JP5095289B2 - Interference fringe stabilization device and non-destructive inspection device using the same - Google Patents

Interference fringe stabilization device and non-destructive inspection device using the same Download PDF

Info

Publication number
JP5095289B2
JP5095289B2 JP2007192248A JP2007192248A JP5095289B2 JP 5095289 B2 JP5095289 B2 JP 5095289B2 JP 2007192248 A JP2007192248 A JP 2007192248A JP 2007192248 A JP2007192248 A JP 2007192248A JP 5095289 B2 JP5095289 B2 JP 5095289B2
Authority
JP
Japan
Prior art keywords
light
inspection object
reference light
laser
interference fringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007192248A
Other languages
Japanese (ja)
Other versions
JP2009030996A (en
Inventor
義則 島田
コチャエフ オレグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute for Laser Technology
West Japan Railway Co
Original Assignee
Institute for Laser Technology
West Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute for Laser Technology, West Japan Railway Co filed Critical Institute for Laser Technology
Priority to JP2007192248A priority Critical patent/JP5095289B2/en
Publication of JP2009030996A publication Critical patent/JP2009030996A/en
Application granted granted Critical
Publication of JP5095289B2 publication Critical patent/JP5095289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、干渉縞安定化装置およびそれを用いた非破壊検査装置に関するものである。   The present invention relates to an interference fringe stabilization device and a nondestructive inspection device using the same.

従来から、この種の非破壊検査装置として、コンクリート構造物、金属構造物などの検査対象物の内部欠陥の有無や深さなどの検査が可能なレーザ超音波リモートセンシング装置が提案されている(例えば、特許文献1参照)。   Conventionally, as this type of nondestructive inspection device, a laser ultrasonic remote sensing device capable of inspecting the presence / absence or depth of an internal defect of an inspection object such as a concrete structure or a metal structure has been proposed ( For example, see Patent Document 1).

ここにおいて、特許文献1に開示されている非破壊検査装置は、図7に示すように、連続出力のレーザ光からなる信号光を出力する検出用レーザ11と、検査対象物Obに弾性波(超音波)を励起させるためのパルスレーザ光からなる励起光を出力する弾性波励起用レーザ21と、検出用レーザ11と検査対象物Obとの間の光路上に配設され検出用レーザ11から出力された信号光の一部を参照光として分岐する偏光ビームスプリッタ104と、検出用レーザ11から出力され検査対象物Obで反射され周波数変調された信号光と偏光ビームスプリッタ104で分岐された参照光とが所定の角度で交差するように入射する干渉計を構成するフォトリフラクティブ結晶109と、フォトリフラクティブ結晶109から出射されビームスプリッタ112で分岐された干渉光を検出する2つの光検出器113a,113bと、光検出器113a,113bの出力を記録するオシロスコープ114とを備え、オシロスコープ114において各光検出器113a,113bの出力に対して適宜の周波数解析を行うことにより検査対象物Obの内部欠陥を検出するように構成されている。   Here, as shown in FIG. 7, the nondestructive inspection apparatus disclosed in Patent Document 1 includes a detection laser 11 that outputs signal light composed of continuous output laser light, and an elastic wave ( The ultrasonic wave excitation laser 21 that outputs excitation light composed of pulsed laser light for exciting (ultrasonic waves), and the detection laser 11 disposed on the optical path between the detection laser 11 and the inspection object Ob. A polarization beam splitter 104 that branches a part of the output signal light as reference light, and a reference light that is output from the detection laser 11 and reflected by the inspection object Ob and frequency-modulated, and the reference beam branched by the polarization beam splitter 104. A photorefractive crystal 109 constituting an interferometer that is incident so that light intersects at a predetermined angle, and a beam splitting beam emitted from the photorefractive crystal 109. 112 includes two photodetectors 113a and 113b that detect the interference light branched off at 112, and an oscilloscope 114 that records the outputs of the photodetectors 113a and 113b. The oscilloscope 114 provides the outputs of the photodetectors 113a and 113b. On the other hand, an internal defect of the inspection object Ob is detected by performing an appropriate frequency analysis.

上述の非破壊検査装置では、参照光と周波数変調された信号光とによりフォトリフラクティブ結晶109の内部にダイナミックホログラムが形成され、ダイナミックホログラムにより参照光が回折され、参照光の一部と信号光との干渉光がフォトリフラクティブ結晶109から出射される。   In the non-destructive inspection apparatus described above, a dynamic hologram is formed inside the photorefractive crystal 109 by the reference light and the frequency-modulated signal light, and the reference light is diffracted by the dynamic hologram. Interference light is emitted from the photorefractive crystal 109.

なお、上記特許文献1に開示された非破壊検査装置は、フォトリフラクティブ結晶109から参照光の入射方向に沿った方向へ出射される信号光の強度を検出する信号光モニタ116と、信号光モニタ116の出力に基づいて、信号光と参照光との強度比が略一定となるように、検出用レーザ11と偏光ビームスプリッタ104との間の光路上に配設されている濃度可変フィルタ102の透過率をフィードバック制御するフィードバック制御手段とを備えており、可動ミラー107を駆動して信号光を検査対象物Obの表面で走査させた場合でも内部欠陥を検出することができる。   The non-destructive inspection apparatus disclosed in Patent Document 1 includes a signal light monitor 116 that detects the intensity of signal light emitted from the photorefractive crystal 109 in a direction along the incident direction of the reference light, and a signal light monitor. Based on the output of 116, the density variable filter 102 disposed on the optical path between the detection laser 11 and the polarization beam splitter 104 so that the intensity ratio between the signal light and the reference light is substantially constant. Feedback control means for feedback control of the transmittance, and it is possible to detect internal defects even when the movable mirror 107 is driven to scan the signal light on the surface of the inspection object Ob.

ところで、上述の非破壊検査装置では、ダイナミックホログラムで回折される参照光の光量を多くする(つまり、回折効率を向上させる)ことで検出感度を高めるために、フォトリフラクティブ結晶109に高電界を印加するとともに、フォトリフラクティブ結晶109へ入射させる参照光を位相シフトさせる位相シフトミラーを設けて参照光を位相シフトさせることにより、フォトリフラクティブ結晶109での回折効率を向上させることが考えられる。
特開2005−147813号公報(段落〔0022〕−〔0050〕、図1−5)
By the way, in the above-described nondestructive inspection apparatus, a high electric field is applied to the photorefractive crystal 109 in order to increase the detection sensitivity by increasing the amount of the reference light diffracted by the dynamic hologram (that is, improving the diffraction efficiency). At the same time, it is conceivable to improve the diffraction efficiency in the photorefractive crystal 109 by providing a phase shift mirror for phase shifting the reference light incident on the photorefractive crystal 109 to shift the phase of the reference light.
Japanese Patent Laying-Open No. 2005-147813 (paragraphs [0022]-[0050], FIG. 1-5)

しかしながら、上記特許文献1に開示された非破壊検査装置では、検査対象物Obが当該非破壊検査装置の遠方に存在している場合、当該非破壊検査装置と検査対象物Obとが独立して振動しており、弾性波励起用レーザ21からの励起光を検査対象物Obに照射していない状態でも干渉縞が振動して(明るい部分と暗い部分とが交互に並んでいる方向に動いて)、干渉縞のコントラストが悪くなり、内部欠陥の検出精度や検出感度が低下してしまう。   However, in the nondestructive inspection apparatus disclosed in Patent Document 1, when the inspection object Ob is located far away from the nondestructive inspection apparatus, the nondestructive inspection apparatus and the inspection object Ob are independent. Even when the inspection object Ob is not irradiated with the excitation light from the elastic wave excitation laser 21, the interference fringe vibrates (moves in a direction in which bright portions and dark portions are alternately arranged). ) The contrast of the interference fringe is deteriorated, and the detection accuracy and detection sensitivity of the internal defect are lowered.

また、上記特許文献1に開示された非破壊検査装置に上述の位相シフトミラーを設けた場合、位相シフトミラーの変位に比べて非破壊検査装置と検査対象物Obとの相対振動での変位量が大きいので、参照光を位相シフトさせてもフォトリフラクティブ結晶109の回折効率を向上させることができなかった。   Further, when the above-described phase shift mirror is provided in the non-destructive inspection apparatus disclosed in Patent Document 1, the displacement amount due to relative vibration between the non-destructive inspection apparatus and the inspection object Ob as compared with the displacement of the phase shift mirror. Therefore, the diffraction efficiency of the photorefractive crystal 109 could not be improved even if the reference light was phase-shifted.

