JP5081559B2 - measuring device - Google Patents

measuring device Download PDF

Info

Publication number
JP5081559B2
JP5081559B2 JP2007256030A JP2007256030A JP5081559B2 JP 5081559 B2 JP5081559 B2 JP 5081559B2 JP 2007256030 A JP2007256030 A JP 2007256030A JP 2007256030 A JP2007256030 A JP 2007256030A JP 5081559 B2 JP5081559 B2 JP 5081559B2
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving position
amount
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007256030A
Other languages
Japanese (ja)
Other versions
JP2009085775A (en
Inventor
陽司 中原
Original Assignee
パナソニック デバイスSunx株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック デバイスSunx株式会社 filed Critical パナソニック デバイスSunx株式会社
Priority to JP2007256030A priority Critical patent/JP5081559B2/en
Publication of JP2009085775A publication Critical patent/JP2009085775A/en
Application granted granted Critical
Publication of JP5081559B2 publication Critical patent/JP5081559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、対象物にレーザ光を照射し、その反射光を受光して対象物の変位や形状を検出する測定装置に関するものである。   The present invention relates to a measuring apparatus that irradiates an object with laser light and receives the reflected light to detect the displacement and shape of the object.

従来、対象物の変位や表面形状を測定するための技術として、対象物までの距離を三角測距法で測定する技術が開示されている。例えば、特許文献1に記載されている装置では、投光素子から対象物に線状の光が照射され、その反射光がイメージセンサの撮像面に受光される。そして、イメージセンサの撮像面上に形成された照射像に基づいて、対象物の表面形状が測定される。   Conventionally, as a technique for measuring the displacement and surface shape of an object, a technique for measuring the distance to the object by a triangulation method has been disclosed. For example, in the apparatus described in Patent Document 1, linear light is irradiated from a light projecting element to an object, and the reflected light is received by an imaging surface of an image sensor. And based on the irradiation image formed on the imaging surface of an image sensor, the surface shape of a target object is measured.

具体的には、撮像面は行列状に配列された複数の画素により構成されているが、これら各画素の受光信号を、照射像の厚み方向に沿った走査線毎に読み出す。そして、読み出された走査線上の各画素について、受光信号レベルがピークとなる画素を特定し、その位置を受光位置として検出する。このように、ピークとなる画素の走査線上における受光位置を特定する処理を各走査線について行うことで、対象物の光が照射された部位の表面形状を検出することができる。
特開2006−133049号公報
Specifically, the imaging surface is composed of a plurality of pixels arranged in a matrix, and the light reception signal of each pixel is read for each scanning line along the thickness direction of the irradiation image. Then, for each pixel on the read scanning line, a pixel having a peak light receiving signal level is specified, and the position is detected as a light receiving position. Thus, the surface shape of the part irradiated with the light of the object can be detected by performing the process of specifying the light receiving position on the scanning line of the pixel that becomes the peak for each scanning line.
JP 2006-133049 A

しかしながら、上述したような従来の技術であると、対象物の表面に反射率の高い部分と低い部分とが混在する場合は、イメージセンサのダイナミックレンジが不足し、部分的に対象物の位置を検出できない場合があった。例えば、投光素子から照射されるレーザ光の投光量を対象物の反射率が高い部分に合わせて少なく設定すると、反射率が低い部分では受光量が不足して検出値がノイズに埋もれ、対象物の受光位置を検出できない。また、投光素子から照射されるレーザ光の投光量を対象物の反射率が低い部分に合わせて多く設定すると、反射率が高い部分では受光量が飽和し、受光量のピーク位置が検出できない。このため、対象物の反射率にバラツキがあると、対象物の測定を安定して行うことができないという問題があった。   However, in the case of the conventional technology as described above, when a portion with high reflectance and a portion with low reflectance are mixed on the surface of the object, the dynamic range of the image sensor is insufficient, and the position of the object is partially set. In some cases, it could not be detected. For example, if the amount of laser light emitted from the light projecting element is set to a low value according to the high reflectance part of the object, the received light amount is insufficient at the low reflectance part, and the detection value is buried in the noise. The light receiving position of the object cannot be detected. In addition, if the amount of laser light emitted from the light projecting element is set to be large in accordance with the portion where the reflectance of the object is low, the amount of received light is saturated at the portion where the reflectance is high, and the peak position of the received light amount cannot be detected . For this reason, there is a problem that if the reflectance of the object varies, the object cannot be measured stably.

また、光量のフィードバック制御により投光量やゲイン調整を行うと、フィードバック処理に時間を要するため、イメージセンサによる画像取得時間が長くなり、測定値の確定まで時間が長くなってしまうという問題があった。   In addition, when the light emission amount and gain adjustment are performed by the feedback control of the light amount, it takes time for the feedback processing, so there is a problem that the image acquisition time by the image sensor becomes long and the time until the measurement value is confirmed becomes long. .

本発明は、こうした実情に鑑みてなされたものであって、その目的は、対象物に反射率の高い部分と低い部分とが混在していても、対象物の測定を迅速かつ正確に行うことができるレーザセンサを提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to perform measurement of an object quickly and accurately even when a high-reflectance portion and a low-reflection portion are mixed in the object. An object of the present invention is to provide a laser sensor capable of

