JP5078167B2 - AuGe alloy balls for soldering - Google Patents

AuGe alloy balls for soldering Download PDF

Info

Publication number
JP5078167B2
JP5078167B2 JP2009062131A JP2009062131A JP5078167B2 JP 5078167 B2 JP5078167 B2 JP 5078167B2 JP 2009062131 A JP2009062131 A JP 2009062131A JP 2009062131 A JP2009062131 A JP 2009062131A JP 5078167 B2 JP5078167 B2 JP 5078167B2
Authority
JP
Japan
Prior art keywords
mass
auge alloy
soldering
content
auge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009062131A
Other languages
Japanese (ja)
Other versions
JP2010214396A (en
Inventor
知宏 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2009062131A priority Critical patent/JP5078167B2/en
Publication of JP2010214396A publication Critical patent/JP2010214396A/en
Application granted granted Critical
Publication of JP5078167B2 publication Critical patent/JP5078167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電子部品の封止及び接合に使用される半田付け用AuGe合金球に関するものである。   The present invention relates to an AuGe alloy ball for soldering used for sealing and joining electronic components.

AuGe共晶合金球は、共晶点で360℃程度の適度の融点を持ち、電気伝導性や熱伝導性に優れ、化学的にも安定していることから、SAWフィルター、弾性波フィルター、水晶振動子等の高信頼性を求められる電子部品のパッケージ接合や封止のための半田材として用いられている。
電子部品のパッケージの信頼性を維持するために、AuGe合金球には多くの特性が求められており、例えば、球径を高精度で管理して半田材のボリュームを一定にすることや、真球度の高い材料を採用することが行われている。接合や封止の際の半田付け不良は電子部品のパッケージの信頼性を低下させる重要な要因であり、更なる信頼性向上のために日々研究が進められている。たとえば、特開2008−30093号公報には表面層のGeの含有率を減じて表面層を改質することで表面酸化による半田付け性の低下を改善する方法が記載されている。しかしながら、AuGe合金球内部組織の不具合に起因する半田付け性の低下に対してこれらの表面の改質だけでは必ずしも十分な半田付け性が得られるとはいえず、表面、内部組織共に最適なAuGe合金球が求められている。
AuGe eutectic alloy spheres have a moderate melting point of about 360 ° C. at the eutectic point, are excellent in electrical conductivity and thermal conductivity, and are chemically stable. SAW filters, elastic wave filters, quartz crystals It is used as a solder material for package bonding and sealing of electronic components that require high reliability such as vibrators.
In order to maintain the reliability of electronic component packages, AuGe alloy balls are required to have many characteristics. For example, it is possible to manage the sphere diameter with high accuracy to keep the solder material volume constant, Adopting materials with high sphericity. Insufficient soldering at the time of joining and sealing is an important factor that lowers the reliability of electronic component packages, and research is being carried out every day to further improve the reliability. For example, Japanese Patent Application Laid-Open No. 2008-30093 describes a method for improving a decrease in solderability due to surface oxidation by reducing the Ge content of the surface layer and modifying the surface layer. However, it is not always possible to obtain sufficient solderability only by modifying these surfaces against the decrease in solderability caused by defects in the internal structure of the AuGe alloy sphere. There is a need for alloy balls.

特開2008−30093号公報JP 2008-30093 A

本発明は、従来品より半田付け性、特に濡れ性や付廻りに影響する流れ性が良好な半田付け用AuGe合金球を提供することを目的とする。   An object of the present invention is to provide an AuGe alloy ball for soldering that has better solderability, in particular wettability and flowability that affects the surroundings than conventional products.

本発明によれば、以下に示す半田付け用AuGe合金球が得られる。
(1) AuGe合金中に含まれるAu,Ge以外の金属元素の総量が120質量ppm未満であり、かつ、Ge微粒子が球の表面及び断面に均一微細に分散していることを特徴とする半田付け用AuGe合金球。
(2) Au含有率が84.5質量%以上、89.0質量%以下であるAuGe合金中に含まれるAu,Ge以外の金属元素の総量が120質量ppm未満であり、かつGe微粒子が球の表面及び断面に均一微細に分散していることを特徴とする半田付け用AuGe合金球。
(3) 断面共晶組織のGeの平均粒子径が5μm以下で均一微細に分散していることを特徴とする上記の半田付け用AuGe合金球。
(4) さらに、AuGe合金中のAu含有率が87.0質量%以上、88.0質量%以下であることを特徴とする上記の半田付け用AuGe合金球。
(5) さらに、AuGe合金中に含まれるAu、Ge以外の金属元素の総量が100質量ppm未満であることを特徴とする上記の半田付け用AuGe合金球。
(6) さらに、AuGe合金中に含まれるAu,Ge以外の金属元素の総量が50質量ppm未満であることを特徴とする上記の半田付け用AuGe合金球。
なお、ここでいう金属元素とは、いわゆる一般的な金属元素とほかに半金属元素、常温で固体である非金属元素も含めたものである。
According to the present invention, the following AuGe alloy balls for soldering can be obtained.
(1) Solder characterized in that the total amount of metal elements other than Au and Ge contained in the AuGe alloy is less than 120 ppm by mass, and that Ge fine particles are uniformly and finely dispersed on the surface and cross section of the sphere. AuGe alloy balls for attachment.
(2) The total amount of metal elements other than Au and Ge contained in the AuGe alloy having an Au content of 84.5% by mass or more and 89.0% by mass or less is less than 120 ppm by mass, and the Ge fine particles are spherical. An AuGe alloy sphere for soldering, characterized in that it is uniformly and finely dispersed on the surface and cross section.
(3) The AuGe alloy balls for soldering described above, wherein the average particle diameter of Ge having a cross-sectional eutectic structure is 5 μm or less and uniformly dispersed finely.
(4) The AuGe alloy ball for soldering described above, wherein the Au content in the AuGe alloy is 87.0% by mass or more and 88.0% by mass or less.
(5) The above-mentioned AuGe alloy balls for soldering, wherein the total amount of metal elements other than Au and Ge contained in the AuGe alloy is less than 100 ppm by mass.
(6) The above-mentioned AuGe alloy ball for soldering, wherein the total amount of metal elements other than Au and Ge contained in the AuGe alloy is less than 50 mass ppm.
The metal element here includes a so-called general metal element, a metalloid element, and a non-metal element that is solid at room temperature.