また、フォトリフラクティブ結晶109に入射させる参照光を位相シフトさせて回折効率を向上させる場合、非破壊検査装置の振動に起因して、参照光にリニアな位相シフトを与えることができなかった。   Further, when the reference light incident on the photorefractive crystal 109 is phase-shifted to improve the diffraction efficiency, a linear phase shift cannot be given to the reference light due to vibration of the nondestructive inspection apparatus.

本発明は上記事由に鑑みて為されたものであり、その目的は、参照光と検査対象物で反射され周波数変調された信号光との干渉縞を安定化することが可能な干渉縞安定化装置、および検査対象物の内部欠陥の検出精度の向上が可能な非破壊検査装置を提供することにある。   The present invention has been made in view of the above reasons, and its purpose is to stabilize interference fringes that can stabilize interference fringes between reference light and signal light that is reflected and frequency-modulated by an inspection object. An object of the present invention is to provide an apparatus and a nondestructive inspection apparatus capable of improving the detection accuracy of an internal defect of an inspection object.

請求項1の発明は、検査対象物で反射され周波数変調された信号光から分岐された補正用信号光と参照光から分岐された補正用参照光との干渉縞を検出する干渉縞検出手段と、補正用参照光を分岐する前の参照光の光路上に配設され参照光の波面を制御する波面制御用ミラーと、干渉縞検出手段により検出される干渉縞の安定状態からの位相シフトを抑制するように波面制御用ミラーの位置を制御する制御手段とを備えることを特徴とする。   According to a first aspect of the present invention, there is provided an interference fringe detecting means for detecting an interference fringe between a correction signal light branched from a frequency-modulated signal light reflected from an inspection object and a correction reference light branched from a reference light. A phase shift from a stable state of the interference fringes detected by the interference fringe detection means, and a wave front control mirror disposed on the optical path of the reference light before branching the correction reference light and controlling the wave front of the reference light. And a control means for controlling the position of the wavefront control mirror so as to suppress it.

この発明によれば、検査対象物で反射され周波数変調された信号光から分岐された補正用信号光と参照光から分岐された補正用参照光との干渉縞を検出する干渉縞検出手段と、補正用参照光を分岐する前の参照光の光路上に配設され参照光の波面を制御する波面制御用ミラーと、干渉縞検出手段により検出される干渉縞の安定状態からの位相シフトを抑制するように波面制御用ミラーの位置を制御する制御手段とを備えているので、制御手段によって、干渉縞検出手段により検出される干渉縞の安定状態からの位相シフトが抑制されるように波面制御用ミラーの位置が制御されるから、当該干渉縞安定化装置と検査対象物との相対的な振動に起因して補正用参照光と補正用信号光とが独自に振動するのを防止できて補正用参照光と補正用信号光との干渉縞の位相シフトを抑制でき、参照光と検査対象物で反射され周波数変調された信号光との干渉縞を安定化することが可能になる。   According to this invention, the interference fringe detecting means for detecting the interference fringes between the correction signal light branched from the reference light reflected from the inspection object and frequency-modulated, and the reference light branched from the reference light; Suppresses the phase shift from the stable state of the interference fringes detected by the interference fringe detection means and the wave front control mirror that is arranged on the optical path of the reference light before branching the correction reference light and controls the wave front of the reference light Control means for controlling the position of the wavefront control mirror so that the control means suppresses the phase shift from the stable state of the interference fringes detected by the interference fringe detection means. Since the position of the mirror for controlling is controlled, it is possible to prevent the correction reference light and the correction signal light from independently vibrating due to relative vibration between the interference fringe stabilization device and the inspection object. Reference light for correction and correction signal Can suppress the phase shift of the interference fringes between, is reflected by the inspection object and the reference beam makes it possible to stabilize the interference fringes of the frequency-modulated optical signal.

請求項2の発明は、レーザ光を出力する検出用レーザと、検査対象物に弾性波を励起させるための励起光を出力する弾性波励起用レーザと、検出用レーザと検査対象物との間の光路上に配設され検出用レーザから出力されたレーザ光の一部を参照光として分岐するビーム分岐手段と、検出用レーザから出力されて検査対象物で反射され周波数変調された信号光とビーム分岐手段で分岐された参照光とを干渉させる位相共役素子を有し当該位相共役素子から出射される干渉光を利用して検査対象物の振動を検出する振動検出手段と、振動検出手段の出力に基づいて検査対象物の内部欠陥を検出する欠陥検出手段と、請求項1記載の干渉縞安定化装置とを備えることを特徴とする。   According to a second aspect of the present invention, there is provided a detection laser that outputs laser light, an elastic wave excitation laser that outputs excitation light for exciting an elastic wave to an inspection object, and a detection laser and an inspection object. A beam branching means for branching a part of the laser light output from the detection laser as a reference light, and a signal light which is output from the detection laser and reflected by the inspection object and frequency-modulated. A vibration detecting unit having a phase conjugate element that interferes with the reference beam branched by the beam branching unit and detecting the vibration of the inspection object using the interference light emitted from the phase conjugate element; A defect detection means for detecting an internal defect of an inspection object based on the output, and the interference fringe stabilization device according to claim 1 are provided.

この発明によれば、請求項1記載の干渉縞安定化装置を備えているので、当該非破壊検査装置と検査対象物との相対的な振動に起因して参照光と信号光とが独自に振動するのを防止できて参照光と信号光との干渉縞の位相シフトを抑制でき、遠方に存在する検査対象物の内部欠陥の検出精度の向上が可能になる。   According to this invention, since the interference fringe stabilization device according to claim 1 is provided, the reference light and the signal light are uniquely generated due to relative vibration between the nondestructive inspection device and the inspection object. It is possible to prevent vibration and suppress the phase shift of the interference fringes between the reference light and the signal light, and it is possible to improve the detection accuracy of the internal defect of the inspection object existing in the distance.

請求項3の発明は、請求項2の発明において、前記振動検出手段は、参照光の位相をシフトさせる位相シフトミラーと、位相シフトミラーにより位相シフトされた参照光と検査対象物で反射され周波数変調された信号光とが所定の角度で交差するように入射する前記位相共役素子であるフォトリフラクティブ結晶と、フォトリフラクティブ結晶に電界を印加するための一対の電極と、フォトリフラクティブ結晶から出射される干渉光を検出する光検出器とを備えることを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the vibration detecting means is a phase shift mirror that shifts the phase of the reference light, the reference light that is phase shifted by the phase shift mirror, and the frequency reflected by the inspection object. A photorefractive crystal, which is the phase conjugate element that enters the modulated signal light so as to intersect at a predetermined angle, a pair of electrodes for applying an electric field to the photorefractive crystal, and the photorefractive crystal. And a photodetector for detecting interference light.

この発明によれば、前記振動検出手段が、参照光の位相をシフトさせる位相シフトミラーと、前記位相共役素子であるフォトリフラクティブ結晶に電界を印加するための一対の電極とを備えているので、前記位相共役素子であるフォトリフラクティブ結晶での回折効率を向上でき、前記欠陥検出手段での内部欠陥の検出感度を向上できる。   According to this invention, the vibration detection means includes a phase shift mirror that shifts the phase of the reference light, and a pair of electrodes for applying an electric field to the photorefractive crystal that is the phase conjugate element. The diffraction efficiency in the photorefractive crystal that is the phase conjugate element can be improved, and the detection sensitivity of internal defects in the defect detection means can be improved.

請求項4の発明は、請求項2または請求項3の発明において、信号光を前記検査対象物の表面で走査させる信号光走査手段を備えることを特徴とする。   The invention of claim 4 is characterized in that in the invention of claim 2 or claim 3, it comprises signal light scanning means for scanning the surface of the inspection object with signal light.

この発明によれば、前記検査対象物の広い範囲に亘って内部欠陥の検査を行うことができる。   According to this invention, an internal defect can be inspected over a wide range of the inspection object.

