000 min −1 . Therefore, the tool diameter is below 1mm, 50,000min -1, more rotational accuracy is high, the less air friction losses and hydraulic fluid in the case of requiring a high-speed rotation exceeding 100,000Min -1 The use of plain bearings is appropriate, and various types of hydrodynamic bearings and hydrostatic bearings have been proposed.

まず空気動圧軸受としては、たとえばティルティンパッド軸受があるがこの軸受では、軸受面が一体ではなく複数の部品で構成されている。その結果、加工、組立が煩雑であり、軸受面の形状精度があまり高くできない。したがって、このような動圧軸受に支えられるスピンドルに高い回転精度は期待できなかった。軸受面が一体構造の動圧軸受(真円軸受、ヘリングボーン軸受など)も存在するが、軸受面形状が単純な真円軸受の場合、発生動圧が不十分である。そこで、負荷支持に必要な動圧を発生させるにはヘリングボーン軸受などにみられるように軸受面に複雑な形状を作り込む必要があり、加工・組立技術上の困難さが伴う。しかもこれら動圧軸受には、低速回転時に充分な負荷容量、剛性が得られず、スピンドルと軸受面とが接触するという致命的な短所がある。   First, as an air dynamic pressure bearing, for example, there is a tilting pad bearing. In this bearing, the bearing surface is not integrated but is composed of a plurality of parts. As a result, processing and assembly are complicated, and the shape accuracy of the bearing surface cannot be so high. Therefore, high rotational accuracy could not be expected for the spindle supported by such a dynamic pressure bearing. There are also dynamic pressure bearings (such as a perfect circle bearing and a herringbone bearing) having a single bearing surface, but in the case of a perfect circle bearing with a simple bearing surface shape, the generated dynamic pressure is insufficient. Therefore, in order to generate the dynamic pressure necessary to support the load, it is necessary to create a complicated shape on the bearing surface as seen in herringbone bearings and the like, resulting in difficulties in processing and assembly techniques. Moreover, these dynamic pressure bearings have a fatal disadvantage in that sufficient load capacity and rigidity cannot be obtained during low-speed rotation, and the spindle and the bearing surface come into contact with each other.

一方、空気静圧軸受では低速回転時にも安定した充分な潤滑膜が存在し、スピンドルと軸受面とが接触することはない。しかしながら、軸受寸法の制限により軸受剛性が必ずしも充分ではなく、スピンドルの高速回転に伴う振動振幅の増加が問題となる。そこで、多孔質軸受や表面絞り軸受など、限られた軸受寸法で軸受面積を増加させる構造が提案されているが、製作が困難であったり、構造が複雑となるなどの問題点も生じる。しかもこれらの静圧軸受での負荷支持動作は受動的なものであり、振動抑制効果も限定的なものにならざるを得ない。   On the other hand, an aerostatic bearing has a sufficient and stable lubricating film even at low speed rotation, and the spindle and the bearing surface do not contact each other. However, the bearing rigidity is not always sufficient due to the limitation of the bearing size, and an increase in vibration amplitude accompanying high-speed rotation of the spindle becomes a problem. Thus, structures that increase the bearing area with limited bearing dimensions, such as porous bearings and surface constricted bearings, have been proposed, but problems such as difficulty in manufacture and complicated structures arise. Moreover, the load supporting operation in these hydrostatic bearings is passive, and the vibration suppressing effect must be limited.

そこで、スピンドルの変位、振動を能動制御により減少させる軸受として、たとえば、特許文献1においては、静圧軸受内に圧電素子を用いた能動自成絞り組み込み、軸変位を能動的制御している。このものは、対向する二平面間の相手平面と微少隙間による絞りを形成し、流体圧を供給する開口部を先端に有する開口面を有し、開口面が固定側に対して一軸方向に伸縮可能にかつ取付平面より突出して固定された静圧素子が設けられ、前記微少隙間による絞りから供給される流体により対向する二平面間に静圧軸受が形成され、二平面間の距離を外部から設定する設定器と、二平面間の距離を測定する測定器とを設け、測定器の出力信号と設定器の設定信号とを比較し、設定信号より出力信号が大きいときは開口面が相手平面に近づき、設定信号より出力信号が小さいときは開口面が相手平面とは離れるように制御し、二平面間の距離を設定器で設定された距離になるよう制御した静圧軸受である。   Therefore, as a bearing that reduces the displacement and vibration of the spindle by active control, for example, in Patent Document 1, an active self-contained throttle using a piezoelectric element is incorporated in a hydrostatic bearing, and axial displacement is actively controlled. This has an aperture with an opening that supplies fluid pressure at the tip, forming a diaphragm with a small gap between the opposing plane between two opposing planes, and the aperture is expanded and contracted in a uniaxial direction relative to the fixed side. A hydrostatic element is provided which is fixed and protrudes from the mounting plane, and a hydrostatic bearing is formed between the two planes facing each other by the fluid supplied from the throttle by the minute gap, and the distance between the two planes is set from the outside. A setting device to set and a measuring device to measure the distance between two planes are provided, and the output signal of the measuring device is compared with the setting signal of the setting device. When the output signal is smaller than the set signal, the hydrostatic bearing is controlled so that the opening surface is separated from the counterpart plane, and the distance between the two planes is controlled to the distance set by the setting device.

また、動圧軸受の一種である、ティルティンパッド軸受においては、特許文献2に示すように軸受面の一部を可撓面とし、圧電素子により前記可撓面を変形させることで軸振動を減衰させようとしている。さらに特許文献3(段落[0021]、[0022])においては、回転軸の変位センサを設け、回転軸が例えば鉛直方向に振動すると、変位センサが回転軸との間の隙間が変化したことを検出し、その変位信号を受けた制御装置により、検出信号に基づき定められた高さの電圧を圧電素子へ供給する。供給された圧電素子が伸び可撓性パッドの自由端の傾斜角を大きくして回転軸と可撓性パッドの間の隙間分布を変化させ、圧力分布を変化させ、隙間とばね定数、減衰係数を変化させ振動を押さえることにより、回転軸の変位を減衰させるようにしている。さらには、ダッシュポットを設け振動を抑制している。
Further, in a tilting pad bearing, which is a kind of dynamic pressure bearing, as shown in Patent Document 2, a part of the bearing surface is made a flexible surface, and the flexible surface is deformed by a piezoelectric element to thereby generate axial vibration. Trying to attenuate. Furthermore, in Patent Document 3 (paragraphs [0021] and [0022]), a displacement sensor for the rotation shaft is provided, and when the rotation shaft vibrates in the vertical direction, for example, the gap between the displacement sensor and the rotation shaft changes. A control device that detects and receives the displacement signal supplies a voltage having a height determined based on the detection signal to the piezoelectric element. The supplied piezoelectric element stretches to increase the inclination angle of the free end of the flexible pad, thereby changing the gap distribution between the rotating shaft and the flexible pad, changing the pressure distribution, the gap, the spring constant, and the damping coefficient. The displacement of the rotating shaft is attenuated by changing the vibration and suppressing the vibration. Furthermore, a dash pot is provided to suppress vibration.