上記課題を解決するために、請求項1に記載の発明は、対象物に線状の光を照射する投光手段と、前記投光手段から照射され前記対象物で反射した線状の反射光を受光する二次元撮像手段と、前記二次元撮像手段の走査線毎に受光量に応じた受光信号を出力する受光処理手段と、前記受光処理手段から入力した受光信号に基づいて前記対象物の受光位置を検出する受光位置検出手段とを備えた測定装置であって、前記投光手段の投光量を予め決められた複数段階の量に変更することにより前記二次元撮像手段の受光量を変更して、前記受光位置検出手段に入力される受光信号のレベルを変更する変更手段と、前記変更手段により受光信号のレベルを変更するとともに、各レベルにおいて検出された受光位置の選択に基づいて前記各走査線毎に前記対象物の受光位置を求める制御手段とを備え、前記制御手段は、前記受光位置検出手段により一つの走査線において複数の受光位置が検出された場合は、同じ投光量において検出された他の走査線の受光位置との平均位置をその走査線での受光位置とするものである。 In order to solve the above-mentioned problem, the invention described in claim 1 includes a light projecting unit that irradiates a target with linear light, and a linear reflected light that is irradiated from the light projecting unit and reflected by the target. A two-dimensional imaging means for receiving light, a light-receiving processing means for outputting a light-receiving signal corresponding to the amount of light received for each scanning line of the two-dimensional imaging means, and a light-receiving signal inputted from the light-receiving processing means. A light receiving position detecting means for detecting a light receiving position, wherein the amount of light received by the two-dimensional imaging means is changed by changing the amount of light emitted by the light projecting means to a predetermined number of steps. And changing the level of the received light signal input to the received light position detecting means, changing the level of the received light signal by the changing means, and selecting the received light position detected at each level. For each scan line And control means for determining the light receiving position of the serial object, the control means, wherein when the plurality of light receiving positions are detected in one scan line by the light receiving position detecting means, the other detected in the same projection amount The average position of the scanning line with the light receiving position is the light receiving position on the scanning line.

同構成によれば、受光位置の検出に用いられる受光信号のレベルが順次変更され、それぞれのレベルにおいて検出された受光位置に基づいて、対象物の受光位置が求められる。これにより、受光信号のレベルを高くすることで反射率が低い部分の測定を行うことができ、受光信号のレベルを低くすることで反射率が高い部分の測定を行うことができ、対象物に反射率の高い部分と低い部分が混在していても、正確に測定を行うことができる。また、フィードバック制御を行う必要がないため、迅速にデータを得ることができる。
また、一つの走査線において受光位置のピーク値が明確とならず、受光位置が確定できない場合でも、その走査線において検出されたデータと同じ投光量において検出された他の走査線で検出されたデータに基づいて、好適に受光位置が推定される。
According to this configuration, the level of the light receiving signal used for detecting the light receiving position is sequentially changed, and the light receiving position of the object is obtained based on the light receiving position detected at each level. This makes it possible to measure a portion with low reflectivity by increasing the level of the received light signal, and to measure a portion with high reflectivity by reducing the level of the received light signal. Even if a portion with high reflectance and a portion with low reflectance are mixed, measurement can be performed accurately. Moreover, since it is not necessary to perform feedback control, data can be obtained quickly.
In addition, even if the peak value of the light receiving position in one scanning line is not clear and the light receiving position cannot be determined, it is detected in another scanning line detected at the same light intensity as the data detected in that scanning line. The light receiving position is preferably estimated based on the data.

請求項2に記載のように、前記制御手段は、前記変更手段による受光信号のレベルの変更によって一つの走査線において複数の受光位置が検出された場合は、それら複数の受光位置の平均位置をその走査線での受光位置とする。同構成によれば、一つの走査線において受光位置のピーク値が明確とならず、受光位置が確定できない場合でも、その走査線において検出されたデータから好適に受光位置が推定される。 According to a second aspect of the present invention, in the case where a plurality of light receiving positions are detected in one scanning line due to a change in the level of the light receiving signal by the changing means, the control means calculates an average position of the plurality of light receiving positions. The light receiving position on the scanning line is used. According to this configuration, even when the peak value of the light receiving position in one scanning line is not clear and the light receiving position cannot be determined, the light receiving position is preferably estimated from the data detected in the scanning line.

請求項3に記載のように、前記変更手段により変更する前記投光手段の投光量を調整する調整手段を備えた。同構成によれば、受光位置の検出に用いられる受光信号の変化量が調整されるため、対象物に対応した変更量とすることで、対象物をより正確に測定することが可能となる。 According to a third aspect of the present invention, there is provided adjusting means for adjusting the light projection amount of the light projecting means changed by the changing means. According to this configuration, since the amount of change in the received light signal used for detecting the light receiving position is adjusted, the amount of change corresponding to the object can be used to measure the object more accurately.

請求項4に記載のように、前記受光位置検出手段は、前記受光信号が所定の範囲内である場合に受光位置を検出する。同構成によれば、受光位置検出手段は所定の範囲内のみで受光位置を検出するため、受光位置を検出するための処理が高速で行われる。 According to a fourth aspect of the present invention, the light receiving position detecting means detects a light receiving position when the light receiving signal is within a predetermined range. According to this configuration, since the light receiving position detecting means detects the light receiving position only within a predetermined range, the process for detecting the light receiving position is performed at high speed.

請求項5に記載のように、前記受光位置検出手段が受光位置を検出しない場合は、その旨を報知する報知手段を備えた。同構成によれば、受光位置検出手段により受光位置が検出されない場合はその旨が報知されるため、ユーザは受光位置が検出されるように対応することが可能となる。 According to a fifth aspect of the present invention, when the light receiving position detecting means does not detect the light receiving position, a notifying means for notifying the fact is provided. According to this configuration, when the light receiving position is not detected by the light receiving position detecting means, the fact is notified, so that the user can cope with the detection of the light receiving position.

従って、上記記載の発明によれば、対象物に反射率の高い部分と低い部分とが混在していても、対象物の測定を迅速かつ正確に行うことができる。   Therefore, according to the above-described invention, the object can be measured quickly and accurately even if the object has both a high reflectance portion and a low reflectance portion.

以下、本発明を具体化した一実施の形態を図面に従って説明する。
図1に示すように、本実施の形態にかかる測定装置10は、投光手段としての投光素子11から対象物としてのワークW及びワークWが載置された測定台Tに対して線状のレーザ光を照射し、ワークWにて反射された光をイメージセンサ12で受光するように構成されている。なお、測定台Tの表面は反射率が低く、ワークWの表面は光沢があり非常に反射率が高い。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
As shown in FIG. 1, the measuring apparatus 10 according to the present embodiment is linear from the light projecting element 11 as the light projecting means to the work W as the object and the measurement table T on which the work W is placed. The laser beam is irradiated and the light reflected by the workpiece W is received by the image sensor 12. The surface of the measuring table T has a low reflectance, and the surface of the workpiece W is glossy and has a very high reflectance.

