JP5101141B2 - Vacuum drying method and vacuum drying apparatus - Google Patents

Vacuum drying method and vacuum drying apparatus Download PDF

Info

Publication number
JP5101141B2
JP5101141B2 JP2007074782A JP2007074782A JP5101141B2 JP 5101141 B2 JP5101141 B2 JP 5101141B2 JP 2007074782 A JP2007074782 A JP 2007074782A JP 2007074782 A JP2007074782 A JP 2007074782A JP 5101141 B2 JP5101141 B2 JP 5101141B2
Authority
JP
Japan
Prior art keywords
pressure
vacuum
sealed container
water
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007074782A
Other languages
Japanese (ja)
Other versions
JP2008232567A5 (en
JP2008232567A (en
Inventor
光洋 佐貫
郁男 石井
哲也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Act Five Co Ltd
Original Assignee
Act Five Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Act Five Co Ltd filed Critical Act Five Co Ltd
Priority to JP2007074782A priority Critical patent/JP5101141B2/en
Publication of JP2008232567A publication Critical patent/JP2008232567A/en
Publication of JP2008232567A5 publication Critical patent/JP2008232567A5/ja
Application granted granted Critical
Publication of JP5101141B2 publication Critical patent/JP5101141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Drying Of Solid Materials (AREA)

Description

本発明は、機械部品の乾燥に好適な減圧乾燥技術に関する。   The present invention relates to a vacuum drying technique suitable for drying mechanical parts.

機械部品は、塗装前、表面処理前などに洗浄される。すなわち、洗浄により機械部品に付いているごみ、油、鉄粉などを除去する。古くは洗浄液に溶剤が使用されていたが、今日では、廃液の処理の関係で、洗浄液に水又は水系洗浄剤が使用される。水系洗浄剤は水に界面活性剤や溶剤を添加したものであり、大部分が水である。以下、水又は水系洗浄剤を、洗浄用水と呼ぶことにする。   Machine parts are cleaned before painting and surface treatment. That is, dust, oil, iron powder, etc. attached to machine parts are removed by washing. In the old days, a solvent was used for the cleaning liquid, but nowadays, water or a water-based cleaning agent is used for the cleaning liquid because of the treatment of the waste liquid. The water-based cleaning agent is obtained by adding a surfactant or a solvent to water, and is mostly water. Hereinafter, water or an aqueous cleaning agent will be referred to as cleaning water.

洗浄後には、洗浄用水の大部分はワークから脱落するが、一部は付着水の形態で残留する。次の工程までに付着水を除去する必要がある。残留水は、一般に乾燥法で除去される。乾燥法には、自然乾燥や熱風乾燥や真空乾燥が知られている。   After cleaning, most of the cleaning water drops off from the workpiece, but a part remains in the form of adhering water. It is necessary to remove adhering water by the next step. Residual water is generally removed by a drying method. Natural drying, hot air drying, and vacuum drying are known as drying methods.

特に、真空乾燥は、ワークを高温に暖める必要がないので、熱エネルギー的に有利であり、ワークの熱歪みを回避することができ、近年、注目されている(例えば、特許文献1参照。)。
特開2002−115966公報(第3頁)
In particular, vacuum drying is advantageous in terms of thermal energy because it is not necessary to warm the workpiece to a high temperature, and heat distortion of the workpiece can be avoided. In recent years, attention has been focused on (see, for example, Patent Document 1). .
JP 2002-115966 A (page 3)

特許文献1第3頁の段落番号[0018]〜[0019]に「(減圧状態)・・・略・・・すると、水の沸点が急激に低下するため、ワーク24の表面に付着した水が突沸・気化し、ワーク24の表面は瞬時に乾燥する。・・・略・・・(ワーク取り出し)乾燥工程が終了したら減圧装置16を停止し、ヒータ20への通電も停止し、バルブV1〜V5を閉じる。・・・略・・・」との記載がある。   In paragraph Nos. [0018] to [0019] of the third page of Patent Document 1, “(depressurized state)... Approximately, the boiling point of water rapidly decreases. The surface of the workpiece 24 is instantly dried by bumping and vaporizing ....... (work removal) When the drying process is completed, the decompression device 16 is stopped, the energization to the heater 20 is stopped, and the valves V1 to V1 are stopped. There is a description that “V5 is closed.

この説明では、乾燥工程が終了した時点を特定することができない。すなわち、従来の真空乾燥法では、実験と経験に基づいて、乾燥時間を決めて、この乾燥時間が終了したら、乾燥が終了したと認定してきた。乾燥不良を出したくないので、乾燥時間は、真に必要な時間の1.5倍〜数倍になっているのが実情である。   In this description, it is not possible to specify the time point when the drying process is completed. That is, in the conventional vacuum drying method, the drying time is determined based on experiment and experience, and when this drying time is finished, it is recognized that the drying is finished. Since we don't want to produce poor drying, the actual drying time is 1.5 to several times longer than the time actually required.

これでは、乾燥時間がネックとなって、生産性の向上が図れないことになる。そこで、真に必要な乾燥時間を定量的に把握することができる技術が望まれる。   In this case, drying time becomes a bottleneck and productivity cannot be improved. Therefore, a technique capable of quantitatively grasping the truly necessary drying time is desired.

本発明は、真に必要な乾燥時間を定量的に把握することができる技術を提供することを課題とする。   An object of the present invention is to provide a technique capable of quantitatively grasping a truly necessary drying time.

請求項1に係る発明は、真空ポンプと真空計とヒータとが備えられている密閉容器に、洗浄用水の一部が付着しているワークを入れ、付着水を減圧乾燥させる減圧乾燥方法であって、
気体の状態方程式と前記密閉容器の内体積と前記ヒータで一定に保つ密閉容器内の温度と水の分子量と水分の気体定数とから、ワークに付着していた水の量と水分の分圧との関係が示される第1の式を導く工程と、
前記密閉容器に、乾燥したワークモデルを入れて、前記ヒータで所定の温度に保ちながら密閉容器を減圧し、前記真空計で計測した真空度が一定になったときの真空度を第1の圧力とする工程と、
前記第1の式に前記第1の圧力を加えて、第2の式とする工程と、
前記ワークにおいて、許容される付着水の量を設定する工程と、
前記許容される付着水の量と前記第2の式から求められる圧力を第2の圧力とする工程と、
前記密閉容器に、水が付着しているワークを入れ、前記ヒータで所定の温度に保ちながら密閉容器を減圧し、減圧開始から所定時間が経過したら前記真空計で真空度を計測し、この真空度を第3の圧力とする工程と、
前記第2の圧力を判定基準として、前記第3の圧力を合否判定する工程と、
からなることを特徴とする。
The invention according to claim 1 is a vacuum drying method in which a work to which a part of cleaning water is attached is placed in a sealed container equipped with a vacuum pump, a vacuum gauge, and a heater, and the attached water is dried under reduced pressure. And
From the gas equation of state, the inner volume of the sealed container, the temperature in the sealed container kept constant by the heater, the molecular weight of water and the gas constant of moisture, the amount of water attached to the workpiece and the partial pressure of moisture Deriving a first equation in which the relationship of
A dry work model is placed in the sealed container, the sealed container is depressurized while maintaining a predetermined temperature with the heater, and the degree of vacuum when the degree of vacuum measured by the vacuum gauge becomes constant is set to a first pressure. And a process of
Adding the first pressure to the first equation to form a second equation;
In the workpiece, setting a permissible amount of adhering water;
A step of setting a pressure obtained from the allowable amount of adhering water and the second equation as a second pressure;
Put a work with water on it in the sealed container, depressurize the sealed container while maintaining a predetermined temperature with the heater, measure the degree of vacuum with the vacuum gauge when a predetermined time has elapsed from the start of decompression, A step of setting the degree to a third pressure;
Determining whether the third pressure is acceptable or not using the second pressure as a criterion;
It is characterized by comprising.

