JP5119058B2 - Thin film capacitor - Google Patents

Thin film capacitor Download PDF

Info

Publication number
JP5119058B2
JP5119058B2 JP2008159879A JP2008159879A JP5119058B2 JP 5119058 B2 JP5119058 B2 JP 5119058B2 JP 2008159879 A JP2008159879 A JP 2008159879A JP 2008159879 A JP2008159879 A JP 2008159879A JP 5119058 B2 JP5119058 B2 JP 5119058B2
Authority
JP
Japan
Prior art keywords
barrier layer
capacitor
thin film
hydrogen barrier
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008159879A
Other languages
Japanese (ja)
Other versions
JP2010003775A (en
Inventor
健太郎 森戸
智之 高橋
淳平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2008159879A priority Critical patent/JP5119058B2/en
Publication of JP2010003775A publication Critical patent/JP2010003775A/en
Application granted granted Critical
Publication of JP5119058B2 publication Critical patent/JP5119058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水素バリア層で被覆されている薄膜キャパシタに関するものである。 The present invention relates to a thin film capacitor are covered with a hydrogen barrier layer.

近年、電子機器の小型化が進んでおり、これに用いられるコンデンサ等の回路部品も小型化が進んできている。このような小型化の要求に対応可能な電子部品の一つとして、薄膜コンデンサに代表される薄膜電子部品がある。薄膜コンデンサは、絶縁基板の上に、スパッタリング法、蒸着法、CVD法あるいはゾルゲル法等の薄膜形成プロセスによって下部電極、誘電体薄膜及び上部電極を形成することによって得られる。このような薄膜コンデンサは、厚さが1μm以下の誘電体層を形成することが容易なため、高い静電容量が得られるものである。   In recent years, electronic devices have been miniaturized, and circuit components such as capacitors used therein have also been miniaturized. As one of electronic components that can meet such a demand for miniaturization, there is a thin film electronic component represented by a thin film capacitor. A thin film capacitor is obtained by forming a lower electrode, a dielectric thin film, and an upper electrode on an insulating substrate by a thin film formation process such as sputtering, vapor deposition, CVD, or sol-gel. Since such a thin film capacitor can easily form a dielectric layer having a thickness of 1 μm or less, a high capacitance can be obtained.

しかし、薄膜キャパシタは、その製造過程において発生する水素等の還元ガスにより、リーク電流特性の劣化などが発生することが知られている。薄膜キャパシタは、通常絶縁膜によって被覆される。しかし、この絶縁膜をCVD法などにより形成する工程において水素が発生する。この水素によって薄膜キャパシタの劣化が生じてしまう。また、薄膜キャパシタは回路装置へ実装するための端子をメッキ等によって形成する。このメッキ工程においても水素が発生する。よって薄膜キャパシタは、その製造工程において、特性を劣化させる水素に晒されることが多い。また、この水素は絶縁膜や電極等の金属膜に吸蔵され、薄膜キャパシタを実装するときのリフロー工程等の加熱を伴う工程において再び放出される。この放出された水素が誘電体層内に拡散することによって、薄膜キャパシタの特性の劣化が生じてしまうこともある。 However, it is known that a thin film capacitor is deteriorated in leak current characteristics due to a reducing gas such as hydrogen generated in the manufacturing process. A thin film capacitor is usually covered with an insulating film. However, hydrogen is generated in the process of forming this insulating film by a CVD method or the like. This hydrogen causes deterioration of the thin film capacitor. The thin film capacitor is formed with a terminal for mounting on a circuit device by plating or the like. Hydrogen is also generated in this plating process. Therefore, the thin film capacitor is often exposed to hydrogen that deteriorates the characteristics in the manufacturing process. Further, this hydrogen is occluded in a metal film such as an insulating film or an electrode, and is released again in a process involving heating such as a reflow process when a thin film capacitor is mounted. The released hydrogen diffuses into the dielectric layer, and the characteristics of the thin film capacitor may be deteriorated.