詳しくは、投光素子11は対象物としてのワークW及び測定台Tの鉛直上方に設置されている。投光素子11から照射されたレーザ光は、長方形の開口部を有するスリット板(図示略)を介して照射されることで、図2中斜線で示されるようにワークW及び測定台T上に線状の光を照射する。イメージセンサ12は、測定台Tの斜め上方に配置され、測定台T及びワークWからの反射光を受光する。   Specifically, the light projecting element 11 is installed vertically above the workpiece W and the measuring table T as the objects. The laser light emitted from the light projecting element 11 is emitted through a slit plate (not shown) having a rectangular opening, and is thus placed on the workpiece W and the measuring table T as shown by the oblique lines in FIG. Irradiate linear light. The image sensor 12 is disposed obliquely above the measurement table T and receives reflected light from the measurement table T and the workpiece W.

また、測定装置10はCPU13により統括的に制御されるものであり、CPU13は投光素子11を駆動する投光制御回路14、及びイメージセンサ12を駆動する受光制御回路15を制御する。また、CPU13にはメモリ13aが接続されている。   The measuring apparatus 10 is controlled centrally by the CPU 13, and the CPU 13 controls the light projection control circuit 14 that drives the light projecting element 11 and the light reception control circuit 15 that drives the image sensor 12. The CPU 13 is connected to a memory 13a.

投光素子11には、例えば複数のLD(レーザダイオード)が用いられる。CPU13は、変更手段及び投光量変更手段として機能し、投光素子11を構成する複数のLDのうち所定の数のLDに電流を流すように投光制御回路14を制御することで、投光素子11から照射されるレーザ光の光量を増減させる。例えば、CPU13は、投光素子11から照射されるレーザ光の投光量を多くするときは、電流を流すLDの数を多くし、投光素子11から照射されるレーザ光の投光量を少なくするときは、電流を流すLDの数を少なくする。本実施形態では、CPU13は、投光素子11から照射されるレーザ光を、投光量が比較的多い場合と、投光量が比較的少ない場合の2段階に切替える。   For the light projecting element 11, for example, a plurality of LDs (laser diodes) are used. The CPU 13 functions as a change unit and a light projection amount change unit, and controls the light projection control circuit 14 so that a current flows through a predetermined number of LDs constituting the light projecting element 11. The amount of laser light emitted from the element 11 is increased or decreased. For example, when increasing the light projection amount of the laser light emitted from the light projecting element 11, the CPU 13 increases the number of LDs through which a current flows and decreases the light projection amount of the laser light emitted from the light projecting element 11. In some cases, the number of LDs through which current flows is reduced. In the present embodiment, the CPU 13 switches the laser light emitted from the light projecting element 11 into two stages, that is, when the light projection amount is relatively large and when the light projection amount is relatively small.

イメージセンサ12は、受光したワークW及び測定台Tからの反射光を、走査線毎に受光量に応じた受光信号に変換して出力する。イメージセンサ12の走査線の方向は、投光素子11が投光する線状の光の反射光を受光して形成される線状の照射像に直交する方向に沿っている。イメージセンサ12には、例えばCCD(Charge-Coupled Device)が用いられる。CCDは、表面を構成する受光素子(フォトダイオード)において受光した光の強度に比例した信号電荷を個々に蓄積し、各受光素子に蓄積された各信号電荷(受光信号)をシフトレジスタで順次転送する。本実施形態では、イメージセンサ12のCCDを構成する受光素子が二次元撮像手段に相当し、シフトレジスタが受光処理手段に相当する。   The image sensor 12 converts the received light from the workpiece W and the measuring table T into a received light signal corresponding to the received light amount for each scanning line, and outputs the received light signal. The direction of the scanning line of the image sensor 12 is along the direction orthogonal to the linear irradiation image formed by receiving the reflected light of the linear light projected by the light projecting element 11. For example, a CCD (Charge-Coupled Device) is used for the image sensor 12. The CCD individually accumulates signal charges proportional to the intensity of light received by the light receiving elements (photodiodes) that make up the surface, and sequentially transfers each signal charge (light receiving signal) accumulated in each light receiving element using a shift register. To do. In the present embodiment, the light receiving element constituting the CCD of the image sensor 12 corresponds to a two-dimensional imaging unit, and the shift register corresponds to a light receiving processing unit.

CPU13は、投光素子11に電流を印加するタイミングに合わせて、イメージセンサ12を構成するCCDを駆動するように受光制御回路15を制御する。これにより、投光素子11から照射されたレーザ光のワークW及び測定台Tからの反射光が、イメージセンサ12にて受光され、その受光量が受光信号に変換されてCPU13に出力される。   The CPU 13 controls the light reception control circuit 15 so as to drive the CCD constituting the image sensor 12 in accordance with the timing of applying a current to the light projecting element 11. As a result, the reflected light from the workpiece W and the measuring table T of the laser light emitted from the light projecting element 11 is received by the image sensor 12, and the received light amount is converted into a received light signal and output to the CPU 13.

CPU13は、受光位置検出手段として機能し、イメージセンサ12から入力した受光信号に基づいて、イメージセンサ12の走査線毎に、例えば図3に示すような受光量の分布図を得る。そして、その分布図においてピーク値となる位置(画素)を検出することで、ワークWの受光位置Xを検出する。CPU13は、各走査線における受光位置を検出することで、ワークW及び測定台T全体の変位量や形状等を測定することができる。   The CPU 13 functions as a light receiving position detecting unit, and obtains a distribution diagram of the received light amount as shown in FIG. 3 for each scanning line of the image sensor 12 based on the light receiving signal input from the image sensor 12. And the light reception position X of the workpiece | work W is detected by detecting the position (pixel) used as the peak value in the distribution map. The CPU 13 can measure the displacement amount, shape, and the like of the workpiece W and the measuring table T as a whole by detecting the light receiving position on each scanning line.

また、CPU13は、上述したように投光素子11から照射されるレーザ光の投光量を、投光量が比較的多い場合と比較的少ない場合の2段階に変更することで、イメージセンサ12から入力される受光信号のレベルを変更するとともに、各投光量において受光位置を検出し、ワークW及び測定台Tの全体における受光位置を求める。   Further, as described above, the CPU 13 changes the light projection amount of the laser light emitted from the light projecting element 11 in two steps, that is, when the light projection amount is relatively large and when it is relatively small, thereby inputting from the image sensor 12. In addition to changing the level of the received light signal, the light receiving position is detected for each light projection amount, and the light receiving position in the entire work W and the measuring table T is obtained.