一方、複合軸受として、特許文献4においては、能動形磁気軸受スピンドルの保護ベアリングを静圧軸受とするとともに、能動形磁気軸受の隙間を静圧軸受の隙間に静圧軸受の定格許容変位を加えた値より大きくし、スピンドル運転中に能動形磁気軸受と静圧軸受とで主軸を同時に浮上支持するようにし、保護ベアリングとしての機能を満足するとともに、スピンドル運転中の軸隙間を小さくし、能動形磁気軸受の感度をあげてスピンドル主軸の精度、剛性を向上させている。
特許第3746199号公報 特許第2659829号公報 特開2000−205251号公報 特公平7−30789号公報
On the other hand, as a compound bearing, in Patent Document 4, the protective bearing of the active magnetic bearing spindle is a hydrostatic bearing, and the active magnetic bearing gap is added to the hydrostatic bearing gap to add the rated allowable displacement of the hydrostatic bearing. The spindle is supported by the active magnetic bearing and the hydrostatic bearing at the same time during spindle operation to satisfy the function as a protective bearing and reduce the shaft clearance during spindle operation. The precision and rigidity of the spindle spindle are improved by increasing the sensitivity of the magnetic bearing.
Japanese Patent No. 3746199 Japanese Patent No. 2659829 JP 2000-205251 A Japanese Patent Publication No. 7-30789

しかしながら特許文献1のような能動制御静圧軸受では、周波数特性が十分ではなく、回転速度の増加に伴い制御が追いつかず、高速回転時には充分な制御効果が得られていない。また、特許文献2,3のものにおいては、軸受面が分割されているなど、複数の部品で構成され、軸受の加工・組立精度の維持が困難で軸受面形状誤差が大きく高い回転精度は期待できない。しかも、軸受面すきまの高精度管理もできないため軸受隙間も大きく、また、可撓部分が制御中に回転しているスピンドルに接する虞もあり、大型、低速の軸受としてはよいが、小型、高速度、高精度のものには不向きである。また、振動減衰においても、特許文献3のように、ダッシュポッドのような周波数特性を劣化させる振動減衰制御しかできず高精度、高応答の制御はできない。さらに、特許文献4のような能動形磁気軸受との組み合わせにあっては、磁気軸受側の構造及び制御装置は大きく、また、複雑であり、コストも高く、高度な調整も必要であった。     However, in the active control hydrostatic bearing as in Patent Document 1, the frequency characteristics are not sufficient, the control cannot catch up with the increase in the rotational speed, and a sufficient control effect is not obtained at high speed rotation. Further, in Patent Documents 2 and 3, the bearing surface is divided into a plurality of parts, and it is difficult to maintain the processing and assembly accuracy of the bearing, and the bearing surface shape error is large and high rotation accuracy is expected. Can not. Moreover, since the bearing surface clearance cannot be controlled with high accuracy, the bearing clearance is large, and the flexible part may come into contact with the rotating spindle during control. Not suitable for speed and high accuracy. Also in the vibration damping, as in Patent Document 3, only the vibration damping control that deteriorates the frequency characteristic like the dash pod can be performed, and the control with high accuracy and high response cannot be performed. Furthermore, in the combination with the active magnetic bearing as in Patent Document 4, the structure and control device on the magnetic bearing side are large, complicated, expensive, and require advanced adjustment.

このように従来のスピンドル技術では回転速度の増加に伴う振動増加を抑制する有効な技術が存在せず、小径工具による精密加工のための高速スピンドルを実現するための障害となっていた。   Thus, in the conventional spindle technology, there is no effective technology for suppressing an increase in vibration accompanying an increase in rotational speed, which has been an obstacle to realizing a high-speed spindle for precision machining with a small diameter tool.

本発明の課題は、かかる従来の問題点に鑑みて、高速回転時においても振動が少なく、回転精度の高い動圧軸受を提供し、さらには、小径工具が必要とする高速回転時においてスピンドルの振動振幅をサブミクロンオーダーに抑制する制御手段も可能な動圧軸受及び動圧軸受を用いたスピンドル装置を提供することである。   In view of the conventional problems, an object of the present invention is to provide a hydrodynamic bearing with low vibration and high rotational accuracy even at high speed rotation, and further, at high speed rotation required by a small-diameter tool, It is an object of the present invention to provide a dynamic pressure bearing and a spindle device using the dynamic pressure bearing capable of controlling a vibration amplitude to a submicron order.

本発明においては、相対移動する相手側面に対して傾斜面を形成して動圧を発生させる軸受パッドが複数配置された動圧軸受であって、前記軸受パッドはパッド面が前記相手側面に対して外部より制御可能なアクチュエータにより進退可能にされた可撓性パッドであり、前記軸受パッド間には固定部が設けられており、全ての前記パッド面を含む軸受パッドと前記固定部とが連続面で接続されており、前記可撓性パッドは厚肉部と、前記厚肉部の相対移動方向の一端側に設けられた第一薄肉部と、前記厚肉部の相対移動方向の他端に設けられ前記第一の薄肉部より相対移動方向長さが長くされた第二の薄肉部と、を有し、それぞれが前記固定部に連続面で接続され、前記厚肉部の反相手側面に設けられたアクチュエータにより前記厚肉部への押圧力を変化させることにより前記パッド面を相手側面に対して進退可能にされている動圧軸受を提供することにより前述した課題を解決した。
In the present invention, there is provided a dynamic pressure bearing in which a plurality of bearing pads for generating dynamic pressure are formed by forming an inclined surface with respect to the opposing side surface, and the pad surface of the bearing pad is relative to the side surface. A flexible pad that can be moved back and forth by an externally controllable actuator, and a fixed portion is provided between the bearing pads, and the bearing pad including all the pad surfaces and the fixed portion are continuous. The flexible pad is connected by a surface, and the flexible pad has a thick part, a first thin part provided on one end side in the relative movement direction of the thick part, and the other end in the relative movement direction of the thick part. And a second thin portion whose relative movement direction length is longer than that of the first thin portion, each of which is connected to the fixed portion by a continuous surface, and the opposite side surface of the thick portion To the thick part by the actuator And solve the problems described above by providing a hydrodynamic bearing which is in retractable said pad surface to the counterpart side by changing the pressure.

即ち、従来のものは、大型で十分に大きな面積のパッド面を有しており、パッド面の始点、終点での流体分布の影響は考慮されていない。しかし、本発明者等は、小型、高速になると始点、終点でのパッド面で形成される動圧軸受として機能する流体分布がとぎれ、不安定な分布となり、パッド面の制御が困難となり、軸受性能が低下することを知得した。この知得により、本発明においては、ティルティングパッド方式のパッド面と固定部を連続した面で形成し、即ち一体となし、軸受パッドを可撓性パッドとしてパッド面を進退させて形成した傾斜面によりくさび状膜による動圧軸受を形成する。動圧軸受の軸受面を連続させることで形状精度を維持し、パッド面の前後の影響の少ない安定した流体分布を維持できるものとなった。   That is, the conventional one has a large and sufficiently large pad surface, and the influence of the fluid distribution at the start point and end point of the pad surface is not taken into consideration. However, when the present inventors are small and high-speed, the fluid distribution functioning as a hydrodynamic bearing formed by the pad surface at the start point and the end point is interrupted, resulting in an unstable distribution, and it becomes difficult to control the pad surface. I knew that the performance would drop. With this knowledge, in the present invention, the tilting pad type pad surface and the fixed portion are formed as a continuous surface, that is, formed as a single unit, and formed by moving the pad surface forward and backward with the bearing pad as a flexible pad. The surface forms a hydrodynamic bearing with a wedge-shaped film. By keeping the bearing surface of the hydrodynamic bearing continuous, the shape accuracy can be maintained, and a stable fluid distribution with little influence before and after the pad surface can be maintained.

連続面とは不連続な段差等がなく、軸受パッドの動圧への影響を少なくするものである。より好ましくは、可撓性パッドが作動していない状態で、パッド面と固定部は一体の連続面とされ、即ち、ラジアル軸受にあっては同一円周面、スラスト軸受にあっては同一平面となるようにされる。また、可撓性パッドを含む軸受パッドは軸受面の一部(パッド面)をアクチュエータにより弾性変形させることで、強度、再現性を確保しながら動圧発生に必要なくさび膜を形成させる。   The continuous surface has no discontinuous steps and reduces the influence on the dynamic pressure of the bearing pad. More preferably, in a state where the flexible pad is not in operation, the pad surface and the fixed portion are formed as an integral continuous surface, that is, the same circumferential surface for radial bearings and the same plane for thrust bearings. It is made to become. Further, a bearing pad including a flexible pad elastically deforms a part of the bearing surface (pad surface) with an actuator, thereby forming a rust film without the need for dynamic pressure generation while ensuring strength and reproducibility.