請求項1の発明では、干渉縞安定化装置と検査対象物との相対的な振動に起因した干渉縞の位相シフトを抑制でき、参照光と検査対象物で反射され周波数変調された信号光との干渉縞を安定化することが可能になるという効果がある。   In the first aspect of the invention, the phase shift of the interference fringes caused by the relative vibration between the interference fringe stabilization device and the inspection object can be suppressed, and the reference light and the signal light that is reflected and frequency-modulated by the inspection object The interference fringes can be stabilized.

請求項2の発明では、非破壊検査装置と検査対象物との相対的な振動に起因した干渉縞の位相シフトを抑制でき、遠方に存在する検査対象物の内部欠陥の検出精度の向上が可能になるという効果がある。   In the invention of claim 2, the phase shift of the interference fringes caused by the relative vibration between the nondestructive inspection apparatus and the inspection object can be suppressed, and the detection accuracy of the internal defect of the inspection object existing far away can be improved. There is an effect of becoming.

本実施形態の非破壊検査装置(レーザ超音波リモートセンシング装置)は、図1に示すような構成であって、レーザ光(レーザビーム)を出力する検出用レーザ11と、検査対象物Obに弾性波(超音波)を励起させるための励起光を出力する弾性波励起用レーザ21と、検出用レーザ11と検査対象物Obとの間の光路上に配設され検出用レーザ11から出力されたレーザ光から参照光を分岐させる第1のビーム分岐手段12と、検出用レーザ11から出力されて検査対象物Obで反射されて周波数変調された信号光と第1のビーム分岐手段12で分岐された参照光とを干渉させる位相共役素子33を有し当該位相共役素子33から出射される干渉光を利用して検査対象物Obの振動を検出する振動検出手段30と、振動検出手段30の出力に基づいて検査対象物Obの内部欠陥Deを検出する欠陥検出手段70と、参照光から分岐された補正用参照光と検査対象物Obで反射され周波数変調された信号光から分岐された補正用信号光との干渉縞を安定化する干渉縞安定化装置40と、検出用レーザ11からの信号光を検査対象物Obの表面で走査させる信号光走査手段50と、信号光走査手段50を制御するマイクロコンピュータなどからなる走査制御装置60とを備えている。なお、図1中の矢印は、検出用レーザ11から出力されたレーザ光の進行経路を示している。また、本実施形態の非破壊検査装置は、エアーサスペンション付きの光学定盤(図示せず)上に設置されている。   The nondestructive inspection apparatus (laser ultrasonic remote sensing apparatus) of the present embodiment has a configuration as shown in FIG. 1 and is elastic to the detection laser 11 that outputs a laser beam (laser beam) and the inspection object Ob. An elastic wave excitation laser 21 that outputs excitation light for exciting waves (ultrasonic waves) and an optical path disposed between the detection laser 11 and the inspection object Ob and output from the detection laser 11 First beam branching means 12 for branching the reference light from the laser light, signal light output from the detection laser 11 and reflected by the inspection object Ob and frequency-modulated, and branched by the first beam branching means 12. A vibration detecting means 30 that has a phase conjugate element 33 that interferes with the reference light and detects the vibration of the inspection object Ob using the interference light emitted from the phase conjugate element 33; The defect detection means 70 for detecting the internal defect De of the inspection object Ob based on the above, the correction reference light branched from the reference light, and the correction light branched from the frequency-modulated signal light reflected from the inspection object Ob Controls the interference fringe stabilization device 40 for stabilizing the interference fringes with the signal light, the signal light scanning means 50 for scanning the signal light from the detection laser 11 on the surface of the inspection object Ob, and the signal light scanning means 50. And a scanning control device 60 comprising a microcomputer or the like. In addition, the arrow in FIG. 1 has shown the advancing path | route of the laser beam output from the laser 11 for a detection. Further, the nondestructive inspection apparatus of this embodiment is installed on an optical surface plate (not shown) with an air suspension.

本実施形態では、検査対象物Obとして、コンクリート構造物を想定し、検査対象物Obの内部欠陥Deとして、空洞、クラック、ジャンカなどを想定しており、検出用レーザ11として、波長532nmのレーザ光を連続出力するNd:YAGレーザ(2倍高調波)を採用し、弾性波励起用レーザとして、パルス幅が10nsのパルスレーザ光を出力するNd:YAGレーザ(基本波)を採用しているが、検査対象物Obおよび各レーザ11,12は特に限定するものではない。   In this embodiment, a concrete structure is assumed as the inspection object Ob, a cavity, a crack, a jumper, or the like is assumed as the internal defect De of the inspection object Ob, and a laser having a wavelength of 532 nm is used as the detection laser 11. Nd: YAG laser (second harmonic) that outputs light continuously is adopted, and Nd: YAG laser (fundamental wave) that outputs pulse laser light with a pulse width of 10 ns is adopted as an elastic wave excitation laser. However, the inspection object Ob and the lasers 11 and 12 are not particularly limited.

上述の第1のビーム分岐手段12は、ビームスプリッタにより構成され、信号光走査手段50は、走査ミラー(スキャンニングミラー)51と走査ミラー51を駆動する駆動装置(スキャンニング装置)52とで構成されている。   The first beam branching unit 12 described above is configured by a beam splitter, and the signal light scanning unit 50 is configured by a scanning mirror (scanning mirror) 51 and a driving device (scanning device) 52 that drives the scanning mirror 51. Has been.

また、本実施形態の非破壊検査装置は、第1のビーム分岐手段12と走査ミラー51との間の光路上に2つのハーフミラー13,14が配設されている。ここにおいて、ビーム分岐手段12に近い側のハーフミラー13は、検出用レーザ11からの信号光を反射する一方で弾性波励起用レーザ21からの励起光を透過する。また、第1のビーム分岐手段12から遠い側のハーフミラー14は、信号光および励起光を反射する一方で、検査対象物Obで反射され周波数変調された信号光を透過する。また、本実施形態の非破壊検査装置は、ハーフミラー14における走査ミラー51側とは反対側に、ハーフミラー14を透過した信号光から補正用信号光を分岐させるビームスプリッタからなる第2のビーム分岐手段15が配置されている。また、第2のビーム分岐手段15と干渉縞安定化装置40との間には、補正用信号光を干渉縞安定化装置40側へ反射するミラー16が配置されている。   In the nondestructive inspection apparatus of this embodiment, two half mirrors 13 and 14 are disposed on the optical path between the first beam branching means 12 and the scanning mirror 51. Here, the half mirror 13 on the side close to the beam branching unit 12 reflects the signal light from the detection laser 11 and transmits the excitation light from the elastic wave excitation laser 21. The half mirror 14 on the side far from the first beam branching unit 12 reflects the signal light and the excitation light, and transmits the signal light that is reflected by the inspection object Ob and frequency-modulated. Further, the nondestructive inspection apparatus of the present embodiment has a second beam composed of a beam splitter that branches the correction signal light from the signal light transmitted through the half mirror 14 on the side opposite to the scanning mirror 51 side in the half mirror 14. A branching means 15 is arranged. A mirror 16 that reflects the correction signal light toward the interference fringe stabilization device 40 is disposed between the second beam branching means 15 and the interference fringe stabilization device 40.

振動検出手段30は、参照光の位相をシフトさせる位相シフトミラー32と、位相シフトミラー32により位相シフトされた参照光と検査対象物Obで反射されて周波数変調された信号光とが所定の角度で交差するように入射するフォトリフラクティブ結晶(例えば、Bi12SiO20結晶など)からなる位相共役素子33と、位相共役素子33に電界を印加するための一対の電極34,34と、一対の電極34,34間に電圧を印加する電源回路(図示せず)と、位相共役素子33から出射される干渉光を検出する光電子増倍管からなる光検出器35とを備えている。なお、位相共役素子33は、フォトリフラクティブ結晶に限らず、位相共役現象が起こるとともに2光波混合が起こる非線形光学素子であればよい。 The vibration detection means 30 includes a phase shift mirror 32 that shifts the phase of the reference light, the reference light phase-shifted by the phase shift mirror 32, and the signal light that is reflected by the inspection object Ob and frequency-modulated, at a predetermined angle. A phase conjugate element 33 made of a photorefractive crystal (eg, Bi 12 SiO 20 crystal) incident so as to intersect with each other, a pair of electrodes 34 and 34 for applying an electric field to the phase conjugate element 33, and a pair of electrodes A power supply circuit (not shown) for applying a voltage between 34 and 34 and a photodetector 35 formed of a photomultiplier tube for detecting interference light emitted from the phase conjugate element 33 are provided. The phase conjugate element 33 is not limited to a photorefractive crystal, and may be any non-linear optical element in which a phase conjugate phenomenon occurs and two-wave mixing occurs.