請求項2では、合否判定する工程に、同工程で不合格とされたワークを対象にして修復が可能か否かを判断する修復可否工程と、この工程で可と判定された場合はワークを修復する修復工程と、修復可否工程で否と判定された場合にはワークを溶解させる再生工程とを加えたことを特徴とする。 According to claim 2, the acceptability determining step, a repair possibility step of determining whether restoration directed to the work that is non if rated in the same step can, the work when it is determined that Y in this step A repairing process for repairing and a regeneration process for melting the workpiece when it is determined to be negative in the repairing / unstoring process are added.

請求項3では、ワークは内燃機関変速装置のトルクコンバータケース又はミッションケースであることを特徴とする。   According to a third aspect of the present invention, the work is a torque converter case or a transmission case of an internal combustion engine transmission.

請求項4では、密閉容器に洗浄用水の一部が付着しているワークを入れ、付着水を減圧乾燥させる減圧乾燥装置であって、
減圧乾燥装置は、ワークを収納する密閉容器と、この密閉容器の内部を減圧する真空ポンプと、密閉容器の内部を暖めるヒータと、密閉容器内部の温度を測る温度計と、この温度計で計測した温度が一定の温度になるように前記ヒータの出力を制御する温度コントローラと、密閉容器の内部の圧力を測る真空計と、この真空計で測った真空度を読込み、この真空度に基づいて前記ワークの乾燥を判断する演算・制御部とからなり、
前記演算・制御部には、
気体の状態方程式と前記密閉容器の内体積と前記ヒータで一定に保つ密閉容器内の温度と水の分子量と水分の気体定数とから、ワークに付着していた水の量と水分の分圧との関係が示される第1の式を導く工程と、
前記密閉容器に、乾燥したワークモデルを入れて、前記ヒータで所定の温度に保ちながら密閉容器を減圧し、前記真空計で計測した真空度が一定になったときの真空度を第1の圧力とする工程と、
前記第1の式に前記第1の圧力を加えて、第2の式とする工程と、
前記ワークにおいて、許容される付着水の量を設定する工程と、
前記許容される付着水の量と前記第2の式から求められる圧力を第2の圧力とする工程と、からなる工程群を経て、第2の圧力が設定されており、
このような演算・制御部は、
前記密閉容器に、水が付着しているワークを入れ、前記ヒータで所定の温度に保ちながら密閉容器を減圧し、減圧開始から所定時間が経過したら前記真空計で真空度を計測し、この真空度を第3の圧力とする工程と、
前記第2の圧力を判定基準として、前記第3の圧力を合否判定する工程と、からなる工程群を経て、乾燥の合否を判定する機能を有していることを特徴とする。
In claim 4, a vacuum drying apparatus that puts a work on which a part of the cleaning water adheres to a sealed container, and dries the adhered water under reduced pressure.
The vacuum dryer is a sealed container that contains the workpiece, a vacuum pump that depressurizes the inside of the sealed container, a heater that heats the inside of the sealed container, a thermometer that measures the temperature inside the sealed container, and a thermometer that uses this thermometer. The temperature controller that controls the output of the heater so that the measured temperature becomes a constant temperature, a vacuum gauge that measures the pressure inside the sealed container, and the degree of vacuum measured by this vacuum gauge are read, and based on this degree of vacuum Ri Do and a calculation and control unit for determining the drying of said workpiece,
In the calculation / control unit,
From the gas equation of state, the inner volume of the sealed container, the temperature in the sealed container kept constant by the heater, the molecular weight of water and the gas constant of moisture, the amount of water attached to the workpiece and the partial pressure of moisture Deriving a first equation in which the relationship of
A dry work model is placed in the sealed container, the sealed container is depressurized while maintaining a predetermined temperature with the heater, and the degree of vacuum when the degree of vacuum measured by the vacuum gauge becomes constant is set to a first pressure. And a process of
Adding the first pressure to the first equation to form a second equation;
In the workpiece, setting a permissible amount of adhering water;
The second pressure is set through a process group consisting of a step of setting the amount of the adhering adhering water and the pressure obtained from the second formula as the second pressure,
Such a calculation / control unit
Put a work with water on it in the sealed container, depressurize the sealed container while maintaining a predetermined temperature with the heater, measure the degree of vacuum with the vacuum gauge when a predetermined time has elapsed from the start of decompression, A step of setting the degree to a third pressure;
As a criterion the second pressure, through said third acceptance determining process pressure, a process group consisting of, have a function of determining acceptability of dry characterized Rukoto.

請求項1に係る発明では、減圧乾燥時に真空度(第3の圧力)を測定し、この圧力が判定基準圧(第2の圧力)より、高真空側であれば乾燥が良好に終了したと判定する。
判定基準圧としての第2の圧力は、密閉容器と真空ポンプの性能と許容される付着水の量とから予め定める。従って、判定基準圧は、真に必要な乾燥時間と良好な相関関係を有する。
In the invention according to claim 1, the degree of vacuum (third pressure) is measured at the time of drying under reduced pressure, and if this pressure is higher than the judgment reference pressure (second pressure), the drying is successfully finished. judge.
The second pressure as the determination reference pressure is determined in advance from the performance of the sealed container and the vacuum pump and the allowable amount of adhering water. Therefore, the judgment reference pressure has a good correlation with the truly necessary drying time.