そこで、このような水素による特性の劣化を防止するため、下部電極、誘電体薄膜及び上部電極で構成されるキャパシタ部を、水素の侵入を防止する水素バリア層によって覆う方法が例えば特開2001−291843号公報等に提案されている。この特許文献に提案されている方法は、上部電極及び下部電極の一部を除いたキャパシタ部全体を絶縁性水素バリア層で覆うもので、水素の侵入を阻止する効果が高いものである。 Therefore, in order to prevent such deterioration of characteristics due to hydrogen, for example, a method of covering a capacitor portion composed of a lower electrode, a dielectric thin film, and an upper electrode with a hydrogen barrier layer that prevents hydrogen from entering is disclosed in, for example, Japanese Patent Laid-Open No. 2001-2001. No. 291843 is proposed. The method proposed in this patent document covers the entire capacitor part except for a part of the upper electrode and the lower electrode with an insulating hydrogen barrier layer, and has a high effect of preventing hydrogen from entering.

特開2001−291843号公報Japanese Patent Laid-Open No. 2001-291843

特開2001−291843号公報に開示されている薄膜キャパシタは、図11に示すように、絶縁基板の上に第一の絶縁性水素バリア層を形成し、その上にキャパシタ部を形成し、さらにこのキャパシタ部及び第一の絶縁性水素バリア層の上に第二の絶縁性水素バリア層を形成するものである。この場合、第二の絶縁性水素バリア層は、キャパシタ部の上に形成されるため、段差部分で屈曲部が形成される。このような屈曲部分は、曲げ、圧縮等の機械的応力や熱応力等の、様々な応力が集中しやすい部分である。そのため、この屈曲部分はクラックが発生しやすい部分である。このようなクラックが発生すると、ここから水素が侵入して、薄膜キャパシタの劣化を引き起こす。 As shown in FIG. 11, the thin film capacitor disclosed in Japanese Patent Application Laid-Open No. 2001-291843 includes a first insulating hydrogen barrier layer formed on an insulating substrate, a capacitor portion formed thereon, and A second insulating hydrogen barrier layer is formed on the capacitor portion and the first insulating hydrogen barrier layer. In this case, since the second insulating hydrogen barrier layer is formed on the capacitor portion, a bent portion is formed at the step portion. Such a bent portion is a portion where various stresses such as mechanical stress such as bending and compression and thermal stress are likely to be concentrated. Therefore, this bent portion is a portion where cracks are likely to occur. When such a crack occurs, hydrogen enters from here and causes deterioration of the thin film capacitor.

特に第一の絶縁性水素バリア層と第二の絶縁性水素バリア層とが接する部分の屈曲部分においては、キャパシタ部の下部電極もあるため、応力が集中しやすく、クラックが発生しやすい。また、クラックが発生した場合、図12に示すように、クラックがキャパシタ部に直接かかる場合がある。このような場合、キャパシタ部がクラックを通して侵入した水素に直接晒されて、劣化を引き起こしやすくなる。 In particular, in the bent portion where the first insulating hydrogen barrier layer and the second insulating hydrogen barrier layer are in contact with each other, since there is also a lower electrode of the capacitor portion, stress tends to concentrate and cracks are likely to occur. Further, when a crack occurs, as shown in FIG. 12, the crack may be directly applied to the capacitor portion. In such a case, the capacitor portion is directly exposed to hydrogen that has entered through the crack, and is likely to cause deterioration.

本発明は、このような問題点を解決して、リーク電流特性の劣化などの特性劣化を低減することができる薄膜キャパシタを提案するとともに、そのような薄膜キャパシタを製造する方法を提案するものである。 The present invention proposes a thin film capacitor capable of solving such problems and reducing deterioration of characteristics such as leakage current characteristics, and a method of manufacturing such a thin film capacitor. is there.