さらに、厚肉部でパッド面を形成し、厚肉部をアクチュエータで押圧すると、薄肉部が変形し厚肉部が相手側面に近づき隙間を減少させる。このとき、第一の薄肉部より第二の薄肉部の方が長いので、第一の薄肉部側を中心にして第二の薄肉部側がの方が変形が大きく厚肉部が斜面を形成し、動圧発生に必要なくさび状膜を形成させることができる。なお、薄肉部は弾性変形範囲におさめることが好ましいことは言うまでもない。
Further, when the pad surface is formed by the thick portion and the thick portion is pressed by the actuator, the thin portion is deformed and the thick portion approaches the other side surface to reduce the gap. At this time, since the second thin portion is longer than the first thin portion, the second thin portion side is more deformed and the thick portion forms a slope with the first thin portion side as the center. A rust-like film can be formed without the need for dynamic pressure generation. Needless to say, it is preferable to keep the thin portion within the elastic deformation range.

また、前記アクチュエータは高応答性、制御容易性、小型である等の面から圧電素子であることが好ましい(請求項2)。さらに、前記固定部には相手側面との変位を測定する変位センサを設けることにより、フィードバック制御が可能な能動形動圧軸受とすることができる(請求項3)。なお、固定部に変位センサを設けた場合に、固定部で連続面の一部に取付穴あるいは検出穴が必要であるが、穴の大きさや位置は軸受パッドの動圧への影響ができるだけ小さくなるようにされる。できれば、変位センサの先端を固定部の連続面に合わせた形状にすることが望ましい。
Further, the actuator high response, control ease, it is preferable that the piezoelectric element in terms of equal is a small (claim 2). Furthermore, the the fixing portion can be by providing a displacement sensor for measuring the displacement of the mating side, and the active form dynamic pressure bearing capable of feedback control (claim 3). When a displacement sensor is provided in the fixed part, a mounting hole or a detection hole is required in a part of the continuous surface in the fixed part. However, the size and position of the hole has the least influence on the dynamic pressure of the bearing pad. To be. If possible, it is desirable that the tip of the displacement sensor be shaped to match the continuous surface of the fixed part.

これにより、各センサの出力を観測し、スピンドルとの距離が減少する側のパッド面を圧電素子等のアクチュエータにより押し上げ弾性変形量を増加させて、パッド面の発生動圧を増加させてスピンドルを押し戻す。一方、スピンドルとの距離が増加する側のパッド面をアクチュエータの押し上げ位置を減少させることで弾性力により(弾性変形量を減少させて)パッド面を下げ、発生動圧を減少させてスピンドルを引き寄せるように制御することで、回転スピンドルの回転に伴い発生する振動振幅を抑制させることができる。   As a result, the output of each sensor is observed, the pad surface on the side where the distance from the spindle is decreased is pushed up by an actuator such as a piezoelectric element, the amount of elastic deformation is increased, the generated dynamic pressure on the pad surface is increased, and the spindle is Push back. On the other hand, the pad surface on the side where the distance to the spindle increases increases the actuator push-down position to lower the pad surface by elastic force (decreasing the amount of elastic deformation), and reduces the generated dynamic pressure to pull the spindle. By controlling in this way, it is possible to suppress the vibration amplitude generated with the rotation of the rotary spindle.

また、前記相手側面は回転軸の外周とすれば、ラジアル動圧軸受に適用できる(請求項4)。さらに、前記相手側面は回転円部の軸方向側面とすれば、スラスト動圧軸受に適用できる(請求項5)
Further, the counterpart side if the outer periphery of the rotary shaft, can be applied to the radial dynamic pressure bearing (Claim 4). Furthermore, the counterpart side if the axial side surface of the rotating disk unit, can be applied to the thrust hydrodynamic bearing (Claim 5).

かかる動圧軸受を回転スピンドルに使用するにあたって、スピンドルが軽い場合には問題が少ないが、かかる動圧効果は低回転速度ではスピンドル荷重を支えるには不十分である。そこで、請求項6に記載の発明においては、前記相手側面は回転スピンドルの出力端側に設けられた外周面の一部であって、前記回転スピンドルはさらに、2以上の静圧軸受又は転がり軸受で支持されているラジアル動圧軸受を用いたスピンドル装置として構成するものとした。
When such a dynamic pressure bearing is used for a rotating spindle, there are few problems if the spindle is light, but such a dynamic pressure effect is insufficient to support the spindle load at a low rotational speed. Therefore, in the invention described in claim 6, wherein the mating side is a part of the outer peripheral surface provided al to an output end of the rotating spindle, the rotary spindle is further more hydrostatic bearing or rolling The spindle device uses a radial dynamic pressure bearing supported by the bearing.

これにより、低速、中速度領域では上述のように静圧軸受等によりスピンドルを支持する。一方、本発明の目的とする高回転速度領域において動圧軸受は十分な動圧、負荷容量を発生でき、この発生動圧を活用してスピンドルの位置を制御して振動を抑制できる。また、特許文献4においては、スピンドルの両端を磁気及び静圧軸受の両方で支持している。これに対し、本発明においては、静圧軸受等は両端支持とし、常にスピンドルを保持し、その外側の一端を動圧軸受とし、工具先端の微少振れのみの制御を動圧軸受を用いて制御しているので構造及び制御も簡単である。   As a result, the spindle is supported by the hydrostatic bearing or the like as described above in the low speed and medium speed regions. On the other hand, the dynamic pressure bearing can generate sufficient dynamic pressure and load capacity in the high rotational speed region which is an object of the present invention, and the generated dynamic pressure can be used to control the position of the spindle to suppress vibration. In Patent Document 4, both ends of the spindle are supported by both magnetic and hydrostatic bearings. In contrast, in the present invention, a hydrostatic bearing or the like is supported at both ends, the spindle is always held, and one end on the outer side thereof is a dynamic pressure bearing, and control of only minute vibration at the tool tip is controlled using the dynamic pressure bearing. Therefore, the structure and control are simple.

本発明においては、可撓性パッド面を進退させる動圧軸受の可撓性パッドを含む軸受パッドと固定部を連続した面で一体とし、軸受面を連続させることで形状精度を維持し、パッド面の前後の影響の少ない安定した流体分布を維持できるようにしたので、スピンドルの回転精度への軸受面形状の影響を極小化できる。さらに、軸受面を一体構造の単一部品とでき、しかも軸受面の形状を基本的には真円(ラジアル軸受)または真平面(スラスト軸受)などの単純な幾何形状とできることより、能動軸受機構の軸受面を高精度に加工することが可能となり、組立において軸受面の形状精度や他の軸受面との配置精度を高レベルに維持できる。その結果、軸受すきまをより小さく保つことが可能となり、高い回転精度が期待できるものとなった。   In the present invention, the bearing pad including the flexible pad of the hydrodynamic bearing that advances and retracts the flexible pad surface and the fixed portion are integrated on a continuous surface, and the shape accuracy is maintained by continuing the bearing surface. Since the stable fluid distribution with little influence before and after the surface can be maintained, the influence of the bearing surface shape on the rotation accuracy of the spindle can be minimized. Furthermore, since the bearing surface can be a single component of an integral structure, and the shape of the bearing surface can be basically a simple geometric shape such as a perfect circle (radial bearing) or a true plane (thrust bearing), an active bearing mechanism The bearing surface can be processed with high accuracy, and the shape accuracy of the bearing surface and the arrangement accuracy with other bearing surfaces can be maintained at a high level during assembly. As a result, the bearing clearance can be kept smaller, and high rotational accuracy can be expected.