ここにおいて、位相共役素子33として、Bi12SiO20結晶からなるフォトリフラクティブ結晶を用いた場合には、図2に示すように、電界強度Eを高くし、入射する信号光と参照光との交差角を小さくするほど、ゲイン(2光波混合利得)が高くなる。また、位相共役素子33は、位相シフトミラー32により参照光の位相をシフトさせる(遅らせる)ことにより、干渉光の強度が高くなる。要するに、本実施形態の非破壊検査装置では、振動検出手段30が、参照光の位相をシフトさせる位相シフトミラー32と、位相共役素子33であるフォトリフラクティブ結晶に電界を印加するための一対の電極34,34とを備えているので、位相共役素子33であるフォトリフラクティブ結晶での回折効率を向上でき、欠陥検出手段70での内部欠陥の検出感度を向上できる。 Here, when a photorefractive crystal made of Bi 12 SiO 20 crystal is used as the phase conjugate element 33, as shown in FIG. 2, the electric field strength E is increased and the intersection of the incident signal light and the reference light is made. The smaller the angle, the higher the gain (two-wave mixing gain). The phase conjugate element 33 increases the intensity of the interference light by shifting (delaying) the phase of the reference light by the phase shift mirror 32. In short, in the nondestructive inspection apparatus of this embodiment, the vibration detection means 30 has a pair of electrodes for applying an electric field to the phase shift mirror 32 that shifts the phase of the reference light and the photorefractive crystal that is the phase conjugate element 33. 34 and 34, the diffraction efficiency of the photorefractive crystal as the phase conjugate element 33 can be improved, and the detection sensitivity of the internal defect in the defect detection means 70 can be improved.

欠陥検出手段70は、光検出器35の出力を記録してFFT(高速フーリエ変換)による周波数解析を行うFFT演算部を有するオシロスコープと、オシロスコープのFFT演算部での周波数解析の結果に基づいて検査対象物Obの内部欠陥の有無および深さを評価するマイクロコンピュータからなる信号処理部とで構成されている。ここにおいて、欠陥検出手段70は、検査対象物Obの内部欠陥Deの深さや大きさに応じた検査対象物Obの表面の振動スペクトルの周波数解析を行い内部欠陥Deの有無、深さを評価する振動スペクトル法の原理を適用して内部欠陥Deを検出する機能と、レーザ光を検査対照物Obに照射してから多重反射エコーが検出までの時間差により内部欠陥Deの有無、深さを評価する反射エコー法の原理を適用して内部欠陥Deを検出する機能とを有している。   The defect detection means 70 records the output of the photodetector 35 and performs an inspection based on the result of the frequency analysis performed by the FFT operation unit of the oscilloscope and the oscilloscope having an FFT operation unit that performs frequency analysis by FFT (Fast Fourier Transform). The signal processing unit includes a microcomputer that evaluates the presence / absence and depth of an internal defect of the object Ob. Here, the defect detection means 70 performs frequency analysis of the vibration spectrum of the surface of the inspection object Ob corresponding to the depth and size of the internal defect De of the inspection object Ob, and evaluates the presence / absence and depth of the internal defect De. The function of detecting the internal defect De by applying the principle of the vibration spectrum method, and the presence / absence and depth of the internal defect De are evaluated based on the time difference from the irradiation of the laser beam to the inspection object Ob until the multiple reflection echo is detected. It has a function of detecting the internal defect De by applying the principle of the reflection echo method.

ここで、振動スペクトル法を適用する場合には、検査対象物Obの表面の振動スペクトルを求めると、内部欠陥Deがない部分では周波数スペクトルに特徴的なピークは存在しないが、内部欠陥Deがある場合には、内部欠陥Deの深さに応じて周波数スペクトルに特徴的なピーク(1次モードの振動周波数のピーク)が現れるので、信号処理部に1次モードの振動周波数と内部欠陥Deの深さとの関係テーブルを予め記憶させておけば、信号処理部において内部欠陥Deの有無および深さを評価できる。また、多重反射エコー法を適用する場合には、検査対象物Obの内部欠陥Deの深さに応じて縦波の多重反射エコーの周波数スペクトルが異なるので、信号処理部において多重反射周波数と検査対象物Ob内の縦波の速度とに基づいて内部欠陥Deの深さを求めることができる。   Here, in the case of applying the vibration spectrum method, when the vibration spectrum of the surface of the inspection object Ob is obtained, a characteristic peak does not exist in the frequency spectrum in a portion where there is no internal defect De, but there is an internal defect De. In this case, since a characteristic peak (peak of the vibration frequency of the primary mode) appears in the frequency spectrum according to the depth of the internal defect De, the vibration frequency of the primary mode and the depth of the internal defect De appear in the signal processing unit. If the relationship table is stored in advance, the signal processor can evaluate the presence and depth of the internal defect De. Further, when the multiple reflection echo method is applied, the frequency spectrum of the longitudinal multiple reflection echo differs depending on the depth of the internal defect De of the inspection object Ob. The depth of the internal defect De can be determined based on the velocity of the longitudinal wave in the object Ob.

干渉縞安定化装置40は、検査対象物Obで反射され周波数変調された信号光から分岐された補正用信号光と参照光から分岐された補正用参照光との干渉縞を検出する干渉縞検出手段41と、補正用参照光を分岐する前の参照光の光路上に配設され参照光の波面を制御する波面制御用ミラー42と、干渉縞検出手段41により検出される干渉縞の安定状態からの位相シフトを抑制するように波面制御用ミラー42の位置を制御する制御手段43とを備えている。ここにおいて、波面制御用ミラー42は、第1のビーム分岐手段12と振動検出手段30の位相シフトミラー32との光路上に配設されている。ただし、波面制御用ミラー42と振動検出手段30との間には、参照光から補正用参照光を分岐させるビームスプリッタからなる第3のビーム分岐手段17が配置されており、第3のビーム分岐手段17と干渉縞安定化装置40との間には、補正用参照光を干渉縞安定化装置40側へ反射するミラー18が配置されている。ここで、上述の振動検出手段30は、第3のビーム分岐手段17と位相シフトミラー32との間に配置されて第3のビーム分岐手段17側からの参照光を位相シフトミラー32側へ反射するミラー31を備えている。   The interference fringe stabilization device 40 detects interference fringes between the correction signal light branched from the signal light reflected by the inspection object Ob and frequency-modulated and the correction reference light branched from the reference light. Means 41, a wavefront control mirror 42 that is disposed on the optical path of the reference light before branching the correction reference light and controls the wavefront of the reference light, and a stable state of interference fringes detected by the interference fringe detection means 41 Control means 43 for controlling the position of the wavefront control mirror 42 so as to suppress the phase shift from the. Here, the wavefront control mirror 42 is disposed on the optical path between the first beam branching means 12 and the phase shift mirror 32 of the vibration detecting means 30. However, between the wavefront control mirror 42 and the vibration detecting means 30, the third beam branching means 17 comprising a beam splitter for branching the reference light for correction from the reference light is arranged, and the third beam branching is performed. Between the means 17 and the interference fringe stabilization device 40, a mirror 18 that reflects the correction reference light toward the interference fringe stabilization device 40 is disposed. Here, the above-described vibration detection means 30 is arranged between the third beam branching means 17 and the phase shift mirror 32 and reflects the reference light from the third beam branching means 17 side to the phase shift mirror 32 side. A mirror 31 is provided.