本発明のAuGe合金球は、従来品より流れ性が良好であり、高い信頼性が要求される電子部品の接合及び封止用の半田材として適している。     The AuGe alloy sphere of the present invention has better flowability than conventional products and is suitable as a solder material for joining and sealing electronic components that require high reliability.

図1は、比較例に於けるAuGe合金球の断面組織を示す図。FIG. 1 is a diagram showing a cross-sectional structure of an AuGe alloy sphere in a comparative example. 図2は、比較例に於けるAuGe合金球の表面状態を示す図。FIG. 2 is a diagram showing a surface state of an AuGe alloy sphere in a comparative example. 図3は、本発明実施例のAuGe合金球の断面組織を示す図。FIG. 3 is a view showing a cross-sectional structure of an AuGe alloy sphere according to an embodiment of the present invention. 図4は、本発明実施例のAuGe合金球の表面組織を示す図。FIG. 4 is a view showing a surface structure of an AuGe alloy sphere according to an embodiment of the present invention. 図5は、表2のデータによる、Au含有率と合金球の真球度との関係を示すグラフ。FIG. 5 is a graph showing the relationship between the Au content and the sphericity of the alloy balls based on the data in Table 2. 図6は、表2のデータによる、Au、Ge以外の金属元素の含有率と合金球の真球度との関係を示すグラフ。FIG. 6 is a graph showing the relationship between the content of metal elements other than Au and Ge and the sphericity of the alloy balls based on the data in Table 2. 図7は、表3のデータによる、Au含有率と半田付け試験良品率との関係を示すグラフ。FIG. 7 is a graph showing the relationship between the Au content and the soldering test non-defective rate based on the data in Table 3. 図8は、表3のデータによる、Au、Ge以外の金属元素の含有率と半田付け試験良品率との関係を示すグラフ。FIG. 8 is a graph showing the relationship between the content of metal elements other than Au and Ge and the soldering test non-defective rate based on the data in Table 3.

高信頼性を要求される電子部品の接合及び封止において、半田付け不良は重大な問題点として取り上げられている。高度の集積化、高機能化が進むこれらの機器においては多くの接合部分、封止部分を一括して半田付けする必要があるため、特にこれらの半田付け不良による損失が深刻である。
これらの半田付け不良の原因を突き止めるべく種々条件を変えて、半田付け試験を繰り返した結果、AuGe合金球の半田付け時の流れ性が損なわれることで、半田付け不良が発生することを突き止めた。
そこでこれら流れ性の悪いAuGe合金球の表面の観察を行ったところ、Au初晶やデンドライト組織の発生が見られ、不均一な組織になっていることが判明した。更に、このAuGe合金球の断面を観察したところ、表面と同じようにAu初晶やデンドライト組織の発生が見られ、不均一な組織になっていることが判明した(図1〜2参照)。
このような不均一な組織では、AuGe合金球のAu初晶にレーザー光やホットプレートなどの加熱源からの熱が当たったときと他の部分にこれらの熱が当たったときとでは、AuGe合金球が溶け出す温度が異なってしまう。このように従来の組織が不均一なAuGe合金球では部分的に融点が異なり、半田付け時に全体として同時に溶融を開始しないために流れ性が損なわれる。
In joining and sealing of electronic parts that require high reliability, poor soldering has been taken up as a serious problem. In these devices that are highly integrated and highly functional, it is necessary to solder a large number of joints and sealing parts in a lump, and loss due to these soldering defects is particularly serious.
As a result of repeating the soldering test while changing various conditions in order to find the cause of these soldering defects, it was found that the solderability of the AuGe alloy spheres was deteriorated, resulting in poor soldering. .
Therefore, when the surface of these AuGe alloy balls having poor flowability was observed, the generation of Au primary crystals and dendrite structures was observed, and it was found that the structure was uneven. Further, when the cross section of the AuGe alloy sphere was observed, the generation of Au primary crystals and dendrite structures were observed in the same manner as the surface, and it was found that the structure was uneven (see FIGS. 1 and 2).
In such a non-uniform structure, when an Au primary crystal of an AuGe alloy sphere is exposed to heat from a heating source such as a laser beam or a hot plate and when other heat is applied to other parts, the AuGe alloy The temperature at which the sphere melts will be different. As described above, in the AuGe alloy sphere having a non-uniform structure as described above, the melting point is partially different, and the flowability is impaired because melting does not start simultaneously as a whole during soldering.