そのため、本発明によれば、真に必要な乾燥時間を定量的に把握することができ、このような判定基準圧に基づいて判定するため、乾燥時間を延長する必要はない。この結果、濡れたワークの乾燥を効率よく実施することができる。   Therefore, according to the present invention, the truly necessary drying time can be quantitatively grasped, and since the determination is made based on such a determination reference pressure, it is not necessary to extend the drying time. As a result, the wet workpiece can be efficiently dried.

請求項2では、合否判定する工程に、修復可否工程と、この工程で可と判定された場合はワークを修復する修復工程と、再生工程とを加えた。
修復工程に回されたワークは修復されて、再度、請求項1記載の工程群を経て合否判定される。
再生工程に回されたワークは溶解され、成形されて新しいワークに再生される。
According to the second aspect of the present invention, the step of determining whether or not the product is acceptable includes a repairability determining step, a repairing step of repairing the workpiece when it is determined to be acceptable in this step, and a regeneration step.
The work turned to the repairing process is repaired, and a pass / fail determination is made again through the process group according to claim 1.
The work turned to the regenerating process is melted, formed and regenerated into a new work.

すなわち、特定の形状に成形されたワークの複雑な形状部分に関連して不具合が発生することはよくある事例である。乾燥が不十分と判断したワークでは成形不良で巣穴などができている場合がある。乾燥が不十分と判断したワークは、目視確認で修復可能であれば、修復工程で修復し再度洗浄して、請求項1記載の減圧乾燥方法を実施する。   That is, it is a common case that a defect occurs in relation to a complicated shape portion of a workpiece formed into a specific shape. For workpieces that have been judged to be insufficiently dried, there may be burrows due to poor molding. If the work determined to be insufficiently dried can be repaired by visual confirmation, the work is repaired and washed again in the repairing process, and the reduced-pressure drying method according to claim 1 is performed.

乾燥が不十分と判断したワークにおいて、目視確認で乾燥が不十分である原因、例えば巣穴があることが解っても修復が不可能又は乾燥が不十分である原因が特定できない場合は、再生工程などを経てから請求項1記載の減圧乾燥方法を実施する。
請求項2の工程を有することにより、非常に効率よく該当ワークを製造し、かつエコロジーの観点からも材料の廃棄低減となる、極めて重要な工程である。
For work that has been judged to be insufficiently dried, if the cause of inadequate drying by visual confirmation, for example, if it is found that there is a burrow, repair is impossible or the cause of insufficient drying cannot be identified After passing through the process etc., the reduced-pressure drying method of Claim 1 is implemented.
By having the process of Claim 2, it is a very important process which manufactures a corresponding | compatible workpiece | work very efficiently and also reduces the discard of material from an ecological viewpoint.

請求項3では、ワークは内燃機関変速装置のトルクコンバータケース又はミッションケースであることを特徴とする。
特に、内燃機関変速装置のトルクコンバータケース又はミッションケースは、構造が複雑であり、金属プレートに該当金属のリブが複雑に林立し、乾燥後に目視にて乾燥状態を判断することは、熟練の作業者にあっても難しい作業である。
作業者が目視の乾燥確認を実施する必要がない請求項3は、当該工程を誰でも実施することができる優れた方法である。
According to a third aspect of the present invention, the work is a torque converter case or a transmission case of an internal combustion engine transmission.
In particular, the torque converter case or the transmission case of the internal combustion engine transmission has a complicated structure, and the ribs of the corresponding metal are intricately erected on the metal plate. It is a difficult task even for the elderly.
Claim 3 in which the operator does not need to carry out visual drying confirmation is an excellent method by which anyone can carry out the process.

請求項4では、密閉容器に洗浄用水の一部が付着しているワークを入れ、付着水を減圧乾燥させる減圧乾燥装置であって、
減圧乾燥装置は、ワークを収納する密閉容器と、この密閉容器の内部を減圧する真空ポンプと、密閉容器の内部を暖めるヒータと、密閉容器内部の温度を測る温度計と、この温度計で計測した温度が一定の温度になるように前記ヒータの出力を制御する温度コントローラと、密閉容器の内部の圧力を測る真空計と、この真空計で測った真空度を読込み、この真空度に基づいて前記ワークの乾燥を判断する演算・制御部とからなり、
前記演算・制御部には、
気体の状態方程式と前記密閉容器の内体積と前記ヒータで一定に保つ密閉容器内の温度と水の分子量と水分の気体定数とから、ワークに付着していた水の量と水分の分圧との関係が示される第1の式を導く工程と、
前記密閉容器に、乾燥したワークモデルを入れて、前記ヒータで所定の温度に保ちながら密閉容器を減圧し、前記真空計で計測した真空度が一定になったときの真空度を第1の圧力とする工程と、
前記第1の式に前記第1の圧力を加えて、第2の式とする工程と、
前記ワークにおいて、許容される付着水の量を設定する工程と、
前記許容される付着水の量と前記第2の式から求められる圧力を第2の圧力とする工程と、からなる工程群を経て、第2の圧力が設定されており、
このような演算・制御部は、
前記密閉容器に、水が付着しているワークを入れ、前記ヒータで所定の温度に保ちながら密閉容器を減圧し、減圧開始から所定時間が経過したら前記真空計で真空度を計測し、この真空度を第3の圧力とする工程と、
前記第2の圧力を判定基準として、前記第3の圧力を合否判定する工程と、からなる工程群を経て、乾燥の合否を判定する機能を有していることを特徴とする。
In claim 4, a vacuum drying apparatus that puts a work on which a part of the cleaning water adheres to a sealed container, and dries the adhered water under reduced pressure.
The vacuum dryer is a sealed container that contains the workpiece, a vacuum pump that depressurizes the inside of the sealed container, a heater that heats the inside of the sealed container, a thermometer that measures the temperature inside the sealed container, and a thermometer that uses this thermometer. The temperature controller that controls the output of the heater so that the measured temperature becomes a constant temperature, a vacuum gauge that measures the pressure inside the sealed container, and the degree of vacuum measured by this vacuum gauge are read, and based on this degree of vacuum Ri Do and a calculation and control unit for determining the drying of said workpiece,
In the calculation / control unit,
From the gas equation of state, the inner volume of the sealed container, the temperature in the sealed container kept constant by the heater, the molecular weight of water and the gas constant of moisture, the amount of water attached to the workpiece and the partial pressure of moisture Deriving a first equation in which the relationship of
A dry work model is placed in the sealed container, the sealed container is depressurized while maintaining a predetermined temperature with the heater, and the degree of vacuum when the degree of vacuum measured by the vacuum gauge becomes constant is set to a first pressure. And a process of
Adding the first pressure to the first equation to form a second equation;
In the workpiece, setting a permissible amount of adhering water;
The second pressure is set through a process group consisting of a step of setting the amount of the adhering adhering water and the pressure obtained from the second formula as the second pressure,
Such a calculation / control unit
Put a work with water on it in the sealed container, depressurize the sealed container while maintaining a predetermined temperature with the heater, measure the degree of vacuum with the vacuum gauge when a predetermined time has elapsed from the start of decompression, A step of setting the degree to a third pressure;
As a criterion the second pressure, through said third acceptance determining process pressure, a process group consisting of, have a function of determining acceptability of dry characterized Rukoto.