干渉縞検出手段41は、複数個(例えば、8個)の受光部141aが一平面上に配列された複数チャネルの受光素子141と、受光素子141の各受光部141aの出力(アナログの電圧信号)からオフセット電圧を除去するオフセット電圧除去回路およびオフセット電圧除去後の出力を増幅するアンプを有する信号処理回路部142とを備えている。ここにおいて、受光素子141としては、8個の受光部141aが一平面上で1次元アレイ状に配列されたリニアアレイ素子を用いており、受光部141aの受光面(有効光電面)のサイズ(チャネルサイズ)が2.0mm×2.5mm、受光部141aの受光面のピッチ(チャネルピッチ)が2.8mmに設定されている。なお、受光素子141の各受光部141aは、受光感度波長域が300〜880nmの光電子増倍管により構成されているが、受光素子141としてCCDカメラを用い、当該CCDカメラの画素が受光部141aを構成するようにしてもよい。   The interference fringe detector 41 includes a plurality of channels (for example, eight) of light receiving units 141a arranged on a single plane, a plurality of channels of light receiving elements 141, and outputs (analog voltage signals) of the light receiving units 141a of the light receiving elements 141. ), And a signal processing circuit unit 142 having an amplifier that amplifies the output after the offset voltage is removed. Here, as the light receiving element 141, a linear array element in which eight light receiving portions 141a are arranged in a one-dimensional array on one plane is used, and the size of the light receiving surface (effective photocathode) of the light receiving portion 141a ( (Channel size) is set to 2.0 mm × 2.5 mm, and the pitch (channel pitch) of the light receiving surfaces of the light receiving portion 141a is set to 2.8 mm. Each light receiving portion 141a of the light receiving element 141 is configured by a photomultiplier tube having a light receiving sensitivity wavelength range of 300 to 880 nm. A CCD camera is used as the light receiving element 141, and the pixel of the CCD camera is the light receiving portion 141a. You may make it comprise.

また、制御手段43は、波面制御用ミラー42を駆動するピエゾトランスレータからなるアクチュエータ44と、アクチュエータ44を駆動する駆動回路部45と、信号処理回路部142の出力に基づいて駆動回路部45を制御するマイクロコンピュータなどからなる制御部46とを備えており、制御部46は、信号処理回路部142の出力をアナログ−デジタル変換するA/Dコンバータ46a、駆動回路部45へ与える制御信号をデジタル−アナログ変換するD/Aコンバータ46b、制御部46の各種設定(アクチュエータのサーボ設定、原点復帰)などを行うため適宜のプログラムを搭載したパーソナルコンピュータからなる支援装置48を接続するインタフェース46cなどを備えている。制御手段43は、支援装置48の操作部(例えば、キーボード、ポインティングデバイスなど)を適宜操作することによって制御部46の各種設定を行い、支援装置48のディスプレイからなる表示部50に運転状態や設定状態や受光素子141の受光状態などを表示させることができるようになっている。なお、干渉縞安定化装置40は、商用電源などの交流電源の出力をAC/DC変換して得た直流電圧を降圧して制御部46へ供給する電源回路47を備えている。また、上述の支援装置48において、制御部46、検出用レーザ11、振動励起用レーザ21、振動検出手段30、駆動装置60などを一括して連動制御するようにするようにすれば、非破壊検査装置の自動化が容易になる。   The control unit 43 controls the drive circuit unit 45 based on the output of the actuator 44 composed of a piezo translator that drives the wavefront control mirror 42, the drive circuit unit 45 that drives the actuator 44, and the signal processing circuit unit 142. And a control unit 46 composed of a microcomputer or the like. The control unit 46 converts the output of the signal processing circuit unit 142 from analog to digital, and the control signal to be supplied to the drive circuit unit 45 to digital- A D / A converter 46b for analog conversion, an interface 46c for connecting a support device 48 composed of a personal computer equipped with appropriate programs for performing various settings of the control unit 46 (servo setting of actuator, return to origin), and the like are provided. Yes. The control unit 43 performs various settings of the control unit 46 by appropriately operating an operation unit (for example, a keyboard, a pointing device, etc.) of the support device 48, and the driving state and settings are displayed on the display unit 50 including the display of the support device 48. The state and the light receiving state of the light receiving element 141 can be displayed. The interference fringe stabilization apparatus 40 includes a power supply circuit 47 that steps down a DC voltage obtained by AC / DC conversion of an output of an AC power supply such as a commercial power supply and supplies the voltage to the control unit 46. In addition, if the control unit 46, the detection laser 11, the vibration excitation laser 21, the vibration detection means 30, the drive device 60, and the like are collectively controlled in the support device 48 described above, non-destructive operation is possible. Automation of inspection equipment becomes easy.

制御部46は、受光素子141の8個の受光部141aのうちの3個の受光部141a(以下、説明の便宜上、チャネル1の受光部141a、チャネル2の受光部141a、チャネル3の受光部141aと称する)の出力に基づいて干渉縞の安定状態からの位相シフトを抑制する(つまり、干渉縞が安定化する)ように波面制御用ミラー42の位置を制御する(波面制御用ミラー42を変位させる)。 The control unit 46 includes three light receiving units 141a among the eight light receiving units 141a of the light receiving element 141 (hereinafter, for convenience of explanation, the light receiving unit 141a 1 of the channel 1 , the light receiving unit 141a 2 of the channel 2 , and the channel 3) suppressing a phase shift from the stable state of the interference fringe based on an output of the called light receiving portion 141a 3) (i.e., the interference fringes are stabilized) so to control the position of the wavefront controlling mirror 42 (for wavefront control The mirror 42 is displaced).

ここで、制御部46において、波面制御用ミラー42の変位量Δdを決める原理について説明してから、具体的な動作について説明する。   Here, the principle of determining the displacement amount Δd of the wavefront control mirror 42 in the control unit 46 will be described, and then a specific operation will be described.

いま、検査対象物Obと非破壊検査装置との相対的な振動のような外乱の影響のない状態で受光素子141の表面に形成される干渉縞が、図3(a)に示すよう干渉パターンであって図4(a)に示すような光強度分布(干渉強度分布)を有している場合、干渉縞の位相シフト量(図4(a)における横軸方向の変位量)をφとし、各チャネル1,2,3それぞれの受光部141a,141a,141aが図3(a)および図4(a)においてCh1,Ch2,Ch3で示した位置(ただし、Ch3は、Ch1とCh2との中間位置)の光強度を検出するものとし、チャネル1,2,3それぞれの受光部141a,141a,141aからの出力を信号U1,U2,U3とすれば、
U1=0.5Umax(−sinφ+1)
U2=0.5Umax=0.5Umax(sinφ+1)
U3=0.5Umax(−cosφ+1)
となる。つまり、U1とU2とは位相が180°だけ異なっている。ここにおいて、φは、検出用レーザ11から出力されるレーザ光の波長をλとすれば、
φ=(2π/λ)λ
で表される。
Now, the interference fringes formed on the surface of the light receiving element 141 in the state without the influence of disturbance such as relative vibration between the inspection object Ob and the non-destructive inspection apparatus are interference patterns as shown in FIG. If the light intensity distribution (interference intensity distribution) shown in FIG. 4A is present, the phase shift amount of interference fringes (the displacement amount in the horizontal axis direction in FIG. 4A) is φ. , The light receiving portions 141a 1 , 141a 2 , 141a 3 of the respective channels 1 , 2 , 3 are positions indicated by Ch1, Ch2, and Ch3 in FIGS. 3A and 4A (where Ch3 is the same as Ch1) If the output from the light receiving portions 141a 1 , 141a 2 , 141a 3 of the channels 1 , 2 and 3 is the signals U1, U2 and U3, respectively,
U1 = 0.5U max (−sinφ + 1)
U2 = 0.5U max = 0.5U max (sinφ + 1)
U3 = 0.5U max (−cosφ + 1)
It becomes. That is, U1 and U2 are different in phase by 180 °. Here, if φ is the wavelength of the laser beam output from the detection laser 11,
φ = (2π / λ) λ
It is represented by

また、チャネル1の受光部141aからの信号U1とチャネル2の受光部141aからの信号U2とを用いて干渉縞のコントラストの良否を判断するための信号コントラストKを、
K=(U2−U1)/(U2+U1)=sinφ
と定義すれば、Δφ=0のとき(つまり、干渉縞が安定状態にあるとき)、K=0となる。また、本実施形態では、図3(b)に一点鎖線で示すように、図3(a)の干渉縞からの位相シフト量がΔφ=π/10(Δλ=λ/20に相当する)以下であれば、干渉縞が安定しているとみなすようにしている。具体的には、U1=0.34Umax、U2=0.65Umaxとなり、K=0.31となるので、コントラスト値Kを用いて干渉縞が安定しているか否かを判断するための信号コントラストKの閾値Ksを0.31(Δλ=λ/20に相当する)に設定してあり、信号コントラストKがKsよりも大きい場合には参照光の位相制御を行う。したがって、例えば、図3(c),(d)および図4(c),(d)に示すように干渉縞の位相シフト量Δφがπ/10よりも大きい場合には参照光の位相制御を行う。
Further, the signal contrast K for judging the quality of the contrast of the interference fringes using the signal U2 from the light receiving portion 141a 2 of the signals U1 and channel 2 from the light receiving portion 141a 1 of the channel 1,
K = (U2-U1) / (U2 + U1) = sinφ
In other words, when Δφ = 0 (that is, when the interference fringes are in a stable state), K = 0. Further, in the present embodiment, as indicated by a one-dot chain line in FIG. 3B, the phase shift amount from the interference fringes in FIG. 3A is equal to or less than Δφ = π / 10 (corresponding to Δλ = λ / 20). If so, the interference fringes are regarded as stable. Specifically, U1 = 0.34U max, U2 = 0.65U max becomes, since the K = 0.31, a signal for determining whether the interference fringes with a contrast value K is stable When the threshold value Ks of the contrast K is set to 0.31 (corresponding to Δλ = λ / 20) and the signal contrast K is larger than Ks, the phase control of the reference light is performed. Therefore, for example, when the phase shift amount Δφ of the interference fringes is larger than π / 10 as shown in FIGS. 3C and 3D and FIGS. 4C and 4D, the phase control of the reference light is performed. Do.

また、波面制御用ミラー42の変位量をΔd、波面制御用ミラー42への参照光の入射角をθとすると、
Δλ=2Δdcosθ
となる。ここで、図3(c)に示す干渉縞のように図3(a)から位相が大きくずれている場合に干渉縞を安定化のための波面制御ミラーの変位量をΔdstabとし、信号コントラストをKとすると、
Δdstab=λsin-1K/4πcosθ
となる。また、図3(d)に示す干渉縞のように図3(a)から位相が180°だけずれている場合など、U3>0.5の場合、波面をΔλ=λだけシフトして補正するための波面制御用ミラー42の補正変位量をΔdcorrとすると、
Δdcorr=λ/4cosθ
となり、安定状態にない全ての条件の干渉縞を安定状態となるように補正するための波面制御用ミラーdの変位量をΔdとすると、
Δd=Δdstab+Δdcorr
となるので、制御部46において、波面制御用ミラー42の変位量がΔdとなるように波長制御用ミラー42の位置を制御することにより、干渉縞を安定化させることができる。
Further, when the displacement amount of the wavefront control mirror 42 is Δd and the incident angle of the reference light to the wavefront control mirror 42 is θ,
Δλ = 2Δdcosθ
It becomes. Here, when the phase is greatly shifted from FIG. 3A as in the interference fringes shown in FIG. 3C, the amount of displacement of the wavefront control mirror for stabilizing the interference fringes is Δd stab , and the signal contrast Is K,
Δd stab = λsin −1 K / 4πcosθ
It becomes. Further, when U3> 0.5, such as when the phase is shifted by 180 ° from FIG. 3A as in the interference fringes shown in FIG. 3D, the wavefront is shifted and corrected by Δλ = λ. If the correction displacement amount of the wavefront control mirror 42 is Δd corr ,
Δd corr = λ / 4cosθ
When the displacement amount of the wavefront control mirror d for correcting the interference fringes under all conditions that are not in a stable state to be in a stable state is Δd,
Δd = Δd stab + Δd corr
Therefore, the control unit 46 can stabilize the interference fringes by controlling the position of the wavelength control mirror 42 so that the displacement amount of the wavefront control mirror 42 becomes Δd.

次に、制御部46の動作を具体的に説明する。   Next, the operation of the control unit 46 will be specifically described.

弾性波励起用レーザ21からパルスレーザ光が出力され(S1)、支援装置48から同期パルスが入力されると(S2)、制御部46は、A/Dコンバータ46aを通して各チャネル1,2,3の受光部141a,141a,141aからの信号を読み込み(S3)、信号U1と信号U2とを用いて信号コントラストK=(U2−U1)/(U2+U1)を演算する(S4)。S4の後、信号コントラストKを予め設定した閾値Ks(=0.3)と比較し(S5)、|K|≦Ksの条件を満たしていたとき、U3の値を読み込んでU3<0.5であれば(S6)、図3(a)に示すような安定状態の干渉縞が形成されているとみなすことができるので、干渉縞が安定化されていると判断され、振動検出手段30の光検出部35において振動信号が記録される(S7)。 When a pulse laser beam is output from the elastic wave excitation laser 21 (S1) and a synchronization pulse is input from the support device 48 (S2), the control unit 46 passes through each of the channels 1, 2, and 3 through the A / D converter 46a. The signals from the light receiving portions 141a 1 , 141a 2 , 141a 3 are read (S3), and the signal contrast K = (U2−U1) / (U2 + U1) is calculated using the signals U1 and U2 (S4). After S4, the signal contrast K is compared with a preset threshold value Ks (= 0.3) (S5). When the condition | K | ≦ Ks is satisfied, the value of U3 is read and U3 <0.5 If this is the case (S6), it can be considered that the interference fringes in a stable state as shown in FIG. 3A are formed, so it is determined that the interference fringes are stabilized, and the vibration detection means 30 A vibration signal is recorded in the light detection unit 35 (S7).

一方、S5において、|K|>Ksであれば、図3(b),(c)あるいは図3(d)に示すような干渉縞が形成されているとみなすことができるので、干渉縞を安定化するための波面制御用ミラー42の変位量Δdstabに対応するデジタル値Ustabを求め(S8)、その後、干渉縞を安定させるための波面制御用ミラー42の変位量Δdに対応するデジタル値Upiezo=Ustab+Ucorrを演算して当該デジタル値UpiezoをD/Aコンバータ46bでアナログの電圧信号に変換して駆動回路部45に与えることで波面制御用ミラー42をΔdだけ変位させ(S9)、S2に戻る。また、S6において、U3≧0.5であれば図3(d)に示すような干渉縞が形成されているとみなすことができるので、上述の補正変位量dcorrに対応するデジタル値Ucorrを求め(S10)、その後、S9を行い、S2に戻る。 On the other hand, in S5, if | K |> Ks, it can be considered that interference fringes as shown in FIGS. 3B, 3C, or 3D are formed. A digital value U stab corresponding to the displacement Δd stab of the wavefront control mirror 42 for stabilization is obtained (S8), and then the digital corresponding to the displacement Δd of the wavefront control mirror 42 for stabilizing the interference fringes. The value U piezo = U stab + U corr is calculated, the digital value U piezo is converted into an analog voltage signal by the D / A converter 46b, and given to the drive circuit unit 45, thereby displacing the wavefront control mirror 42 by Δd. (S9), the process returns to S2. In S6, if U3 ≧ 0.5, it can be considered that an interference fringe as shown in FIG. 3D is formed, and therefore the digital value U corr corresponding to the above-described corrected displacement d corr is shown. Is obtained (S10), S9 is performed thereafter, and the process returns to S2.

上述の動作説明から分かるように、制御部46では、干渉縞が安定化するまでデジタル値Upiezoが繰り返し得られ、デジタル値Upiezoが得られるたびに、波面制御用ミラー42の位置を制御する。この波面制御用ミラー42の位置を繰り返し制御する周波数(上述の同期パルスの周波数)は、検査対象物Obの振動周波数の最低周波数の10分の1程度の周波数に設定することが望ましい。例えば、検査対象物Obがコンクリート構造物の場合、最低周波数が1kHzとすれば、波面制御用ミラー42の位置を繰り返し制御する周波数は、100kHz程度に設定することが望ましい。なお、検査対象物Obが金属構造物の場合、最低周波数を1MHzとすれば、波面制御用ミラー42の位置を繰り返し制御する周波数は100kHz程度とすることが望ましい。また、本実施形態では、波面制御用ミラー42の最大変位量を5μmに設定してある。 As can be seen from the above description of the operation, the control unit 46 repeatedly obtains the digital value U piezo until the interference fringes are stabilized, and controls the position of the wavefront control mirror 42 each time the digital value U piezo is obtained. . The frequency for repeatedly controlling the position of the wavefront control mirror 42 (the frequency of the above-mentioned synchronization pulse) is preferably set to a frequency that is about 1/10 of the lowest frequency of the vibration frequency of the inspection object Ob. For example, when the inspection object Ob is a concrete structure, if the minimum frequency is 1 kHz, the frequency for repeatedly controlling the position of the wavefront control mirror 42 is preferably set to about 100 kHz. When the inspection object Ob is a metal structure, it is desirable that the frequency for repeatedly controlling the position of the wavefront control mirror 42 is about 100 kHz if the minimum frequency is 1 MHz. In the present embodiment, the maximum displacement amount of the wavefront control mirror 42 is set to 5 μm.

