JP5092669B2 - Concentration method and concentration apparatus for sample water - Google Patents

Concentration method and concentration apparatus for sample water Download PDF

Info

Publication number
JP5092669B2
JP5092669B2 JP2007264659A JP2007264659A JP5092669B2 JP 5092669 B2 JP5092669 B2 JP 5092669B2 JP 2007264659 A JP2007264659 A JP 2007264659A JP 2007264659 A JP2007264659 A JP 2007264659A JP 5092669 B2 JP5092669 B2 JP 5092669B2
Authority
JP
Japan
Prior art keywords
water
concentration
osmotic pressure
test
test water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007264659A
Other languages
Japanese (ja)
Other versions
JP2009092564A (en
Inventor
伸説 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007264659A priority Critical patent/JP5092669B2/en
Publication of JP2009092564A publication Critical patent/JP2009092564A/en
Application granted granted Critical
Publication of JP5092669B2 publication Critical patent/JP5092669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、検水の濃縮方法及び濃縮装置に係り、特に、検水のコンタミネーションを抑制した上で、また、検水中の分析対象物質を気散ないし形態変化させることなく、効率的に連続濃縮する方法及び装置に関する。
本発明の検水の濃縮方法及び装置は、半導体産業、電力・原子力産業、医薬産業、その他の産業分野において、分析対象物質を極微量に含む検水、例えば超純水の連続分析に有用である。
本発明はまた、この検水の濃縮方法及び濃縮装置を利用した超純水製造方法及び装置に関する。
The present invention relates to a sample concentration method and a concentration device, and in particular, while suppressing contamination of the sample water, and continuously efficiently without subjecting the analysis target substance in the sample water to scatter or change its shape. The present invention relates to a method and apparatus for concentration.
INDUSTRIAL APPLICABILITY The sample concentration method and apparatus of the present invention are useful for continuous analysis of sample water containing a very small amount of an analyte, for example, ultrapure water, in the semiconductor industry, power / nuclear power industry, pharmaceutical industry, and other industrial fields. is there.
The present invention also relates to a method and an apparatus for producing ultrapure water using the test water concentration method and concentration device.

半導電製造工場等では、不純物を高度に除去して純度を高めた超純水が使用されている。この超純水の水質管理項目としては、抵抗率、微粒子、生菌、TOC(Total Organic Carbon:有機物の指標)、溶存酸素、シリカ、カチオンイオン、アニオンイオン、重金属等が挙げられる。   In semiconducting manufacturing factories and the like, ultrapure water that is highly purified by removing impurities to a high degree is used. Examples of the water quality management items of ultrapure water include resistivity, fine particles, viable bacteria, TOC (Total Organic Carbon), dissolved oxygen, silica, cation ions, anion ions, heavy metals, and the like.

現在、超純水の連続分析装置(オンラインモニター)には、抵抗率計、微粒子計、TOC計、シリカ計、溶存酸素計などが使用されている。これらの分析計には、測定可能な下限値が存在し、例えばTOCやシリカについては、測定下限値は1μg/L程度である。一方で、超純水については、近年益々その要求水質が高められている。従って、極微量の分析対象物質を含む超純水を検水として、これらの分析装置で水質管理を行うためには、超純水中の分析対象物質を分析装置の測定下限値以上の濃度にまで濃縮する必要がある。また、測定下限値以上に含まれる分析対象物質であっても、より高精度な分析結果を得るために、分析対象物質を濃縮する場合もある。   At present, a resistivity meter, a fine particle meter, a TOC meter, a silica meter, a dissolved oxygen meter, and the like are used for a continuous analysis device (online monitor) of ultrapure water. These analyzers have a lower limit value that can be measured. For example, for TOC and silica, the lower limit value is about 1 μg / L. On the other hand, the required water quality of ultrapure water has been increasingly increased in recent years. Therefore, in order to manage the water quality with these analyzers using ultrapure water containing a very small amount of analyte, the analyte in ultrapure water must be at a concentration that is equal to or higher than the measurement lower limit of the analyzer. It is necessary to concentrate until. In addition, even in the case of an analysis target substance that is contained above the measurement lower limit value, the analysis target substance may be concentrated in order to obtain a more accurate analysis result.

従来、超純水中の分析対象物質の濃縮方法としては、超純水をロータリーエバポレーターで蒸発濃縮させる方法、或いは、イオン交換樹脂等の吸着体に分析対象物質を吸着させて濃縮する方法などが採用されているが、ロータリーエバポレーターで蒸発濃縮する方法では、分析対象物質によっては、蒸発により気散、形態変化を起こすために、適用不可能な場合があり、また、吸着による濃縮では、その後、薬品などを使った溶離が必要であり、操作が煩雑であるという問題がある。   Conventionally, as a method for concentrating the analyte in ultrapure water, there is a method of evaporating and concentrating ultrapure water with a rotary evaporator, or a method of concentrating the analyte by adsorbing it on an adsorbent such as an ion exchange resin. However, in the method of evaporating and concentrating with a rotary evaporator, depending on the substance to be analyzed, it may be inapplicable due to evaporation and morphological change due to evaporation. There is a problem that elution using chemicals is necessary and the operation is complicated.