さらに、第一及び第二の薄肉部で支持した厚肉部でパッド面を形成し、パッド面を押し上げるようにして、パッド面の両側の第一の薄肉部側を中心にして厚肉部を斜面にしてくさび状膜を形成させ動圧軸受とできるので、構造も簡単であり、弾性変形領域内での設計や変形解析も容易であり、設計・製作も容易なものとなった。また、アクチュエータに圧電素子を用いているので、小型・製作が容易である(請求項2)
Further, the pad surface is formed by the thick portion supported by the first and second thin portions, and the pad portion is pushed up so that the thick portion is centered around the first thin portion on both sides of the pad surface. The structure can be made simple by forming a wedge-shaped film on the slope, making it easy to design and analyze in the elastic deformation region, and to design and manufacture easily. Moreover, because of the use of piezoelectric elements in the actuator, it is easy to compact and produced (Claim 2).

また、固定部に変位センサを設けることにより、フィードバック制御が可能な能動形動圧軸受とすることができるので、回転スピンドルの回転に伴い発生する振動振幅を抑制させることができ、高精度の制御ができるものとなった(請求項3)。また、相手側面を回転軸の外周とすれば、ラジアル動圧軸受に適用でき(請求項4)、相手側面を軸方向側面とすれば、スラスト動圧軸受に適用できる(請求項5)等、種々の動圧軸受に応用できる。
Also, by providing a displacement sensor in the fixed part, an active dynamic pressure bearing capable of feedback control can be obtained, so that the vibration amplitude generated with the rotation of the rotating spindle can be suppressed, and high-precision control can be achieved. (Claim 3) . Further, if the opposite side surface is the outer periphery of the rotary shaft, it can be applied to a radial dynamic pressure bearing (Claim 4) , and if the opposite side surface is an axial side surface, it can be applied to a thrust dynamic pressure bearing (Claim 5) . It can be applied to various dynamic pressure bearings.

さらに、請求項6に記載の発明においては、静圧軸受を両端支持とし、常にスピンドルを保持し、その外側の一端を動圧軸受とし、工具先端の微少振れのみの制御を動圧軸受を用いて制御しているので、動圧効果の少ない低回転速度時には静圧軸受が負荷を受け持つことより、”くさび膜”の角度をあまり大きくする必要がない。さらに、静圧軸受を能動制御する場合には回転速度の上昇とともに制御力の不足が問題となっていたが、本発明の場合には高回転速度であるほど発生動圧が増加し、大きな制御力が得られ、小径工具が必要とする高速回転時においてスピンドルの振動振幅をサブミクロンオーダーに抑制することも可能になった。
Furthermore, in the invention described in claim 6 , the hydrostatic bearing is supported at both ends, the spindle is always held, the outer end is used as the hydrodynamic bearing, and only the slight vibration of the tool tip is controlled using the hydrodynamic bearing. Therefore, it is not necessary to increase the angle of the “wedge film” because the hydrostatic bearing is responsible for the load at a low rotational speed with little dynamic pressure effect. Furthermore, in the case of active control of the hydrostatic bearing, there has been a problem of insufficient control force as the rotational speed increases. However, in the present invention, the generated dynamic pressure increases as the rotational speed increases, resulting in greater control. As a result, the vibration amplitude of the spindle can be suppressed to the submicron order at the time of high-speed rotation required by a small-diameter tool.

本発明の第一の実施の形態について図面を参照して説明する。図1は本発明の第一の実施の形態を示すラジアル型能動動圧軸受の断面図、図2は、本発明の可撓性軸受パッドの弾性変形の様子を示す図1の部分拡大図、図3は本発明のラジアル型能動動圧軸受を用いたスピンドル装置の主軸ヘッドの縦断面図である。図1、3に示すように、本発明のラジアル型能動動圧軸受(以下単に「動圧軸受」という)1は、図示しない工作台に固定されたスピンドル装置10の主軸ヘッド11に先端部にあけられた貫通穴11aに挿入されている。動圧軸受1の本体2の外周2aと内周2bとは同心にされている。内周面に沿って、4個の軸受パッド3が等分に配置され、軸受パッド間に固定部4が配置されている。   A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a radial type active dynamic pressure bearing showing a first embodiment of the present invention, and FIG. 2 is a partially enlarged view of FIG. 1 showing a state of elastic deformation of the flexible bearing pad of the present invention. FIG. 3 is a longitudinal sectional view of a spindle head of a spindle apparatus using the radial type active hydrodynamic bearing of the present invention. As shown in FIGS. 1 and 3, a radial type active dynamic pressure bearing (hereinafter simply referred to as “dynamic pressure bearing”) 1 of the present invention is attached to a spindle head 11 of a spindle device 10 fixed to a work table (not shown) at a tip portion. It is inserted into the drilled through hole 11a. The outer periphery 2a and inner periphery 2b of the main body 2 of the hydrodynamic bearing 1 are concentric. Four bearing pads 3 are equally arranged along the inner peripheral surface, and the fixing portion 4 is arranged between the bearing pads.

軸受パッド3のパッド面5aは内周面2bから距離をおいてスリット6により本体2とは径方向で分離され、厚肉部5を形成している。パッド面5aの周方向一端側の内周2b近傍に小径穴7が形成され第一の薄肉部7bが形成されている。また、パッド面の他端側の内周近傍に内周に沿って長穴8が形成され第二の薄肉部8bが形成されている。パッド面5aは、周方向両端を弾性変形量の異なる第一及び第二の薄肉部7b,8bに支持され、可撓性パッドである軸受パッド3を構成する。固定部4の内周2b、第一の薄肉部7b内周側面7a、パッド面5a、第二の薄肉部8b内周側面8a、隣接する固定部4の内周2bは、真円を形成しており、連続面で接続されている。パッド面5aは第一、第二の薄肉部7b,8bの厚みを調整することで弾性変形領域内で変形するように決められる。   The pad surface 5 a of the bearing pad 3 is separated from the main body 2 in the radial direction by a slit 6 at a distance from the inner peripheral surface 2 b, thereby forming a thick portion 5. A small-diameter hole 7 is formed in the vicinity of the inner periphery 2b on one end side in the circumferential direction of the pad surface 5a to form a first thin portion 7b. In addition, a long hole 8 is formed along the inner periphery in the vicinity of the inner periphery on the other end side of the pad surface, and a second thin portion 8b is formed. The pad surface 5a is supported by first and second thin portions 7b, 8b having different elastic deformation amounts at both ends in the circumferential direction, and constitutes a bearing pad 3 that is a flexible pad. The inner periphery 2b of the fixed portion 4, the inner peripheral side surface 7a of the first thin portion 7b, the pad surface 5a, the inner peripheral side surface 8a of the second thin portion 8b, and the inner periphery 2b of the adjacent fixed portion 4 form a perfect circle. Connected by continuous surfaces. The pad surface 5a is determined so as to deform within the elastic deformation region by adjusting the thickness of the first and second thin portions 7b, 8b.

パッド面5aの裏面(外周面)5bには、本体を径方向に貫通する貫通穴2c,11bが開けられ圧電素子9がパッド面の裏側5bを押圧できるように取り付けられる。圧電素子9は、主軸ヘッド11にあけられたねじ11cに螺合され、位置決めされる。この圧電素子9に外部から所定の電圧を供給することによりパッド面5aの背面5bを押圧し、薄肉部7b,8bの弾性変形量の差により、第一の薄肉部側を中心にしてパッド面5aが斜面を形成し、動圧発生に必要なくさび状膜を形成させることができる。これにより、回転スピンドル20を軸支する。   On the back surface (outer peripheral surface) 5b of the pad surface 5a, through holes 2c and 11b penetrating the main body in the radial direction are formed so that the piezoelectric element 9 can press the back surface 5b of the pad surface. The piezoelectric element 9 is screwed and positioned with a screw 11c formed in the spindle head 11. By supplying a predetermined voltage to the piezoelectric element 9 from the outside, the back surface 5b of the pad surface 5a is pressed, and due to the difference in the amount of elastic deformation of the thin portions 7b, 8b, the pad surface is centered on the first thin portion side. 5a forms a slope, and a rust-like film can be formed without the need for generating dynamic pressure. Thereby, the rotary spindle 20 is supported.