従来は、乾燥の状態は目視確認実施しきたため、作業者の個人差が出やすいと共に乾燥時間過多による作業能率の低下があった。
この点、本発明は、乾燥の状態を真空度で判断するようにした。そのため、作業者の個人差が生じる心配はなく、乾燥時間を適正化することもでき、作業能率を向上させることができる。
Conventionally, since the drying state has been carried out by visual confirmation , individual differences among workers are likely to occur, and work efficiency has been reduced due to excessive drying time.
In this regard, in the present invention, the dry state is determined by the degree of vacuum. Therefore, there is no worry that individual differences among workers occur, the drying time can be optimized, and work efficiency can be improved.

前記演算・制御部では、減圧乾燥時に真空度(第3の圧力)を測定し、この圧力が判定基準圧(第2の圧力)より、高真空側であれば乾燥が良好に終了したと判定する。
判定基準圧としての第2の圧力は、密閉容器と真空ポンプの性能と許容される付着水の量とから予め定める。従って、判定基準圧は、真に必要な乾燥時間と良好な相関関係を有する。
The calculation / control unit measures the degree of vacuum (third pressure) at the time of drying under reduced pressure, and determines that drying has been successfully completed if this pressure is higher than the judgment reference pressure (second pressure). To do.
The second pressure as the determination reference pressure is determined in advance from the performance of the sealed container and the vacuum pump and the allowable amount of adhering water. Therefore, the judgment reference pressure has a good correlation with the truly necessary drying time.

そのため、本発明によれば、真に必要な乾燥時間を定量的に把握することができ、このような判定基準圧に基づいて判定するため、乾燥時間を延長する必要はない。この結果、濡れたワークの乾燥を効率よく実施することができる。   Therefore, according to the present invention, the truly necessary drying time can be quantitatively grasped, and since the determination is made based on such a determination reference pressure, it is not necessary to extend the drying time. As a result, the wet workpiece can be efficiently dried.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る減圧乾燥装置の原理図であり、減圧乾燥装置10は、蓋11を備えた密閉容器12と、この密閉容器12内に設けられトルクコンバータケース又はミッションケースのようなワーク13を支えるワークスタンド14と、密閉容器12の底から水を抜く排水管15と、密閉容器12の内部を減圧する真空ポンプ16と、密閉容器12の内部を暖めるヒータ17と、密閉容器12内部の温度を測る温度計18と、この温度計18で計測した温度が一定の温度(例えば50℃)になるようにヒータ17の出力を制御する温度コントローラ19と、密閉容器12の内部の圧力を測る真空計21と、この真空計21で測った真空度を読込み、キーボードなどの設定器22で設定した所定時間に基づいて真空ポンプ16を運転し、所定時間が経過したら真空ポンプ16を止めと共に以下に述べる一連の演算を実施する演算・制御部23と、乾燥の結果を表示する表示部24と、からなる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a principle view of a vacuum drying apparatus according to the present invention. A vacuum drying apparatus 10 includes a sealed container 12 having a lid 11 and a work such as a torque converter case or a mission case provided in the sealed container 12. 13, a work stand 14 that supports 13, a drain pipe 15 that drains water from the bottom of the sealed container 12, a vacuum pump 16 that depressurizes the inside of the sealed container 12, a heater 17 that warms the inside of the sealed container 12, and the inside of the sealed container 12. A thermometer 18 that measures the temperature of the heater 17, a temperature controller 19 that controls the output of the heater 17 so that the temperature measured by the thermometer 18 becomes a constant temperature (for example, 50 ° C.), and the pressure inside the sealed container 12. A vacuum gauge 21 to be measured and the degree of vacuum measured by the vacuum gauge 21 are read, and the vacuum pump 16 is operated based on a predetermined time set by a setting device 22 such as a keyboard. An arithmetic and control unit 23 during performing a series of operations described below a vacuum pump 16 with stop after a lapse of a display unit 24 for displaying the result of the drying, made of.

次に本発明の減圧乾燥方法を説明する。
気体の状態方程式は、周知の通り、次式で与えられる。
Next, the vacuum drying method of the present invention will be described.
As is well known, the equation of state of gas is given by the following equation.

Figure 0005101141
Figure 0005101141

(1)式のM、R、T及びVに数値を入れて、水分の分圧pと水の質量wとの関係式を求める。関係式(「第1の式」)を次に示す。

Figure 0005101141
(1) A numerical value is put into M, R, T, and V in the equation to obtain a relational expression between the partial pressure p of water and the mass w of water. The relational expression (“first expression”) is shown below.
Figure 0005101141

次に、図1に示す減圧乾燥装置10を用いて、以下の手順で第1の圧力を求める。
ワーク13は、予め天日干しして十分に乾燥させる。この乾燥物をワークモデル26と言う。このワークモデル26を密閉容器12に入れて、ヒータ17で所定の温度(50℃)に保ちながら密閉容器12を減圧し、真空計21で真空度を連続的に計測する。密閉容器12の内体積は325.2リットル、真空ポンプ16の排気速度は毎分6,410リットルである。
Next, the first pressure is obtained by the following procedure using the vacuum drying apparatus 10 shown in FIG.
The work 13 is sun-dried in advance and sufficiently dried. This dried product is called a work model 26. The work model 26 is placed in the hermetic container 12, the hermetic container 12 is depressurized while being kept at a predetermined temperature (50 ° C.) by the heater 17, and the degree of vacuum is continuously measured by the vacuum gauge 21. The inner volume of the sealed container 12 is 325.2 liters, and the exhaust speed of the vacuum pump 16 is 6,410 liters per minute.

図2はワークモデルで得た減圧グラフであり、横軸が真空ポンプ運転時間に相当する排気時間を示し、縦軸は真空度を示す。
排気時間が0では、真空計の読みは1.0atm(大気圧)であったものが、排気時間が経過するに連れて低真空から高真空へ移行した。しかし、25秒頃からは圧力は0.031atm一定になった。このような圧力は真空到達度と呼ばれる。
FIG. 2 is a decompression graph obtained with a work model, in which the horizontal axis indicates the exhaust time corresponding to the vacuum pump operating time, and the vertical axis indicates the degree of vacuum.
When the evacuation time was 0, the vacuum gauge reading was 1.0 atm (atmospheric pressure), but the evacuation time shifted from low vacuum to high vacuum as the evacuation time passed. However, from about 25 seconds, the pressure became constant at 0.031 atm. Such a pressure is called the degree of vacuum.