特開2004−77299号公報には、多段に設けた電気脱イオン装置又は逆浸透膜装置により、検水中の分析対象物質を連続的に濃縮する方法が提案されている。この方法によれば、比較的簡易な操作にて、特に逆浸透膜装置を用いる場合には、検水を相変化させることなく濃縮することができることから、分析対象物質を気散、形態変化させることなく濃縮することが可能と考えられる。
特開2004−77299号公報
Japanese Patent Application Laid-Open No. 2004-77299 proposes a method of continuously concentrating a substance to be analyzed in test water using an electrodeionization apparatus or a reverse osmosis membrane apparatus provided in multiple stages. According to this method, when a reverse osmosis membrane device is used with a relatively simple operation, the sample water can be concentrated without changing the phase, and thus the substance to be analyzed is diffused and changed in form. It is considered possible to concentrate without any problems.
JP 2004-77299 A

しかしながら、特開2004−77299号公報の方法では、例えば、逆浸透膜装置にて検水を濃縮する場合、検水を分析対象物質を含まない逆浸透膜透過水と、分析対象物質が濃縮された逆浸透膜濃縮水とに逆浸透膜にて分離するため、高い駆動圧力が必要となり、昇圧手段として用いる高圧ポンプ等の回転機からの溶出物等によるコンタミネーションが問題となる。   However, in the method of Japanese Patent Application Laid-Open No. 2004-77299, for example, when the test water is concentrated by a reverse osmosis membrane device, the reverse osmosis membrane permeated water not containing the analysis target substance and the analysis target substance are concentrated. In addition, since the reverse osmosis membrane is separated from the reverse osmosis membrane by a reverse osmosis membrane, a high driving pressure is required, and contamination due to eluate from a rotating machine such as a high-pressure pump used as a pressure raising means becomes a problem.

昇圧手段として、ポンプ等の回転機を用いず、空気等の圧縮気体を用いる方法も考えられるが、この場合、検水と圧縮気体との接触に基づくコンタミネーションを避けるため、圧縮気体自体を精製しておく必要があり、操作は煩雑なものとなる。また、検水と圧縮気体とを直接接触させない様、隔膜等にて仕切る場合には、この仕切り部分がピストン運動など何らかの動作をする必要があり、回転機同様、検水と稼動部分との接触に伴うコンタミネーションが問題となる。   A method of using a compressed gas such as air without using a rotary machine such as a pump is also conceivable as a pressure increasing means, but in this case, the compressed gas itself is purified to avoid contamination based on contact between the test water and the compressed gas. The operation is complicated. Also, when partitioning with a diaphragm or the like so that the test water and compressed gas are not in direct contact with each other, it is necessary for this partition part to perform some kind of operation such as piston movement. Contamination associated with is a problem.

本発明は、検水のコンタミネーションを抑制した上で、また検水中の分析対象物質を気散ないし形態変化させることなく、効率的に連続濃縮する方法及び装置を提供することを目的とする。
本発明はまた、この検水の濃縮方法及び濃縮装置を利用して超純水を濃縮した後、その水質を分析し、この結果に基いて効率的な超純水の製造を行う方法と装置を提供することを目的とする。
It is an object of the present invention to provide a method and an apparatus for efficiently and continuously concentrating an analysis target substance in a test water while suppressing contamination of the test water and without causing scatter or form change.
The present invention also provides a method and apparatus for concentrating ultrapure water using this test water concentration method and concentrator, analyzing the water quality, and efficiently producing ultrapure water based on the results. The purpose is to provide.

本発明(請求項1)の検水の濃縮方法は、検水を透水性半透膜を介して高浸透圧物質と接触させ、該検水中の水を高浸透圧物質側へ透過させることにより分析対象物質を濃縮する検水濃縮工程と、該検水と接触した高浸透圧物質を検水濃縮手段とは別の濃縮手段を用いて濃縮する高浸透圧物質濃縮工程と、濃縮された高浸透圧物質を前記検水濃縮工程に循環する高浸透圧物質循環工程とを備える検水の濃縮方法であって、前記高浸透圧物質として、ショ糖、異性化糖、水飴、プルラン、果糖、ブドウ糖、マンニトール、ソルビトール、マルゲトール、マンナン質、アルギン酸ソーダ、カラギーナン、メチルセルロース、ポリアクリル酸ソーダ、グリセリン、プロピレングリコール、及びポリエチレングリコールの1種又は2種以上を用い、前記別の濃縮手段が透水性半透膜を含むことを特徴とする。 According to the method for concentrating test water of the present invention (Claim 1), the test water is contacted with a high osmotic pressure substance through a water-permeable semipermeable membrane, and the water in the test water is permeated to the high osmotic pressure substance side. A test water concentration step for concentrating the analyte, a high osmotic pressure substance concentration step for concentrating the hypertonic substance in contact with the test water using a concentration means different from the test water concentration means, A high osmotic pressure substance circulation step for circulating an osmotic pressure substance to the test water concentration step, wherein the osmotic pressure substance includes sucrose, isomerized sugar, starch syrup, pullulan, fructose, Using one or more of glucose, mannitol, sorbitol, marguetol, mannan, sodium alginate, carrageenan, methylcellulose, sodium polyacrylate, glycerin, propylene glycol, and polyethylene glycol, before Another concentrating means is comprising a water-permeable semipermeable membrane.

請求項2の検水の濃縮方法は、請求項1において、前記検水濃縮工程の透水性半透膜及び前記別の濃縮手段の透水性半透膜が逆浸透膜であることを特徴とする。 The method for concentrating test water according to claim 2 is characterized in that, in claim 1, the water-permeable semipermeable membrane of the test water concentration step and the water-permeable semipermeable membrane of the other concentration means are reverse osmosis membranes. .