内周2b面とスピンドル20との間には一般的な静圧軸受と同程度の軸受すきま31が設けられており、このすきま変化、すなわち振動を観測するためのセンサ12が、固定部4のほぼ中央の径方向に明けられた貫通穴4bに取付られている。センサ12の先端12aは内周2bと同形状に形成され、圧電素子を印加しない状態では、軸受パッド3、固定部4の内周7a,5a,8a,2b,12aが真円形状となるようにされている。なお、かかる形状を加工するためには、本体外周2a及びスリット6、小径穴7、長穴8等を加工し、最後に内周2bを加工すればよい。このとき、圧電素子9の変わりに受けねじを設けて厚肉部5の背面5bを支持するようにすれば、加工逃げによる真円度不良を少なくできる。また、受けねじを軸方向に複数設けるようにすれば真円度精度を向上することができる。   A bearing clearance 31 similar to that of a general hydrostatic bearing is provided between the inner peripheral surface 2 b and the spindle 20, and a sensor 12 for observing the change in the clearance, that is, vibration, is provided on the fixed portion 4. It is attached to a through hole 4b opened in a substantially central radial direction. The tip 12a of the sensor 12 is formed in the same shape as the inner periphery 2b, and the inner periphery 7a, 5a, 8a, 2b, 12a of the bearing pad 3 and the fixed portion 4 is formed into a perfect circle when no piezoelectric element is applied. Has been. In order to process such a shape, the outer periphery 2a of the main body and the slit 6, the small diameter hole 7, the long hole 8 and the like may be processed, and finally the inner periphery 2b may be processed. At this time, if a receiving screw is provided in place of the piezoelectric element 9 to support the back surface 5b of the thick portion 5, roundness defects due to machining escape can be reduced. Further, if a plurality of receiving screws are provided in the axial direction, the roundness accuracy can be improved.

かかる動圧軸受の作用について説明する。軸受面(内周面2b)は、圧電素子に電圧を印加していない状態では、連続した真円形である。図2に示すように、スピンドル20が予定の回転数に達すると各圧電素子9には外部に設置された適当な制御装置により初期電圧が加えられ、圧電素子が厚肉部背面5bを押し、軸受パッド3が点線3′から実線に示すようにたわみ、パッド面5aに”くさび状”に軸受すきまの狭まる状態が形成されて初期動圧が発生する。   The operation of the dynamic pressure bearing will be described. The bearing surface (inner peripheral surface 2b) is a continuous true circle when no voltage is applied to the piezoelectric element. As shown in FIG. 2, when the spindle 20 reaches a predetermined number of rotations, an initial voltage is applied to each piezoelectric element 9 by an appropriate control device installed outside, and the piezoelectric element pushes the thick part back surface 5b, The bearing pad 3 bends as shown by a solid line from the dotted line 3 ', and a state where the bearing clearance is narrowed in a "wedge shape" is formed on the pad surface 5a to generate an initial dynamic pressure.

スピンドル20の回転(図でみて矢印方向)に伴って振動が発生すると、この振動、つまり軸受すきま(スピンドル外周20aと固定部4とのすきま)31の変化は図1に示すようにセンサ12により検出され、センサアンプ13を介して、制御装置14に送られる。すると制御装置は適当な制御アルゴリズムにより圧電素子駆動アンプ15を経由して、軸受すきまの減少している領域の圧電素子への印加電圧を上昇させて弾性変形量を増やす。その結果、図2に見られるように”くさび領域”30の入り口すきま31に対して、出口すきま32が減少して”くさび角”が大きくなることで発生動圧が増加する。一方、軸受すきまの増加している領域では弾性変形量33を減らして動圧を減少させる。このようにすることでスピンドルを本来の位置に押し戻せるので、振動の発生を抑制することが可能となる。なお、制御方法、制御回路等については従来と同様であるので説明を省略する。   When vibration is generated with the rotation of the spindle 20 (in the direction of the arrow in the figure), this vibration, that is, the change in the bearing clearance (the clearance between the spindle outer periphery 20a and the fixed portion 4) 31 is caused by the sensor 12 as shown in FIG. Detected and sent to the control device 14 via the sensor amplifier 13. Then, the control device increases the amount of elastic deformation by increasing the voltage applied to the piezoelectric element in the region where the bearing clearance is reduced via the piezoelectric element driving amplifier 15 by an appropriate control algorithm. As a result, as shown in FIG. 2, the generated dynamic pressure is increased by reducing the outlet clearance 32 and increasing the “wedge angle” with respect to the entrance clearance 31 of the “wedge region” 30. On the other hand, in the region where the bearing clearance increases, the amount of elastic deformation 33 is reduced to reduce the dynamic pressure. By doing so, the spindle can be pushed back to the original position, so that the generation of vibration can be suppressed. Note that the control method, control circuit, and the like are the same as those in the prior art, and thus description thereof is omitted.

次に前述した、本発明の第一の実施の形態の動圧軸受と、スピンドルの支持には回転精度に優れ、高速運転時の摩擦損失の少ない空気静圧軸受および空気動圧軸受を併用した第二の実施の形態であるスピンドル装置について説明する。なお、前述したと同様な構成等については同符号を付し説明の一部を省略する。本スピンドル装置においては、まず通常型の静圧軸受によりスピンドルの自重を支持することとし、スピンドル停止時および低速回転時にスピンドルが軸受面と接触することを防止する。静圧軸受に支持されたスピンドルが小径工具による加工に適した回転速度、たとえば数万min-1まで加速されると、スピンドルは静圧軸受の負荷特性に応じて微小振動を生じ、この状態で加工を行うと加工精度の低下を招くことになる。 Next, the hydrodynamic bearing according to the first embodiment of the present invention described above and the aerodynamic pressure bearing and the air hydrodynamic bearing having excellent rotational accuracy and low friction loss during high-speed operation are used in combination for the spindle support. A spindle apparatus according to a second embodiment will be described. In addition, about the structure similar to the above-mentioned, the same code | symbol is attached | subjected and a part of description is abbreviate | omitted. In this spindle apparatus, the spindle's own weight is first supported by a normal-type hydrostatic bearing to prevent the spindle from coming into contact with the bearing surface when the spindle is stopped and when rotating at a low speed. When the spindle supported by the hydrostatic bearing is accelerated to a rotational speed suitable for machining with a small-diameter tool, for example, tens of thousands of min -1 , the spindle generates minute vibrations according to the load characteristics of the hydrostatic bearing. When processing is performed, the processing accuracy is reduced.

このような微小振動を生じたときに、スピンドルに組み込まれた動圧空気軸受を能動制御することで微小振動を抑制しようとするのが第二の実施の形態の基本的な考え方である。ただし、制御状態でのスピンドルの振動レベルはサブミクロンオーダであることより、ここで使用する動圧軸受の軸受面にも高い形状精度が求められる。   The basic idea of the second embodiment is to actively control a dynamic pressure air bearing incorporated in the spindle when such a minute vibration is generated to suppress the minute vibration. However, since the vibration level of the spindle in the controlled state is on the order of submicrons, high shape accuracy is also required for the bearing surface of the hydrodynamic bearing used here.