本発明では解決手段として、絶縁性基板の上に、下部電極、誘電体層、上部電極の順に重ねられて形成されたキャパシタ部を有する薄膜キャパシタにおいて、前記絶縁性基板と前記キャパシタ部の前記下部電極との間に第一の絶縁性水素バリア層が形成され、前記下部電極の一部及び前記上部電極の一部を除いた前記キャパシタ部全体と前記第一の絶縁性水素バリア層とが第二の絶縁性水素バリア層で覆われており、前記下部電極の一部及び前記上部電極の一部が導電性水素バリア層で覆われており、前記第一の絶縁性水素バリア層は、前記キャパシタ部が形成されていない部分の厚みが、前記キャパシタ部が形成されている部分の厚みよりも薄く形成され、第二の絶縁性水素バリア層の、絶縁性基板に近い屈曲部が、キャパシタ部から離れて形成される薄膜キャパシタを提案する。 In the present invention, as a solving means, a thin film capacitor having a capacitor portion formed by overlapping a lower electrode, a dielectric layer, and an upper electrode in this order on an insulating substrate, the insulating substrate and the lower portion of the capacitor portion A first insulating hydrogen barrier layer is formed between the electrode and the entire capacitor portion excluding a part of the lower electrode and a part of the upper electrode and the first insulating hydrogen barrier layer. Two insulating hydrogen barrier layers, a part of the lower electrode and a part of the upper electrode are covered with a conductive hydrogen barrier layer, the first insulating hydrogen barrier layer is the thickness of the portion where the capacitor portion is not formed, thin rather are formed than the thickness of the portion where the capacitor portion is formed, the second insulating hydrogen barrier layer, the bent portion near the insulating substrate, the capacitor Away from the club Suggest thin film capacitor formed.

上記の解決手段によれば、第二の絶縁性水素バリア層の屈曲部がキャパシタ部から離れるように形成することができる。そのため屈曲部にクラックが発生してもそのクラックがキャパシタ部に直接かかることが少なくなる。これによって、リーク電流特性の劣化などの特性劣化を低減することができる。 According to the above solution, the bent portion of the second insulating hydrogen barrier layer can be formed away from the capacitor portion. Therefore, even if a crack occurs in the bent portion, the crack is less likely to be applied directly to the capacitor portion. Thereby, characteristic deterioration such as deterioration of leakage current characteristics can be reduced.

本発明によれば、リーク電流特性の劣化などの特性劣化を低減することができる薄膜キャパシタを得ることができる。   According to the present invention, it is possible to obtain a thin film capacitor capable of reducing deterioration of characteristics such as deterioration of leakage current characteristics.

本発明の薄膜キャパシタに係る実施の形態について、図面に基づいて説明する。薄膜キャパシタ1は絶縁基板2上に第一の絶縁性水素バリア層3が形成され、その上に下部電極4a、誘電体薄膜4b及び上部電極4cで構成されるキャパシタ部4が形成され、上部電極4cの一部及び下部電極4aの一部を除いたキャパシタ部4全体と第一の絶縁性水素バリア層3とを覆うように第二の絶縁性水素バリア層5が形成され、第二の絶縁性水素バリア層5に覆われていない下部電極4aの一部及び上部電極4cの一部を覆うように導電性水素バリア層7が形成されている。そして導電性水素バリア層7上に端子電極8が形成され、第二の絶縁性水素バリア層5を覆うように絶縁層6が適宜形成される。なお、この絶縁層6をさらに絶縁性水素バリア層で覆っても良い。また、図1においては下部電極4aと接続する導電性水素バリア層7及び端子電極8を便宜上省略している。これらの層はスパッタリング法、蒸着法、CVD法あるいはゾルゲル法等の薄膜形成プロセスを適宜選択して形成される。   Embodiments according to the thin film capacitor of the present invention will be described with reference to the drawings. In the thin film capacitor 1, a first insulating hydrogen barrier layer 3 is formed on an insulating substrate 2, and a capacitor portion 4 composed of a lower electrode 4a, a dielectric thin film 4b and an upper electrode 4c is formed thereon, and an upper electrode is formed. A second insulating hydrogen barrier layer 5 is formed so as to cover the entire capacitor portion 4 excluding a part of 4c and a part of the lower electrode 4a and the first insulating hydrogen barrier layer 3, and the second insulation. A conductive hydrogen barrier layer 7 is formed so as to cover a part of the lower electrode 4a and a part of the upper electrode 4c that are not covered by the conductive hydrogen barrier layer 5. A terminal electrode 8 is formed on the conductive hydrogen barrier layer 7, and an insulating layer 6 is appropriately formed so as to cover the second insulating hydrogen barrier layer 5. The insulating layer 6 may be further covered with an insulating hydrogen barrier layer. In FIG. 1, the conductive hydrogen barrier layer 7 and the terminal electrode 8 connected to the lower electrode 4a are omitted for convenience. These layers are formed by appropriately selecting a thin film forming process such as sputtering, vapor deposition, CVD, or sol-gel.