AuGe合金は、共晶組織を持ち、共晶点であるGe含有率12.5質量%で全ての組織が共晶組織となるとされているが、溶融状態から表面張力により球状化するAuGe合金球では、その溶融・冷却過程の僅かな状態の違いによりAuの初晶やデンドライト相が不均一に分布した不均一組織になるものと思われる。   An AuGe alloy has a eutectic structure, and the eutectic point Ge content is 12.5% by mass. All the structures become eutectic structures, but the AuGe alloy spheres are spheroidized by surface tension from the molten state. Therefore, it is considered that the Au primary crystal and the dendrite phase are unevenly distributed due to a slight difference in the melting and cooling processes.

そこで、流れ性を改善すべく、更にこれらの流れ性に影響する要因について探索し、試験を繰り返した結果、これらの合金中の不純物の存在がAu初晶やデンドライト相の形成・発達をもたらし、その結果流れ性に悪影響を与えていたことが判明した。
つまり、純度の低いAuGe合金と純度の高いAuGe合金を用いて同じ条件で流れ性を比較したとき、純度の高いAuGe合金球の方が流れ性が良く、AuGe合金中にAu、Ge以外の元素が存在すると、流れ性に影響を与えていると云うことが解った。
Au、Ge以外の金属元素の含有量が少ないAuGe合金球においては、不均一なAu初晶やデンドライト組織がAuGe合金球の表面から消失するだけでなく、その断面においても均一微細な組織となっていた(図3〜4参照)。
したがって、レーザー光を照射したとき照射されたスポット面がAuGe合金球のどの面をとっても均一なものとなる。
また、ホットプレートで加熱したときは加熱面から速やかにAuGe合金球の内部に均一に伝熱する結果、AuGe合金球のどの個所に当てても溶融条件が均一なものとなる。このような合金球表面及び内部の組織の相違によって、高純度のAuGe合金球は半田付け時に速やかに溶融して良好な流れ性を示すものと考えられる。
Therefore, in order to improve the flowability, the factors that affect the flowability were further searched and the test was repeated. As a result, the presence of impurities in these alloys led to the formation and development of Au primary crystals and dendrite phases. As a result, it was found that the flowability was adversely affected.
In other words, when the flowability is compared under the same conditions using a low-purity AuGe alloy and a high-purity AuGe alloy, the high-purity AuGe alloy sphere has better flowability, and elements other than Au and Ge in the AuGe alloy It has been found that the presence of has an effect on flowability.
In AuGe alloy spheres with a low content of metal elements other than Au and Ge, non-uniform Au primary crystals and dendrite structures disappear not only from the surface of AuGe alloy spheres, but also have a uniform and fine structure in the cross section. (See FIGS. 3 to 4).
Therefore, the spot surface irradiated when the laser beam is irradiated is uniform regardless of the surface of the AuGe alloy sphere.
In addition, when heated by a hot plate, heat is rapidly transferred uniformly from the heating surface to the inside of the AuGe alloy sphere, so that the melting condition is uniform regardless of the location of the AuGe alloy sphere. Due to the difference in the surface of the alloy sphere and the internal structure, it is considered that the high purity AuGe alloy sphere rapidly melts during soldering and exhibits good flowability.

また、上記のようにAu、Ge以外の金属元素の総量を抑制して不純物含有量を一定範囲以下にすると、AuGe合金球の形成過程において球状化に好影響を与えて完全な球体に近づくということが解った。
このことから、Au,Ge以外の金属元素の総量を一定以下に少なくすることによってAuGe共晶組織について最適な組織状態が存在し、微細なGe微粒子が球の表面及び断面に均一微細に分散していることで、より安定した半田付け性が得られるという結論を得た。
また、AuGe合金球の量産における製品歩留まり向上のためにもAu,Ge以外の金属元素の総量を少なくすればよいという結論を得た。
In addition, if the total amount of metal elements other than Au and Ge is suppressed as described above to reduce the impurity content to a certain range or less, it will have a favorable effect on spheroidization in the process of forming AuGe alloy spheres and approach a perfect sphere. I understood that.
Therefore, by reducing the total amount of metal elements other than Au and Ge to a certain level or less, there is an optimum structure state for the AuGe eutectic structure, and fine Ge fine particles are uniformly and finely dispersed on the surface and cross section of the sphere. As a result, it was concluded that more stable solderability can be obtained.
In addition, it was concluded that the total amount of metal elements other than Au and Ge should be reduced in order to improve the product yield in mass production of AuGe alloy balls.