本発明の第二の実施の形態であるスピンドル装置10は、図3に示すように、主軸ヘッド11の中央部に通常型の静圧ラジアル軸受部21aを構成する静圧軸受部材21が貫通穴中央部11dに挿入固定されている。主軸ヘッド後端部(図で見て右側)11eに静圧スラスト軸受部22が配置され、先端部11a(図で見て左端)に、前述した動圧軸受1が配置されている。スピンドル20の後端側には、さらに(図で見て右端)中間部材23を介して組み込みモータ24が設けられ、スピンドル20に接続され、スピンドル20を
回転駆動するようにされている。
As shown in FIG. 3, the spindle device 10 according to the second embodiment of the present invention has a hydrostatic bearing member 21 constituting a normal hydrostatic radial bearing portion 21 a at the center portion of the spindle head 11. It is inserted and fixed in the central part 11d. The hydrostatic thrust bearing portion 22 is disposed at the rear end portion (right side in the drawing) 11e of the spindle head, and the above-described dynamic pressure bearing 1 is disposed at the distal end portion 11a (left end in the drawing). A built-in motor 24 is further provided on the rear end side of the spindle 20 via an intermediate member 23 (right end in the figure), and is connected to the spindle 20 so as to drive the spindle 20 to rotate.

このスピンドル装置10では、スピンドル20の自重および加工負荷は基本的には静圧軸受部21aにより支持されていることを前提としている。つまり、停止状態から高速の運転状態に至るまでスピンドル20は静圧軸受21aによりある程度安定的に支持され、回転している。スピンドルが規定の回転数、たとえば、数万min-1に達したのちに先端に装備される小径工具により加工が開始されることになるが、このときに生じるラジアル方向の振動振幅の大きさが加工精度を左右する。そこで、左端の能動型ラジアル動圧軸受1を用いて、このラジアル方向振動振幅を抑制できるようにしたのである。なお、スピンドル径はφ25mm、スピンドル先端からモータ取付端までの長さは約200mm、動圧軸受幅は約25mm、静圧軸受幅は約100mmである。 This spindle device 10 is based on the premise that the weight of the spindle 20 and the processing load are basically supported by the hydrostatic bearing portion 21a. That is, the spindle 20 is supported to a certain degree of stability by the hydrostatic bearing 21a and rotates from the stop state to the high-speed operation state. After the spindle reaches a specified rotational speed, for example, tens of thousands of min −1 , machining is started by a small-diameter tool installed at the tip. The magnitude of the radial vibration amplitude generated at this time is It affects the machining accuracy. Therefore, the radial radial vibration amplitude can be suppressed using the active radial dynamic pressure bearing 1 at the left end. The spindle diameter is 25 mm, the length from the spindle tip to the motor mounting end is about 200 mm, the dynamic pressure bearing width is about 25 mm, and the static pressure bearing width is about 100 mm.

次に前述したスピンドル装置10の性能について説明する。図4は本発明のスピンドル装置における軸受面のパッド面5aの弾性変形域内ので1箇所の弾性変形量(横軸)と発生動圧による軸受面の負荷容量(縦軸)との関係を計算した結果である。ただし、スピンドル回転数は100,000min-1としている。初期の軸受すきま31は15μmとしており、同軸に配置された空気静圧ラジアル軸受と同一の軸受すきまである。図4に示すように、弾性変形量が0μmの時は軸受すきまは入り口すきま31のままで変化しないので動圧は発生しない。圧電素子により軸受面を変形させて軸受面の出口すきま32小さくし、”くさび膜”の角度を強めるにつれて動圧が発生し、負荷容量が発生する。この例での静圧ラジアル軸受の剛性が1N/μm程度であるので、図4より能動動圧軸受のパッド面5aの弾性変形域内1カ所あたりおよそ1μmのラジアル変位をスピンドルに生じさせられることがわかる。 Next, the performance of the spindle device 10 will be described. FIG. 4 shows the relationship between the amount of elastic deformation at one location (horizontal axis) and the load capacity of the bearing surface due to the generated dynamic pressure (vertical axis) in the elastic deformation region of the pad surface 5a of the bearing surface in the spindle device of the present invention. It is a result. However, the rotation speed of the spindle is 100,000 min −1 . The initial bearing clearance 31 is 15 μm, and the bearing clearance is the same as that of the aerostatic radial bearing arranged coaxially. As shown in FIG. 4, when the amount of elastic deformation is 0 μm, the bearing clearance remains the entrance clearance 31 and does not change, so no dynamic pressure is generated. As the bearing surface is deformed by the piezoelectric element to reduce the clearance 32 on the bearing surface and the angle of the “wedge film” is increased, dynamic pressure is generated and load capacity is generated. Since the rigidity of the hydrostatic radial bearing in this example is about 1 N / μm, a radial displacement of about 1 μm can be generated in the spindle per one place in the elastic deformation region of the pad surface 5a of the active dynamic pressure bearing from FIG. Recognize.

図5は、本発明のスピンドル装置の回転数変化(横軸)と発生負荷容量(縦軸)の関係の計算結果である。ただし、軸受面の”くさび膜”領域の入口での軸受すきま31は12μm、弾性変形量は2μm(出口でのすきま32は10μm)としている。図5より、回転数が増加するにつれて弾性変形部での発生動圧が上昇していることがわかり、本発明が高回転速度領域で有効に動作できることがわかる。   FIG. 5 is a calculation result of the relationship between the change in the rotation speed (horizontal axis) and the generated load capacity (vertical axis) of the spindle device of the present invention. However, the bearing clearance 31 at the entrance of the “wedge film” region of the bearing surface is 12 μm, and the amount of elastic deformation is 2 μm (the clearance 32 at the exit is 10 μm). From FIG. 5, it can be seen that the generated dynamic pressure at the elastically deforming portion increases as the rotational speed increases, and it can be seen that the present invention can operate effectively in the high rotational speed region.

次に前述したスピンドル装置10の実測結果について説明する。図6は、本発明のスピンドル装置の回転数変化(横軸)とスピンドル変位(縦軸)の関係を実測した結果である。図6に示すように、各回転数ごとに軸受パッド3のパッド面5aの1カ所当たりの効果を示している。圧電素子への電圧印加を行わない(0V)ときのスピンドル位置を基準として、印加電圧を80Vとしたときのスピンドル変位を測定した結果で、圧電素子への電圧印加によりスピンドルが40乃至160nm(ナノメータ)パッド面から遠ざかることが確認された。さらに図6に示すように、同一の印加電圧であっても回転数が増加するにつれてパッド面での発生動圧が増加し、スピンドル変位は増加することもわかる。回転数は30,000min-1までしか実測されていないが、変位量は0.2μm程度であり、サブミクロン領域での振動抑制には有効である。このような動作は理論計算の結果と一致している。 Next, actual measurement results of the spindle device 10 described above will be described. FIG. 6 shows the results of actual measurement of the relationship between the rotational speed change (horizontal axis) and the spindle displacement (vertical axis) of the spindle device of the present invention. As shown in FIG. 6, the effect per one place of the pad surface 5a of the bearing pad 3 is shown for each rotational speed. As a result of measuring the spindle displacement when the applied voltage is 80 V with reference to the spindle position when no voltage is applied to the piezoelectric element (0 V), the spindle is 40 to 160 nm (nanometer) by applying the voltage to the piezoelectric element. ) Confirmed to move away from the pad surface. Further, as shown in FIG. 6, it can be seen that the generated dynamic pressure on the pad surface increases and the spindle displacement increases as the rotational speed increases even with the same applied voltage. The rotational speed has been measured only up to 30,000 min −1, but the displacement is about 0.2 μm, which is effective for suppressing vibrations in the submicron region. Such an operation is consistent with the result of theoretical calculation.