本発明(請求項3)の検水の濃縮装置は、検水を透水性半透膜を介して高浸透圧物質と接触させ、該検水中の水を高浸透圧物質側へ透過させることにより分析対象物質を濃縮する検水濃縮手段と、該検水と接触した高浸透圧物質を濃縮する該検水濃縮手段とは別の高浸透圧物質濃縮手段と、濃縮された高浸透圧物質を前記検水濃縮手段に循環する高浸透圧物質循環手段とを備える検水の濃縮装置であって、前記高浸透圧物質として、ショ糖、異性化糖、水飴、プルラン、果糖、ブドウ糖、マンニトール、ソルビトール、マルゲトール、マンナン質、アルギン酸ソーダ、カラギーナン、メチルセルロース、ポリアクリル酸ソーダ、グリセリン、プロピレングリコール、及びポリエチレングリコールの1種又は2種以上を用い、前記高浸透圧物質濃縮手段が透水性半透膜を含むことを特徴とする。 The concentration device for the test water of the present invention (Claim 3) is to bring the test water into contact with the high osmotic pressure substance through the water-permeable semipermeable membrane and permeate the water in the test water to the high osmotic pressure substance side. A test water concentration means for concentrating the analysis target substance, a high osmotic pressure substance concentration means different from the test water concentration means for concentrating the high osmotic pressure substance in contact with the test water, and a concentrated high osmotic pressure substance. A test water concentrating device comprising a high osmotic pressure substance circulating means for circulating to the test water concentration means, and as the high osmotic pressure substance, sucrose, isomerized sugar, starch syrup, pullulan, fructose, glucose, mannitol, Using one or more of sorbitol, marguetol, mannan, sodium alginate, carrageenan, methylcellulose, sodium polyacrylate, glycerin, propylene glycol, and polyethylene glycol, the hypertonic substance Contraction means characterized in that it comprises a water-permeable semipermeable membrane.

請求項4の検水の濃縮装置は、請求項3において、前記検水濃縮手段の透水性半透膜及び前記高浸透圧物質濃縮手段の透水性半透膜が逆浸透膜であることを特徴とする。 According to a fourth aspect of the present invention, there is provided an apparatus for concentrating test water according to claim 3, wherein the water-permeable semipermeable membrane of the test water concentration means and the water-permeable semipermeable membrane of the hyperosmotic substance concentration means are reverse osmosis membranes. And

本発明(請求項5)の超純水製造方法は、超純水を製造する方法において、製造された超純水の水質を分析し、この分析結果に基いて超純水の製造条件を制御する方法であって、請求項1又は2に記載の検水の濃縮方法により、検水としての超純水を濃縮し、濃縮された超純水の水質を分析することを特徴とする。   The ultrapure water production method of the present invention (Claim 5) is a method for producing ultrapure water, wherein the quality of the produced ultrapure water is analyzed, and the production conditions of ultrapure water are controlled based on the analysis result. According to the method of concentrating test water according to claim 1 or 2, the ultrapure water as test water is concentrated and the quality of the concentrated ultrapure water is analyzed.

本発明(請求項6)の超純水の製造装置は、超純水の製造手段と、製造された超純水の水質を分析する水質分析手段と、該水質分析手段の分析結果に基いて、前記超純水製造手段の運転を管理する運転管理手段とを備える超純水製造装置において、請求項3又は4に記載の検水の濃縮装置を備え、該検水の濃縮装置で検水としての超純水を濃縮し、濃縮された超純水の水質を前記水質分析手段で分析するようにしたことを特徴とする。   The ultrapure water production apparatus of the present invention (Claim 6) is based on ultrapure water production means, water quality analysis means for analyzing the quality of the produced ultrapure water, and analysis results of the water quality analysis means. An ultrapure water production apparatus comprising an operation management means for managing the operation of the ultrapure water production means, comprising the sample concentration device according to claim 3 or 4, wherein The ultrapure water is concentrated, and the quality of the concentrated ultrapure water is analyzed by the water quality analyzing means.

本発明の検水の濃縮方法及び濃縮装置によれば、検水のコンタミネーションを制御した上で、また、検水中の分析対象物質を気散ないし形態変化させることなく、効率的に連続濃縮することができる。
本発明の検水の濃縮方法及び装置は、半導体産業、電力・原子力産業、医薬産業、その他の産業分野において、分析対象物質を極微量に含む検水、例えば超純水の連続分析に有用である。
According to the concentration method and concentration apparatus of the sample water of the present invention, the concentration of the analyte in the sample water is controlled and the concentration of the analysis target substance in the sample water is continuously and efficiently concentrated without any scatter or form change. be able to.
INDUSTRIAL APPLICABILITY The sample concentration method and apparatus of the present invention are useful for continuous analysis of sample water containing a very small amount of an analyte, for example, ultrapure water, in the semiconductor industry, power / nuclear power industry, pharmaceutical industry, and other industrial fields. is there.

また、本発明の超純水製造方法及び製造装置によれば、このような本発明の検水の濃縮方法及び濃縮装置を利用して、製造された超純水を連続的に濃縮してその水質を分析し、この分析結果に基いて製造条件の制御ないし装置の運転管理を行うことにより、目的とする水質の超純水を安定に製造することができる。   Moreover, according to the ultrapure water production method and production apparatus of the present invention, the produced ultrapure water is continuously concentrated by using the test water concentration method and concentration apparatus of the present invention. By analyzing the water quality and controlling the production conditions or managing the operation of the apparatus based on the analysis result, it is possible to stably produce ultrapure water having the desired water quality.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[検水の濃縮方法及び濃縮装置]
本発明の検水の濃縮方法は、検水を透水性半透膜を介して高浸透圧物質と接触させ、該検水中の水を高浸透圧物質側へ透過させることにより分析対象物質を濃縮する検水濃縮工程と、該検水と接触した高浸透圧物質を検水濃縮手段とは別の濃縮手段を用いて濃縮する高浸透圧物質濃縮工程と、濃縮された高浸透圧物質を前記検水濃縮工程に循環する高浸透圧物質循環工程とを備えるものであり、また、本発明の検水の濃縮装置は、検水を透水性半透膜を介して高浸透圧物質と接触させ、該検水中の水を高浸透圧物質側へ透過させることにより分析対象物質を濃縮する検水濃縮手段と、該検水と接触した高浸透圧物質を濃縮する該検水濃縮手段とは別の高浸透圧物質濃縮手段と、濃縮された高浸透圧物質を前記検水濃縮手段に循環する高浸透圧物質循環手段とを備えるものである。
[Concentration method and concentration apparatus for sample water]
The concentration method of the test water of the present invention is to concentrate the analyte by bringing the test water into contact with the hyperosmotic substance through the permeable semipermeable membrane and allowing the water in the test water to permeate to the hyperosmotic substance side. A test water concentration step, a high osmotic pressure substance concentration step of concentrating the high osmotic pressure substance in contact with the test water using a concentration means different from the test water concentration means, and the concentrated high osmotic pressure substance A high osmotic pressure substance circulation step that circulates in the test water concentration step, and the test water concentration device of the present invention brings the test water into contact with the high osmotic pressure substance through the permeable semipermeable membrane. The test water concentration means for concentrating the analysis target substance by permeating the water in the test water to the high osmotic pressure substance side, and the test water concentration means for concentrating the high osmotic pressure substance in contact with the test water. High osmotic pressure substance concentration means, and high osmotic pressure for circulating the concentrated high osmotic pressure substance to the test water concentration means In which and a quality circulation means.