これらの結果をまとめると本発明の半田付け用AuGe合金球は以下のとおりとなる。
(1)本発明の半田付け用AuGe合金球は、AuGe合金中に含まれるAu、Ge以外の金属元素の総量が120質量ppm以下であり、かつGe微粒子が球の表面及び断面に均一微細に分散している。Au、Ge以外の金属元素の総量が120質量ppm以上では好ましい半田付け性が得られない。
(2)本発明の半田付け用AuGe合金球は、Au含有率が84.5質量%以上〜89.0質量%以下であり、かつAuGe合金中に含まれるAu,Ge以外の金属元素の総量が120質量ppm未満であり、かつGe微粒子が球の表面及び断面に均一微細に分散している。
本発明の対象とするAuGe合金球は、Au,Ge共晶組成を基本とするが、均一微細な組織は共晶組成から上記のプラス及びマイナスの範囲で得られる。
Au含有率が89.0質量%を超えると結晶寸法の大きなAu初晶の発生やデンドライト相の発生が過多となり、良好な半田付けが阻害される。また、Au含有率が84.5質量%未満では結晶寸法の大きなGe相の発生が過多となり、良好な半田付けが阻害される。
(3)本発明の半田付け用AuGe合金球の断面の共晶組織のGeの平均粒子径は5μm以下で均一微細に分散している。Geの平均粒子径が5μmを超えると組織が均一であっても微細とは云えず、流れ性が低下して半田付け性が損なわれると考えられる。
(4)また、本発明の半田付け用AuGe合金球は、より好適にはAuGe合金中のAu含有率が87.0質量%以上、88.0質量%以下である。Au含有率が87.0質量%以上、88.0質量%以下であればAuGe合金球の量産における製品歩留まりを向上させることが出来るが、その範囲外では製品歩留まりが低くなる。
(5)本発明の半田付け用AuGe合金球は、AuGe合金中に含まれるAu,Ge以外の金属元素の総量がより好適には100質量ppm未満である。
AuGe合金におけるAu,Ge以外の金属元素の含有率が100質量ppm未満であれば、純度99.99質量%の高純度材料として表示が可能となる利点があるが、100質量ppm以上ではこの利点がなくなる。
(6)さらに、本発明の半田付け用AuGe合金球は、AuGe合金中に含まれるAu,Ge以外の金属元素の総量が最適には50質量ppm未満である。Au、Ge以外の金属元素の総量が50質量ppm未満であればAuGe合金球の量産における製品歩留まりを最も向上出来る利点が発揮できる。
Summarizing these results, the AuGe alloy balls for soldering of the present invention are as follows.
(1) In the AuGe alloy sphere for soldering of the present invention, the total amount of metal elements other than Au and Ge contained in the AuGe alloy is 120 mass ppm or less, and the Ge fine particles are uniformly fine on the surface and cross section of the sphere. Is distributed. When the total amount of metal elements other than Au and Ge is 120 mass ppm or more, preferable solderability cannot be obtained.
(2) The AuGe alloy ball for soldering of the present invention has an Au content of 84.5% by mass to 89.0% by mass, and the total amount of metal elements other than Au and Ge contained in the AuGe alloy Is less than 120 ppm by mass, and Ge fine particles are uniformly and finely dispersed on the surface and cross section of the sphere.
The AuGe alloy sphere targeted by the present invention is based on the Au and Ge eutectic composition, but a uniform fine structure can be obtained from the eutectic composition in the above plus and minus ranges.
When the Au content exceeds 89.0% by mass, the generation of Au primary crystals having a large crystal size and the generation of dendrite phases become excessive, and good soldering is hindered. On the other hand, if the Au content is less than 84.5% by mass, the Ge phase having a large crystal size is excessively generated, and good soldering is hindered.
(3) The average particle diameter of Ge in the eutectic structure in the cross section of the AuGe alloy sphere for soldering of the present invention is 5 μm or less and is uniformly and finely dispersed. When the average particle diameter of Ge exceeds 5 μm, even if the structure is uniform, it cannot be said that the structure is fine, and it is considered that the flowability is lowered and the solderability is impaired.
(4) In the AuGe alloy ball for soldering of the present invention, the Au content in the AuGe alloy is more preferably 87.0% by mass or more and 88.0% by mass or less. If the Au content is 87.0% by mass or more and 88.0% by mass or less, the product yield in mass production of AuGe alloy spheres can be improved, but the product yield is lowered outside this range.
(5) In the AuGe alloy ball for soldering of the present invention, the total amount of metal elements other than Au and Ge contained in the AuGe alloy is more preferably less than 100 mass ppm.
If the content of metal elements other than Au and Ge in the AuGe alloy is less than 100 mass ppm, there is an advantage that it can be displayed as a high-purity material with a purity of 99.99 mass%. Disappears.
(6) Furthermore, in the AuGe alloy ball for soldering of the present invention, the total amount of metal elements other than Au and Ge contained in the AuGe alloy is optimally less than 50 ppm by mass. If the total amount of metal elements other than Au and Ge is less than 50 ppm by mass, the advantage that the product yield in mass production of AuGe alloy balls can be most improved can be exhibited.

〔半田付け合金球の調整〕
実施例1. 純度99.999質量% のAuと純度99.9999質量%のGeを所定の組成となるように秤量して、カーボン坩堝に入れ、高周波溶解炉を用いて真空中で溶解・鋳造を行い、インゴットを得た。そのインゴットを圧延、プレスしてφ0.42mm、t0.10mmのAuGe合金片を得た。このAuGe合金片をカーボン治具に載せてコンベアー炉を用いて窒素・水素混合雰囲気中500℃で溶解・固化した後、形状の整った球のみを選別してAuGe合金球を得た。
実施例2. また、同様にして秤量した純度99.999質量%のAuと純度99.9999質量%のGeを溶解槽に入れ、いわゆるアトマイズ法を用いてAuGe合金球を得た。
さらに、比較例として、純度99.9質量%のAuと純度99.9質量%のGeを用いて上記と同様な方法で調整し、アトマイズ法によってAuGe合金球を得た。
[Adjustment of soldering alloy balls]
Example 1. Au having a purity of 99.999% by mass and Ge having a purity of 99.9999% by mass are weighed so as to have a predetermined composition, placed in a carbon crucible, and melted and cast in a vacuum using a high-frequency melting furnace. Got. The ingot was rolled and pressed to obtain an AuGe alloy piece having a diameter of 0.42 mm and t0.10 mm. This AuGe alloy piece was placed on a carbon jig and melted and solidified in a nitrogen / hydrogen mixed atmosphere at 500 ° C. using a conveyor furnace, and then only the spheres having a well-shaped shape were selected to obtain AuGe alloy balls.
Example 2 Similarly, Au having a purity of 99.999% by mass and Ge having a purity of 99.9999% by mass were placed in a dissolution tank, and AuGe alloy balls were obtained using a so-called atomization method.
Furthermore, as a comparative example, Au of 99.9% by mass and Ge of 99.9% by mass were prepared by the same method as described above, and AuGe alloy balls were obtained by the atomizing method.