絶縁基板2は、薄膜形成プロセスに耐えられる絶縁材料であれば良く、アルミナ(Al)、シリカ(SiO)またはSiウェハ等が好適に用いられる。また、絶縁基板2は切断分割して複数の個別チップ部品が得られるいわゆる集合基板でも良いし、半導体装置等の他の回路が形成された基板でも良い。 The insulating substrate 2 may be any insulating material that can withstand the thin film formation process, and alumina (Al 2 O 3 ), silica (SiO 2 ), Si wafer, or the like is preferably used. The insulating substrate 2 may be a so-called collective substrate obtained by cutting and dividing to obtain a plurality of individual chip components, or a substrate on which another circuit such as a semiconductor device is formed.

第一の絶縁性水素バリア層3及び第二の絶縁性水素バリア層5は、Al、TiO、Ta、SiNなどの材料で形成される。第一の絶縁性水素バリア層3と第二の絶縁性水素バリア層5は、互いに異なる材料を用いても良いし、同じ材料を用いても良い。 The first insulating hydrogen barrier layer 3 and the second insulating hydrogen barrier layer 5 are formed of a material such as Al 2 O 3 , TiO x , Ta 2 O 5 , SiN or the like. Different materials may be used for the first insulating hydrogen barrier layer 3 and the second insulating hydrogen barrier layer 5, or the same material may be used.

キャパシタ部4は、下部電極4a、誘電体薄膜4b及び上部電極4cで構成されている。下部電極4a及び上部電極4cはPt等の金属の他、LaNiO、SrRuO、IrO等の導電性酸化物を用いても良い。誘電体薄膜4bはチタン酸バリウム(BT)、チタン酸バリウムストロンチウム(BST)等の誘電体材料で形成される。このキャパシタ部4は、下部電極4a、誘電体薄膜4b及び上部電極4cのそれぞれを構成する薄膜を積層したのち、フォトレジスト等を用いてパターニングしてドライエッチングやウェットエッチング等の方法で所定の形状に形成する。 The capacitor unit 4 includes a lower electrode 4a, a dielectric thin film 4b, and an upper electrode 4c. The lower electrode 4a and the upper electrode 4c may be made of a conductive oxide such as LaNiO 3 , SrRuO 3 , or IrO 2 in addition to a metal such as Pt. The dielectric thin film 4b is formed of a dielectric material such as barium titanate (BT) or barium strontium titanate (BST). The capacitor unit 4 is formed by laminating the thin films constituting the lower electrode 4a, the dielectric thin film 4b, and the upper electrode 4c, and then patterning with a photoresist or the like to form a predetermined shape by a method such as dry etching or wet etching. To form.

導電性水素バリア層7は、例えばTiNやTaN、またはそれらの積層膜例えばTaNとTa金属との積層膜等で形成される。導電性水素バリア層7はそのままでは外部回路と接続できないので、端子電極10を介して外部の回路と電気的に接続される。端子電極10は従来のバンプの形成方法によって形成することができる。端子電極10の材料としてはSn−AgなどのSn合金が好適に用いられる。   The conductive hydrogen barrier layer 7 is formed of, for example, TiN or TaN, or a laminated film thereof such as a laminated film of TaN and Ta metal. Since the conductive hydrogen barrier layer 7 cannot be connected to an external circuit as it is, it is electrically connected to an external circuit through the terminal electrode 10. The terminal electrode 10 can be formed by a conventional bump forming method. As a material of the terminal electrode 10, an Sn alloy such as Sn—Ag is preferably used.