具体的には、CPU13は、各走査線において、投光素子11から照射される光の投光量を多くして検出された受光位置をメモリ13aに書き込んだ後、投光素子11から照射される光の投光量を少なくして検出された受光位置をメモリ13aに書き込む。投光素子11からの投光量を多くした場合は、反射率が低い部分(測定台T)の受光位置が検出され、投光素子11からの投光量を少なくした場合は、反射率が高い部分(ワークW)の受光位置が検出される。そして、CPU13は、各走査線において、各投光量で検出された受光位置をメモリ13aから読み出して合成することで、ワークW及び測定台Tの全体の測定を行う。   Specifically, the CPU 13 writes the light receiving position detected by increasing the light projection amount of the light emitted from the light projecting element 11 in each scanning line to the memory 13 a and then irradiates from the light projecting element 11. The detected light receiving position is written in the memory 13a with the light projection amount reduced. When the light projecting amount from the light projecting element 11 is increased, the light receiving position of the portion having the low reflectance (measurement table T) is detected, and when the light projecting amount from the light projecting element 11 is decreased, the portion having the high reflectivity. The light receiving position of (work W) is detected. Then, the CPU 13 measures the entire workpiece W and the measuring table T by reading out from the memory 13a and synthesizing the light receiving positions detected by the respective light projection amounts in each scanning line.

なお、CPU13は、イメージセンサ12から入力する受光信号が所定の範囲内である場合に、受光位置を検出する。具体的には、図3に示すように、受光量R1〜R2までの範囲内において、受光位置を検出する。   The CPU 13 detects the light receiving position when the light receiving signal input from the image sensor 12 is within a predetermined range. Specifically, as shown in FIG. 3, the light receiving position is detected within the range of the light receiving amounts R1 to R2.

また、CPU13には、ユーザにより操作されることで、投光素子11からの投光量等の各種設定を指示する電気信号をCPU13に出力する操作部16が接続されるとともに、イメージセンサ12から入力した受光信号に基づいてCPU13が検出した測定位置を表示する表示部17が接続されている。   Further, the CPU 13 is connected to an operation unit 16 that outputs an electric signal to the CPU 13 for instructing various settings such as the amount of light emitted from the light projecting element 11 when operated by the user. A display unit 17 for displaying the measurement position detected by the CPU 13 based on the received light signal is connected.

表示部17には、例えば図4に示すような検出結果が表示される。ワークW及び測定台Tに照射された線状のレーザ光は、測定台Tの上面とワークWの上面とで高さが異なるため、イメージセンサ12の受光面で光を受ける位置(画素)が異なる。そのため、イメージセンサ12の受光面の位置に対応して、線分S1〜S3に分かれて表示部17に表示される。なお、図4中の線分S2の長さは、図2中のワークWの幅Wwに対応し、図4中の線分S1,S3と線分S2の差Hは、図2中のワークWの高さWhに対応する。   For example, a detection result as shown in FIG. 4 is displayed on the display unit 17. Since the linear laser light applied to the workpiece W and the measurement table T has different heights on the upper surface of the measurement table T and the upper surface of the workpiece W, the position (pixel) where the light is received by the light receiving surface of the image sensor 12 is determined. Different. Therefore, it is divided into line segments S1 to S3 and displayed on the display unit 17 corresponding to the position of the light receiving surface of the image sensor 12. The length of the line segment S2 in FIG. 4 corresponds to the width Ww of the workpiece W in FIG. 2, and the difference H between the line segments S1, S3 and the line segment S2 in FIG. This corresponds to the height Wh of W.

詳述すると、図5に示すように、CPU13は、各走査線21〜34において、投光素子11から照射されるレーザ光の投光量を変更し、各投光量において受光位置を検出する。CPU13は、投光量を多くしたときに検出された受光位置Sa〜Sdに基づいて線分S1を表示し、同じく投光量を多くしたときに検出された受光位置Sk〜Snに基づいて線分S3を表示する。また、CPU13は、投光量を少なくしたときに検出された受光位置Se〜Sjに基づいて線分S2を表示する。測定台Tの表面は反射率が低いため、受光位置Sa〜Sd,Sk〜Snは投光量が高いときに検出され、ワークWの表面は反射率が高いため、受光位置Se〜Sjは投光量が低いときに検出される。そして、CPU13は、各走査線で検出された受光位置を合成することで、ワークW及び測定台Tに対応する線分S1〜S3を表示する。   More specifically, as shown in FIG. 5, the CPU 13 changes the light projection amount of the laser light emitted from the light projecting element 11 in each scanning line 21 to 34 and detects the light receiving position in each light projection amount. The CPU 13 displays the line segment S1 based on the light receiving positions Sa to Sd detected when the light projection amount is increased, and similarly, the line segment S3 based on the light reception positions Sk to Sn detected when the light projection amount is increased. Is displayed. Further, the CPU 13 displays the line segment S2 based on the light receiving positions Se to Sj detected when the light projection amount is reduced. Since the surface of the measuring table T has a low reflectance, the light receiving positions Sa to Sd and Sk to Sn are detected when the amount of projected light is high. The surface of the workpiece W has a high reflectance, so that the light receiving positions Se to Sj are projected. Detected when is low. And CPU13 displays line segment S1-S3 corresponding to the workpiece | work W and the measurement stand T by synthesize | combining the light reception position detected by each scanning line.