このようにして得られた本発明の実施例1及び2のAuGe合金球について、SEMにより観察した断面組織を図3に、また同じく表面性状について図4に示す。
本発明のAuGe合金球は、表面及び断面共に粗大なAu初晶及びデンドライト組織は観察されず、全体にわたってGe微粒子が均一微細に分散した共晶組織となっていることがわかる。
実施例の断面組織を示す図3、及び表面性状を示す図4は、表1中の*印を付したAu含有量:87.5質量%、Au、Ge以外の金属元素含有量:30質量ppmの例であり、また、比較例の断面組織及び表面性状を示す図1及び図2は、同じく表1中の**印を付した、Au含有量:87.5質量%、Au、Ge以外の金属元素含有量:150質量ppmの例である。
For the AuGe alloy balls of Examples 1 and 2 of the present invention thus obtained, the cross-sectional structure observed by SEM is shown in FIG. 3, and the surface properties are shown in FIG.
In the AuGe alloy sphere of the present invention, no coarse Au primary crystal and dendrite structure are observed on both the surface and cross section, and it can be seen that the eutectic structure has Ge fine particles uniformly dispersed throughout.
FIG. 3 showing the cross-sectional structure of the example and FIG. 4 showing the surface properties are as follows: Au content with an asterisk in Table 1: 87.5 mass%, content of metal elements other than Au and Ge: 30 mass FIG. 1 and FIG. 2 showing the cross-sectional structure and surface properties of the comparative example are examples of ppm, and the Au content similarly marked with ** in Table 1 is 87.5 mass%, Au, Ge Metal element content other than: An example of 150 mass ppm.

以上のようにして調整した、AuGe合金球の組成分析はICPを用いて行った。その結果を表1に示す。
これら実施例1、2及び比較例が含有する不純物は、いずれも原料由来の元素であって、Ag、Cu、Fe、Mg、Si、Ni、Pb、Pt、Pd、Sn、Crであった。
The composition analysis of the AuGe alloy spheres prepared as described above was performed using ICP. The results are shown in Table 1.
The impurities contained in Examples 1 and 2 and Comparative Example were all elements derived from raw materials, and were Ag, Cu, Fe, Mg, Si, Ni, Pb, Pt, Pd, Sn, and Cr.

表1によると、結晶組織は本発明範囲のAu含有量とAu,Ge以外の金属元素含有量の範囲においてGe粒の微細、均一に分散した組織となり、Au含有量、及びAu、Ge以外の金属元素含有量のいずれについても本発明範囲を外れると粗大なAu初晶が発生し、また図1に観察されるとおりデンドライト組織が顕著に発達して均一微細な組織とならない(粒径測定不能)。   According to Table 1, the crystal structure becomes a finely and uniformly dispersed structure of Ge grains in the range of the Au content of the present invention and the metal element content other than Au and Ge, and the Au content and other than Au and Ge Coarse Au primary crystals are generated when the metal element content is outside the range of the present invention, and the dendrite structure is notably developed as shown in FIG. ).

このようにして得られたAuGe合金球の真球度を測定、評価した結果を表2に示す。
AuGe合金球の縦方向の直径と横方向の直径を工具顕微鏡で測定し、大きい方をA,小さい方をBとして、真球度=A/Bを求めた。真球度1.00〜1.02を良、それより大きい方を不良として判定した。
Table 2 shows the results of measuring and evaluating the sphericity of the AuGe alloy spheres thus obtained.
The diameter in the vertical direction and the diameter in the horizontal direction of the AuGe alloy sphere were measured with a tool microscope, and the larger one was A and the smaller one was B, and the sphericity = A / B was determined. A sphericity of 1.00 to 1.02 was judged as good, and a larger sphericity was judged as bad.