絶縁層6は必要に応じて第一の絶縁性水素バリア層3、第二の絶縁性水素バリア層5及びキャパシタ部4を覆うように形成される。絶縁層6の材料としてはAl、SiO等が好適に用いられる。 The insulating layer 6 is formed so as to cover the first insulating hydrogen barrier layer 3, the second insulating hydrogen barrier layer 5, and the capacitor unit 4 as necessary. As the material of the insulating layer 6, Al 2 O 3 , SiO 2 or the like is preferably used.

このような薄膜キャパシタ1は、キャパシタ部4全体が第一の絶縁性水素バリア層3、第二の絶縁性水素バリア層5及び導電性水素バリア層7によって囲まれている。ここで、第一の絶縁性水素バリア層3は、キャパシタ部4が形成されていない部分の厚さt2が、キャパシタ部4が形成されている部分の厚さt1よりも薄くなっている。また、第一の絶縁性水素バリア層3のキャパシタ部4が形成されていない部分のうち、キャパシタ部4の周囲近傍に、傾斜部が形成されることがある。この傾斜部の任意の部分の厚さt3もt1よりも薄くなっている。   In such a thin film capacitor 1, the entire capacitor portion 4 is surrounded by the first insulating hydrogen barrier layer 3, the second insulating hydrogen barrier layer 5, and the conductive hydrogen barrier layer 7. Here, in the first insulating hydrogen barrier layer 3, the thickness t2 of the portion where the capacitor portion 4 is not formed is thinner than the thickness t1 of the portion where the capacitor portion 4 is formed. In addition, an inclined portion may be formed near the periphery of the capacitor portion 4 in the portion of the first insulating hydrogen barrier layer 3 where the capacitor portion 4 is not formed. A thickness t3 of an arbitrary portion of the inclined portion is also thinner than t1.

このような構造を有する本発明の薄膜キャパシタの効果について、図2及び図3に基づいて説明する。図2に示すように、第二の絶縁性水素バリア層5は、キャパシタ部4の形状に沿って屈曲部が形成される。この屈曲部は薄膜キャパシタ1にかかる応力によりクラックが発生しやすい部位である。特に絶縁基板2に近い屈曲部は応力がかかりやすく、クラックが発生しやすい。   The effect of the thin film capacitor of the present invention having such a structure will be described with reference to FIGS. As shown in FIG. 2, the second insulating hydrogen barrier layer 5 is formed with a bent portion along the shape of the capacitor portion 4. This bent portion is a portion where cracks are likely to occur due to stress applied to the thin film capacitor 1. In particular, the bent portion close to the insulating substrate 2 is likely to be stressed and easily cracked.

図2に示すように、第一の絶縁性水素バリア層3のキャパシタ部4が形成されていない部分の厚さt2が、キャパシタ部4が形成されている部分の厚さt1よりも薄く形成されていると、第二の絶縁性水素バリア層5の、絶縁基板2に近い屈曲部は、キャパシタ部4から離れて形成される。このような構造であれば、屈曲部にクラックが発生しても、クラックがキャパシタ部4に達せずに水素バリア層内に留めることができる。このため、クラックから水素が侵入してもキャパシタ部4へ届かないようにできる。これによってリーク電流特性の劣化などの特性劣化を低減することができる。 As shown in FIG. 2, the thickness t2 of the portion of the first insulating hydrogen barrier layer 3 where the capacitor portion 4 is not formed is formed thinner than the thickness t1 of the portion where the capacitor portion 4 is formed. In this case, the bent portion of the second insulating hydrogen barrier layer 5 close to the insulating substrate 2 is formed away from the capacitor portion 4. With such a structure, even if a crack occurs in the bent portion, the crack does not reach the capacitor portion 4 and can be retained in the hydrogen barrier layer. For this reason, even if hydrogen enters from the crack, it can be prevented from reaching the capacitor unit 4. As a result, it is possible to reduce characteristic deterioration such as deterioration of leakage current characteristics.

なお、本発明の実施形態の別例として、図3に示すように、キャパシタ部4が形成されていない部分の第一の絶縁性水素バリア層3を除去しても良い。この場合、屈曲部をキャパシタ部4から遠ざける効果がより高くなるので、薄膜キャパシタ1の特性劣化をより低減することができる。   As another example of the embodiment of the present invention, as shown in FIG. 3, the portion of the first insulating hydrogen barrier layer 3 where the capacitor portion 4 is not formed may be removed. In this case, since the effect of moving the bent portion away from the capacitor portion 4 is further increased, the characteristic deterioration of the thin film capacitor 1 can be further reduced.