図1において、蓋11を開けたときに大気が密閉容器12内に侵入し、大気中に含まれる微量の物質が密閉容器12やワークスタンド14に付着する。これらの微量の物質、例えば有機物は、高真空になると表面から蒸発し、ガスとなって密閉容器12を満たす。   In FIG. 1, when the lid 11 is opened, the atmosphere enters the sealed container 12, and a trace amount of substances contained in the atmosphere adheres to the sealed container 12 and the work stand 14. These minute amounts of substances, such as organic substances, evaporate from the surface when high vacuum is applied, and fill the sealed container 12 as gas.

このようなガス発生は、例えれば、ボートの底に開いた穴から浸入する浸水である。また、真空ポンプ16は、例えればボートに溜まった水を掻き出す排水ポンプである。
浸水は止められないが、排水ポンプの能力が高ければ、浸水のレベル(水位)を低くすることができる。浸水のレベル(水位)は排水ポンプと浸水とがバランスしたところで、一定になる。一定になった水位が、真空到達度に相当する。
この真空到達度は密閉容器の大きさや、構造によっても変化する。
Such gas generation is, for example, inundation entering from a hole opened in the bottom of the boat. For example, the vacuum pump 16 is a drainage pump that scrapes water accumulated in the boat.
Inundation cannot be stopped, but if the capacity of the drainage pump is high, the level of the inundation (water level) can be lowered. The level of flooding (water level) becomes constant when the drainage pump and the flooding are balanced. The water level that became constant corresponds to the degree of vacuum.
This degree of vacuum varies depending on the size and structure of the sealed container.

上記例では、真空到達度は0.031atmであった。この0.031atmを「第1の圧力」と呼ぶ。   In the above example, the degree of vacuum reached 0.031 atm. This 0.031 atm is referred to as “first pressure”.

上述の第1の式は、理想状態での式である。上記第1の圧力は、使用する密閉容器12と真空ポンプ16とから決まる現実の値である。そこで、第1の式を第1の圧力で補正、具体的には第1の式の右辺に第1の圧力を加える。得られた式は第2の式と呼ぶ。

Figure 0005101141
The first equation described above is an equation in an ideal state. The first pressure is an actual value determined from the sealed container 12 and the vacuum pump 16 to be used. Therefore, the first expression is corrected with the first pressure, and specifically, the first pressure is applied to the right side of the first expression. The obtained formula is called the second formula.
Figure 0005101141

図3は付着水の量と真空度の関係を示すグラフであり、上述の第2の式をグラフ化したものである。すなわち、wに5、10、15を代入することで、pを求め、グラフを描くことができる。   FIG. 3 is a graph showing the relationship between the amount of adhering water and the degree of vacuum, and is a graph of the second equation described above. That is, by substituting 5, 10, and 15 for w, p can be obtained and a graph can be drawn.

ところで、付着水の量が「0」であることが望まれるが、大気中の湿度が高ければ、密閉容器から取り出したワークに大気中の水分が付着する。従って、付着水の量を「0」にすることは、現実的でない。排気時間も延ばさなければならない。
そこで、次の工程の内容(塗装、化成処理など)から要求される乾燥度を考慮して、許される付着水の量を定める。
By the way, although it is desired that the amount of adhering water is “0”, if the humidity in the atmosphere is high, moisture in the atmosphere adheres to the work taken out from the sealed container. Therefore, it is not practical to set the amount of attached water to “0”. The exhaust time must also be extended.
Therefore, the amount of adhering water allowed is determined in consideration of the dryness required from the contents of the next process (painting, chemical conversion treatment, etc.).

仮に、許される付着水の量が5g(グラム)であったとする。すると、グラフに示すように、対応する真空度は0.054atmとなる。この圧力を「第2の圧力」と呼ぶ。   Suppose that the amount of adhering water allowed is 5 g (grams). Then, as shown in the graph, the corresponding degree of vacuum is 0.054 atm. This pressure is called “second pressure”.

今までの工程をまとめると、次の通りになる。
気体の状態方程式と密閉容器の内体積とヒータで一定に保つ密閉容器内の温度と水の分子量と水分の気体定数とから、ワークに付着していた水の量と水分の分圧との関係が示される第1の式を導く工程と、
密閉容器に、乾燥したワークモデルを入れて、ヒータで所定の温度に保ちながら密閉容器を減圧し、真空計で計測した真空度が一定になったときの真空度を第1の圧力とする工程と、
第1の式に前記第1の圧力を加えて、第2の式とする工程と、
ワークにおいて、許容される付着水の量を設定する工程と、
許容される付着水の量と前記第2の式から求められる圧力を第2の圧力とする工程と、を実施した。
ここまでの工程が、準備工程群となる。
The process so far is summarized as follows.
The relationship between the amount of water adhering to the workpiece and the partial pressure of moisture from the equation of state of gas, the volume of the sealed vessel, the temperature inside the sealed vessel kept constant by the heater, the molecular weight of water and the gas constant of moisture Deriving a first equation wherein:
A process of putting a dried work model in a sealed container, depressurizing the sealed container while maintaining a predetermined temperature with a heater, and setting the degree of vacuum when the degree of vacuum measured with a vacuum gauge becomes constant as the first pressure When,
Adding the first pressure to the first equation to form the second equation;
Setting the amount of adhering water allowed in the workpiece;
The amount of adhering water allowed and the step of setting the pressure determined from the second equation to the second pressure were carried out.
The process so far is a preparation process group.

次に、自動車の生産ラインで実施する乾燥状態の合否判定を説明する。
図1の密閉容器12に、濡れたワーク(例えば、トルクコンバータケース又はミッションケース)13を入れ、ヒータ17で所定の温度(50℃)に保ちながら密閉容器12を減圧する。そして、減圧開始から所定時間(例えば25秒)が経過したら真空計21で真空度を計測する。この真空度を「第3の圧力」と呼ぶ。
Next, the pass / fail determination of the dry state performed in the automobile production line will be described.
A wet workpiece (for example, a torque converter case or a transmission case) 13 is placed in the sealed container 12 of FIG. 1, and the sealed container 12 is decompressed while being kept at a predetermined temperature (50 ° C.) by the heater 17. When a predetermined time (for example, 25 seconds) elapses from the start of pressure reduction, the vacuum degree is measured by the vacuum gauge 21. This degree of vacuum is referred to as “third pressure”.