この検水の濃縮装置は、例えば、図1に示す如く、検水濃縮用の透水性半透膜装置1と、高浸透圧物質貯留タンク2と高浸透圧物質濃縮用の透水性半透膜装置3とで構成される。
この検水の濃縮装置では、透水性半透膜装置1の濃縮側に検水を導入すると共に、配管15より透過側に高浸透圧物質を導入し、検水と高浸透圧物質とを透水性半透膜1Aを介して接触させて、検水側から高浸透圧物質側へ水を透過させ、分析対象物質が濃縮された検水を配管16より取出す。この濃縮された検水は、水質分析のための自動分析装置等へ送給される。
For example, as shown in FIG. 1, a water permeable semipermeable membrane device 1 for concentration of test water, a high osmotic pressure substance storage tank 2, and a water permeable semipermeable membrane for concentration of high osmotic pressure material. It is comprised with the apparatus 3. FIG.
In this test water concentration apparatus, test water is introduced to the concentration side of the permeable semipermeable membrane device 1 and a high osmotic pressure substance is introduced to the permeation side from the pipe 15 so that the test water and the high osmotic pressure substance are permeated. The permeable semi-permeable membrane 1A is contacted to allow water to permeate from the test water side to the high osmotic pressure material side, and the test water in which the analysis target substance is concentrated is taken out from the pipe 16. The concentrated test water is sent to an automatic analyzer for water quality analysis.

一方、検水からの水で希釈された高浸透圧物質を配管12より高浸透圧物質貯留タンク2に送り、この高浸透圧物質貯留タンク2内の高浸透圧物質をポンプPにより配管13を経て高浸透圧物質濃縮用の透水性半透膜装置3の濃縮側に導入する。
水で希釈された高浸透圧物質は、ポンプ等の駆動圧による逆浸透操作により高浸透圧物質に含まれる水が透水性半透膜3Aを透過し、この透過水は配管14を経て系外へ排出される。水が透過することにより濃縮された高浸透圧物質は、配管15より検水濃縮用の透水性半透膜装置1に循環される。
On the other hand, the high osmotic pressure substance diluted with water from the test water is sent from the pipe 12 to the high osmotic pressure substance storage tank 2, and the high osmotic pressure substance in the high osmotic pressure substance storage tank 2 is pumped through the pipe 13. Then, it introduce | transduces into the concentration side of the water-permeable semipermeable membrane apparatus 3 for hyperosmotic pressure substance concentration.
In the high osmotic pressure substance diluted with water, the water contained in the high osmotic pressure substance permeates through the permeable semipermeable membrane 3A by the reverse osmosis operation by the driving pressure of a pump or the like. Is discharged. The high osmotic pressure substance concentrated by the permeation of water is circulated from the pipe 15 to the permeable semipermeable membrane device 1 for concentration of test water.

<検水>
本発明において、濃縮対象となる検水としては特に制限はないが、一般的には、分析対象物質の含有濃度が低く、水質分析のためには濃縮を要するものであり、最も代表的なものとしては、半導体工場等で使用される超純水が挙げられる。
<Sample water>
In the present invention, the sample water to be concentrated is not particularly limited, but in general, the concentration of the analyte is low, and concentration is necessary for water quality analysis. As such, ultrapure water used in semiconductor factories and the like can be mentioned.

<透水性半透膜>
検水の濃縮手段としての透水性半透膜は、検水を分析対象物質濃度が高められた濃縮水と、水又は、分析対象物質濃度が低減された水とに分離するものであり、特に制限はないが、検水が半導体工場等にて使用される超純水の場合、水質管理項目としては、抵抗率、微粒子、生菌、TOC(全有機炭素)、溶存酸素、シリカ、カチオンイオン、アニオンイオン、重金属等が挙げられることから、検水の濃縮に用いる透水性半透膜としては、逆浸透膜が好ましく、逆浸透膜を用いることにより、検水中のNa、K、Fe、Ni、Cr、Mn、Al、Ca、Mg、B、Cu、Zn、Si等のカチオンや重金属類、Cl、SO、NO、NO、PO、F等のアニオン、シリカや有機酸等のイオン化した有機物、さらにアルコール類、尿素等の非イオン状の有機物やコロイド成分等の濃縮も可能であり、検水中の分析対象物質を、相変化を伴わない濃縮手段にて形態変化をさせることなく、またコンタミネーションが殆どない状態にて濃縮が可能となる。
<Water-permeable semipermeable membrane>
A water-permeable semipermeable membrane as a means for concentrating test water separates test water into concentrated water with an increased concentration of the analyte and water or water with a reduced concentration of the analyte. Although there is no limit, in the case of ultrapure water whose test water is used in semiconductor factories, water quality management items include resistivity, fine particles, viable bacteria, TOC (total organic carbon), dissolved oxygen, silica, and cation ions. , Anion ions, heavy metals, and the like, the water-permeable semipermeable membrane used for concentration of the test water is preferably a reverse osmosis membrane. By using the reverse osmosis membrane, Na, K, Fe, Ni in the test water can be obtained. Cations, heavy metals such as Cr, Mn, Al, Ca, Mg, B, Cu, Zn, Si, anions such as Cl, SO 4 , NO 3 , NO 2 , PO 4 , F, silica, organic acids, etc. Ionized organic matter, alcohols, urine It is possible to concentrate non-ionic organic materials such as colloidal components, etc., and to make the analysis target substance in the sample water in a state where there is almost no contamination without changing the form by means of concentration without phase change. Concentration.