次に、本発明の薄膜キャパシタの製造プロセスについて、図4乃至図10に基づいて説明する。   Next, the manufacturing process of the thin film capacitor of the present invention will be described with reference to FIGS.

まず、図4に示すように、絶縁基板2を用意する。この絶縁基板2上に第一の絶縁性水素バリア層3を形成する。この第一の絶縁性水素バリア層3は、例えば100nm前後の厚さで形成される。   First, as shown in FIG. 4, an insulating substrate 2 is prepared. A first insulating hydrogen barrier layer 3 is formed on the insulating substrate 2. The first insulating hydrogen barrier layer 3 is formed with a thickness of about 100 nm, for example.

続いて、図5に示すように、第一の絶縁性水素バリア層3の上に、下部電極となる層4a、誘電体薄膜4b及び上部電極となる層4cを順次形成する。誘電体薄膜4bは1μm以下の厚さ、例えば500nmの厚さに形成される。下部電極となる層4a及び上部電極となる層4cは誘電体薄膜4bの厚さ以下、例えば250nmの厚さに形成される。   Subsequently, as shown in FIG. 5, a layer 4 a serving as a lower electrode, a dielectric thin film 4 b, and a layer 4 c serving as an upper electrode are sequentially formed on the first insulating hydrogen barrier layer 3. The dielectric thin film 4b is formed to a thickness of 1 μm or less, for example, 500 nm. The layer 4a serving as the lower electrode and the layer 4c serving as the upper electrode are formed to have a thickness equal to or less than the thickness of the dielectric thin film 4b, for example, 250 nm.

続いて、上部電極となる層4c上に、図示しないレジスト等によって、例えば3.2mm×2.5mmの略矩形形状のパターンを形成する。次いでエッチングを行い余分な層を除去する。このとき、第一の絶縁性水素バリア層3もエッチングする。次いでレジストを除去して、図6に示すように、キャパシタ部4を形成する。このとき、第一の絶縁性水素バリア層3は、キャパシタ部4が形成されていない部分がエッチングによりキャパシタ部4下の部分より薄くなっている。   Subsequently, an approximately rectangular pattern of, for example, 3.2 mm × 2.5 mm is formed on the layer 4c serving as the upper electrode by using a resist or the like (not shown). Etching is then performed to remove excess layers. At this time, the first insulating hydrogen barrier layer 3 is also etched. Next, the resist is removed, and the capacitor portion 4 is formed as shown in FIG. At this time, in the first insulating hydrogen barrier layer 3, the portion where the capacitor portion 4 is not formed is thinner than the portion under the capacitor portion 4 by etching.

続いて、図7に示すように、キャパシタ部4及び第一の絶縁性水素バリア層3上に、第二の絶縁性水素バリア層5を形成する。第二の絶縁性水素バリア層5の厚さは、第一の絶縁性水素バリア層3と同じ厚さで形成しても良い。   Subsequently, as shown in FIG. 7, a second insulating hydrogen barrier layer 5 is formed on the capacitor unit 4 and the first insulating hydrogen barrier layer 3. The thickness of the second insulating hydrogen barrier layer 5 may be the same as that of the first insulating hydrogen barrier layer 3.

続いて、図8に示すように、第二の絶縁性水素バリア層5上に絶縁層6を形成する。なお、この絶縁層6は前述のとおり必要に応じて形成するものなので、必要でない場合には形成しなくても良い。   Subsequently, as shown in FIG. 8, an insulating layer 6 is formed on the second insulating hydrogen barrier layer 5. Since the insulating layer 6 is formed as necessary as described above, it may not be formed if not necessary.