測定した第3圧力が、0.06atmであれば、判定基準として第2の圧力0.054atmを上回っているので、判定は不合格(乾燥不十分)となる。
また、測定した第3圧力が、0.04atmであれば、判定基準として第2の圧力0.054atmを下回っているので、判定は合格(乾燥十分)となる。
If the measured third pressure is 0.06 atm, it exceeds the second pressure of 0.054 atm as a criterion for determination, so the determination fails (insufficiently dried).
Moreover, if the measured 3rd pressure is 0.04 atm, since it has fallen below the 2nd pressure 0.054 atm as a criteria, determination will be a pass (it is dry enough).

以上の作業を、フローで再度説明する。
図4は乾燥の合否判定までの手順を説明するフロー図であり、ステップ番号(以下、ST)01で許容される付着水の量wを設定する。このwを第2の式(p=0.0045w+0.031)に代入すれば第2の圧力p2が定まる(ST02)。また、図2を参照して乾燥時間t1を設定する(ST03)。乾燥時間t1は25秒が適当である。
The above operation will be described again in the flow.
FIG. 4 is a flowchart for explaining the procedure up to the determination of whether or not the drying is successful, and sets the amount w of adhering water allowed in step number (hereinafter, ST) 01. By substituting this w into the second equation (p = 0.0045w + 0.031), the second pressure p2 is determined (ST02). Further, the drying time t1 is set with reference to FIG. 2 (ST03) . A suitable drying time t1 is 25 seconds.

ST04で、密閉容器に濡れたワークを投入し、真空ポンプの運転を開始する(ST05)。排気時間(真空ポンプの運転時間)t2が予め定めたt1に到達したら、真空ポンプを止める(ST07)。そのときの第3の圧力(密閉容器内の圧力)p3を測定する(ST08)。
図1に示した演算・制御部23で、第3の圧力p3が、第2の圧力p2以下であるか否かを調べる(ST09)。
In ST04, the wet work is put into the sealed container, and the operation of the vacuum pump is started (ST05). When the exhaust time (vacuum pump operation time) t2 reaches a predetermined t1, the vacuum pump is stopped (ST07). The third pressure (pressure in the sealed container) p3 at that time is measured (ST08).
The calculation / control unit 23 shown in FIG. 1 checks whether or not the third pressure p3 is equal to or lower than the second pressure p2 (ST09).

第3の圧力p3が、第2の圧力p2以下であれば合格(ST10)、否であれば不合格(ST11)の判定を行い、そのことを、図1の表示部24に表示する。   If the third pressure p3 is equal to or lower than the second pressure p2, it is determined to pass (ST10), and if not, it is determined to fail (ST11), and this is displayed on the display unit 24 of FIG.

許容される付着水の量(ST01)は、気圧、湿度、ワークの大きさ、密閉容器の大きさなどにより、適宜設定される。
また、ST03での乾燥時間t1も同様である。
The allowable amount of adhering water (ST01) is appropriately set depending on the atmospheric pressure, humidity, size of the workpiece, size of the sealed container, and the like.
The same applies to the drying time t1 in ST03.

以上に述べたように、本発明では真空ポンプを止めた時点での真空到達度(第3の圧力)を、第2の圧力と比較することで、乾燥の良否が判定できるようにした。
真空ポンプの運転時間は、図2を参照して、必要最小限の時間まで短縮することができる。従来は、安全側に延ばしていた長い乾燥時間を、本発明では短い乾燥時間に変更することができる。この結果、生産性を大いに高めることができる。
As described above, in the present invention, the degree of vacuum (third pressure) when the vacuum pump is stopped is compared with the second pressure so that the quality of drying can be determined.
The operation time of the vacuum pump can be shortened to the minimum necessary time with reference to FIG. Conventionally, a long drying time that has been extended to the safe side can be changed to a short drying time in the present invention. As a result, productivity can be greatly increased.

好ましくは、図4のST11の(A)に、次の工程を続ける。
図5は修復可否工程及びそれ以降のフロー図である。ST12では、不合格にとされたワークを対象にして修復が可能か否かを判断する(修復可否工程)。
この工程で可と判定された場合は、ワークを修復する修復工程(ST13)へ回す。又は、修復可否工程で否と判定された場合にはワークを溶解させる再生工程(ST14)へ回す。
Preferably, the next step is continued in (A) of ST11 in FIG.
FIG. 5 is a flowchart showing the repair availability process and subsequent steps. In ST12, it is determined whether or not the work that has been rejected can be repaired (step of repairability).
If it is determined that the process is acceptable, the process is transferred to a repair process (ST13) for repairing the workpiece. Alternatively, if it is determined that the repair is not possible, the process is turned to the regeneration process (ST14) for melting the workpiece.

修復工程に回されたワークは修復されて、再度、本発明の乾燥の合否判定が実施される。
再生工程に回されたワークは溶解され、成形されて新しいワークに再生される。
The work sent to the repairing process is repaired, and the pass / fail judgment of the drying of the present invention is performed again.
The work turned to the regenerating process is melted, formed and regenerated into a new work.

すなわち、特定の形状に成形されたワークの複雑な形状部分に関連して不具合が発生することはよくある事例である。乾燥が不十分と判断したワークでは成形不良で巣穴などができている場合がある。乾燥が不十分と判断したワークは、目視確認で修復可能であれば、修復工程で修復し再度洗浄して、減圧乾燥方法を実施する。   That is, it is a common case that a defect occurs in relation to a complicated shape portion of a workpiece formed into a specific shape. For workpieces that have been judged to be insufficiently dried, there may be burrows due to poor molding. If the work judged to be insufficiently dried can be repaired by visual confirmation, it is repaired and washed again in the repair process, and the reduced-pressure drying method is carried out.

乾燥が不十分と判断したワークにおいて、目視確認で乾燥が不十分である原因、例えば巣穴があることが解っても修復が不可能又は乾燥が不十分である原因が特定できない場合は、再生工程などを経てから減圧乾燥方法を実施する。
図5の工程を有することにより、非常に効率よく該当ワークを製造し、かつエコロジーの観点からも材料の廃棄低減となる、極めて重要な工程である。
For work that has been judged to be insufficiently dried, if the cause of inadequate drying by visual confirmation, for example, if it is found that there is a burrow, repair is impossible or the cause of insufficient drying cannot be identified The vacuum drying method is carried out after passing through the steps.
By having the process of FIG. 5, it is an extremely important process for manufacturing the workpiece very efficiently and reducing the disposal of materials from the viewpoint of ecology.