ここで、例えば走査線23においては、測定台TとワークWとの境目部分であるため、投光量が高いときも投光量が低いときも受光位置が検出され、一つの走査線において2箇所の受光位置Sc1,Sc2が検出されている。このとき、図6に示すように、走査線23において各投光量で出力された受光量の分布図のピーク位置がずれている。この場合、CPU13は、投光量が高いときに検出された受光位置Sc1と投光量が低いときに検出された受光位置Sc2との間の平均位置を、走査線23における受光位置Scとして求められる。また、走査線24,31,32についても同様に、受光位置がそれぞれ2箇所検出されており、CPU13はそれらの平均位置を受光位置としている。そして、CPU13は、受光位置Sa〜Sdの平均位置を線分S1とし、受光位置Sk〜Snの平均位置を線分S3として、表示部17に表示させている。   Here, for example, since the scanning line 23 is a boundary portion between the measuring table T and the workpiece W, the light receiving position is detected both when the light projection amount is high and when the light projection amount is low. The light receiving positions Sc1 and Sc2 are detected. At this time, as shown in FIG. 6, the peak position of the distribution chart of the received light amount output at each light projection amount on the scanning line 23 is shifted. In this case, the CPU 13 obtains an average position between the light receiving position Sc1 detected when the light projection amount is high and the light reception position Sc2 detected when the light projection amount is low as the light reception position Sc on the scanning line 23. Similarly, two light receiving positions are detected for each of the scanning lines 24, 31, and 32, and the CPU 13 uses the average position as the light receiving position. Then, the CPU 13 displays the average position of the light receiving positions Sa to Sd on the display unit 17 as the line segment S1 and the average position of the light receiving positions Sk to Sn as the line segment S3.

また、CPU13は、投光素子11から照射されるレーザ光の投光量の変更量を調整することが可能である。詳しくは、ユーザにより操作部16が操作されて、投光素子11から照射される光の投光量を変更するように指示されると、CPU13は投光素子11において電流を流すLDの数を増減することで、投光素子11から照射される光の投光量を調整することができる。このとき、操作部16及びCPU13は、CPU13に入力される受光信号を調整する調整手段に相当する。   Further, the CPU 13 can adjust the amount of change in the light projection amount of the laser light emitted from the light projecting element 11. Specifically, when the operation unit 16 is operated by the user and instructed to change the light projection amount of the light emitted from the light projecting element 11, the CPU 13 increases or decreases the number of LDs through which current flows in the light projecting element 11. This makes it possible to adjust the light projection amount of the light emitted from the light projecting element 11. At this time, the operation unit 16 and the CPU 13 correspond to an adjustment unit that adjusts a light reception signal input to the CPU 13.

また、CPU13は、投光素子11から照射されるレーザ光の投光量を変更しても、受光位置を検出しない場合には、その旨を表示部17に表示してユーザに報知する。このとき、CPU13及び表示部17は報知手段に相当する。例えば、図7(a)に示すように、投光量を多くしても、イメージセンサ12からCPU13に出力される受光量の範囲が受光量R1〜R2に含まれない場合、受光位置は検出されない。こういった場合、CPU13は、イメージセンサ12での受光量が少な過ぎる旨を表示部17に表示する。ユーザは例えば操作部16を操作して、投光素子11から照射されるレーザ光の投光量を多くするように調整する。   If the light receiving position is not detected even if the light projection amount of the laser light emitted from the light projecting element 11 is changed, the CPU 13 displays this fact on the display unit 17 to notify the user. At this time, the CPU 13 and the display unit 17 correspond to notification means. For example, as shown in FIG. 7A, even if the light projection amount is increased, the light reception position is not detected when the light reception amount range output from the image sensor 12 to the CPU 13 is not included in the light reception amounts R1 and R2. . In such a case, the CPU 13 displays on the display unit 17 that the amount of light received by the image sensor 12 is too small. For example, the user operates the operation unit 16 to adjust the amount of laser light emitted from the light projecting element 11 to increase.

また、例えば、図7(b)に示すように、投光量を少なくしても、イメージセンサ12からCPU13に出力される受光量のピーク位置付近が受光量R1〜R2の範囲を超えてしまう場合、受光位置は検出されない。こういった場合、CPU13は、イメージセンサ12での受光量が多過ぎる旨を表示部17に表示する。ユーザは例えば操作部16を操作して、投光素子11から照射されるレーザ光の投光量を少なくするように調整する。   For example, as shown in FIG. 7B, even if the light projection amount is reduced, the vicinity of the peak position of the received light amount output from the image sensor 12 to the CPU 13 exceeds the range of the received light amount R1 to R2. The light receiving position is not detected. In such a case, the CPU 13 displays on the display unit 17 that the amount of light received by the image sensor 12 is too large. For example, the user operates the operation unit 16 to adjust so as to reduce the light projection amount of the laser light emitted from the light projecting element 11.

また、例えば、投光量を少なくしても、イメージセンサ12からCPU13に出力される受光信号のピーク位置が飽和して受光位置が検出されない場合、その旨が表示部17に表示されると、ユーザは例えば操作部16を操作して、投光素子11から照射されるレーザ光の投光量を少なくするように調整する。また、例えば、投光量を多くしても、イメージセンサ12からCPU13に出力される受光信号が低くノイズに埋もれてしまい、受光位置が検出されない場合、その旨が表示部17に表示されると、ユーザは例えば操作部16を操作して、投光素子11から照射されるレーザ光の投光量を多くするように調整する。   In addition, for example, when the peak position of the light reception signal output from the image sensor 12 to the CPU 13 is saturated and the light reception position is not detected even if the light projection amount is reduced, when the fact is displayed on the display unit 17, For example, the operation unit 16 is operated to adjust so that the light projection amount of the laser light emitted from the light projecting element 11 is reduced. Further, for example, even when the light projection amount is increased, the light reception signal output from the image sensor 12 to the CPU 13 is low and buried in noise, and when the light reception position is not detected, that fact is displayed on the display unit 17. For example, the user operates the operation unit 16 to adjust the amount of laser light emitted from the light projecting element 11 to increase.

次に、本実施形態の特徴的な作用効果を記載する。
(1)測定装置10では、投光素子11から照射されるレーザ光の投光量を増減させることで、受光位置の検出に用いられる受光信号のレベルが変更され、それぞれのレベルにおいて検出された受光位置に基づいて、ワークW及び測定台Tの受光位置が求められる。これにより、受光信号のレベルを強くすることで反射率が低い部分(測定台T)の測定を行うことができ、受光量のレベルを弱くすることで反射率が高い部分(ワークW)の測定を行うことができ、対象物に反射率の高い部分と低い部分が混在していても、正確に測定を行うことができる。
Next, characteristic effects of the present embodiment will be described.
(1) In the measurement apparatus 10, the level of the received light signal used for detecting the light receiving position is changed by increasing / decreasing the light projection amount of the laser light emitted from the light projecting element 11, and the light received detected at each level. Based on the position, the light receiving positions of the workpiece W and the measuring table T are obtained. As a result, by increasing the level of the received light signal, it is possible to measure a portion having a low reflectance (measurement table T), and by decreasing the level of the amount of received light, measuring a portion having a high reflectance (work W). Even if a high-reflectance portion and a low-reflectance portion are mixed in the target object, accurate measurement can be performed.