続いて、図9に示すように、エッチングまたはレーザ加工機によって絶縁層6及び第二の絶縁性水素バリア層5に穴あけ加工を行い、上部電極4cに達する孔及び下部電極4aに達する孔(図示しない)を形成する。続いて、図10に示すように、形成した孔に導電性水素バリア層7を形成する。この時点でキャパシタ部4は全体を水素バリア層で覆われるようになる。   Subsequently, as shown in FIG. 9, the insulating layer 6 and the second insulating hydrogen barrier layer 5 are drilled by etching or a laser processing machine, and the holes reaching the upper electrode 4c and the holes reaching the lower electrode 4a (illustrated). Not). Subsequently, as shown in FIG. 10, a conductive hydrogen barrier layer 7 is formed in the formed hole. At this point, the entire capacitor unit 4 is covered with the hydrogen barrier layer.

続いて、導電性水素バリア層7上に、既存のバンプ形成方法、例えば電解メッキによってSn合金を析出させてその後アニールすることにより、端子電極8を形成する。このようにして図1に示す薄膜キャパシタ1を得ることができる。   Subsequently, a terminal electrode 8 is formed on the conductive hydrogen barrier layer 7 by depositing a Sn alloy by an existing bump forming method, for example, electrolytic plating and then annealing. In this way, the thin film capacitor 1 shown in FIG. 1 can be obtained.

以上、本発明の薄膜キャパシタ及びその製造方法について説明したが、上記の記載に限定されることはなく、キャパシタの形状等、本発明の範囲内で変更可能である。   The thin film capacitor and the manufacturing method thereof according to the present invention have been described above, but the present invention is not limited to the above description, and the shape of the capacitor can be changed within the scope of the present invention.

本発明の薄膜キャパシタを模式的に示す断面図である。It is sectional drawing which shows the thin film capacitor of this invention typically. 本発明の薄膜キャパシタの効果を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the effect of the thin film capacitor of this invention. 本発明の薄膜キャパシタの別例を示す部分拡大図である。It is the elements on larger scale which show another example of the thin film capacitor of this invention. 本発明の薄膜キャパシタの製造プロセスを示す模式断面図である。It is a schematic cross section which shows the manufacturing process of the thin film capacitor of this invention. 本発明の薄膜キャパシタの製造プロセスを示す模式断面図である。It is a schematic cross section which shows the manufacturing process of the thin film capacitor of this invention. 本発明の薄膜キャパシタの製造プロセスを示す模式断面図である。It is a schematic cross section which shows the manufacturing process of the thin film capacitor of this invention. 本発明の薄膜キャパシタの製造プロセスを示す模式断面図である。It is a schematic cross section which shows the manufacturing process of the thin film capacitor of this invention. 本発明の薄膜キャパシタの製造プロセスを示す模式断面図である。It is a schematic cross section which shows the manufacturing process of the thin film capacitor of this invention. 本発明の薄膜キャパシタの製造プロセスを示す模式断面図である。It is a schematic cross section which shows the manufacturing process of the thin film capacitor of this invention. 本発明の薄膜キャパシタの製造プロセスを示す模式断面図である。It is a schematic cross section which shows the manufacturing process of the thin film capacitor of this invention. 従来の薄膜キャパシタを模式的に示す断面図である。It is sectional drawing which shows the conventional thin film capacitor typically. 従来の薄膜キャパシタを模式的に示す部分拡大図である。It is the elements on larger scale which show the conventional thin film capacitor typically.

符号の説明Explanation of symbols

1、1’ 薄膜キャパシタ
2 絶縁基板
3 第一の絶縁性水素バリア層
4 キャパシタ部
4a 下部電極
4b 誘電体薄膜
4c 上部電極
5 第ニの絶縁性水素バリア層
6 絶縁層
7 導電性水素バリア層
8 端子電極
DESCRIPTION OF SYMBOLS 1, 1 'Thin film capacitor 2 Insulating substrate 3 1st insulating hydrogen barrier layer 4 Capacitor part 4a Lower electrode 4b Dielectric thin film 4c Upper electrode 5 2nd insulating hydrogen barrier layer 6 Insulating layer 7 Conductive hydrogen barrier layer 8 Terminal electrode

Claims (1)

絶縁性基板の上に、下部電極、誘電体層、上部電極の順に重ねられて形成されたキャパシタ部を有する薄膜キャパシタにおいて、
前記絶縁性基板と前記キャパシタ部の前記下部電極との間に第一の絶縁性水素バリア層が形成され、前記下部電極の一部及び前記上部電極の一部を除いた前記キャパシタ部全体と前記第一の絶縁性水素バリア層とが第二の絶縁性水素バリア層で覆われており、前記下部電極の一部及び前記上部電極の一部が導電性水素バリア層で覆われており、
前記第一の絶縁性水素バリア層は、前記キャパシタ部が形成されていない部分の厚みが、前記キャパシタ部が形成されている部分の厚みよりも薄く形成され、第二の絶縁性水素バリア層の、絶縁性基板に近い屈曲部が、キャパシタ部から離れて形成されることを特徴とする薄膜キャパシタ。
In a thin film capacitor having a capacitor portion formed by overlapping a lower electrode, a dielectric layer, and an upper electrode in this order on an insulating substrate,
A first insulating hydrogen barrier layer is formed between the insulating substrate and the lower electrode of the capacitor unit, and the entire capacitor unit excluding a part of the lower electrode and a part of the upper electrode; The first insulating hydrogen barrier layer is covered with a second insulating hydrogen barrier layer, a part of the lower electrode and a part of the upper electrode are covered with a conductive hydrogen barrier layer,
Said first insulating hydrogen barrier layer, the thickness of the portion where the capacitor portion is not formed, the capacitor portion is thin rather than the thickness of a portion which is formed, the second insulating hydrogen barrier layer A thin film capacitor characterized in that the bent portion close to the insulating substrate is formed away from the capacitor portion .
JP2008159879A 2008-06-19 2008-06-19 Thin film capacitor Active JP5119058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159879A JP5119058B2 (en) 2008-06-19 2008-06-19 Thin film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159879A JP5119058B2 (en) 2008-06-19 2008-06-19 Thin film capacitor

Publications (2)

Publication Number Publication Date
JP2010003775A JP2010003775A (en) 2010-01-07
JP5119058B2 true JP5119058B2 (en) 2013-01-16

Family

ID=41585265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159879A Active JP5119058B2 (en) 2008-06-19 2008-06-19 Thin film capacitor

Country Status (1)

Country Link
JP (1) JP5119058B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997530B2 (en) * 2011-09-07 2016-09-28 Hoya株式会社 Mask blank, transfer mask, and semiconductor device manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118233A (en) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd Capacitance element
JP2006134980A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Semiconductor apparatus and its manufacturing method
JP4998461B2 (en) * 2006-03-30 2012-08-15 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010003775A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5093327B2 (en) Thin film capacitor
JP5455352B2 (en) Thin film MIM capacitor and manufacturing method thereof
EP1876610A1 (en) Thin film capacitor and method for manufacturing same
JP7427400B2 (en) capacitor
JP2008252011A (en) Dielectric capacitor
JP5924461B1 (en) Composite electronic components
JP2007234843A (en) Thin-film capacitor element, interposer, manufacturing method therefor, and semiconductor device
JP5299158B2 (en) Dielectric thin film element
JP5803731B2 (en) Thin film element
JP2018133361A (en) Electronic component embedded substrate
JP2009010114A (en) Dielectric thin-film capacitor
JP5098422B2 (en) Thin film electronic components
TW201820356A (en) Semiconductor device with capacitor
JP2001015654A (en) Interposer, manufacturing thereof, and circuit module using the same
JP6897139B2 (en) Board with built-in electronic components and board mounting structure
JP5119058B2 (en) Thin film capacitor
JP4574383B2 (en) Thin film capacitors and wiring boards
JP2007194472A (en) Method for manufacturing thin film capacitor
JP4196351B2 (en) Film capacitor manufacturing method
JP4864313B2 (en) Thin film capacitor substrate, manufacturing method thereof, and semiconductor device
KR20180023657A (en) Thin film capacitor and manufacturing mathod of the same
JP5014530B2 (en) Capacitor parts
WO2017094835A1 (en) Thin-film device and method for manufacturing thin-film device
JP6819894B2 (en) Electronic components
JP4424298B2 (en) Electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Ref document number: 5119058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250