またワークが、内燃機関変速装置のトルクコンバータケース又はミッションケースであれば、構造が複雑であり、金属プレートに該当金属のリブが複雑に林立している。このようなトルクコンバータケース又はミッションケースを乾燥後に目視にて乾燥状態を判断することは、熟練の作業者にあっても難しい作業である。
本発明によれば、作業者が目視の乾燥確認を実施する必要がなく、当該工程を誰でも実施することができる。
If the workpiece is a torque converter case or a transmission case of an internal combustion engine transmission, the structure is complicated, and the ribs of the corresponding metal are intricately erected on the metal plate. It is difficult even for a skilled worker to visually determine the dry state after drying such a torque converter case or mission case.
According to the present invention, it is not necessary for the operator to perform visual drying confirmation, and anyone can perform the process.

尚、本発明方法は、自動車の部品の乾燥判定に好適であるが、他の機械部品に適用することは差し支えない。   Although the method of the present invention is suitable for determining the drying of automobile parts, it can be applied to other machine parts.

本発明の減圧乾燥方法は、自動車の部品の乾燥に好適である。   The reduced-pressure drying method of the present invention is suitable for drying automobile parts.

本発明に係る減圧乾燥装置の原理図である。1 is a principle diagram of a vacuum drying apparatus according to the present invention. ワークモデルで得た減圧グラフである。It is the decompression graph obtained with the work model. 付着水の量と真空度の関係を示すグラフである。It is a graph which shows the relationship between the quantity of adhesion water, and a vacuum degree. 乾燥の合否判定までの手順を説明するフロー図である。It is a flowchart explaining the procedure to the pass / fail determination of drying. 修復可否工程及びそれ以降のフロー図である。It is a flow chart after the repair availability process and thereafter.

符号の説明Explanation of symbols

10…減圧乾燥装置、12…密閉容器、13…ワーク(濡れたワーク)、16…真空ポンプ、17…ヒータ、18…温度計、19…温度コントローラ、21…真空計、22…設定器、23…演算・制御部、24…表示部、26…ワークモデル(乾いたワーク)。   DESCRIPTION OF SYMBOLS 10 ... Vacuum drying apparatus, 12 ... Airtight container, 13 ... Work (wet work), 16 ... Vacuum pump, 17 ... Heater, 18 ... Thermometer, 19 ... Temperature controller, 21 ... Vacuum gauge, 22 ... Setting device, 23 ... calculation / control unit, 24 ... display unit, 26 ... work model (dry work).

Claims (4)

真空ポンプと真空計とヒータとが備えられている密閉容器に、洗浄用水の一部が付着しているワークを入れ、付着水を減圧乾燥させる減圧乾燥方法であって、
気体の状態方程式と前記密閉容器の内体積と前記ヒータで一定に保つ密閉容器内の温度と水の分子量と水分の気体定数とから、ワークに付着していた水の量と水分の分圧との関係が示される第1の式を導く工程と、
前記密閉容器に、乾燥したワークモデルを入れて、前記ヒータで所定の温度に保ちながら密閉容器を減圧し、前記真空計で計測した真空度が一定になったときの真空度を第1の圧力とする工程と、
前記第1の式に前記第1の圧力を加えて、第2の式とする工程と、
前記ワークにおいて、許容される付着水の量を設定する工程と、
前記許容される付着水の量と前記第2の式から求められる圧力を第2の圧力とする工程と、
前記密閉容器に、水が付着しているワークを入れ、前記ヒータで所定の温度に保ちながら密閉容器を減圧し、減圧開始から所定時間が経過したら前記真空計で真空度を計測し、この真空度を第3の圧力とする工程と、
前記第2の圧力を判定基準として、前記第3の圧力を合否判定する工程と、
からなることを特徴とする減圧乾燥方法。
A vacuum drying method in which a work to which a part of cleaning water is attached is placed in a sealed container equipped with a vacuum pump, a vacuum gauge, and a heater, and the attached water is dried under reduced pressure.
From the gas equation of state, the inner volume of the sealed container, the temperature in the sealed container kept constant by the heater, the molecular weight of water and the gas constant of moisture, the amount of water attached to the workpiece and the partial pressure of moisture Deriving a first equation in which the relationship of
A dry work model is placed in the sealed container, the sealed container is depressurized while maintaining a predetermined temperature with the heater, and the degree of vacuum when the degree of vacuum measured by the vacuum gauge becomes constant is set to a first pressure. And a process of
Adding the first pressure to the first equation to form a second equation;
In the workpiece, setting a permissible amount of adhering water;
A step of setting a pressure obtained from the allowable amount of adhering water and the second equation as a second pressure;
Put a work with water on it in the sealed container, depressurize the sealed container while maintaining a predetermined temperature with the heater, measure the degree of vacuum with the vacuum gauge when a predetermined time has elapsed from the start of decompression, A step of setting the degree to a third pressure;
Determining whether the third pressure is acceptable or not using the second pressure as a criterion;
A vacuum drying method comprising the steps of:
前記合否判定する工程に、同工程で不合格とされたワークを対象にして修復が可能か否かを判断する修復可否工程と、この工程で可と判定された場合はワークを修復する修復工程と、前記修復可否工程で否と判定された場合にはワークを溶解させる再生工程とを加えたことを特徴とする請求項1記載の減圧乾燥方法。   In the pass / fail judgment step, a repair propriety step for judging whether or not repair is possible for a work rejected in the same step, and a repair step for repairing the work if it is judged acceptable in this step The reduced-pressure drying method according to claim 1, further comprising a regeneration step of dissolving the workpiece when it is determined to be negative in the repairability determination step. 前記ワークは内燃機関変速装置のトルクコンバータケース又はミッションケースであることを特徴とする請求項1又は請求項2記載の減圧乾燥方法。   3. The reduced-pressure drying method according to claim 1, wherein the workpiece is a torque converter case or a transmission case of an internal combustion engine transmission. 密閉容器に洗浄用水の一部が付着しているワークを入れ、付着水を減圧乾燥させる減圧乾燥装置であって、
減圧乾燥装置は、ワークを収納する密閉容器と、この密閉容器の内部を減圧する真空ポンプと、密閉容器の内部を暖めるヒータと、密閉容器内部の温度を測る温度計と、この温度計で計測した温度が一定の温度になるように前記ヒータの出力を制御する温度コントローラと、密閉容器の内部の圧力を測る真空計と、この真空計で測った真空度を読込み、この真空度に基づいて前記ワークの乾燥を判断する演算・制御部とからなり、
前記演算・制御部には、
気体の状態方程式と前記密閉容器の内体積と前記ヒータで一定に保つ密閉容器内の温度と水の分子量と水分の気体定数とから、ワークに付着していた水の量と水分の分圧との関係が示される第1の式を導く工程と、
前記密閉容器に、乾燥したワークモデルを入れて、前記ヒータで所定の温度に保ちながら密閉容器を減圧し、前記真空計で計測した真空度が一定になったときの真空度を第1の圧力とする工程と、
前記第1の式に前記第1の圧力を加えて、第2の式とする工程と、
前記ワークにおいて、許容される付着水の量を設定する工程と、
前記許容される付着水の量と前記第2の式から求められる圧力を第2の圧力とする工程と、からなる工程群を経て、第2の圧力が設定されており、
このような演算・制御部は、
前記密閉容器に、水が付着しているワークを入れ、前記ヒータで所定の温度に保ちながら密閉容器を減圧し、減圧開始から所定時間が経過したら前記真空計で真空度を計測し、この真空度を第3の圧力とする工程と、
前記第2の圧力を判定基準として、前記第3の圧力を合否判定する工程と、からなる工程群を経て、乾燥の合否を判定する機能を有していることを特徴とする減圧乾燥装置。
A vacuum drying device that puts a work with a part of the washing water in a sealed container and dries the attached water under reduced pressure.
The vacuum dryer is a sealed container that contains the workpiece, a vacuum pump that depressurizes the inside of the sealed container, a heater that heats the inside of the sealed container, a thermometer that measures the temperature inside the sealed container, and a thermometer that uses this thermometer. The temperature controller that controls the output of the heater so that the measured temperature becomes a constant temperature, a vacuum gauge that measures the pressure inside the sealed container, and the degree of vacuum measured by this vacuum gauge are read, and based on this degree of vacuum Comprising a calculation / control unit that determines the drying of the workpiece,
In the calculation / control unit,
From the gas equation of state, the inner volume of the sealed container, the temperature in the sealed container kept constant by the heater, the molecular weight of water and the gas constant of moisture, the amount of water attached to the workpiece and the partial pressure of moisture Deriving a first equation in which the relationship of
A dry work model is placed in the sealed container, the sealed container is depressurized while maintaining a predetermined temperature with the heater, and the degree of vacuum when the degree of vacuum measured by the vacuum gauge becomes constant is set to a first pressure. And a process of
Adding the first pressure to the first equation to form a second equation;
In the workpiece, setting a permissible amount of adhering water;
The second pressure is set through a process group consisting of a step of setting the amount of the adhering adhering water and the pressure obtained from the second formula as the second pressure,
Such a calculation / control unit
Put a work with water on it in the sealed container, depressurize the sealed container while maintaining a predetermined temperature with the heater, measure the degree of vacuum with the vacuum gauge when a predetermined time has elapsed from the start of decompression, A step of setting the degree to a third pressure;
A reduced-pressure drying apparatus having a function of determining whether or not drying is performed through a process group including a step of determining whether or not the third pressure is acceptable using the second pressure as a criterion.
JP2007074782A 2007-03-22 2007-03-22 Vacuum drying method and vacuum drying apparatus Active JP5101141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007074782A JP5101141B2 (en) 2007-03-22 2007-03-22 Vacuum drying method and vacuum drying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007074782A JP5101141B2 (en) 2007-03-22 2007-03-22 Vacuum drying method and vacuum drying apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012087046A Division JP5320481B2 (en) 2012-04-06 2012-04-06 Vacuum dryer