(2)CPU13は、投光素子11から照射される投光量を多くして受光位置を検出した後、投光量を少なくして受光位置を検出し、それらの受光位置を合成することでワークW及び測定台Tの受光位置を合成するため、フィードバック制御を行う必要がない。このため、迅速にデータを得ることができる。   (2) The CPU 13 detects the light receiving position by increasing the amount of light emitted from the light projecting element 11, then detects the light receiving position by decreasing the amount of light projected, and synthesizes the light receiving positions, thereby combining the workpiece W. In addition, since the light receiving position of the measuring table T is synthesized, it is not necessary to perform feedback control. For this reason, data can be obtained quickly.

(3)ワークW及び測定台Tの表面の反射率に適した投光量の光が照射されたときに、ワークW及び測定台Tの受光位置が検出されるため、ワークW及び測定台Tの表面の反射率に適応した結果を得ることができる。   (3) Since the light receiving position of the workpiece W and the measurement table T is detected when light of a light projection amount suitable for the reflectance of the surface of the workpiece W and the measurement table T is irradiated, the workpiece W and the measurement table T A result adapted to the reflectance of the surface can be obtained.

(4)一つの走査線23において複数の受光位置Sc1,Sc2が検出された場合は、それら複数の受光位置Sc1,Sc2の平均位置が受光位置Scとされるため、一つの走査線23において受光位置のピーク値が明確とならず、受光位置が確定できない場合でも、その走査線23において検出されたデータから好適に受光位置が推定される。   (4) When a plurality of light receiving positions Sc1 and Sc2 are detected in one scanning line 23, the average position of the plurality of light receiving positions Sc1 and Sc2 is set as the light receiving position Sc. Even when the peak value of the position is not clear and the light receiving position cannot be determined, the light receiving position is preferably estimated from the data detected on the scanning line 23.

(5)CPU13により、投光素子11から照射されるレーザ光の投光量が調整可能でるため、ワークW及び測定台Tに対応した変更量とすることで、ワークW及び測定台Tをより正確に測定することが可能となる。   (5) Since the light projection amount of the laser light emitted from the light projecting element 11 can be adjusted by the CPU 13, the work W and the measurement table T can be more accurately set by changing the amount corresponding to the work W and the measurement table T. It becomes possible to measure.

(6)CPU13は、イメージセンサ12から入力する受光量が受光量R1〜R2の範囲内にあるときのみ受光位置を検出するため、受光位置を検出するための処理が高速で行われる。   (6) Since the CPU 13 detects the light receiving position only when the amount of received light input from the image sensor 12 is within the range of the received light amounts R1 to R2, the process for detecting the light receiving position is performed at high speed.

(7)CPU13は、受光位置を検出しない場合は、その旨を表示部17に表示する。受光位置が検出されない場合はその旨が報知されるため、ユーザは受光位置が検出されるように対応することが可能となる。   (7) When the CPU 13 does not detect the light receiving position, the CPU 13 displays that fact on the display unit 17. If the light receiving position is not detected, the fact is notified, and the user can take action to detect the light receiving position.

尚、本発明の実施形態は、以下のように変更してもよい。
・上記実施形態では、投光素子11を構成する複数のLDに対して、投光させるLDの数を変更して投光量を調整するようにしたが、1つのLDに対して供給する電流量を制御して投光量を調整するようにしてもよい。また、投光素子11と対象物との間にフィルタ等の透過光の光量を調整可能な光学素子と、その光学素子を移動させるモータ等のアクチュエータとを投光制御手段として備える構成としてもよい。
In addition, you may change embodiment of this invention as follows.
In the above embodiment, the amount of light emitted is adjusted by changing the number of LDs to be projected for a plurality of LDs constituting the light projecting element 11, but the amount of current supplied to one LD May be adjusted to adjust the amount of light emitted. Moreover, it is good also as a structure provided with the optical element which can adjust the light quantity of transmitted light, such as a filter, between the light projection element 11 and a target object, and actuators, such as a motor which moves the optical element, as a light projection control means. .

・上記実施形態では、一つの走査線23において複数の受光位置Sc1,Sc2が検出された場合は、それらの平均位置を受光位置Scとして検出するものとしたが、投光素子11から照射されるレーザ光の投光量が同じときに検出された他の走査線21,22の受光位置Sa,Sbとの平均位置を、その走査線23での受光位置としてもよい。その場合、図8に示すように、走査線23において、受光位置Sa,Sbと略同じ画素が受光位置Scとして求められる。同構成によれば、一つの走査線23において受光位置のピーク値が明確とならず、受光位置が確定できない場合でも、その走査線23において検出されたデータと他の走査線21,22で検出されたデータに基づいて好適に受光位置が推定される。   In the above embodiment, when a plurality of light receiving positions Sc1 and Sc2 are detected on one scanning line 23, the average position thereof is detected as the light receiving position Sc. An average position with respect to the light receiving positions Sa and Sb of the other scanning lines 21 and 22 detected when the light projection amounts of the laser beams are the same may be used as the light receiving position on the scanning line 23. In that case, as shown in FIG. 8, on the scanning line 23, pixels that are substantially the same as the light receiving positions Sa and Sb are obtained as the light receiving positions Sc. According to this configuration, the peak value of the light receiving position in one scanning line 23 is not clear, and even if the light receiving position cannot be determined, the data detected in the scanning line 23 and the other scanning lines 21 and 22 are detected. The light receiving position is preferably estimated based on the obtained data.