このような透水性半透膜による検水の濃縮の程度は、濃縮目的の検水中の分析対象物質の種類やその濃度、用いる分析装置の分析下限値等に応じて、適宜決定される。この濃縮の程度によっては、例えば、逆浸透膜装置を多段に設けても良い。   The degree of concentration of the test water by such a water-permeable semipermeable membrane is appropriately determined according to the type and concentration of the analysis target substance in the test water to be concentrated, the analysis lower limit value of the analyzer to be used, and the like. Depending on the degree of concentration, for example, reverse osmosis membrane devices may be provided in multiple stages.

また、濃縮に際しては、濃縮効率を向上させることを目的に、検水に酸又はアルカリ剤を添加しても良い。この場合、添加剤としては、塩酸、硝酸、硫酸、水酸化ナトリウム、水酸化カリウム、アンモニア等を用いることができる。   Further, at the time of concentration, an acid or an alkali agent may be added to the sample water for the purpose of improving the concentration efficiency. In this case, hydrochloric acid, nitric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, ammonia or the like can be used as an additive.

<高浸透圧物質>
高浸透圧物質としては、各種塩類をはじめ、ショ糖、異性化糖、水飴、プルラン、果糖、ブドウ糖、マンニトール、ソルビトール、マルゲトールなどの糖類、マンナン質、アルギン酸ソーダ、カラギーナン等の天然高分子、メチルセルロース、ポリアクリル酸ソーダ、グリセリン、プロピレングリコール、ポリエチレングリコール等の合成物ないし合成高分子を用いることができる。これらは1種を単独で用いても良く、2種以上を混合して用いても良いが、液状のものが好適であり、また、検水濃縮手段としての透水性半透膜や、高浸透圧物質濃縮手段としての透水性半透膜を透過しないものを適宜選択使用することが好ましい。
<High Osmotic Substance>
Hyperosmotic substances include various salts, sugars such as sucrose, isomerized sugar, starch syrup, pullulan, fructose, glucose, mannitol, sorbitol, and marguetol, natural polymers such as mannan, sodium alginate, and carrageenan, methylcellulose A synthetic product or synthetic polymer such as sodium polyacrylate, glycerin, propylene glycol, or polyethylene glycol can be used. These may be used singly or as a mixture of two or more, but are preferably in liquid form, and are permeable semipermeable membranes as test water concentration means, and high osmosis. It is preferable to appropriately select and use one that does not permeate the water-permeable semipermeable membrane as the pressurized substance concentration means.

<高浸透圧物質濃縮手段>
上述のような高浸透圧物質を濃縮する手段としては特に制限はないが、検水の濃縮と同様、高浸透圧物質を気散ないし形態変化させることがないことから、透水性半透膜を用いることが好ましい。高浸透圧物質の濃縮に用いる透水性半透膜としては、検水の濃縮に用いる透水性半透膜と同様、逆浸透膜が好適に用いられるが、その他、ビニロンフィルム、セロハン、コロジオン膜、ナイロンフィルム、エチレン−酢酸ビニル共重合体フィルム等を用いることもできる。
<High osmotic pressure substance concentration means>
The means for concentrating the high osmotic pressure substance as described above is not particularly limited. However, as with the concentration of the test water, since the high osmotic pressure substance is not diffused or changed in shape, the permeable semipermeable membrane is formed. It is preferable to use it. As the water-permeable semipermeable membrane used for concentration of the hyperosmotic substance, a reverse osmosis membrane is preferably used as in the case of the water-permeable semipermeable membrane used for concentration of the test water, but in addition, a vinylon film, cellophane, collodion membrane, A nylon film, an ethylene-vinyl acetate copolymer film, or the like can also be used.

<水質分析装置>
前述の如く、濃縮された検水の水質分析装置としては、検水が半導体工場等にて使用される超純水の場合、抵抗率、微粒子、生菌、TOC(全有機炭素)、溶存酸素、シリカ、カチオンイオン、アニオンイオン、重金属等の分析装置が挙げられる。
<Water quality analyzer>
As described above, as a water quality analyzer for concentrated test water, when the test water is ultrapure water used in semiconductor factories, etc., resistivity, fine particles, viable bacteria, TOC (total organic carbon), dissolved oxygen And analyzers for silica, cation ions, anion ions, heavy metals and the like.

本発明によれば、検水を連続的に濃縮することができるため、本発明の検水の濃縮装置はオンラインモニターと組み合わせた連続分析に適用することが好適であるが、何ら連続分析に限らず、バッチ分析用として用いても良い。この場合には、例えば逆浸透膜装置から得られた濃縮水を容器に採取して分析試料とすれば良い。   According to the present invention, the test water can be concentrated continuously. Therefore, the test water concentration device of the present invention is preferably applied to continuous analysis combined with an on-line monitor, but is not limited to continuous analysis. Alternatively, it may be used for batch analysis. In this case, for example, the concentrated water obtained from the reverse osmosis membrane device may be collected in a container and used as an analysis sample.