Publications (3)

Publication Number Publication Date
JP2008232567A JP2008232567A (en) 2008-10-02
JP2008232567A5 JP2008232567A5 (en) 2009-11-12
JP5101141B2 true JP5101141B2 (en) 2012-12-19

Family

ID=39905571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007074782A Active JP5101141B2 (en) 2007-03-22 2007-03-22 Vacuum drying method and vacuum drying apparatus

Country Status (1)

Country Link
JP (1) JP5101141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8726204B2 (en) 2006-02-09 2014-05-13 Mentor Graphics Corporation Managing and controlling the use of hardware resources on integrated circuits

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2814424B2 (en) * 1994-10-20 1998-10-22 八木 俊一 Vacuum drying equipment
JPH09162154A (en) * 1995-12-08 1997-06-20 Dainippon Screen Mfg Co Ltd Substrate treating system
JPH10311678A (en) * 1997-05-12 1998-11-24 Mikuni Kogyo:Kk Dryer for cleaned part
JP2003174007A (en) * 2001-12-04 2003-06-20 Supurauto:Kk Method of vacuum-drying substrate
JP2006164577A (en) * 2004-12-02 2006-06-22 Kawamura Electric Inc Fuel cell
JP2006205078A (en) * 2005-01-28 2006-08-10 Seiko Epson Corp Substrate dryer, substrate processing system, manufacturing method of electro-optical device, electro-optical device and electronic instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8726204B2 (en) 2006-02-09 2014-05-13 Mentor Graphics Corporation Managing and controlling the use of hardware resources on integrated circuits

Also Published As

Publication number Publication date
JP2008232567A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
CN103821672B (en) System and method for strengthening wind turbine blade weakened zones
JP4272193B2 (en) Parts washing and drying method and parts washing and drying apparatus
CN205518885U (en) Vapour fortune tank car is inside sweeps cleaning device fast
US8801818B2 (en) Method and cleaning device for cleaning and checking a particle filter
CN202823970U (en) Before-infiltration hot water washing spin-drying tank
EP1964625A3 (en) Method and apparatus for removing a fugitive pattern from a mold
WO2016058281A1 (en) Method for decoking inner wall of metal cavity
CN2920453Y (en) Cleaning device for inside oil pipe
JP5101141B2 (en) Vacuum drying method and vacuum drying apparatus
CN103894367A (en) Vacuum cleaning machine for thermal treatment production line
KR20180019233A (en) How to repair turbine blades
JP5320481B2 (en) Vacuum dryer
CN108070709A (en) Method by mixing the defects of hot isostatic pressing (HIP) process is come on the thermal part of restoring portion of turbine
CN100531846C (en) Recovery cyclic utilization method and apparatus for recovering discharged alkaline air in process of production of silane with magnesium silicide method
CN101812694A (en) Rapid descaling device and descaling treatment method thereof
CN111118517A (en) Clamp paint removing system and method
CN102798571A (en) Pressure container pressure resistance test process and auxiliary tools thereof
US20080230089A1 (en) Aqueous washing system and method
CN211199414U (en) Clamp paint removing system
CN113588183A (en) Nitrogen circulating device applied to low-temperature gas cylinder production line
CN108838614A (en) A kind of aircraft generator cast housing leakage sealing of hole repair method
JPH1060676A (en) Cleaner and cleaning method
CN110230063A (en) A kind of high-speed railway Through ground wire annealing passivation production line
JP2955191B2 (en) Inspection method for breathable refractory containers
CN203508559U (en) Air-cooled dewatering device used for cleaning machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250