・上記実施形態では、一つの走査線23において、投光素子11において変更される各投光量において受光位置Sc1,Sc2が2箇所検出される場合について説明したが、同じ投光量にて複数の受光位置が検出されても、それらの受光位置の平均位置を受光位置とすればよい。また、一つの走査線において2箇所以上の受光位置が検出された場合も、それらの受光位置に基づいて、その走査線における受光位置を求めればよい。   In the above embodiment, a case has been described in which two light receiving positions Sc1 and Sc2 are detected for each light projecting amount changed in the light projecting element 11 in one scanning line 23. Even if the position is detected, an average position of the light receiving positions may be set as the light receiving position. Further, when two or more light receiving positions are detected in one scanning line, the light receiving positions in the scanning line may be obtained based on the light receiving positions.

・上記実施形態では、投光素子11から照射されるレーザ光の投光量を、比較的多い場合と比較的少ない場合の2段階に順次変更するものとしたが、レーザ光の投光量を3段階以上変更してもよい。つまり、CPU13に入力される受光信号のレベルを、3段階以上に順次変更してもよい。要は、対象物に対応するように、CPU13に入力される受光信号のレベルを変更すればよい。   In the above-described embodiment, the light projection amount of the laser light emitted from the light projecting element 11 is sequentially changed to two steps, that is, a relatively large amount and a relatively small amount. The above may be changed. That is, the level of the received light signal input to the CPU 13 may be sequentially changed in three steps or more. In short, the level of the received light signal input to the CPU 13 may be changed so as to correspond to the object.

・上記実施形態では、CPU13は、受光信号が受光量R1〜R2の範囲内にあるときに受光位置を検出するものとしたが、受光位置を検出する範囲を限定しなくてもよい。
・上記実施形態において、投光素子11はLDに限定されず、例えばLED(発光ダイオード)を用いてもよい。
In the above embodiment, the CPU 13 detects the light reception position when the light reception signal is within the range of the light reception amounts R1 to R2, but the range for detecting the light reception position may not be limited.
In the above embodiment, the light projecting element 11 is not limited to the LD, and for example, an LED (light emitting diode) may be used.

・上記実施形態では、投光素子11をワークW及び測定台Tの鉛直上方に配置し、イメージセンサ12を測定台Tの斜め上方に配置したが、イメージセンサ12によりワークWの形状(ワークWと測定台Tの高さの差)に応じて反射光が異なる位置に受光されれば配置位置は上記に限定されない。例えば、イメージセンサ12をワークW及び測定台Tの鉛直上方に配置し、投光素子11を測定台Tの斜め上方に配置してもよい。   In the above embodiment, the light projecting element 11 is arranged vertically above the workpiece W and the measuring table T, and the image sensor 12 is arranged obliquely above the measuring table T. However, the shape of the workpiece W (the workpiece W is measured by the image sensor 12). If the reflected light is received at different positions according to the difference in height between the measuring table T and the measuring table T, the arrangement position is not limited to the above. For example, the image sensor 12 may be disposed vertically above the workpiece W and the measurement table T, and the light projecting element 11 may be disposed obliquely above the measurement table T.

・上記実施形態において、イメージセンサ12はCCDに限定されず、例えばCMOSを用いてもよい。   In the above embodiment, the image sensor 12 is not limited to the CCD, and for example, a CMOS may be used.

測定装置の概略構成図。The schematic block diagram of a measuring apparatus. ワーク及び測定台の斜視図。The perspective view of a workpiece | work and a measurement stand. 受光信号の受光量の分布図。The distribution diagram of the light reception amount of a light reception signal. 表示部に表示される検出結果の説明図。Explanatory drawing of the detection result displayed on a display part. 表示部に表示される検出結果の説明図。Explanatory drawing of the detection result displayed on a display part. 受光信号の受光量の分布図。The distribution diagram of the light reception amount of a light reception signal. (a),(b)は、受光信号の受光量の分布図。(A), (b) is a distribution diagram of the amount of received light of the received light signal. 別例の表示部に表示される検出結果の説明図。Explanatory drawing of the detection result displayed on the display part of another example.

符号の説明Explanation of symbols

10…測定装置、11…投光手段としての投光素子、12…二次元撮像手段及び受光処理手段としてのイメージセンサ、13…受光位置検出手段、変更手段、制御手段、投光量変更手段、受光量変更手段、調整手段、報知手段としてのCPU、16…調整手段としての操作部、17…報知手段としての表示部、21〜34…走査線、W…対象物としてのワーク、T…対象物としての測定台、Sa〜Sn,Sc1,Sc2,Sd1,Sd2,Sk1,Sk2,Sl1,Sl2,X…受光位置。   DESCRIPTION OF SYMBOLS 10 ... Measuring apparatus, 11 ... Light projection element as light projection means, 12 ... Image sensor as two-dimensional imaging means and light reception process means, 13 ... Light receiving position detection means, Change means, Control means, Light emission amount change means, Light reception Quantity changing means, adjusting means, CPU as notifying means, 16 ... operation part as adjusting means, 17 ... display part as notifying means, 21-34 ... scanning line, W ... work as object, T ... object As a measuring table, Sa to Sn, Sc1, Sc2, Sd1, Sd2, Sk1, Sk2, Sl1, Sl2, X ... light receiving position.

Claims (5)