[超純水製造方法及び製造装置]
本発明の超純水の製造方法は、製造された超純水を本発明の検水の濃縮方法により濃縮し、濃縮された超純水の水質を分析し、この分析結果に基いて超純水の製造条件を制御するものであり、本発明の超純水の製造装置は、超純水製造手段と、この超純水製造手段で製造された超純水を濃縮する本発明の検水の濃縮装置と、濃縮された超純水の水質を分析する水質分析手段と、この分析結果に基いて、超純水製造手段の運転を管理する運転管理手段とを備えるものである。
[Ultrapure water production method and production equipment]
The method for producing ultrapure water of the present invention comprises concentrating the produced ultrapure water by the method for concentrating test water of the present invention, analyzing the quality of the concentrated ultrapure water, and based on the analysis results, The apparatus for producing ultrapure water according to the present invention controls water production conditions, and the ultrapure water production means of the present invention and the sample water of the present invention for concentrating ultrapure water produced by this ultrapure water production means. And a water quality analysis means for analyzing the quality of the concentrated ultrapure water, and an operation management means for managing the operation of the ultrapure water production means based on the analysis result.

この水質分析手段としては、前述の水質分析装置が挙げられる。   Examples of the water quality analysis means include the above-described water quality analyzer.

本発明によれば、超純水の連続的製造工程において、製造された超純水を連続的に濃縮した後水質の分析を行い、この水質水析結果に基いて製造条件の制御ないし装置の運転管理を行なうことにより、目的とする水質の超純水を安定に製造することができる。   According to the present invention, in a continuous production process of ultrapure water, the produced ultrapure water is continuously concentrated, and then the water quality is analyzed. By performing operation management, it is possible to stably produce ultrapure water having a desired water quality.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

[実施例1]
図1に示す検水の濃縮装置により、超純水の連続濃縮を行った。
超純水には濃縮操作の状態を確認するため微量金属(ナトリウム、カルシウム、アルミニウム、鉄、ニッケル、銅、亜鉛)を供給濃度5ng/Lとなるように添加した。高浸透圧物質としてはブドウ糖を用い5重量%水溶液を調製して用いた。超純水濃縮用の透水性半透膜装置及び高浸透圧物質濃縮用の透水性半透膜装置には、いずれもポリアミド系逆浸透膜(ES−20、日東電工社製)を用いた。
[Example 1]
Continuous concentration of ultrapure water was performed using the sample water concentration apparatus shown in FIG.
In order to confirm the state of concentration operation, trace metals (sodium, calcium, aluminum, iron, nickel, copper, zinc) were added to ultrapure water so that the supply concentration was 5 ng / L. As the hyperosmotic substance, glucose was used and a 5 wt% aqueous solution was prepared and used. A polyamide-based reverse osmosis membrane (ES-20, manufactured by Nitto Denko Corporation) was used for both the water-permeable semipermeable membrane device for concentrating ultrapure water and the water-permeable semipermeable membrane device for concentrating hyperosmotic substances.

超純水濃縮装置は、平膜状の逆浸透膜にて濃縮室と透過水室とを隔てる構造のアクリル製セル(特注品)を用い、濃縮室の入口側を超純水配管に直接接続し、超純水が順次供給される状態にするとともに、濃縮室の出口側からは流量調整弁を用い濃縮された超純水を所定量、連続的に流出するよう調整した。また、濃縮水室内は、逆浸透膜面近傍での分析対象物質の滞留を防ぐため撹拌素子を用いて常時撹拌を実施した。   The ultrapure water concentrator uses an acrylic cell (custom product) with a structure that separates the concentrating chamber and the permeated water chamber with a flat membrane reverse osmosis membrane, and directly connects the inlet side of the concentrating chamber to the ultrapure water piping. In addition, the ultrapure water was sequentially supplied, and the concentrated ultrapure water was adjusted to continuously flow out from the outlet side of the concentrating chamber using a flow rate adjusting valve. Further, the concentrated water chamber was constantly stirred using a stirring element in order to prevent the analysis target substance from staying near the reverse osmosis membrane surface.

なお、濃縮水室の出口側からの濃縮水流出流量は、透過水の流量に基づき調整し、濃縮倍率100倍になるように調整して実施した。   In addition, the concentrated water outflow flow rate from the outlet side of the concentrated water chamber was adjusted based on the flow rate of the permeated water, and was adjusted to be 100 times the concentration factor.

透過水室側では、ブドウ糖水溶液を連続的に循環した。超純水の濃縮で希釈されるブドウ糖水溶液は、ブドウ糖水溶液貯留タンク及び昇圧ポンプを介してブドウ糖水溶液濃縮用の逆浸透膜装置に供給し、再濃縮し循環利用した。
なお、ブドウ糖水溶液の濃度管理は、ブドウ糖水溶液の総液量を監視し、総液量が一定となるよう制御することで一定条件を維持した。
On the permeate chamber side, the aqueous glucose solution was continuously circulated. The glucose aqueous solution diluted by the concentration of ultrapure water was supplied to the reverse osmosis membrane device for concentration of the glucose aqueous solution via the glucose aqueous solution storage tank and the booster pump, re-concentrated, and recycled.
In addition, the concentration management of the glucose aqueous solution maintained the constant conditions by monitoring the total liquid volume of the glucose aqueous solution and controlling the total liquid volume to be constant.

濃縮水の金属濃度を下表に示す。(測定はICP−MS分析装置にて実施した。)   The metal concentration of concentrated water is shown in the table below. (Measurement was performed with an ICP-MS analyzer.)

Figure 0005092669
Figure 0005092669

以上の結果の通り、超純水濃縮用の透水性半透膜装置からは、若干のバラツキは見られるものの、ほぼ100倍濃縮された濃縮水を連続的に得ることができた。
また、高浸透圧物質として用いたブドウ糖溶液は、超純水の濃縮により一時的に希釈されるものの、高浸透圧物質濃縮用の逆浸透膜装置にて、総液量一定となるように制御することで再濃縮でき、循環利用が可能であった。
As described above, from the water-permeable semipermeable membrane device for concentrating ultrapure water, concentrated water concentrated approximately 100 times could be continuously obtained although slight variations were observed.
In addition, the glucose solution used as the hyperosmotic substance is temporarily diluted by the concentration of ultrapure water, but the total liquid volume is controlled to be constant in the reverse osmosis membrane device for hyperosmotic substance concentration. It was possible to re-concentrate and recycle.