ここで、図6(a)に、検査対象物Obを本実施形態の非破壊検査装置の光学定盤上に配置し、検査対象物Obと非破壊検査装置との相対振動がない場合に受光素子141表面に形成される干渉縞を示し、同図(b)に、検査対象物Obを非破壊検査装置の光学定盤から離して配置して検査対象物Obと非破壊検査装置との相対振動がある状態(相対振動の周波数は20Hzが大きな割合を占めていた)として干渉縞安定化装置40の運転を停止させている場合に受光素子141表面に形成される干渉縞を示し、同図(c)に、検査対象物Obと非破壊検査装置との相対振動がある状態として干渉縞安定化装置40により干渉縞を安定化させた場合に受光素子141表面に形成される干渉縞を示す。図6から、干渉縞安定化装置40により、干渉縞を安定化できることが分かる。   Here, in FIG. 6A, the inspection object Ob is placed on the optical surface plate of the nondestructive inspection apparatus of the present embodiment, and light is received when there is no relative vibration between the inspection object Ob and the nondestructive inspection apparatus. The interference fringes formed on the surface of the element 141 are shown. In FIG. 5B, the inspection object Ob is arranged away from the optical surface plate of the nondestructive inspection apparatus, and the relative relationship between the inspection object Ob and the nondestructive inspection apparatus is shown. The figure shows the interference fringes formed on the surface of the light receiving element 141 when the operation of the interference fringe stabilization device 40 is stopped under the condition that there is vibration (the frequency of the relative vibration is 20 Hz). (C) shows the interference fringes formed on the surface of the light receiving element 141 when the interference fringes are stabilized by the interference fringe stabilization device 40 in a state where there is relative vibration between the inspection object Ob and the nondestructive inspection device. . FIG. 6 shows that the interference fringes can be stabilized by the interference fringe stabilization device 40.

以上説明した本実施形態における干渉縞安定化装置40では、検査対象物Obで反射され周波数変調された信号光から分岐された補正用信号光と参照光から分岐された補正用参照光との干渉縞を検出する干渉縞検出手段41と、補正用参照光を分岐する前の参照光の光路上に配設され参照光の波面を制御する波面制御用ミラー42と、干渉縞検出手段41により検出される干渉縞の安定状態からの位相シフトを抑制するように波面制御用ミラー42の位置を制御する制御手段43とを備えているので、制御手段43によって、干渉縞検出手段41により検出される干渉縞の安定状態からの位相シフトが抑制されるように波面制御用ミラー42の位置が制御されるから、当該干渉縞安定化装置40と検査対象物Obとの相対的な振動に起因して補正用参照光と補正用信号光とが独自に振動するのを防止できて補正用参照光と補正用信号光との干渉縞の位相シフトを抑制でき、参照光と検査対象物Obで反射され周波数変調された信号光との干渉縞を安定化することが可能になる。   In the interference fringe stabilization device 40 in the present embodiment described above, interference between the correction signal light branched from the signal light reflected by the inspection object Ob and frequency-modulated and the correction reference light branched from the reference light. Detected by interference fringe detection means 41 for detecting fringes, a wavefront control mirror 42 that is arranged on the optical path of the reference light before branching the reference light for correction, and controls the wavefront of the reference light. Control means 43 for controlling the position of the wavefront control mirror 42 so as to suppress the phase shift from the stable state of the interference fringes to be detected, and is detected by the interference fringe detection means 41 by the control means 43 Since the position of the wavefront control mirror 42 is controlled so that the phase shift from the stable state of the interference fringes is suppressed, it is caused by the relative vibration between the interference fringe stabilization device 40 and the inspection object Ob. The original reference light and the correction signal light can be prevented from vibrating independently, the phase shift of the interference fringes between the correction reference light and the correction signal light can be suppressed, and reflected by the reference light and the inspection object Ob. It is possible to stabilize interference fringes with frequency-modulated signal light.

また、本実施形態の非破壊検査装置は、上述の干渉縞安定化装置40を備えているので、当該非破壊検査装置と検査対象物Obとの相対的な振動に起因して参照光と信号光とが独自に振動するのを防止できて参照光と信号光との干渉縞の位相シフトを抑制でき、遠方に存在する検査対象物Obの内部欠陥Deの検出精度の向上が可能になる。   In addition, since the nondestructive inspection apparatus of the present embodiment includes the above-described interference fringe stabilization apparatus 40, the reference light and the signal are caused by relative vibration between the nondestructive inspection apparatus and the inspection object Ob. It is possible to prevent the light from vibrating independently, to suppress the phase shift of the interference fringes between the reference light and the signal light, and to improve the detection accuracy of the internal defect De of the inspection object Ob existing in the distance.

なお、コンクリート構造物などの検査対象物Obの表面状態や、検出用レーザ11から出力されたレーザ光の検査対象物Obの表面での集光状態などに起因して補正用信号光にスペックルパターンが多い、あるいはスペックルパターンが細かく干渉縞に影響を与えるときには、補正用信号光を分岐する前の信号光の光軸上にスペイシャルフィルタなどの高次波面パターンを低減させる装置を挿入することにより、スペックルパターンが干渉縞に与える影響を少なくすることが望ましい。   Note that the speckle signal light for correction is speckled due to the surface state of the inspection object Ob, such as a concrete structure, or the condensing state of the laser light output from the detection laser 11 on the surface of the inspection object Ob. When there are many patterns or speckle patterns affect interference fringes, insert a device that reduces high-order wavefront patterns such as a spatial filter on the optical axis of the signal light before branching the correction signal light. Therefore, it is desirable to reduce the influence of the speckle pattern on the interference fringes.

実施形態における非破壊検査装置を示し、(a)は概略構成図、(b)は要部構成図である。The nondestructive inspection apparatus in embodiment is shown, (a) is a schematic block diagram, (b) is a principal part block diagram. 同上におけるフォトリフラクティブ結晶の特性説明図である。It is characteristic explanatory drawing of the photorefractive crystal in the same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 従来例を示す非破壊検査装置の概略構成図である。It is a schematic block diagram of the nondestructive inspection apparatus which shows a prior art example.

符号の説明Explanation of symbols

11 検出用レーザ
12 ビーム分岐手段
21 弾性波励起用レーザ
30 振動検出手段
32 位相シフトミラー
33 位相共役素子(フォトリフラクティブ結晶)
34 電極
35 光検出器
40 干渉縞安定化装置
41 干渉縞検出手段
42 波面制御用ミラー
43 制御手段
50 信号光走査手段
70 欠陥検出手段
Ob 検査対象物
De 内部欠陥
DESCRIPTION OF SYMBOLS 11 Detection laser 12 Beam branching means 21 Elastic wave excitation laser 30 Vibration detection means 32 Phase shift mirror 33 Phase conjugate element (photorefractive crystal)
34 Electrode 35 Photodetector 40 Interference fringe stabilization device 41 Interference fringe detection means 42 Wavefront control mirror 43 Control means 50 Signal light scanning means 70 Defect detection means Ob Inspection object De Internal defect

Claims (4)

検査対象物で反射され周波数変調された信号光から分岐された補正用信号光と参照光から分岐された補正用参照光との干渉縞を検出する干渉縞検出手段と、補正用参照光を分岐する前の参照光の光路上に配設され参照光の波面を制御する波面制御用ミラーと、干渉縞検出手段により検出される干渉縞の安定状態からの位相シフトを抑制するように波面制御用ミラーの位置を制御する制御手段とを備えることを特徴とする干渉縞安定化装置。   Interference fringe detection means for detecting an interference fringe between the correction signal light branched from the frequency-modulated signal light reflected by the inspection object and the correction reference light branched from the reference light, and the correction reference light is branched For controlling the wavefront so as to suppress the phase shift from the stable state of the interference fringes detected by the interference fringe detection means and the wavefront control mirror disposed on the optical path of the reference light before the control An interference fringe stabilization apparatus comprising: control means for controlling the position of the mirror. レーザ光を出力する検出用レーザと、検査対象物に弾性波を励起させるための励起光を出力する弾性波励起用レーザと、検出用レーザと検査対象物との間の光路上に配設され検出用レーザから出力されたレーザ光の一部を参照光として分岐するビーム分岐手段と、検出用レーザから出力されて検査対象物で反射され周波数変調された信号光とビーム分岐手段で分岐された参照光とを干渉させる位相共役素子を有し当該位相共役素子から出射される干渉光を利用して検査対象物の振動を検出する振動検出手段と、振動検出手段の出力に基づいて検査対象物の内部欠陥を検出する欠陥検出手段と、請求項1記載の干渉縞安定化装置とを備えることを特徴とする非破壊検査装置。   It is disposed on the optical path between the detection laser that outputs laser light, the elastic wave excitation laser that outputs excitation light for exciting the elastic wave in the inspection object, and the detection laser and the inspection object. Beam branching means for branching a part of the laser beam outputted from the detection laser as reference light, and the signal light outputted from the detection laser and reflected by the inspection object and frequency-modulated and branched by the beam branching means A vibration detection means having a phase conjugate element that interferes with the reference light and detecting the vibration of the inspection object using the interference light emitted from the phase conjugate element, and the inspection object based on the output of the vibration detection means A non-destructive inspection apparatus comprising: a defect detection means for detecting an internal defect of the interference fringe and the interference fringe stabilization apparatus according to claim 1. 前記振動検出手段は、参照光の位相をシフトさせる位相シフトミラーと、位相シフトミラーにより位相シフトされた参照光と検査対象物で反射され周波数変調された信号光とが所定の角度で交差するように入射する前記位相共役素子であるフォトリフラクティブ結晶と、フォトリフラクティブ結晶に電界を印加するための一対の電極と、フォトリフラクティブ結晶から出射される干渉光を検出する光検出器とを備えることを特徴とする請求項2記載の非破壊検査装置。   The vibration detection unit is configured so that the phase shift mirror that shifts the phase of the reference light, the reference light phase-shifted by the phase shift mirror, and the signal light that is reflected by the inspection object and frequency-modulated intersect at a predetermined angle. A photorefractive crystal that is the phase conjugate element that enters the light source, a pair of electrodes for applying an electric field to the photorefractive crystal, and a photodetector that detects interference light emitted from the photorefractive crystal. The nondestructive inspection apparatus according to claim 2. 信号光を前記検査対象物の表面で走査させる信号光走査手段を備えることを特徴とする請求項2または請求項3記載の非破壊検査装置。   4. The nondestructive inspection apparatus according to claim 2, further comprising signal light scanning means for scanning the signal light on the surface of the inspection object.
JP2007192248A 2007-07-24 2007-07-24 Interference fringe stabilization device and non-destructive inspection device using the same Active JP5095289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192248A JP5095289B2 (en) 2007-07-24 2007-07-24 Interference fringe stabilization device and non-destructive inspection device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192248A JP5095289B2 (en) 2007-07-24 2007-07-24 Interference fringe stabilization device and non-destructive inspection device using the same

Publications (2)

Publication Number Publication Date
JP2009030996A JP2009030996A (en) 2009-02-12
JP5095289B2 true JP5095289B2 (en) 2012-12-12

Family

ID=40401676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192248A Active JP5095289B2 (en) 2007-07-24 2007-07-24 Interference fringe stabilization device and non-destructive inspection device using the same

Country Status (1)

Country Link
JP (1) JP5095289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090589A1 (en) * 2014-12-11 2016-06-16 烟台富润实业有限公司 Nondestructive measurement method and device for residual stress of laser ultrasonic metal material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101055475B1 (en) * 2008-11-19 2011-08-08 삼성메디슨 주식회사 System and method for measuring acoustic properties of ultrasonic probes
CN101871894B (en) * 2010-06-23 2012-05-23 南京大学 Characterization method for realizing dynamic loading imaging of material internal defect by utilizing strobe frequency detection
US8954130B2 (en) * 2010-12-17 2015-02-10 Canon Kabushiki Kaisha Apparatus and method for irradiating a medium
JP5847476B2 (en) * 2011-07-28 2016-01-20 公益財団法人レーザー技術総合研究所 Defect inspection equipment
JP5904665B2 (en) * 2012-04-27 2016-04-13 株式会社 エフケー光学研究所 Phase measuring apparatus, phase measuring program and phase measuring method
JP6466654B2 (en) * 2014-04-24 2019-02-06 株式会社東芝 Leakage detection apparatus and method
JP6805930B2 (en) * 2017-03-29 2020-12-23 株式会社島津製作所 Vibration measuring device
CN112313510A (en) * 2018-07-04 2021-02-02 株式会社岛津制作所 Defect detecting device
CN111521566B (en) * 2020-06-09 2022-11-15 中国计量科学研究院 Laser ultrasonic nondestructive testing system based on double-wave mixing
CN116202968B (en) * 2023-03-13 2024-05-03 哈尔滨工业大学(威海) Laser ultrasonic defect detection system and laser ultrasonic phase coherent imaging detection method for additive titanium alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271020A (en) * 1998-03-25 1999-10-05 Olympus Optical Co Ltd Interference microscope apparatus
JP2003254900A (en) * 2002-02-28 2003-09-10 Japan Science & Technology Corp Method for measuring image synchronization
JP4386709B2 (en) * 2003-11-14 2009-12-16 関西電力株式会社 Material nondestructive inspection method and apparatus by laser ultrasonic wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090589A1 (en) * 2014-12-11 2016-06-16 烟台富润实业有限公司 Nondestructive measurement method and device for residual stress of laser ultrasonic metal material

Also Published As

Publication number Publication date
JP2009030996A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5095289B2 (en) Interference fringe stabilization device and non-destructive inspection device using the same
Pelivanov et al. NDT of fiber-reinforced composites with a new fiber-optic pump–probe laser-ultrasound system
US7684047B2 (en) Apparatus and method for two wave mixing (TWM) based ultrasonic laser testing
JP4386709B2 (en) Material nondestructive inspection method and apparatus by laser ultrasonic wave
JP2004037165A (en) Interferometer device
US20030020923A1 (en) Method and apparatus for using a two-wave mixing ultrasonic detection in rapid scanning applications
KR100993989B1 (en) Laser ultrasonic measuring device and laser ultrasonic measuring method
KR100496826B1 (en) Apparatus and method of noncontact measurement of crystal grain size
JP7039371B2 (en) Laser-excited ultrasonic generator, laser ultrasonic inspection device, and laser ultrasonic inspection method
JP2005317669A (en) Terahertz wave generator and measuring instrument using it
KR100924199B1 (en) Laser ultrasonic inspection apparatus and method for surface breaking cracks by using multi laser surface waves
KR100994037B1 (en) Laser ultrasonic measuring device and laser ultrasonic measuring method
JP3150239B2 (en) Measuring device for micro-periodic vibration displacement
JPH10260163A (en) Laser ultrasonic wave inspecting device
US10921290B2 (en) Laser ultrasonic testing
JP3545611B2 (en) Laser ultrasonic inspection apparatus and laser ultrasonic inspection method
CA2188705A1 (en) Method and apparatus for exciting bulk acoustic wave
WO2019193788A1 (en) Vibration measurement device
JP7480915B2 (en) Defect inspection device and defect inspection method
KR100733539B1 (en) Apparatus and method of laser-ultrasonic measurement for hot object
JP5847476B2 (en) Defect inspection equipment
JP2003215111A (en) Probe for laser measurement and laser measurement device
TWM519232U (en) Interference signal measurement system
Park et al. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging
JP2022077094A (en) Contactless oscillation measurement device and contactless oscillation measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100531

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250