対象物に線状の光を照射する投光手段と、前記投光手段から照射され前記対象物で反射した線状の反射光を受光する二次元撮像手段と、前記二次元撮像手段の走査線毎に受光量に応じた受光信号を出力する受光処理手段と、前記受光処理手段から入力した受光信号に基づいて前記対象物の受光位置を検出する受光位置検出手段とを備えた測定装置であって、
前記投光手段の投光量を予め決められた複数段階の量に変更することにより前記二次元撮像手段の受光量を変更して、前記受光位置検出手段に入力される受光信号のレベルを変更する変更手段と、
前記変更手段により受光信号のレベルを変更するとともに、各レベルにおいて検出された受光位置の選択に基づいて前記各走査線毎に前記対象物の受光位置を求める制御手段とを備え、
前記制御手段は、前記受光位置検出手段により一つの走査線において複数の受光位置が検出された場合は、同じ投光量において検出された他の走査線の受光位置との平均位置をその走査線での受光位置とすることを特徴とする測定装置。
Projecting means for irradiating the object with linear light, two-dimensional imaging means for receiving linear reflected light emitted from the light projecting means and reflected by the object, and scanning lines of the two-dimensional imaging means A measuring apparatus comprising: a light receiving processing means for outputting a light receiving signal corresponding to the amount of received light; and a light receiving position detecting means for detecting the light receiving position of the object based on the light receiving signal input from the light receiving processing means. And
By changing the amount of light emitted by the light projecting means to a predetermined number of steps, the amount of light received by the two-dimensional imaging means is changed, and the level of the received light signal input to the light receiving position detecting means is changed. Change means,
And changing the level of the light reception signal by the changing means, and a control means for obtaining the light receiving position of the object for each scanning line based on the selection of the light receiving position detected at each level,
In the case where a plurality of light receiving positions are detected in one scanning line by the light receiving position detecting means, the control means calculates an average position of the light receiving positions of other scanning lines detected with the same light projection amount with the scanning line. The measuring device characterized by the light receiving position.
請求項1に記載の測定装置において、
前記制御手段は、前記変更手段による受光信号のレベルの変更によって一つの走査線において複数の受光位置が検出された場合は、それら複数の受光位置の平均位置をその走査線での受光位置とすることを特徴とする測定装置。
The measuring apparatus according to claim 1 ,
In the case where a plurality of light receiving positions are detected in one scanning line due to the change in the level of the light receiving signal by the changing means, the control means sets the average position of the plurality of light receiving positions as the light receiving position in the scanning line. A measuring device.
請求項1又は2に記載の測定装置において、
前記変更手段により変更する前記投光手段の投光量を調整する調整手段を備えたことを特徴とする測定装置。
The measuring apparatus according to claim 1 or 2 ,
A measuring apparatus comprising: an adjusting unit that adjusts a light projection amount of the light projecting unit that is changed by the changing unit.
請求項1〜3のうち何れか1項に記載の測定装置において、
前記受光位置検出手段は、前記受光信号が所定の範囲内である場合に受光位置を検出することを特徴とする測定装置。
In the measuring device according to any one of claims 1 to 3 ,
The light receiving position detecting means detects a light receiving position when the light receiving signal is within a predetermined range.
請求項1〜4のうち何れか1項に記載の測定装置において、
前記受光位置検出手段が受光位置を検出しない場合は、その旨を報知する報知手段を備えたことを特徴とする測定装置。
In the measuring device according to any one of claims 1 to 4 ,
When the light receiving position detecting means does not detect the light receiving position, the measuring apparatus is provided with a notifying means for notifying that effect.
JP2007256030A 2007-09-28 2007-09-28 measuring device Active JP5081559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007256030A JP5081559B2 (en) 2007-09-28 2007-09-28 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007256030A JP5081559B2 (en) 2007-09-28 2007-09-28 measuring device

Publications (2)

Publication Number Publication Date
JP2009085775A JP2009085775A (en) 2009-04-23
JP5081559B2 true JP5081559B2 (en) 2012-11-28

Family

ID=40659383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007256030A Active JP5081559B2 (en) 2007-09-28 2007-09-28 measuring device

Country Status (1)

Country Link
JP (1) JP5081559B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267784B2 (en) * 2013-07-15 2016-02-23 Faro Technologies, Inc. Laser line probe having improved high dynamic range
US9531967B2 (en) 2013-12-31 2016-12-27 Faro Technologies, Inc. Dynamic range of a line scanner having a photosensitive array that provides variable exposure
US9658061B2 (en) 2013-12-31 2017-05-23 Faro Technologies, Inc. Line scanner that uses a color image sensor to improve dynamic range
JP6775396B2 (en) * 2016-11-25 2020-10-28 リコーエレメックス株式会社 Visual inspection equipment
US10753726B2 (en) 2017-03-26 2020-08-25 Cognex Corporation System and method for 3D profile determination using model-based peak selection
US11054546B2 (en) 2018-07-16 2021-07-06 Faro Technologies, Inc. Laser scanner with enhanced dymanic range imaging
WO2020261494A1 (en) * 2019-06-27 2020-12-30 大塚電子株式会社 Measurement device and measurement method
JP7300971B2 (en) * 2019-11-25 2023-06-30 株式会社ミツトヨ Optical measuring device and light source control method
JP7296313B2 (en) * 2019-12-20 2023-06-22 株式会社豊田中央研究所 Height distribution measuring device and height distribution measuring method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221011A (en) * 1985-07-19 1987-01-29 Nissan Motor Co Ltd Measuring apparatus by light cutting method
JPH05340727A (en) * 1992-06-05 1993-12-21 Yunisun:Kk Three-dimensional shape measuring instrument
JP2008215975A (en) * 2007-03-02 2008-09-18 Pulstec Industrial Co Ltd Three-dimensional shape measuring device and three-dimensional shape measuring method

Also Published As

Publication number Publication date
JP2009085775A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5081559B2 (en) measuring device
US9188432B2 (en) Profile measuring apparatus, structure manufacturing system, method for measuring profile, method for manufacturing structure, and non-transitory computer readable medium
JP6045963B2 (en) Optical distance measuring device
US8917900B2 (en) Measurement apparatus
US9068821B2 (en) Optical measuring device with positional displacement detection
US9134117B2 (en) Distance measuring system and distance measuring method
JP2009204425A (en) Three-dimensional shape measuring device and method
JP2015059825A (en) Three-dimensional measuring apparatus
WO2012032805A1 (en) Displacement sensor
JP5403458B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP5662046B2 (en) Displacement sensor
JP2008096125A (en) Optical displacement meter, optical method and program for recording displacement, computer-readable recording medium, and apparatus with the program stored
JP4474221B2 (en) Optical displacement meter
JP2010122127A (en) Optical displacement sensor system, console, controller and program
JP2009085739A (en) Shape measuring instrument and shape measuring method
JP4728609B2 (en) Optical displacement meter
JP4773802B2 (en) Displacement sensor
JP6774929B2 (en) Three-dimensional measuring device
JP2007271519A (en) Displacement sensor and shape measuring system
JP5410138B2 (en) Displacement sensor system and displacement sensor
JP2007101215A (en) Shape measurement method, shape measurement system and shape measurement device
JP2007205807A (en) Detection sensor and shape measuring method
JP2012117871A (en) Detector
JP2017223451A (en) Measurement device
JP5021412B2 (en) BGA solder ball height measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5081559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250