本発明の検水の濃縮装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the concentration apparatus of the test water of this invention.

符号の説明Explanation of symbols

1 検水濃縮用の透水性半透膜装置
2 高浸透圧物質貯留タンク
3 高浸透圧物質濃縮用の透水性半透膜装置
DESCRIPTION OF SYMBOLS 1 Water-permeable semipermeable membrane apparatus for concentration of test water 2 High osmotic pressure substance storage tank 3 Water-permeable semipermeable membrane apparatus for concentration of high osmotic pressure substance

Claims (6)

検水を透水性半透膜を介して高浸透圧物質と接触させ、該検水中の水を高浸透圧物質側へ透過させることにより分析対象物質を濃縮する検水濃縮工程と、該検水と接触した高浸透圧物質を検水濃縮手段とは別の濃縮手段を用いて濃縮する高浸透圧物質濃縮工程と、濃縮された高浸透圧物質を前記検水濃縮工程に循環する高浸透圧物質循環工程とを備える検水の濃縮方法であって、
前記高浸透圧物質として、ショ糖、異性化糖、水飴、プルラン、果糖、ブドウ糖、マンニトール、ソルビトール、マルゲトール、マンナン質、アルギン酸ソーダ、カラギーナン、メチルセルロース、ポリアクリル酸ソーダ、グリセリン、プロピレングリコール、及びポリエチレングリコールの1種又は2種以上を用い、
前記別の濃縮手段が透水性半透膜を含むことを特徴とする検水の濃縮方法。
A test water concentration step for concentrating the analyte by bringing the test water into contact with the high osmotic pressure substance through the water-permeable semipermeable membrane and allowing the water in the test water to permeate the high osmotic pressure substance, and the test water A high osmotic pressure substance concentration step for concentrating the high osmotic pressure substance in contact with the test water concentration means, and a high osmotic pressure for circulating the concentrated high osmotic pressure substance to the test water concentration step. A method for concentrating test water comprising a material circulation step ,
Examples of the hypertonic substance include sucrose, isomerized sugar, starch syrup, pullulan, fructose, glucose, mannitol, sorbitol, marguetol, mannan, sodium alginate, carrageenan, methylcellulose, sodium polyacrylate, glycerin, propylene glycol, and polyethylene Using one or more of glycols,
The method for concentrating test water, wherein the other concentration means includes a water-permeable semipermeable membrane .
請求項1において、前記検水濃縮工程の透水性半透膜及び前記別の濃縮手段の透水性半透膜が逆浸透膜であることを特徴とする検水の濃縮方法。The method for concentrating test water according to claim 1, wherein the water-permeable semipermeable membrane of the test water concentration step and the water-permeable semipermeable membrane of the other concentration means are reverse osmosis membranes. 検水を透水性半透膜を介して高浸透圧物質と接触させ、該検水中の水を高浸透圧物質側へ透過させることにより分析対象物質を濃縮する検水濃縮手段と、該検水と接触した高浸透圧物質を濃縮する該検水濃縮手段とは別の高浸透圧物質濃縮手段と、濃縮された高浸透圧物質を前記検水濃縮手段に循環する高浸透圧物質循環手段とを備える検水の濃縮装置であって、
前記高浸透圧物質として、ショ糖、異性化糖、水飴、プルラン、果糖、ブドウ糖、マンニトール、ソルビトール、マルゲトール、マンナン質、アルギン酸ソーダ、カラギーナン、メチルセルロース、ポリアクリル酸ソーダ、グリセリン、プロピレングリコール、及びポリエチレングリコールの1種又は2種以上を用い、
前記高浸透圧物質濃縮手段が透水性半透膜を含むことを特徴とする検水の濃縮装置。
A test water concentration means for concentrating an analysis target substance by bringing the test water into contact with a high osmotic pressure substance through a water-permeable semipermeable membrane and allowing the water in the test water to permeate the high osmotic pressure substance, and the test water A high osmotic pressure substance concentration means different from the test water concentration means for concentrating the high osmotic pressure substance in contact with the osmotic pressure substance, and a high osmotic pressure substance circulation means for circulating the concentrated high osmotic pressure substance to the test water concentration means, A sample water concentration device comprising:
Examples of the hypertonic substance include sucrose, isomerized sugar, starch syrup, pullulan, fructose, glucose, mannitol, sorbitol, marguetol, mannan, sodium alginate, carrageenan, methylcellulose, sodium polyacrylate, glycerin, propylene glycol, and polyethylene Using one or more of glycols,
An apparatus for concentrating test water, wherein the high osmotic pressure substance concentrating means includes a water-permeable semipermeable membrane .
請求項3において、前記検水濃縮手段の透水性半透膜及び前記高浸透圧物質濃縮手段の透水性半透膜が逆浸透膜であることを特徴とする検水の濃縮装置。4. The test water concentration apparatus according to claim 3, wherein the water permeable semipermeable membrane of the test water concentration means and the water permeable semipermeable membrane of the hyperosmotic pressure substance concentration means are reverse osmosis membranes. 超純水を製造する方法において、製造された超純水の水質を分析し、この分析結果に基いて超純水の製造条件を制御する方法であって、請求項1又は2に記載の検水の濃縮方法により、検水としての超純水を濃縮し、濃縮された超純水の水質を分析することを特徴とする超純水製造方法。   The method for producing ultrapure water, comprising analyzing the quality of the produced ultrapure water and controlling the production conditions of the ultrapure water based on the analysis result. A method for producing ultrapure water, characterized in that ultrapure water as test water is concentrated by a water concentration method and the quality of the concentrated ultrapure water is analyzed. 超純水の製造手段と、製造された超純水の水質を分析する水質分析手段と、該水質分析手段の分析結果に基いて、前記超純水製造手段の運転を管理する運転管理手段とを備える超純水製造装置において、請求項3又は4に記載の検水の濃縮装置を備え、該検水の濃縮装置で検水としての超純水を濃縮し、濃縮された超純水の水質を前記水質分析手段で分析するようにしたことを特徴とする超純水の製造装置。   Ultrapure water production means, water quality analysis means for analyzing the quality of the produced ultrapure water, and operation management means for managing the operation of the ultrapure water production means based on the analysis result of the water quality analysis means; An ultrapure water production apparatus comprising: the test water concentration apparatus according to claim 3, wherein the test water concentration apparatus concentrates ultrapure water as test water, and concentrates the ultrapure water. An apparatus for producing ultrapure water, wherein the water quality is analyzed by the water quality analyzing means.
JP2007264659A 2007-10-10 2007-10-10 Concentration method and concentration apparatus for sample water Expired - Fee Related JP5092669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007264659A JP5092669B2 (en) 2007-10-10 2007-10-10 Concentration method and concentration apparatus for sample water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264659A JP5092669B2 (en) 2007-10-10 2007-10-10 Concentration method and concentration apparatus for sample water