表2のデータによる、Au含有率と合金球の真球度歩留りとの関係、及びAu、Ge以外の金属元素の含有率と合金球の真球度歩留りとの関係を図5、及び図6のグラフに示す。
図5、及び図6によれば、真球度歩留りに関して、Au含有率とAu、Ge以外の金属元素含有率とは相関関係があり、両者が共にそれぞれ一定の条件を満たすことによって真球度歩留りが著しく向上することがわかる。
図5によれば、Au含有率84.5〜89.0%の範囲で真球度歩留りは良(better)であり、特に、Au含有率87.0〜88.0%の範囲であると真球度歩留りが優(best)である。これらの効果が達成されるのはAu、Ge以外の金属元素含有率が一定以下の低い領域であって、これらの値が30質量ppm以下の場合は上記のAu含有率のほぼ全範囲で上記の真球度が達成できるが、含有率110質量ppmでは狭い範囲に限られることがわかる。
すなわち、これらの金属元素の含有率が低いほど優れた効果を発揮するのであって、ほぼ120質量ppm以上ではほとんどその効果を発揮できず、比較例のように150質量ppmでは著しく劣り、実用に耐えないものとなる。
この関係を真球度歩留りとAu、Ge以外の金属元素含有率との関係を表す図6のグラフで見るとより明確であって、Au、Ge以外の金属元素の含有率が120質量ppm未満の領域で真球度歩留り率が良(better:85〜93%)、50質量ppm以下であれば真球度歩留り率は優(best:93%以上)の効果が得られた。
これに対してAu含有率が上記範囲を外れる、Au含有率82.0質量%及び91.0質量%の比較例は、Au、Ge以外の金属元素含有率が上記範囲の条件を満たしても真球度歩留りが著しく劣り、実用に耐えないことがわかる。
〔レーザー光による半田付け試験〕
FIG. 5 and FIG. 6 show the relationship between the Au content rate and the sphericity yield of the alloy balls, and the relationship between the metal element content other than Au and Ge and the sphericity yield of the alloy balls based on the data in Table 2. This is shown in the graph.
According to FIG. 5 and FIG. 6, with respect to the sphericity yield, there is a correlation between the Au content and the content of metal elements other than Au and Ge. It can be seen that the yield is significantly improved.
According to FIG. 5, the sphericity yield is better in the range of Au content 84.5 to 89.0%, and particularly in the range of Au content 87.0 to 88.0%. The sphericity yield is excellent. These effects are achieved in a low region where the metal element content other than Au and Ge is below a certain level, and when these values are 30 mass ppm or less, the above Au content is almost the entire range. It can be seen that the sphericity of can be achieved, but is limited to a narrow range at a content of 110 mass ppm.
In other words, the lower the content of these metal elements, the better the effect, and almost no effect can be exhibited at about 120 ppm by mass or more, and 150 ppm by mass as in the comparative example, which is extremely inferior. It will be unbearable.
This relationship is clearer when seen in the graph of FIG. 6 showing the relationship between the sphericity yield and the content of metal elements other than Au and Ge, and the content of metal elements other than Au and Ge is less than 120 ppm by mass. When the sphericity yield rate was good (better: 85 to 93%) in the region of (2), and 50 mass ppm or less, the sphericity yield rate was excellent (best: 93% or more).
On the other hand, in the comparative examples in which the Au content is outside the above range and the Au content is 82.0% by mass and 91.0% by mass, even if the metal element content other than Au and Ge satisfies the above range. It can be seen that the sphericity yield is remarkably inferior and cannot be practically used.
[Laser soldering test]

直径φ0.5mm、深さ0.3mmの凹部を100個設けた試験用金めっき基板上に振込み治具を乗せてAuGe合金球100個を振込み、振込治具を取り外して後、レーザー光(出力0.5J)を用いて半田付けを行った。得られた試験用基材について適正な半田付けがされているかを実体顕微鏡で判定して、半田付けの良品率を求めた。
これらの結果を表3に示す。なお、基板ごとに直径φ0.5mmの凹部全面にAuGe半田材が流れていれば良、流れていない部分が少しでも残っていれば不良と判定した。
Place a transfer jig on a test gold-plated substrate having 100 recesses with a diameter of 0.5 mm and a depth of 0.3 mm, transfer 100 AuGe alloy balls, remove the transfer jig, and then laser light (output 0.5J) was used for soldering. Whether or not the obtained test base material was properly soldered was determined with a stereomicroscope, and the yield rate of soldering was determined.
These results are shown in Table 3. In addition, it was determined that the AuGe solder material flowed over the entire surface of the concave portion having a diameter of 0.5 mm for each substrate, and it was determined to be defective if any portion that did not flow remained.

表3のデータによる、Au含有率と半田付け試験良品率との関係、及びAu、Ge以外の金属元素の含有率と半田付け試験良品率との関係を図7及び8のグラフに示す。
図7によれば、Au、Ge以外の金属元素含有率が本発明範囲内のものは、Au含有率が84.5〜89.0質量%の範囲において、半田付け試験良品率%良(better)の評価が、ほぼ90%以上を達成し、さらにAu含有率が87.0〜88.0質量%の範囲では良品率優(best)の評価が99%近傍に達する。
一方これに対して、比較例のようにAu、Ge以外の金属元素含有率が本発明範囲を外れるものは、Au含有率が本発明範囲であってもこれらの良品率を達成できない。
7 and 8 show the relationship between the Au content rate and the soldering test non-defective rate based on the data in Table 3, and the relationship between the content rate of metal elements other than Au and Ge and the soldering test non-defective rate.
According to FIG. 7, when the metal element content other than Au and Ge is within the range of the present invention, the soldering test good product rate% good (better) when the Au content rate is 84.5 to 89.0% by mass. ) Achieved almost 90% or more, and when the Au content was in the range of 87.0 to 88.0% by mass, the evaluation of a good product ratio (best) reached around 99%.
On the other hand, when the content of metal elements other than Au and Ge is out of the range of the present invention as in the comparative example, these non-defective products cannot be achieved even if the Au content is within the range of the present invention.

また、Au、Ge以外の金属元素の含有率との関係で半田付け試験良品率を表す図8によれば、Au、Ge以外の金属元素の含有率が120質量ppm未満の領域で半田付け良品率が可(good:85%以上)、100質量ppm以下であれば半田付け良品率は良(better:90〜99%)、さらに、Au含有率の最適条件との組み合わせで50質量ppm以下において優(best:99%以上)の効果が得られた。
他方、Au、Ge以外の金属元素の含有率が本発明範囲内であっても、Auの含有率が本発明範囲を外れると半田付け試験良品率は著しく低下してしまうことが解る。
以上から、本発明は、半田付け用AuGe合金球に適用する合金組成として、Au含有量84.5〜89.0質量%、より好適には87.0〜88.0質量%、Au、Ge以外の金属元素含有量を総量で120質量ppm未満、より好適には100質量ppm未満、最適範囲50質量ppm未満において、所定の作用効果を発揮する。
Moreover, according to FIG. 8 showing the soldering test good product rate in relation to the content of metal elements other than Au and Ge, the soldering good product in the region where the content of metal elements other than Au and Ge is less than 120 mass ppm. If the rate is good (good: 85% or more) and 100 mass ppm or less, the soldering non-defective rate is good (better: 90 to 99%), and further, in combination with the optimal condition of the Au content, 50 mass ppm or less Excellent (best: 99% or more) effect was obtained.
On the other hand, it can be seen that even if the content of metal elements other than Au and Ge is within the range of the present invention, the rate of non-defective soldering test is significantly reduced if the content of Au is outside the range of the present invention.
From the above, in the present invention, as the alloy composition applied to the soldering AuGe alloy sphere, the Au content is 84.5 to 89.0 mass%, more preferably 87.0 to 88.0 mass%, Au, Ge When the total content of the metal elements is less than 120 ppm by mass, more preferably less than 100 ppm by mass, and the optimum range is less than 50 ppm by mass, a predetermined effect is exhibited.

本発明の半田付け用AuGe合金球は、真球度が高く、かつ均一微細なAu,Ge共晶組織であるため、雰囲気加熱やレーザー光によるスポット加熱を問わず、均一な条件で溶融して、良好な流れ性を発揮して確実に接合・封止することが可能であり、高精細化が進む電子部品の接合・封止用半田材として優れた特性を発揮し、今後のより高度の高精細化、高信頼性が求められる電子部品の接合、封止材料としての要求に応えるものである。     Since the AuGe alloy sphere for soldering of the present invention has a high sphericity and a uniform fine Au and Ge eutectic structure, it melts under uniform conditions regardless of atmospheric heating or spot heating with laser light. It is possible to reliably bond and seal with good flowability, exhibit excellent characteristics as a solder material for bonding and sealing of electronic components that are becoming increasingly fine, It meets the demand for bonding and sealing materials for electronic components that require high definition and high reliability.

Claims (5)

Au含有率が84.5質量%以上〜89.0質量%以下であり、AuGe合金中に含まれるAu,Ge以外の金属元素の総量を120質量ppm未満とすることにより、Ge微粒子を球の表面及び断面に均一微細に分散せしめたことを特徴とする半田付け用AuGe合金球   When the Au content is 84.5 mass% or more and 89.0 mass% or less, and the total amount of metal elements other than Au and Ge contained in the AuGe alloy is less than 120 mass ppm, the Ge fine particles are formed into spheres. AuGe alloy balls for soldering characterized by being uniformly and finely dispersed on the surface and cross section 断面共晶組織のGeの平均粒子径が5μm以下で均一微細に分散していることを特徴とする請求項1記載の半田付け用AuGe合金球。   2. The AuGe alloy ball for soldering according to claim 1, wherein an average particle diameter of Ge having a cross-sectional eutectic structure is 5 μm or less and uniformly finely dispersed. AuGe合金中のAu含有率が87.0質量%以上〜88.0質量%以下であることを特徴とする請求項1記載の半田付け用AuGe合金球。   The AuGe alloy sphere for soldering according to claim 1, wherein the Au content in the AuGe alloy is 87.0 mass% to 88.0 mass%. AuGe合金中に含まれるAu,Ge以外の金属元素の総量が100質量ppm未満であることを特徴とする請求項1、又は2記載の半田付け用AuGe合金球。   3. The AuGe alloy ball for soldering according to claim 1, wherein the total amount of metal elements other than Au and Ge contained in the AuGe alloy is less than 100 mass ppm. AuGe合金中に含まれるAu,Ge以外の金属元素の総量が50質量ppm未満であることを特徴とする請求項1、又は2記載の半田付け用AuGe合金球。

3. The AuGe alloy ball for soldering according to claim 1, wherein the total amount of metal elements other than Au and Ge contained in the AuGe alloy is less than 50 ppm by mass.

JP2009062131A 2009-03-14 2009-03-14 AuGe alloy balls for soldering Active JP5078167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009062131A JP5078167B2 (en) 2009-03-14 2009-03-14 AuGe alloy balls for soldering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009062131A JP5078167B2 (en) 2009-03-14 2009-03-14 AuGe alloy balls for soldering

Publications (2)

Publication Number Publication Date
JP2010214396A JP2010214396A (en) 2010-09-30
JP5078167B2 true JP5078167B2 (en) 2012-11-21

Family

ID=42973803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009062131A Active JP5078167B2 (en) 2009-03-14 2009-03-14 AuGe alloy balls for soldering

Country Status (1)

Country Link
JP (1) JP5078167B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5665455B2 (en) 2010-09-24 2015-02-04 キヤノン株式会社 Signal transmission circuit, transmission device and circuit board
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
EP3058605B1 (en) 2013-10-16 2023-12-06 Ambri Inc. Seals for high temperature reactive material devices
JP2015136735A (en) * 2014-01-24 2015-07-30 住友金属鉱山株式会社 BALL-SHAPED Au-Sn-Ag TYPE SOLDER ALLOY, ELECTRONIC PART SEALED BY USING BALL-SHAPED Au-Sn-Ag TYPE SOLDER ALLOY AND ELECTRONIC PART MOUNTING DEVICE
JP2015188892A (en) * 2014-03-27 2015-11-02 住友金属鉱山株式会社 BALL-LIKE Au-Sn-Ag BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED BY USING THE BALL-LIKE Au-Sn-Ag BASED SOLDER ALLOY AND ELECTRONIC COMPONENT MOUNTING DEVICE
JP6167966B2 (en) * 2014-03-28 2017-07-26 住友金属鉱山株式会社 Solder ball manufacturing method and manufacturing apparatus
JP2015208777A (en) * 2014-04-30 2015-11-24 住友金属鉱山株式会社 BALL-LIKE Au-Ag-Ge BASED SOLDER ALLOY, ELECTRONIC COMPONENT SEALED USING THE BALL-LIKE Au-Ag-Ge BASED SOLDER ALLOY, AND DEVICE MOUNTED WITH THE ELECTRONIC COMPONENT
JP6365183B2 (en) * 2014-09-26 2018-08-01 住友金属鉱山株式会社 Ball-shaped Au-Sn-Ag solder alloy, electronic component sealed with this ball-shaped Au-Sn-Ag solder alloy, and electronic component mounting apparatus
JP2016073979A (en) * 2014-10-02 2016-05-12 住友金属鉱山株式会社 BALL-SHAPED Au-Sn-Ag BASED SOLDER ALLOY, AND ELECTRONIC COMPONENT ENCAPSULATED USING THE BALL-SHAPED Au-Sn-Ag BASED SOLDER ALLOY AND DEVICE MOUNTED WITH ELECTRONIC COMPONENT
JP2016074011A (en) * 2014-10-08 2016-05-12 住友金属鉱山株式会社 Au-Ge SOLDER ALLOY HAVING CONTROLLED METALLOGRAPHIC STRUCTURE
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
WO2018052797A2 (en) * 2016-09-07 2018-03-22 Ambri Inc. Seals for high temperature reactive material devices
EP3607603A4 (en) 2017-04-07 2021-01-13 Ambri Inc. Molten salt battery with solid metal cathode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387664A (en) * 1977-01-12 1978-08-02 Nec Corp Production of package for semiconductor device
JP3150743B2 (en) * 1991-12-27 2001-03-26 株式会社徳力本店 Low melting point Au-Ge brazing filler metal
JP3227868B2 (en) * 1993-01-29 2001-11-12 三菱マテリアル株式会社 Solder paste
JP3398294B2 (en) * 1997-01-21 2003-04-21 京セラ株式会社 Electronic component storage package
JP2008030093A (en) * 2006-07-28 2008-02-14 Sumitomo Metal Mining Co Ltd Au/Ge ALLOY SOLDER BALL

Also Published As

Publication number Publication date
JP2010214396A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5078167B2 (en) AuGe alloy balls for soldering
WO2019131718A1 (en) Solder alloy
TWI645047B (en) Solder alloys, solder balls and solder joints
TWI761683B (en) Cu core balls, solder joints, solder paste and foam solder
TW201522667A (en) Au-sn-ag series solder alloy, electronic component sealed using same au-sn-ag series solder alloy, and electronic component-equipped device
JP2007301570A (en) Solder alloy
JP5421915B2 (en) Au-Ga-In brazing material
JP2018047500A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
WO2015041018A1 (en) Bi GROUP SOLDER ALLOY, METHOD FOR BONDING ELECTRONIC PART USING SAME, AND ELECTRONIC PART MOUNTING SUBSTRATE
KR101539056B1 (en) solder alloy and solder ball
US10589387B2 (en) Au—Sn—Ag-based solder alloy and solder material, electronic component sealed with the same Au—Sn—Ag based solder alloy or solder material, and electronic component mounting device
JP2017196647A (en) Au-Sn-Ag-α-TYPE SOLDER ALLOY, ITS SOLDER MATERIAL, AND MOUNTING SUBSTRATE BONDED OR SEALED BY USING SOLDER MATERIAL
TW201619399A (en) Au-sn-ag-based solder alloy, electronic device sealed or joined using the same, and electronic apparatus equipped with the electronic device
JP6459472B2 (en) Pb-free Au-Ge solder alloy with controlled energy absorption and electronic component sealed or bonded using the same
JP2018047499A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
JP2016016453A (en) Au-Ge-Sn-based solder alloy
KR20160139585A (en) Solder alloy, solder ball and manufacturing method thereof
JP2016093831A (en) Pb-FREE Mg-Cu-BASED SOLDER ALLOY
JP2015139777A (en) Au-Sb TYPE SOLDER ALLOY
JP7381980B1 (en) Solder alloys, solder balls, solder preforms, solder joints, and circuits
TWI810099B (en) Solder alloys, solder pastes, solder balls, solder preforms, and solder joints
JP2017189793A (en) Au-Sn-BASED SOLDER ALLOY
KR102247498B1 (en) Solder alloy, solder ball and manufacturing method thereof
JP2017035708A (en) Sb-Cu SOLDER ALLOY CONTAINING NO Pb
JP2018047497A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250