図7は本発明スピンドル装置20の動圧軸受1によるスピンドル振動抑制効果の実験結果(スピンドル回転数は12,000min-1)である。図7に示すように、制御なしの左側は振幅約40nm、偏心約20nmであるのに対して、制御有りの右側は振幅約20nm、偏心ほぼ0nmであった。このように、制御を行う前に見られたスピンドルのドリフトは制御開始によるサーボロックにより消滅しており、スピンドル振動振幅は10nm程度の抑制されるなど、スピンドルの振動が能動的に制御できていることがわかる。このように、本発明においては、高速回転するスピンドルの振動をサブミクロンオーダーに抑制可能な能動型動圧軸受及びスピンドル装置を提供し、さらに、能動型動圧軸受の制御手段を提供するものとなった。 FIG. 7 shows the experimental results of the spindle vibration suppression effect by the dynamic pressure bearing 1 of the spindle device 20 of the present invention (spindle speed is 12,000 min −1 ). As shown in FIG. 7, the left side without control has an amplitude of about 40 nm and the eccentricity is about 20 nm, while the right side with control has an amplitude of about 20 nm and the eccentricity is almost 0 nm. As described above, the spindle drift observed before the control is extinguished by the servo lock due to the start of the control, and the spindle vibration amplitude is suppressed to about 10 nm, so that the spindle vibration can be actively controlled. I understand that. Thus, in the present invention, an active dynamic pressure bearing and a spindle device capable of suppressing vibration of a spindle rotating at a high speed to a submicron order are provided, and further, a control means for the active dynamic pressure bearing is provided. became.

なお、本発明の実施の形態においては、スピンドル自重等はおもに静圧軸受で支持されるとして説明したが、他形式、たとえば転がり軸受で支持されたスピンドルの振動抑制にも適用できる。振動方向に関しては、ラジアル方向振動を抑制する能動動圧軸受を例として説明したが、同様の形態はスラスト方向振動を抑制するスラスト能動動圧軸受にも適用できる。ここでは作動流体として空気の例を示したが、潤滑油などの流体を作動流体としても実施できる。また、駆動素子には圧電素子を用いたが、リニアソレノイド等でもよい。また、変位センサーはレーザー、音響等の種々のセンサが利用できる等本実施の態様に制限されるものではない。   In the embodiment of the present invention, it has been described that the spindle's own weight and the like are mainly supported by the hydrostatic bearing, but the present invention can also be applied to other types, for example, vibration suppression of a spindle supported by a rolling bearing. Regarding the vibration direction, the active hydrodynamic bearing that suppresses radial vibration has been described as an example, but the same configuration can be applied to a thrust active hydrodynamic bearing that suppresses thrust vibration. Although the example of air is shown here as the working fluid, a fluid such as lubricating oil can be used as the working fluid. Further, although a piezoelectric element is used as the driving element, a linear solenoid or the like may be used. Further, the displacement sensor is not limited to this embodiment, for example, various sensors such as laser and sound can be used.

本発明の第一の実施の形態を示すラジアル型能動動圧軸受の図3のA−A線断面図及びその制御システムの概念図である。It is the AA sectional view taken on the line of FIG. 3 of the radial type active dynamic pressure bearing which shows 1st embodiment of this invention, and the conceptual diagram of the control system. 本発明の可撓性軸受パッドの弾性変形の様子を示す図1の部分拡大図である。It is the elements on larger scale of FIG. 1 which shows the mode of the elastic deformation of the flexible bearing pad of this invention. 本発明のラジアル型能動動圧軸受を用いたスピンドル装置の縦断面図である。It is a longitudinal cross-sectional view of the spindle apparatus using the radial type active dynamic pressure bearing of this invention. 本発明のスピンドル装置における軸受面のパッド面の弾性変形量(横軸)を増加させたときの発生動圧による軸受面の負荷容量(縦軸)の変化を示す理論グラフである。It is a theoretical graph which shows the change of the load capacity (vertical axis) of the bearing surface by the generated dynamic pressure when increasing the elastic deformation (horizontal axis) of the pad surface of the bearing surface in the spindle device of the present invention. 本発明のスピンドル装置の回転数変化(横軸)と発生負荷容量(縦軸)の変化を示す理論グラフである。It is a theoretical graph which shows the rotation speed change (horizontal axis) and the change of generated load capacity (vertical axis) of the spindle apparatus of this invention. 本発明のスピンドル装置のスピンドル回転を数変化(横軸)させたときのスピンドル変位(縦軸)の実測グラフである。It is an actual measurement graph of the spindle displacement (vertical axis) when the spindle rotation of the spindle device of the present invention is changed several times (horizontal axis). 本発明スピンドル装置の能動動圧軸受を動作させたときの振動抑制効果を示した実測グラフであるIt is the measurement graph which showed the vibration suppression effect when operating the active dynamic pressure bearing of the spindle device of the present invention.

符号の説明Explanation of symbols

1 動圧軸受(能動型動圧軸受)
3 軸受パッド(可撓性パッド)
4 固定部
5 厚肉部
5a パッド面
5b 厚肉部の反相手側面(背面)
7b 第一薄肉部
8b 第二の薄肉部
9 アクチュエータ(圧電素子)
10 スピンドル装置
12 変位センサ
20 回転スピンドル
20a 相手側面(スピンドル外周、回転軸外周)
21a 軸受(静圧軸受)

1 Hydrodynamic bearing (active hydrodynamic bearing)
3 Bearing pads (flexible pads)
4 Fixed part 5 Thick part 5a Pad surface 5b Opposite side of thick part (back)
7b 1st thin part 8b 2nd thin part 9 Actuator (piezoelectric element)
DESCRIPTION OF SYMBOLS 10 Spindle apparatus 12 Displacement sensor 20 Rotating spindle 20a Opposite side surface (spindle outer periphery, rotating shaft outer periphery)
21a Bearing (hydrostatic bearing)

Claims (6)

相対移動する相手側面に対して傾斜面を形成して動圧を発生させる軸受パッドが複数配置された動圧軸受であって、前記軸受パッドはパッド面が前記相手側面に対して外部より制御可能なアクチュエータにより進退可能にされた可撓性パッドであり、前記軸受パッド間には固定部が設けられており、全ての前記パッド面を含む軸受パッドと前記固定部とが連続面で接続されており、前記可撓性パッドは厚肉部と、前記厚肉部の相対移動方向の一端側に設けられた第一薄肉部と、前記厚肉部の相対移動方向の他端に設けられ前記第一の薄肉部より相対移動方向長さが長くされた第二の薄肉部と、を有し、それぞれが前記固定部に連続面で接続され、前記厚肉部の反相手側面に設けられたアクチュエータにより前記厚肉部への押圧力を変化させることにより前記パッド面が相手側面に対して進退可能にされていることを特徴とする動圧軸受。 A hydrodynamic bearing in which a plurality of bearing pads for generating dynamic pressure is formed by forming an inclined surface with respect to a counterpart moving side surface, and the pad surface of the bearing pad can be controlled from the outside with respect to the counter side surface such a flexible pad that is in retractable by the actuator, wherein the inter-bearing pads are stationary part is provided, and the all of the bearing pad and the fixing portion including a pad surface are connected by a continuous surface And the flexible pad is provided on the other end of the thick portion, the first thin portion provided on one end side in the relative movement direction of the thick portion, and on the other end in the relative movement direction of the thick portion. An actuator provided on the opposite side surface of the thick portion, each of which is connected to the fixed portion by a continuous surface. To change the pressing force to the thick part Dynamic bearing, characterized in that the pad surface is in retractable Against side by the. 前記アクチュエータは圧電素子であることを特徴とする請求項1記載の動圧軸受。 The hydrodynamic bearing according to claim 1 , wherein the actuator is a piezoelectric element. 前記固定部には相手側面との変位を測定する変位センサが設けられていることを特徴とする請求項1又は2記載の動圧軸受。 The hydrodynamic bearing according to claim 1, wherein a displacement sensor for measuring a displacement with respect to the other side surface is provided in the fixed portion. 前記相手側面は回転軸の外周であることを特徴とする請求項1乃至3のいずれか一に記載のラジアル動圧軸受。 The radial dynamic pressure bearing according to claim 1, wherein the opposite side surface is an outer periphery of a rotating shaft. 前記相手側面は回転円部の軸方向側面であることを特徴とする請求項1乃至3のいずれか一に記載のスラスト動圧軸受。 The thrust dynamic pressure bearing according to any one of claims 1 to 3 , wherein the opposite side surface is an axial side surface of a rotating circle portion. 前記相手側面は回転スピンドルの出力端側に設けられた外周面の一部であって、前記回転スピンドルはさらに、2以上の静圧又は転がり軸受で支持されていることを特徴とする請求項4記載のラジアル動圧軸受を用いたスピンドル装置。 Wherein the counterpart side is a part of the outer circumferential surface was found provided on the output end side of the rotating spindle, the rotary spindle is further more static pressure or, characterized in that it is supported by the rolling bearing A spindle device using the radial dynamic pressure bearing according to Item 4 .
JP2007286205A 2007-11-02 2007-11-02 Spindle device using hydrodynamic bearing and radial hydrodynamic bearing Active JP5121047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286205A JP5121047B2 (en) 2007-11-02 2007-11-02 Spindle device using hydrodynamic bearing and radial hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286205A JP5121047B2 (en) 2007-11-02 2007-11-02 Spindle device using hydrodynamic bearing and radial hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JP2009115131A JP2009115131A (en) 2009-05-28
JP5121047B2 true JP5121047B2 (en) 2013-01-16

Family

ID=40782493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286205A Active JP5121047B2 (en) 2007-11-02 2007-11-02 Spindle device using hydrodynamic bearing and radial hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP5121047B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110185701A (en) * 2019-05-31 2019-08-30 西安交通大学 A kind of bush(ing) bearing with adaptive oil guard
KR102074862B1 (en) * 2019-10-02 2020-03-02 (주)디엠 Jointing device for artificial stones
KR102114664B1 (en) * 2019-10-01 2020-05-25 김성숙 Alumium gasket producing devie with o-ring
KR102150918B1 (en) * 2019-09-19 2020-09-02 주식회사부성화학 Tpo sheet producing device
KR20210055320A (en) * 2019-11-07 2021-05-17 학교법인 송원대학교 Multi smart beauty device with controller

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391978B2 (en) * 2009-10-01 2014-01-15 株式会社ジェイテクト Fluid holding device
CN102133647B (en) * 2009-12-24 2013-12-04 财团法人大邱机械部品研究院 High speed spindle apparatus having load sensor of piezoelectric
JP5863437B2 (en) * 2011-12-16 2016-02-16 三菱日立パワーシステムズ株式会社 Thrust bearing device
CN103075420B (en) * 2013-01-25 2015-03-04 西安交通大学 Fulcrum-variable intelligent radial tilting pad sliding bearing device
CN103410856B (en) * 2013-07-18 2015-09-09 北京航空航天大学 A kind of all-round flexible bearing based on looper effect
ES2742897T3 (en) * 2015-05-19 2020-02-17 Lifeng Luo Radial bearing with grooved dynamic pressure gas
CN104895827A (en) * 2015-06-19 2015-09-09 湖南大学 Air compressor with ultrasonic bearings
KR101971353B1 (en) * 2017-08-30 2019-04-22 현대위아 주식회사 Variable Geometry Lobe Bearing system
CN109737093A (en) * 2019-03-14 2019-05-10 湖南大学 A kind of high speed centrifugation compressor based on gas suspension
CN110145536B (en) * 2019-05-31 2020-03-31 西安交通大学 Radial sliding bearing with automatic oil blocking adjusting device
KR102053727B1 (en) * 2019-07-18 2019-12-09 강덕균 Bathe device for handrail pipe
KR102134175B1 (en) * 2019-09-06 2020-07-15 주식회사 에스케이엘시스템 Laser marking device of real time checking type
KR102209677B1 (en) * 2019-11-07 2021-01-28 학교법인 송원대학교 Salt loading device of motor driven type
CN113669369B (en) * 2021-08-10 2023-04-25 青岛科技大学 Active control gas tilting pad bearing
CN113669362B (en) * 2021-08-10 2023-03-14 青岛科技大学 Tilting pad bearing capable of actively controlling oil film gap
CN114151438A (en) * 2021-11-05 2022-03-08 上海大学 Flexible tilting pad bearing based on piezoelectric actuator active control
CN114309739B (en) * 2021-12-16 2023-09-29 哈尔滨电气动力装备有限公司 Processing technology of thrust tile base of shielding motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066144A (en) * 1989-02-08 1991-11-19 Ide Russell D Hydrodynamic bearings having a continuous beam mounted support surface
JPH07180721A (en) * 1993-12-24 1995-07-18 Toshiba Corp Tilting pad journal bearing device
JPH07293553A (en) * 1994-04-21 1995-11-07 Ebara Corp Tilting pad type bearing
CZ289599B6 (en) * 1994-11-29 2002-03-13 Gerhard Wanger Spindle for gas lubricated bearing of a rapidly rotating tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110185701A (en) * 2019-05-31 2019-08-30 西安交通大学 A kind of bush(ing) bearing with adaptive oil guard
KR102150918B1 (en) * 2019-09-19 2020-09-02 주식회사부성화학 Tpo sheet producing device
KR102114664B1 (en) * 2019-10-01 2020-05-25 김성숙 Alumium gasket producing devie with o-ring
KR102074862B1 (en) * 2019-10-02 2020-03-02 (주)디엠 Jointing device for artificial stones
KR20210055320A (en) * 2019-11-07 2021-05-17 학교법인 송원대학교 Multi smart beauty device with controller
KR102319552B1 (en) * 2019-11-07 2021-10-28 학교법인 송원대학교 Multi smart beauty device with controller

Also Published As

Publication number Publication date
JP2009115131A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5121047B2 (en) Spindle device using hydrodynamic bearing and radial hydrodynamic bearing
CN108620948B (en) Detection compensation control system for air static pressure main shaft
JP6012980B2 (en) Bearing device preload adjustment structure
JPH0953640A (en) Static pressure bearing device
KR101076129B1 (en) hybrid thrust bearing
US6494620B1 (en) Fluid bearing and rotary drive apparatus using the same
KR100196929B1 (en) Fluid bearing with a clearance error compensation
JP3789650B2 (en) Processing machine and spindle device thereof
JP3452010B2 (en) Rotation accuracy measuring device for rolling bearings
JP3254825B2 (en) Manufacturing method of rolling bearing device to which preload is applied
JP2008175254A (en) Rotating shaft supporting method
EP0794344B1 (en) High speed rotor assembly
US20060127171A1 (en) Monolithic rotational flexure bearing and methods of manufacture
JP3100916B2 (en) Rotary type hydrostatic bearing device
JP2759232B2 (en) Bearing device
JPH1113755A (en) Rolling bearing device applied with pre-load
KR100414907B1 (en) High Speed Spindle System Used Hybrid Air Bearing
JP2531837Y2 (en) High-speed hydrostatic gas bearing device
JP2905154B2 (en) Dynamic pressure spindle device
JPH0828565A (en) Static pressure gas bearing
JPH06241222A (en) Spindle
WO2020075701A1 (en) Main spindle device
JPS61262221A (en) Dynamic pressure fluid bearing device
Gerrard Bearings for Rotary Scanners
JP5404296B2 (en) Gas bearing and positioning device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5121047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350