Publications (2)

Publication Number Publication Date
JP2009092564A JP2009092564A (en) 2009-04-30
JP5092669B2 true JP5092669B2 (en) 2012-12-05

Family

ID=40664683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264659A Expired - Fee Related JP5092669B2 (en) 2007-10-10 2007-10-10 Concentration method and concentration apparatus for sample water

Country Status (1)

Country Link
JP (1) JP5092669B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100155333A1 (en) * 2008-12-18 2010-06-24 Chevron U.S.A., Inc. Process for dewatering an aqueous organic solution
JP2011115783A (en) * 2009-10-30 2011-06-16 Fujifilm Corp Apparatus and method for purifying water
JP5996337B2 (en) * 2012-09-05 2016-09-21 株式会社東芝 Forward osmosis water production system
JP2014061488A (en) * 2012-09-21 2014-04-10 Kubota Corp Water treatment system and water treatment method
US9919936B2 (en) 2012-11-16 2018-03-20 Samsung Electronics Co., Ltd. Water recovery method
JP6400726B2 (en) * 2014-11-07 2018-10-03 株式会社東芝 Water treatment method, water treatment system and water treatment apparatus
KR102119485B1 (en) * 2016-02-19 2020-06-05 주식회사 엘지화학 Method for concentrate of saline water using a reverse osmosis
JPWO2023033069A1 (en) 2021-09-02 2023-03-09

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712802A (en) * 1980-06-26 1982-01-22 Ebara Infilco Co Ltd Water extraction system using permeable membrane
JPS63182004A (en) * 1987-01-22 1988-07-27 Showa Denko Kk Aqueous solution concentration system
JP2902511B2 (en) * 1991-12-24 1999-06-07 三菱電機株式会社 Ultrapure water production apparatus, production method, and production apparatus control method
JP2001083127A (en) * 1999-09-14 2001-03-30 Nomura Micro Sci Co Ltd Pure water analyzer, pure water manufacturing and managing system, and pure water analysis method
JP2004077299A (en) * 2002-08-19 2004-03-11 Kurita Water Ind Ltd Device and method for concentrating test water

Also Published As

Publication number Publication date
JP2009092564A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5092669B2 (en) Concentration method and concentration apparatus for sample water
US6929748B2 (en) Apparatus and method for continuous electrodeionization
Ang et al. Chemical cleaning of RO membranes fouled by wastewater effluent: Achieving higher efficiency with dual-step cleaning
TWI710529B (en) Ultrapure water production device and operation method of ultrapure water production device
Padilla et al. Performance of simultaneous arsenic, fluoride and alkalinity (bicarbonate) rejection by pilot-scale nanofiltration
TW201446658A (en) Systems for water extraction
US6747065B1 (en) System and method for producing high purity colloidal silica and potassium hydroxide
DE69817077T2 (en) Treatment method and device using a chemical reaction
US20090152117A1 (en) Electrodialysis apparatus, waste water treatment method and fluorine treatment system
KR20050062548A (en) Method of removing organic impurities from water
JP2019217463A (en) Method for removing boron in water to be treated, boron removal system, ultrapure water production system, and method for measuring boron concentration
TWI428293B (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
Tao et al. RO brine treatment and recovery by biological activated carbon and capacitive deionization process
CN103949160A (en) Method and apparatus for resourceful treatment of glyphosate mother liquor by bipolar membrane electrodialysis integrated nanofiltration and reverse osmosis technology
Çimen et al. Removal of chromium ions from waste waters using reverse osmosis AG and SWHR membranes
TWI705937B (en) Metal contamination prevention agent, metal contamination prevention film, metal contamination prevention method and product cleaning method
WO2006066345A1 (en) Increased conductivity and enhanced electrolytic and electrochemical processes
Knežević et al. Comparison of ion removal from waste fermentation effluent by nanofiltration, electrodialysis and ion exchange for a subsequent sulfuric acid recovery
TWI570273B (en) Processing apparatus and treatment liquid
Wiśniewski et al. Removal of troublesome anions from water by means of Donnan dialysis
JP2004077299A (en) Device and method for concentrating test water
Musbah et al. Removal of pesticides and desethylatrazine (DEA) by nanofiltration: effects of organic and inorganic solutes on solute rejection
Dzyaz’ko et al. Recovery of nickel ions from dilute solutions by electrodialysis combined with ion exchange
JP2008246442A (en) Method and apparatus for recovering phosphoric acid from phosphoric-acid containing water
Chilyumova et al. Nanofiltration of bivalent nickel cations—model parameter determination and process simulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees