JP5062724B2 - Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery - Google Patents

Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery Download PDF

Info

Publication number
JP5062724B2
JP5062724B2 JP2006247099A JP2006247099A JP5062724B2 JP 5062724 B2 JP5062724 B2 JP 5062724B2 JP 2006247099 A JP2006247099 A JP 2006247099A JP 2006247099 A JP2006247099 A JP 2006247099A JP 5062724 B2 JP5062724 B2 JP 5062724B2
Authority
JP
Japan
Prior art keywords
nickel
electrode
active material
battery
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006247099A
Other languages
Japanese (ja)
Other versions
JP2008071533A (en
Inventor
一樹 奥野
辰珠 朴
真博 加藤
勉 岩城
勝 八尾
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Electric Industries Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006247099A priority Critical patent/JP5062724B2/en
Publication of JP2008071533A publication Critical patent/JP2008071533A/en
Application granted granted Critical
Publication of JP5062724B2 publication Critical patent/JP5062724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、アルカリ二次電池に使用するアルカリ電池用ニッケル電極およびその製造方法に関する。特に、ニッケル−水素電池やニッケル−カドミウム電池に使用するアルカリ電池用ニッケル電極およびその製造方法に関する。   The present invention relates to a nickel electrode for an alkaline battery used for an alkaline secondary battery and a method for producing the same. In particular, the present invention relates to a nickel electrode for an alkaline battery used for a nickel-hydrogen battery or a nickel-cadmium battery and a method for producing the same.

従来、携帯用、移動用、産業用などに用いる二次電池として、鉛蓄電池やリチウムイオン電池とともにアルカリ二次電池が広く使用されている。   2. Description of the Related Art Conventionally, alkaline secondary batteries have been widely used along with lead-acid batteries and lithium ion batteries as secondary batteries used for portable, mobile, and industrial purposes.

アルカリ二次電池は、信頼性が高く、長寿命であり、リチウムイオン電池より安価で小型軽量化が可能などの特徴があるため、幅広い分野で使用されている。特に、最近では省エネルギー化や環境保全を推進する立場から自動車メーカによりハイブリッド車などに実用範囲が広がっており、海外でも広く注目されている。この電源として、現在のところニッケル−水素電池が主に採用されている。   Alkaline secondary batteries are used in a wide range of fields because they are highly reliable, have a long life, are less expensive than lithium ion batteries, and can be reduced in size and weight. In particular, from the standpoint of promoting energy saving and environmental conservation, the range of practical applications has been expanded by automobile manufacturers to hybrid vehicles, and has attracted widespread attention overseas. Currently, nickel-hydrogen batteries are mainly used as the power source.

ところで、ポータブル機器から産業用大型設備までの各種装置の電源として多用されているアルカリ電池には、ほとんどの場合、正極としてニッケル電極が使用される。ニッケル電極の構造としては、他の電池用電極と同様に集電機能を担う集電体に、電池反応を起こさせるための正極活物質を担持させた構造が採用されている。この場合、集電体として、従来のポケット式に代えてニッケル粉末を焼結した焼結ニッケル板が発明されたことでアルカリ二次電池の実用化が進んだ。   By the way, in most alkaline batteries widely used as power sources for various devices ranging from portable equipment to large industrial equipment, a nickel electrode is used as a positive electrode. As the structure of the nickel electrode, a structure in which a positive electrode active material for causing a battery reaction is supported on a current collector having a current collecting function as in the case of other battery electrodes is employed. In this case, the alkaline secondary battery has been put to practical use by inventing a sintered nickel plate obtained by sintering nickel powder instead of the conventional pocket type as a current collector.

その後、ニッケル電極の低廉化と高容量化が図られた。低廉化の技術としては、三次元構造を持つ焼結体の代わりにパンチングメタルのような二次元構造を用いることが提案された。具体的には、パンチングメタルの空孔に活物質ペースト(活物質を含むペースト状のもの)を充填することでニッケル電極を作製する技術であるが、このようなニッケル電極は種々の問題点を有するため実用の段階に到っていない。   Later, nickel electrodes were made cheaper and higher in capacity. As a cost-effective technique, it was proposed to use a two-dimensional structure such as punching metal instead of a sintered body having a three-dimensional structure. Specifically, it is a technology for producing a nickel electrode by filling a hole in a punching metal with an active material paste (a paste containing an active material), but such a nickel electrode has various problems. Since it has, it has not reached the stage of practical use.

一方、ニッケル電極の高容量化は、焼結体の代わりに、やはり三次元構造の発泡状ニッケルを採用することにより可能になった。発泡状ニッケルは、通常、ウレタン樹脂の発泡状シートにニッケルメッキを施し、ウレタン樹脂を焼却後に還元性雰囲気下で焼鈍して、ニッケル骨格の強度を向上させる方法によって製造される。そして、この発泡状ニッケルに活物質ペーストを充填し、加圧することで、ニッケル電極が得られる。発泡状ニッケルの多孔度は、焼結体の80%程度に対して、92〜96%で非常に大きく、したがって単位体積当りに充填できる活物質を多くすることができるので、高容量化を実現できる。   On the other hand, it is possible to increase the capacity of the nickel electrode by adopting foamed nickel having a three-dimensional structure instead of the sintered body. Foamed nickel is usually produced by a method in which the foamed sheet of urethane resin is nickel-plated and the urethane resin is incinerated and then annealed in a reducing atmosphere to improve the strength of the nickel skeleton. The foamed nickel is filled with an active material paste and pressed to obtain a nickel electrode. The porosity of foamed nickel is very high at 92-96% compared to about 80% of the sintered body. Therefore, more active material can be filled per unit volume, realizing high capacity. it can.

発泡状ニッケルは、開発当初、損傷が生じ易いという問題点があった。例えば、円筒状の電池容器にシート状のニッケル電極を捲回して収納するとき、発泡状ニッケルに亀裂が入るなどの問題点があった。しかし、現在では、この問題点も解決されて、ポータブル機器はもちろん、高出力と高い信頼性を要求されるハイブリッド車においても発泡状ニッケル集電体を用いた円筒状及び角形のニッケル−水素電池が実用化されている。このように、ニッケル−水素電池用のニッケル電極として、一部の機器で焼結体が用いられているものもあるが、主流は発泡状ニッケルの電極基板(集電体)に活物質を担持させたものに代わってきている。   Foamed nickel had a problem that it was easily damaged at the beginning of development. For example, when a sheet-like nickel electrode is wound and stored in a cylindrical battery container, there has been a problem that foamed nickel is cracked. However, at present, this problem has been solved. Cylindrical and prismatic nickel-hydrogen batteries using foamed nickel current collectors are required not only for portable devices but also for hybrid vehicles that require high output and high reliability. Has been put to practical use. As described above, some nickel-hydrogen batteries use sintered bodies in some devices, but the mainstream carries active materials on foamed nickel electrode substrates (current collectors). It has been replaced by what I let you.

現在、発泡状ニッケルは、電池用電極の集電体として、高容量はもちろん高出力用にも適した特性を持つレベルに達している。残る問題点としては、ニッケル電極の価格の大半を占めるニッケル量を減らして、ニッケル電極の低廉化を図ることである。   At present, foamed nickel has reached a level having characteristics suitable not only for high capacity but also for high output as a current collector for battery electrodes. The remaining problem is to reduce the cost of the nickel electrode by reducing the amount of nickel that accounts for the majority of the price of the nickel electrode.

発泡状ニッケルは、開発当初、ニッケルの目付け重量として500〜600g/m2を採用していた。現在では350〜400g/m2程度の目付け重量であっても実用に耐えるものが開発されている。しかし、ニッケル量をさらに減らすと、ニッケル電極の強度が低下するので、発泡状ニッケルを製造することはできても、その後のニッケル電極の製造工程や電池の作製時に破損を生じる可能性が極めて高い。 Foamed nickel is first developed, were adopted 500-600 g / m 2 as a weight per unit area by weight of nickel. At present, products that can withstand practical use even with a basis weight of about 350 to 400 g / m 2 have been developed. However, if the amount of nickel is further reduced, the strength of the nickel electrode decreases, so even if foamed nickel can be produced, there is a very high possibility of breakage during the subsequent nickel electrode production process and battery production. .

一方、不織布を芯材として、その表面にニッケルをメッキして形成した多孔性の電極基板を集電体として用いたニッケル電極を製造することが提案されている。不織布を芯材としたニッケル電極では、ニッケルの量を減らしても所定の強度を維持することができ、また、発泡状ニッケルと比較して製造が容易であるという利点を有している。このような電極基板に活物質を担持させて形成する電極として、例えば、特許文献1に記載の電極が挙げられる。   On the other hand, it has been proposed to produce a nickel electrode using a non-woven fabric as a core material and a porous electrode substrate formed by plating nickel on the surface thereof as a current collector. A nickel electrode using a nonwoven fabric as a core material has an advantage that a predetermined strength can be maintained even if the amount of nickel is reduced, and that manufacture is easier than foamed nickel. As an electrode formed by supporting an active material on such an electrode substrate, for example, an electrode described in Patent Document 1 can be given.

特許文献1には、樹脂製の不織布の表面にニッケルをメッキして形成した集電体(多孔性の電極基板)が開示されている。また、この電極基板にペースト状の活物質合剤を充填した後に、加圧成形したアルカリ電池用電極が開示されている。   Patent Document 1 discloses a current collector (porous electrode substrate) formed by plating nickel on the surface of a resin nonwoven fabric. Further, an alkaline battery electrode is disclosed in which the electrode substrate is filled with a paste-like active material mixture and then pressure-molded.

特開昭61-208756号公報JP-A-61-208756

しかし、近年では、製造コストが安いだけでなく、より小型で、容量が大きく、繰り返しの充放電により電池性能が劣化し難い電池が求められており、上記の特許文献1に記載のような不織布にニッケルメッキを施した電極では、これらの要請に応えることができない場合があった。例えば、特許文献1の電極を用いて製造した電池では、充放電に伴う電池容量の低下が著しかった。これは、充放電に伴って電極基板が膨潤して圧縮前の厚さに戻り、電極基板から活物質が剥離し易いためである。   However, in recent years, there has been a demand for a battery that is not only low in manufacturing cost, but also smaller in size, larger in capacity, and less likely to deteriorate in battery performance due to repeated charging and discharging, as described in Patent Document 1 above. In some cases, the nickel plated electrode cannot meet these requirements. For example, in the battery manufactured using the electrode of Patent Document 1, the battery capacity is significantly reduced due to charging / discharging. This is because the electrode substrate swells with charge / discharge, returns to the thickness before compression, and the active material easily peels from the electrode substrate.

そこで、本発明の主目的は、所望の容量を備えると共に、充放電に伴う電池性能の劣化を抑制することができるアルカリ電池用ニッケル電極の製造方法およびアルカリ電池用ニッケル電極が提供することにある。   Accordingly, a main object of the present invention is to provide a method for producing a nickel electrode for an alkaline battery and a nickel electrode for an alkaline battery, which have a desired capacity and can suppress deterioration of battery performance associated with charge / discharge. .

本発明者らは、所望の容量を有すると共に、電池性能の劣化を抑制することができるアルカリ電池用ニッケル電極について種々検討した結果、以下の知見を得た   As a result of various studies on nickel electrodes for alkaline batteries that have a desired capacity and can suppress deterioration of battery performance, the present inventors have obtained the following knowledge

まず、発泡状ニッケルについてニッケル電極の圧縮の割合を規定することを検討した。発泡状ニッケルを作製する際に芯材となる発泡状ウレタンはその取扱い上、厚さは1200〜1300μm程度が限界であり、それ以下にするとその後のメッキなどの工程でウレタンが破損してしまう。従って、ニッケルメッキ後の厚さもほぼ同じ1200〜1300μmが限界で、それ以下の厚さの発泡状ニッケルは電極基板として用いられていない。上記のような厚さの発泡状ニッケルを用いて、例えば加圧後500μmのニッケル電極を製造すると、発泡状ニッケルで構成される電極基板中のニッケル骨格は1/2.4〜1/2.6に圧縮される。このような圧縮の割合の電極基板では、充放電の繰返しにより活物質が膨潤すると、電極基板が元の厚さに戻ろうとする力が大きく、活物質の膨潤を抑える力が弱いため、電極は膨れ易いことが判った。このように、電極基板を圧縮する割合が非常に重要であることが明らかとなった。   First, it was examined to regulate the compression ratio of the nickel electrode for foamed nickel. The foamed urethane that becomes the core when producing the foamed nickel has a limit of about 1200 to 1300 μm in terms of handling, and if it is less than that, the urethane will be damaged in the subsequent steps such as plating. Accordingly, the thickness after nickel plating is almost the same, 1200 to 1300 μm, and foam nickel having a thickness less than that is not used as an electrode substrate. For example, when a nickel electrode having a thickness of 500 μm is manufactured after pressurization using the foamed nickel having the above thickness, the nickel skeleton in the electrode substrate made of foamed nickel is compressed to 1 / 2.4 to 1 / 2.6. The In the electrode substrate having such a compression ratio, when the active material swells due to repeated charging and discharging, the electrode substrate has a large force to return to the original thickness, and the force to suppress the swelling of the active material is weak. It turned out to be easy to swell. Thus, it became clear that the ratio which compresses an electrode substrate is very important.

次に、発泡状ニッケルと異なり、厚さを自由に作製できる不織布を用いた電極基板に着目し、種々検討した。その結果、電極基板の初期の厚さを調節して、圧縮の割合を適切な範囲に規定することにより電池の容量維持率を向上できることを見出した。   Next, different from foamed nickel, various studies were made focusing on an electrode substrate using a non-woven fabric whose thickness can be freely produced. As a result, it has been found that the capacity retention rate of the battery can be improved by adjusting the initial thickness of the electrode substrate and defining the compression ratio within an appropriate range.

さらに、充放電に伴って電極基板が元の厚さに戻ろうとする力を小さくすることを検討した結果、電極基板を圧縮後に熱処理を施すことにより、さらに充放電に伴う電池容量の低下を抑制することができるとの知見を得た。   Furthermore, as a result of studying to reduce the force that the electrode substrate tries to return to its original thickness along with charge / discharge, heat treatment after compression of the electrode substrate further suppresses battery capacity reduction due to charge / discharge I got the knowledge that I can do it.

上記知見に基づき本発明を規定する。
本発明アルカリ電池用ニッケル電極の製造方法は、不織布の繊維表面にニッケルを被覆した電極基板に活物質合剤を充填した後、加圧成形して電極とするアルカリ電池用ニッケル電極の製造方法である。そして、前記加圧成形は、加圧成形後の電極の厚みをtとしたとき、2.3t以下の厚みの電極基板を用い、加圧成形後に80℃以上130℃以下で5分以上60分以下の熱処理を行なうことを特徴とする。
This invention is prescribed | regulated based on the said knowledge.
The method for producing a nickel electrode for an alkaline battery according to the present invention is a method for producing a nickel electrode for an alkaline battery by filling an electrode substrate in which the surface of a non-woven fiber is coated with nickel with an active material mixture, and then pressing to form an electrode. is there. The pressure molding uses an electrode substrate having a thickness of 2.3 t or less, where t is the thickness of the electrode after pressure molding, and is from 80 ° C. to 130 ° C. for 5 minutes to 60 minutes after pressure molding. The heat treatment is performed.

また、本発明のアルカリ電池用ニッケル電極は、不織布の繊維表面にニッケルを被覆した電極基板に活物質合剤を充填した後、加圧成形して電極とするアルカリ電池用ニッケル電極であり、加圧成形後の電極の厚みをtとしたとき、2.3t以下の厚みの電極基板を加圧成形する。この加圧成形の後に80℃以上130℃以下で5分以上60分以下の熱処理を行なって得たことを特徴とする。   The nickel electrode for alkaline battery of the present invention is a nickel electrode for alkaline battery, in which an active material mixture is filled into an electrode substrate in which the surface of a nonwoven fabric fiber is coated with nickel, and then pressed to form an electrode. When the thickness of the electrode after pressure forming is t, an electrode substrate having a thickness of 2.3 t or less is pressure formed. It is characterized by being obtained by performing a heat treatment at 80 ° C. or higher and 130 ° C. or lower for 5 minutes or longer and 60 minutes or shorter after the pressure molding.

活物質合剤を充填した後に電極基板を圧縮(加圧成形)する割合を規定することにより、電極基板に十分な量の活物質合剤を充填することができ、且つ、電極基板の空孔に定着した活物質を剥離し難くすることができる。   By defining the ratio of compression (pressure forming) of the electrode substrate after filling the active material mixture, it is possible to fill the electrode substrate with a sufficient amount of the active material mixture and to provide pores in the electrode substrate. It is possible to make it difficult to peel off the active material fixed on the surface.

すでに述べたように、電極基板を圧縮して形成したニッケル電極は、電池の充放電に伴って圧縮前の厚さに戻ろうとする。これは、充放電に伴って活物質が体積変化を起こし、その結果、電極全体が膨潤するからである。例えば、活物質として水酸化ニッケルを使用した場合、充放電反応に伴って、活物質が水酸化ニッケルとオキシ水酸化ニッケルとの間で変化を繰り返す。このとき、電極基板の圧縮率が高いと膨潤した活物質により電極基板が圧縮前の厚さに戻り易く、膨潤した活物質が電極基板から剥離し易くなる。活物質が電極基板から剥離した場合、集電体である電極基板と活物質との接触の度合いが低下して電池の放電容量が低下する。また、電極が膨潤すると、電解液が電極内部に集中すると共に、相対的にセパレータが圧縮される。そのため、セパレータにおける電解液量が減少して電池の内部抵抗が増加し、電池の放電容量が低下する。このような理由のため、電極基板の厚さがニッケル電極の2.3倍超である場合、電極基板が元の厚さに戻ろうとする力が大きく、電極基板が活物質の膨潤を押える力が弱いため、電極基板からの活物質の剥離が多く、電池の放電容量の低下が顕著になる。本発明のニッケル電極は、電極基板の厚さを2.3t以下とすることで、電極基板の戻り代が比較的小さく、活物質の膨潤を抑制することができるので、繰り返しの充放電により電池容量の低下が起こり難い。より好ましい電極基板の厚さは、1.8t以下である。   As described above, the nickel electrode formed by compressing the electrode substrate tends to return to the thickness before compression as the battery is charged / discharged. This is because the active material undergoes a volume change with charge / discharge, and as a result, the entire electrode swells. For example, when nickel hydroxide is used as the active material, the active material repeatedly changes between nickel hydroxide and nickel oxyhydroxide with the charge / discharge reaction. At this time, if the compressibility of the electrode substrate is high, the electrode substrate easily returns to the thickness before compression due to the swollen active material, and the swollen active material easily peels from the electrode substrate. When the active material peels from the electrode substrate, the degree of contact between the electrode substrate, which is a current collector, and the active material is reduced, and the discharge capacity of the battery is reduced. When the electrode swells, the electrolyte concentrates inside the electrode and the separator is relatively compressed. As a result, the amount of electrolyte in the separator decreases, the internal resistance of the battery increases, and the discharge capacity of the battery decreases. For these reasons, when the thickness of the electrode substrate is more than 2.3 times that of the nickel electrode, the electrode substrate has a large force to return to the original thickness, and the electrode substrate has a weak force to suppress the swelling of the active material. Therefore, the active material is frequently peeled from the electrode substrate, and the battery discharge capacity is significantly reduced. The nickel electrode of the present invention has a thickness of the electrode substrate of 2.3 t or less, so that the return allowance of the electrode substrate is relatively small and the swelling of the active material can be suppressed. Is unlikely to occur. A more preferable thickness of the electrode substrate is 1.8 t or less.

電極基板は、圧縮成形(加圧成形)することを前提としているので、t超2.3t以下の厚さであれば良い。しかし、圧縮前の電極基板の厚さがニッケル電極の厚さに近いほど、空孔に充填できる活物質の量が減少するので、容量の小さな電池となる。また、このような電極基板では、作製する電池に要求される容量を確保するための活物質の量が多い場合、空孔に充填し切れなかった活物質は電極基板の表面に付着する。電極基板の表面に付着した活物質は、電池の充放電に伴い膨潤したときに、電極基板の網目構造により膨潤を押えることができないため電極基板から剥離し易くなる。そのため、この電極を用いて作製した電池の容量が低くなり、その寿命も短くなる。上記のことを考慮して、電池の容量を十分に確保すると共に、長寿命の電池とするために、電極基板の厚さは、1.3t以上であることが好ましい。より好ましい電極基板の厚さは、1.4t以上である。   Since the electrode substrate is premised on compression molding (pressure molding), the electrode substrate may have a thickness of more than t and 2.3 t or less. However, the closer the thickness of the electrode substrate before compression is to the thickness of the nickel electrode, the smaller the amount of active material that can be filled in the pores. Further, in such an electrode substrate, when the amount of the active material for securing the capacity required for the battery to be manufactured is large, the active material that has not been filled in the pores adheres to the surface of the electrode substrate. When the active material adhering to the surface of the electrode substrate swells as the battery is charged / discharged, the swelling cannot be suppressed due to the network structure of the electrode substrate, so that the active material is easily peeled off from the electrode substrate. Therefore, the capacity of a battery manufactured using this electrode is reduced, and its life is shortened. In consideration of the above, it is preferable that the thickness of the electrode substrate is 1.3 t or more in order to ensure a sufficient battery capacity and to obtain a long-life battery. A more preferable thickness of the electrode substrate is 1.4 t or more.

また、上述した電極基板の圧縮は、充填する活物質の量を考慮に入れて、極端な伸び(例えば、10%を超える伸び)を抑え、電極基板の三次元網目構造が破壊されない限度で行なうことが好ましい。例えば、厚さ900μmの電極基板に活物質を少なめに充填する場合、電極基板を600μmにまで圧縮するよりも、500μmまで圧縮する方が、電極基板に充填された活物質が確りと押し固められて、活物質同士や活物質と電極基板との密着性が高くなる。このように充填する活物質の量に応じて圧縮の割合を調節することにより、充放電に伴う活物質の剥離を効果的に抑制することができる。   In addition, the above-described compression of the electrode substrate takes into consideration the amount of the active material to be filled, and suppresses an extreme elongation (for example, an elongation exceeding 10%) to the extent that the three-dimensional network structure of the electrode substrate is not destroyed. It is preferable. For example, when filling the electrode substrate with a thickness of 900 μm with a small amount of active material, compressing the electrode substrate to 500 μm rather than compressing the electrode substrate to 600 μm will firmly compress the active material filled in the electrode substrate. Thus, the adhesion between the active materials and between the active material and the electrode substrate is increased. By adjusting the compression ratio in accordance with the amount of the active material to be filled in this way, it is possible to effectively suppress peeling of the active material that accompanies charge / discharge.

活物質を充填した電極基板の加圧成形には、プレスや圧延などを利用することができる。特に、ローラプレス機は、迅速且つ簡便に電極基板を加圧成形できるので、ニッケル電極の量産性を向上させることができる。また、ローラプレス機は、長尺の電極基板を均一に加圧成形できる利点も有する。   For press molding of the electrode substrate filled with the active material, press or rolling can be used. In particular, since the roller press machine can quickly and easily press-mold the electrode substrate, the mass productivity of the nickel electrode can be improved. Further, the roller press has an advantage that a long electrode substrate can be uniformly pressure-formed.

また、加圧成形後に、80℃以上130℃以下で5分以上60分以下の熱処理を施すことにより、電極を膨潤し難くすることができる。これは、熱処理により、電極基板内部の繊維がいったん軟化し、その後圧縮された状態で固化するためである。熱処理温度が80℃以下であると繊維の軟化の程度が小さく、繊維が圧縮された状態で固化し難い。130℃以上にすると一部繊維が溶けてしまい、溶融繊維が活物質を包み込んで抵抗になってしまう。上記の温度範囲内の熱処理時間が5分間未満では繊維が十分に軟化しないため、やはり繊維が圧縮された状態で固化し難い。また、上記のいずれの温度範囲であっても60分前後で繊維が十分軟化するため、60分超の熱処理を施すことは、電極基板の生産性を低下させる。なお、上述した熱処理の温度と時間は、次述する電極基板に好適に利用できる不織布の材料によって適宜選択するようにすれば良い。   In addition, the electrode can be made difficult to swell by performing heat treatment at 80 ° C. or higher and 130 ° C. or lower for 5 minutes to 60 minutes after pressure molding. This is because the fibers inside the electrode substrate are once softened by heat treatment and then solidified in a compressed state. When the heat treatment temperature is 80 ° C. or lower, the degree of softening of the fiber is small, and the fiber is hard to solidify in a compressed state. If the temperature is 130 ° C. or higher, some of the fibers are melted, and the molten fibers wrap around the active material and become resistance. If the heat treatment time within the above temperature range is less than 5 minutes, the fiber is not sufficiently softened, and therefore it is difficult to solidify in a compressed state. Moreover, since the fiber is sufficiently softened in about 60 minutes in any of the above temperature ranges, the heat treatment for more than 60 minutes reduces the productivity of the electrode substrate. In addition, what is necessary is just to select suitably the temperature and time of the heat processing mentioned above with the material of the nonwoven fabric which can be utilized suitably for the electrode substrate mentioned below.

電極基板の芯材である不織布は、電極基板の強度を保持することができる材料で構成する。その材料として耐アルカリ性、耐酸化性、価格などを考慮し、ポリオレフィン系樹脂、例えば、ポリエチレンやポリプロピレン、これらの重合体や混合物、あるいは、ポリプロピレンの骨格にポリエチレンを被覆した芯鞘構造のものなどが好適に利用できる。これらポリオレフィン系樹脂は、電極基板の強度を向上させて電極基板を膨張し難くし、集電体である電極基板と活物質ペーストとの接触不良を生じ難くさせる。また、電極基板に可撓性を付与して、加圧成形時に電極基板に亀裂などを生じ難くさせる。なお、ポリアミドのような窒素を含む官能基を持つ高分子を芯材とした電極基板をニッケル−水素電池に使用した場合、電池の自己放電が大きくなる。また、水酸基を持つポリビニルアルコールや酢酸基を有するポリ酢酸ビニルのような高分子は、耐アルカリ性、耐酸化性が良くない。   The nonwoven fabric that is the core material of the electrode substrate is made of a material that can maintain the strength of the electrode substrate. Considering alkali resistance, oxidation resistance, price, etc. as the material, polyolefin resins such as polyethylene and polypropylene, polymers and mixtures thereof, or core-sheath structures in which polyethylene is coated on a polypropylene skeleton, etc. It can be suitably used. These polyolefin-based resins improve the strength of the electrode substrate, make it difficult to expand the electrode substrate, and make it difficult to cause poor contact between the electrode substrate, which is a current collector, and the active material paste. Moreover, flexibility is imparted to the electrode substrate so that the electrode substrate is not easily cracked during pressure molding. In addition, when an electrode substrate having a polymer having a functional group containing nitrogen such as polyamide as a core material is used for a nickel-hydrogen battery, self-discharge of the battery becomes large. In addition, polymers such as polyvinyl alcohol having a hydroxyl group and polyvinyl acetate having an acetate group do not have good alkali resistance and oxidation resistance.

電極に使用する不織布の目付け重量は特に限定されない。しかし、不織布を嵩高にして空隙体積を大きくすると、充填できる活物質の量を増やせるので、従来の発泡状ニッケルと同様の高容量の電池を得ることができる。また、後工程で加圧成形時の強度を確保するために、不織布の目付け重量は20〜100g/m2の範囲内が好ましい。上述の目付け重量に基づいて作製した不織布では、体積に占める空孔の割合(空孔率)を、発泡状ニッケルと同程度とすることができる。好ましくは、目付け重量を調節して不織布の空孔率を85〜98%とする。より好ましい不織布の空孔率は、90〜96%である。ここで、不織布の表面にニッケルをメッキした場合であっても、メッキするニッケルの厚さは非常に薄いため、上記の空孔率はほぼ変化しない。 The basis weight of the nonwoven fabric used for the electrode is not particularly limited. However, if the nonwoven fabric is made bulky and the void volume is increased, the amount of active material that can be filled can be increased, so that a high-capacity battery similar to conventional foamed nickel can be obtained. Moreover, in order to ensure the strength at the time of pressure molding in the subsequent process, the basis weight of the nonwoven fabric is preferably within the range of 20 to 100 g / m 2 . In the nonwoven fabric produced based on the above-mentioned weight per unit area, the ratio of the pores (porosity) in the volume can be set to the same level as the foamed nickel. Preferably, the weight of the nonwoven fabric is adjusted to 85 to 98% by adjusting the basis weight. More preferably, the porosity of the nonwoven fabric is 90 to 96%. Here, even when nickel is plated on the surface of the non-woven fabric, the thickness of the nickel to be plated is very thin, and the porosity is not substantially changed.

不織布は、気相下で形成する乾式法や繊維を水中に分散させて漉き取る湿式法などにより製造することができる。湿式法により得られた不織布は、乾式法により得られた不織布と比較して、その目付け重量および厚みにばらつきが小さく、均一な集電体を確保することができる。また、不織布は、不織布の繊維同士を絡み合わせる交絡処理や、繊維同士の接触点を融着させる熱処理を行なって強度を向上させた後に使用しても良い。その他、不織布に、不織布とニッケルとの密着性を向上させるための親水化処理を行なっても良い。   The nonwoven fabric can be produced by a dry method formed in a gas phase or a wet method in which fibers are dispersed and dispersed in water. The nonwoven fabric obtained by the wet method has less variation in the basis weight and thickness than the nonwoven fabric obtained by the dry method, and a uniform current collector can be ensured. Moreover, you may use a nonwoven fabric, after performing the entanglement process which entangles the fibers of a nonwoven fabric, and the heat processing which fuse | melts the contact point of fibers, and improving a intensity | strength. In addition, you may perform the hydrophilic treatment for improving the adhesiveness of a nonwoven fabric and nickel to a nonwoven fabric.

不織布の表面に被覆するニッケル量は、集電体として十分な性能を発揮することができる量であれば良い。好ましくは、被覆するニッケル量は、50〜220g/m2程度である。このニッケル量は、実用化されている発泡状ニッケルの目付け重量350〜400g/m2よりも大幅に少なくできるために、ニッケル電極を低廉化することができる。ニッケル量が50g/m2未満にすると、ニッケル電極の強度が問題になる。 The amount of nickel coated on the surface of the nonwoven fabric may be an amount that can exhibit sufficient performance as a current collector. Preferably, the amount of nickel to be coated is about 50 to 220 g / m 2 . The amount of nickel can be significantly less than the basis weight of 350 to 400 g / m 2 of foamed nickel that has been put into practical use, so that the nickel electrode can be made inexpensive. When the amount of nickel is less than 50 g / m 2 , the strength of the nickel electrode becomes a problem.

ニッケルを不織布に被覆する方法は、公知の好ましい方法を選択すれば良い。例えば、ニッケルを被覆する方法は、無電解メッキでも良いし、電解メッキでも良いし、スパッタリングなどの気相法でもかまわない。また、上記の方法を組み合わせて不織布にニッケルを被覆してもかまわない。好ましくは、無電解メッキまたはスパッタリングにより不織布の表面に導電性を付与した後、電解メッキを施す。電解メッキはメッキ浴を用いて行なえば良く、このメッキ浴として、ワット浴、塩化浴、スルファミン酸浴などが好適に利用可能である。これらのメッキ浴にpH緩衝剤や界面活性剤などを添加しても良い。   As a method for coating the non-woven fabric with nickel, a known preferable method may be selected. For example, the method of coating nickel may be electroless plating, electrolytic plating, or a vapor phase method such as sputtering. Further, the nonwoven fabric may be coated with nickel by combining the above methods. Preferably, electroless plating is performed after imparting conductivity to the surface of the nonwoven fabric by electroless plating or sputtering. The electroplating may be performed using a plating bath, and a watt bath, a chloride bath, a sulfamic acid bath, or the like can be suitably used as the plating bath. A pH buffering agent or a surfactant may be added to these plating baths.

本発明のニッケル電極をニッケル−水素電池に使用する場合、電極基板に担持させる活物質として、水酸化ニッケルが挙げられる。この活物質を電極基板に担持させるには、活物質を主剤とするペースト状活物質合剤を調整し、電極基板に加圧充填すると良い。加圧充填することで、電極基板の内部に活物質を均等に分布させることができる。また、活物質合剤の充填後に、電極基体を乾燥させることで、電極基体に活物質を定着させることができる。   When the nickel electrode of the present invention is used in a nickel-hydrogen battery, nickel hydroxide can be cited as an active material to be supported on the electrode substrate. In order to carry this active material on the electrode substrate, it is preferable to prepare a paste-like active material mixture containing the active material as a main ingredient and pressurize and fill the electrode substrate. By filling with pressure, the active material can be evenly distributed inside the electrode substrate. In addition, after filling the active material mixture, the active material can be fixed to the electrode substrate by drying the electrode substrate.

ニッケル−水素電池の活物質合剤には、水酸化ニッケルの他に、水酸化ニッケルの導電性を補う導電助剤や、集電体である電極基板と活物質との接着性を向上させる結着剤などを含むことが好ましい。導電助剤としては、黒鉛やコバルト、コバルト化合物などが好適に利用可能である。特に、表面にコバルト酸化物を被覆した球状の水酸化ニッケルを活物質として使用すると、電極基板のニッケル量を減らした場合でも放電容量の低下を抑制することができる。一方、結着剤としては、カルボキシメチルセルロースなどが利用できる。   In addition to nickel hydroxide, the nickel-hydrogen battery active material mixture includes a conductive auxiliary agent that supplements the conductivity of nickel hydroxide, and a bond that improves the adhesion between the electrode substrate, which is a current collector, and the active material. It is preferable that an adhesive is included. As the conductive aid, graphite, cobalt, cobalt compounds, and the like can be suitably used. In particular, when spherical nickel hydroxide whose surface is coated with cobalt oxide is used as an active material, a reduction in discharge capacity can be suppressed even when the amount of nickel in the electrode substrate is reduced. On the other hand, carboxymethyl cellulose or the like can be used as the binder.

電極基板を加圧成形してニッケル電極とするときの電極の厚さは、電極の用途により適宜選択すれば良い。例えば、ハイブリッド自動車や電動工具などに用いられる高出力用途の電池では、使用するニッケル電極の厚さは350〜550μm程度、デジタルカメラなどに用いられる高容量用途の電池では、使用するニッケル電極の厚さは550〜700μm程度である。また、これらの用途に使用する電池として要求される容量密度は、高出力用途であれば、300〜550mAh/cc程度、高容量用途であれば、550〜750mAh/cc程度である。   What is necessary is just to select suitably the thickness of the electrode when press-molding an electrode substrate into a nickel electrode according to the use of an electrode. For example, the thickness of the nickel electrode to be used is about 350 to 550 μm in a battery for high output used in a hybrid vehicle or an electric tool, and the thickness of the nickel electrode to be used in a battery for high capacity used in a digital camera etc. The length is about 550 to 700 μm. Further, the capacity density required for the battery used in these applications is about 300 to 550 mAh / cc for high output applications, and about 550 to 750 mAh / cc for high capacity applications.

以上、説明した本発明のニッケル電極を用いてアルカリ電池を製造する際に、この電極をそのまま使用しても良いし、折りたたんで使用しても良い。さらに、ニッケル電極に補強用のエキスパンドメタルやパンチングメタルを沿わせて電池を製造してもかまわない。   As described above, when an alkaline battery is manufactured using the nickel electrode of the present invention described above, this electrode may be used as it is, or may be used after being folded. Further, a battery may be manufactured by placing a reinforcing expanded metal or punching metal along the nickel electrode.

本発明アルカリ電池用ニッケル電極の製造方法によれば、電極の厚みが薄くても容量が高く、繰り返しの充放電にも容量維持率が低下し難いアルカリ電池用ニッケル電極を得ることができる。   According to the method for producing a nickel electrode for an alkaline battery of the present invention, it is possible to obtain a nickel electrode for an alkaline battery in which the capacity is high even when the electrode is thin, and the capacity maintenance rate is hardly lowered even during repeated charge and discharge.

また、本発明のアルカリ電池用ニッケル電極を利用すれば、電極の厚みが薄くても容量が高く、繰り返しの充放電にも容量維持率が低下し難いので、高性能なアルカリ電池を製造することができる。   In addition, if the nickel electrode for alkaline battery of the present invention is used, the capacity is high even if the electrode thickness is thin, and the capacity maintenance rate is difficult to decrease even during repeated charge and discharge, so a high-performance alkaline battery is manufactured. Can do.

<実施例1>
本例では、不織布の芯材にニッケルを被覆して電極基板とした。ここで、電極基板の厚さを変化させると共に、電極基板を圧縮する割合を変化させて複数の電池用電極を作製した。この電極基板に充填する活物質は、ニッケル−水素電池用正極活物質であり、製造した電極は、ニッケル−水素電池用のニッケル電極である。
<Example 1>
In this example, a non-woven core material was coated with nickel to form an electrode substrate. Here, while changing the thickness of an electrode substrate, the ratio which compresses an electrode substrate was changed, and the several electrode for batteries was produced. The active material filled in the electrode substrate is a positive electrode active material for nickel-hydrogen batteries, and the manufactured electrode is a nickel electrode for nickel-hydrogen batteries.

ニッケル−水素電池のニッケル電極の作製に当たって、まず初めに、1200、1000、900、800、700、600μmの厚さを有する不織布を用意した。不織布は、ポリエチレン繊維とポリプロピレン繊維とが8:2の比率となるように湿式法により作製した。この不織布の多孔度は90%、孔径は15〜200μm、平均繊径は15μm、目付け重量は65g/m2、幅は600mmであった。 In producing a nickel electrode of a nickel-hydrogen battery, first, nonwoven fabrics having thicknesses of 1200, 1000, 900, 800, 700, and 600 μm were prepared. The nonwoven fabric was produced by a wet method so that the ratio of polyethylene fiber and polypropylene fiber was 8: 2. This nonwoven fabric had a porosity of 90%, a pore diameter of 15 to 200 μm, an average fiber diameter of 15 μm, a weight per unit area of 65 g / m 2 , and a width of 600 mm.

次に、公知のスパッタリング装置により、各不織布の表面に導電性の層を形成して、電解メッキを行なえるようにした。スパッタリングは、電極基板とニッケル片とを真空容器内に配置して、不活性ガスを導入しながら直流高電圧を印加して、イオン化した不活性ガスをニッケルに衝突させることによりニッケルを不織布上に形成する方法である。スパッタリングにより不織布に被覆したニッケルの量は、8g/m2であった。 Next, a conductive layer was formed on the surface of each non-woven fabric by a known sputtering apparatus so that electrolytic plating could be performed. Sputtering involves placing an electrode substrate and a nickel piece in a vacuum vessel, applying a high DC voltage while introducing an inert gas, and causing the ionized inert gas to collide with the nickel, thereby causing the nickel to fall on the nonwoven fabric. It is a method of forming. The amount of nickel coated on the nonwoven fabric by sputtering was 8 g / m 2 .

導電性を付与した不織布にニッケルをメッキした。ニッケルメッキは、硫酸ニッケル330g/L、塩化ニッケル50g/L、硼酸40g/Lを主成分として含むワット浴により行なった。具体的には、キャリアーに巻き付けた前述の導電性を付与した不織布をワット浴中に送り込み、被覆するニッケルの量が平均で200g/m2となるようにニッケルをメッキした。導電性を付与した不織布の対極としては、ニッケル片を入れたチタンバスケットを使用した。不織布にメッキしたニッケルの厚さは、約3μmと非常に薄いため、電極基板の厚さは、ニッケルを被覆する前の厚さとほとんど変わらない。 Nickel was plated on the non-woven fabric provided with conductivity. Nickel plating was performed in a Watt bath containing nickel sulfate 330 g / L, nickel chloride 50 g / L, and boric acid 40 g / L as main components. Specifically, the above-mentioned non-woven fabric imparted with electrical conductivity wound around a carrier was fed into a watt bath, and nickel was plated so that the average amount of nickel to be coated was 200 g / m 2 . As a counter electrode of the nonwoven fabric provided with conductivity, a titanium basket containing a nickel piece was used. Since the thickness of the nickel plated on the nonwoven fabric is very thin, about 3 μm, the thickness of the electrode substrate is almost the same as the thickness before coating the nickel.

各電極基板に活物質ペーストを圧入法により充填した。但し、厚さ1200μmと1000μmの電極基板については、次工程において電極基板の空孔に活物質ペーストを均一に充填させるために、ローラプレス機で厚さ900μmに調厚した。なお、調厚は基板の表面平滑性を向上させ、活物質ペーストの充填量の面内ばらつきを抑えるために行った。電極基板に充填する活物質ペーストは、コバルト被覆水酸化ニッケル粉末70重量部、オキシコバルト酸化物5重量部を混合し、0.5%カルボキシメチルセルロース水溶液を加えてペースト状としたものを使用した。コバルト被覆水酸化ニッケル粉末の表面には、水酸化ニッケル粉末の全重量に対して5.5%相当のオキシ水酸化コバルトが公知の方法により被覆されている。活物質ペーストの充填は、600μmの電極基板においてのみ充填がやや困難であり、活物質ペーストが電極基板表面に付着した状態で残った。   Each electrode substrate was filled with an active material paste by a press-fitting method. However, the electrode substrates having thicknesses of 1200 μm and 1000 μm were adjusted to a thickness of 900 μm with a roller press in order to uniformly fill the pores of the electrode substrate with the active material paste in the next step. The thickness adjustment was performed in order to improve the surface smoothness of the substrate and to suppress in-plane variation in the filling amount of the active material paste. The active material paste to be filled in the electrode substrate was a paste prepared by mixing 70 parts by weight of cobalt-coated nickel hydroxide powder and 5 parts by weight of oxycobalt oxide and adding a 0.5% carboxymethylcellulose aqueous solution. Cobalt oxyhydroxide equivalent to 5.5% of the total weight of the nickel hydroxide powder is coated on the surface of the cobalt-coated nickel hydroxide powder by a known method. The filling of the active material paste was somewhat difficult only on the 600 μm electrode substrate, and the active material paste remained attached to the electrode substrate surface.

ペーストの充填後、直ちに電極基板の表面を平滑化して90℃で乾燥した。乾燥後、エンボス加工した径30cmのローラを有するローラプレス機により、活物質を保持した電極基板を、厚さ450μmとなるように圧縮(加圧成形)した。   Immediately after filling the paste, the surface of the electrode substrate was smoothed and dried at 90 ° C. After drying, the electrode substrate holding the active material was compressed (press-molded) to a thickness of 450 μm by a roller press having an embossed 30 cm diameter roller.

この実施例では、加圧成形した電極基板をそれぞれ110℃で20分間熱処理し、ニッケル電極a〜fを得た。表1にニッケル電極a〜fの加圧成形前の厚さ(電極基板の厚さ)、加圧成形後の厚さ(ニッケル電極の厚さ)、および圧縮率(加圧成形前の厚さ/加圧成形後の厚さ)を示す。   In this example, the pressure-formed electrode substrates were each heat-treated at 110 ° C. for 20 minutes to obtain nickel electrodes a to f. Table 1 shows the thickness of nickel electrodes a to f before pressure molding (electrode substrate thickness), the thickness after pressure molding (thickness of nickel electrode), and the compression ratio (thickness before pressure molding). / Thickness after pressure molding).

Figure 0005062724
Figure 0005062724

表1のニッケル電極を幅32mm、長さ280mmの帯状となるように裁断し、正極とし、これら正極電極a〜fを使用して電池A〜Fを作製した。電池は、正極、セパレータ、負極を重ねて巻物のように巻回し、SubCサイズの電槽(円筒状容器:φ23mm×43mm)に収納して電解液を満たすことで製造した。正極と負極を巻回するときは、電槽の長手方向にずらした状態とし、電槽上部に配置した円板状の集電板に帯状の正極の長辺端部を多点溶接し、電槽下部に配置した円板状の集電板に帯状の負極の長辺端部を多点溶接した、いわゆるタブレス方式とした。   The nickel electrodes in Table 1 were cut into strips having a width of 32 mm and a length of 280 mm to form positive electrodes, and batteries A to F were produced using these positive electrodes a to f. The battery was manufactured by stacking a positive electrode, a separator, and a negative electrode, wound like a roll, and housed in a SubC size battery case (cylindrical container: φ23 mm × 43 mm) to fill the electrolyte. When winding the positive electrode and the negative electrode, the positive electrode and the negative electrode are shifted in the longitudinal direction of the battery case. A so-called tabless method was adopted in which the long-side end of the strip-shaped negative electrode was welded to a disk-shaped current collector disposed at the bottom of the tank.

電池A〜Fの負極には、公知の水素吸蔵合金を使用した。負極は、鉄板にニッケルをメッキして製造されたパンチングメタルにペースト状の水素吸蔵合金を塗着し、表面を平滑にした後、ローラプレスで加圧成形することで製造した。ペースト状の水素吸蔵合金は、Al、Mn、Coを含むMmNi系の5元系水素吸蔵合金(MmはCe、La、Pr、Ndを主成分とする希土類の混合物)を1%のカルボキシメチルセルロース水溶液に加えることで得た。負極の寸法は、幅32mm、長さ280mm、厚さ380μmである。また、正極の容量に対する負極の容量であるN/Pは、1.5である。なお、負極の容量が正極の容量よりも大きいのは、過充電時に電池内で発生する気体酸素を負極で吸収するためである。   A known hydrogen storage alloy was used for the negative electrodes of the batteries A to F. The negative electrode was manufactured by applying a paste-like hydrogen storage alloy to a punching metal manufactured by plating nickel on an iron plate, smoothing the surface, and then pressure forming with a roller press. The paste-like hydrogen storage alloy is a 1% carboxymethylcellulose aqueous solution of MmNi-based ternary hydrogen storage alloy containing Al, Mn, and Co (Mm is a rare earth mixture mainly composed of Ce, La, Pr, and Nd). It was obtained by adding to The negative electrode has a width of 32 mm, a length of 280 mm, and a thickness of 380 μm. Moreover, N / P which is the capacity | capacitance of the negative electrode with respect to the capacity | capacitance of a positive electrode is 1.5. In addition, the capacity | capacitance of a negative electrode is larger than the capacity | capacitance of a positive electrode because the negative electrode absorbs the gaseous oxygen generated in a battery at the time of overcharge.

また、電池A〜Fのセパレータには、親水性処理を施し電解液に対して親和性をもたせたポリプロピレン製不織布を用いた。セパレータの厚さは、130μm、その幅は32mm、長さは280mmとした。また、電解液は、30%苛性カリ溶液に水酸化リチウムを20g/Lとなるように溶解して得た。   For the separators of the batteries A to F, a polypropylene nonwoven fabric that has been subjected to a hydrophilic treatment and has an affinity for the electrolytic solution is used. The separator had a thickness of 130 μm, a width of 32 mm, and a length of 280 mm. Moreover, the electrolytic solution was obtained by dissolving lithium hydroxide in a 30% caustic potash solution so as to be 20 g / L.

作製した各電池の公称容量は、水酸化ニッケルの単位重量中りの放電容量289mA/gに基づいて計算した結果、2.35〜2.38mAhの範囲であり、差はほとんど無かった。   As a result of calculation based on the discharge capacity of 289 mA / g per unit weight of nickel hydroxide, the nominal capacity of each produced battery was in the range of 2.35 to 2.38 mAh, and there was almost no difference.

作製した各電池A〜Fを以下に示す工程により化成した。
1. 0.2C(Cは充放電係数)の定電流で公称容量の130%充電、0.2Cで終止電圧0.95Vの放電を1回
2. 0.3Cの定電流で公称容量の120%充電、0.3Cで終止電圧0.95Vの放電を1回
3. 0.5Cの定電流で公称容量の120%充電、0.5Cで終止電圧0.90Vの放電を1回
Each of the produced batteries A to F was formed by the steps shown below.
1. Charge at 130% of nominal capacity at a constant current of 0.2C (C is the charge / discharge coefficient), discharge once at a final voltage of 0.95V at 0.2C
2. Charge at 120% of nominal capacity with a constant current of 0.3C, discharge once with a final voltage of 0.95V at 0.3C
3. Charging 120% of nominal capacity at a constant current of 0.5C, discharging once at a final voltage of 0.90V at 0.5C

上記のようにして作製した電池A〜Fの常温での電池の性能を調べた。電池の性能は、充放電サイクルに伴う容量維持率により評価した。具体的には、電池A〜Fをそれぞれ25℃の雰囲気中に置き、定電流1CでCC−ΔV方式(ΔV=−5mV)で充電し、次いで定電流1Cで終端電圧0.9Vまで放電する操作を1サイクルとして、このサイクルを繰り返した。なお、CC−ΔV方式とは、一定電流値で充電していき、電圧がピーク位置からΔV下がったときに充電を終了する充電方法である。そして、250、500、750、1000、1250サイクルにおける各電池の容量維持率を調べた。容量維持率は、化成後1サイクル目の放電容量を100としたときの、各サイクルにおける放電容量の比率(%)である。その結果を、表2に示す。   The performance of the batteries A to F produced as described above at room temperature was examined. The performance of the battery was evaluated by the capacity maintenance rate accompanying the charge / discharge cycle. Specifically, batteries A to F are each placed in an atmosphere of 25 ° C., charged at a constant current of 1 C using the CC-ΔV method (ΔV = −5 mV), and then discharged to a termination voltage of 0.9 V at a constant current of 1 C. This cycle was repeated with 1 cycle. The CC-ΔV method is a charging method in which charging is performed with a constant current value, and charging is terminated when the voltage drops ΔV from the peak position. And the capacity maintenance rate of each battery in 250, 500, 750, 1000, and 1250 cycles was investigated. The capacity retention ratio is the ratio (%) of the discharge capacity in each cycle when the discharge capacity in the first cycle after the formation is 100. The results are shown in Table 2.

Figure 0005062724
Figure 0005062724

表2の結果から明らかなように、いずれの電池も1250サイクルの充放電を行なった後でも84%以上の放電容量を維持しており、長寿命であることがわかった。より詳細に各電池の性能を比較すると、750サイクルの充放電に対して、電池A〜Fの放電容量に大きな差はなく、全ての電池が95%以上の放電容量を維持していた。一方、1000サイクルでは、電池B〜E(圧縮率1.56〜2.22)が電池A(圧縮率2.67)よりも容量の低下が少ないことが明らかになった。さらに、1250サイクルでは、電池C〜D(圧縮率1.56〜2.00)が、他の電池(圧縮率1.33、2.22、2.67)よりも容量の低下が少なく、長寿命の電池であることが明らかになった。即ち、不織布を骨格とした電極基板に活物質を充填して加圧したニッケル電極において、圧縮率を調節することにより、電池の寿命を大幅に向上させることができることが明らかになった。   As is clear from the results in Table 2, it was found that all batteries maintained a discharge capacity of 84% or more even after charging and discharging for 1250 cycles, and had a long life. Comparing the performance of each battery in more detail, there was no significant difference in the discharge capacities of the batteries A to F with respect to 750 cycles of charge / discharge, and all the batteries maintained a discharge capacity of 95% or more. On the other hand, in 1000 cycles, it became clear that the batteries B to E (compression ratio 1.56 to 2.22) had less capacity reduction than the battery A (compression ratio 2.67). Furthermore, in 1250 cycles, it is clear that batteries C to D (compression ratio 1.56 to 2.00) are long-life batteries with less capacity reduction than other batteries (compression ratios 1.33, 2.22, and 2.67). It was. That is, it has been clarified that the life of the battery can be significantly improved by adjusting the compressibility of a nickel electrode in which an active material is filled in a non-woven electrode substrate and pressed.

ところで、高温下においてニッケル電極は、充電による過剰な酸化、充放電による膨潤が常温よりも顕著になることが知られている。そこで、上述の条件よりも更に過酷な条件として、高温環境下での、電池A〜Fの電池性能を評価した。試験の条件は、電池周囲の温度を25℃から45℃に変更した以外は、上述の25℃での試験と同様の充放電条件で充放電を繰り返した。なお、高温環境下では、ニッケル電極の充電効率が若干低下するため、各電池の1サイクル目の放電容量は、公称容量の98%であった。従って、この容量を100として各電池の容量維持率を評価した。その結果を表3に示す。   By the way, it is known that, at high temperatures, the nickel electrode is more susceptible to excessive oxidation due to charging and swelling due to charging / discharging than normal temperature. Therefore, the battery performance of the batteries A to F under a high temperature environment was evaluated as a condition that is more severe than the above-described conditions. The test was conducted under the same charge / discharge conditions as the test at 25 ° C. described above except that the temperature around the battery was changed from 25 ° C. to 45 ° C. Note that, under a high temperature environment, the charging efficiency of the nickel electrode slightly decreased, and thus the discharge capacity at the first cycle of each battery was 98% of the nominal capacity. Therefore, the capacity maintenance rate of each battery was evaluated with this capacity as 100. The results are shown in Table 3.

Figure 0005062724
Figure 0005062724

表3から明らかなように、300サイクルでは、電池B〜Eが91%以上の放電容量を維持しているのに対して、電池AとFは容量が88%以下であった。さらに、充放電を繰返すにしたがって、電池B〜Eの容量維持率と電池A,Fの容量維持率との差は顕著となった。以上のことから、25℃の条件下と異なり、45℃の条件下では、いずれの電池も充放電サイクルの経過に伴い放電容量の低下の度合いが大きい。しかし、これらの電池の中でも電池B〜Eは、その他の電池よりも放電容量の低下が抑制されており、長寿命であることが明らかとなった。   As is clear from Table 3, in 300 cycles, batteries B to E maintained a discharge capacity of 91% or more, whereas batteries A and F had a capacity of 88% or less. Furthermore, as charging / discharging was repeated, the difference between the capacity maintenance rates of the batteries B to E and the capacity maintenance rates of the batteries A and F became significant. From the above, unlike the condition at 25 ° C., under the condition at 45 ° C., all batteries have a large degree of decrease in discharge capacity with the progress of the charge / discharge cycle. However, among these batteries, the batteries B to E were found to have a long life because the decrease in discharge capacity was suppressed more than other batteries.

なお、表3には示していないが、比較として汎用の発泡状ニッケルを正極として使用した電池を作製し、上述の条件で充放電特性を試験した。正極は、ニッケルの目付け重量が420g/m2、厚さが1250μm、多孔度が93%のニッケル集電体を900μmに調厚して活物質ペーストを充填し、加圧成形して厚さ450μmのニッケル電極としたものである。この発泡状ニッケルの電極を使用した電池は、電池Aとほぼ同様の寿命特性を示し、本願のニッケル電極を使用した電池B〜Eよりも電池性能が劣ることが判った。 Although not shown in Table 3, for comparison, a battery using general-purpose foamed nickel as a positive electrode was produced, and charge / discharge characteristics were tested under the above-described conditions. The positive electrode has a nickel weight of 420 g / m 2 , a thickness of 1250 μm, a nickel current collector with a porosity of 93%, adjusted to 900 μm, filled with an active material paste, and pressure-molded to a thickness of 450 μm. This is a nickel electrode. The battery using the foamed nickel electrode showed almost the same life characteristics as the battery A, and was found to be inferior to the batteries B to E using the nickel electrode of the present application.

以上、実施例1から明らかなように、所望のニッケル電極の厚さに対して、約1.5〜2.3倍程度の不織布を骨格とする電極基板を使用した電池が、長寿命であることがわかった。一方、約2.7倍以上、1.3倍以下の不織布を骨格とした場合、電池の寿命が劣ることが明らかとなった。また、電池Aの電極aの伸びは、10%超であり、電極b〜fの伸びは10%以下であった。電極の伸びは、圧縮後の長さと、圧縮前の長さを測定し、以下の式により求めた。
伸び={(圧縮後の長さ−圧縮前の長さ)/圧縮前の長さ}×100
As described above, as is clear from Example 1, it was found that the battery using the electrode substrate having a nonwoven fabric of about 1.5 to 2.3 times the thickness of the desired nickel electrode has a long life. . On the other hand, it was revealed that the battery life was inferior when a non-woven fabric of about 2.7 times or more and 1.3 times or less was used as the skeleton. Further, the elongation of the electrode a of the battery A was more than 10%, and the elongation of the electrodes b to f was 10% or less. The elongation of the electrode was determined by the following equation by measuring the length after compression and the length before compression.
Elongation = {(Length after compression−Length before compression) / Length before compression} × 100

<実施例2>
本実施例では、実施例1の電池よりも更に高出力の電池を作製した。一般に、高出力用の電池は、使用する電極の厚さを薄くし、単位面積あたりの活物質の量を減らすことで製造する。そこで、実施例2では、ニッケル電極(正極)の厚さを平均で380μmとしたニッケル電極i〜viを作製した。
<Example 2>
In this example, a battery having a higher output than that of the battery of Example 1 was produced. Generally, a battery for high output is manufactured by reducing the thickness of an electrode to be used and reducing the amount of active material per unit area. Therefore, in Example 2, nickel electrodes i to vi having nickel electrodes (positive electrodes) with an average thickness of 380 μm were produced.

ニッケル電極i〜viは、実施例1と同様に、厚さの異なる電極基板に活物質ペーストを充填させて、厚さ380μmとなるように圧縮することで作製した。なお、電極iと電極iiは、活物質ペーストの充填性を均一にする目的で、ペーストの充填前に電極iiiの加圧成形前の厚さと同程度の厚さに調圧した。表4にニッケル電極i〜viの加圧成形前の厚さ、加圧成形後の厚さ、および圧縮率を示す。   Similarly to Example 1, the nickel electrodes i to vi were prepared by filling an electrode substrate having a different thickness with an active material paste and compressing the active material paste to a thickness of 380 μm. The electrodes i and ii were adjusted to have a thickness comparable to the thickness of the electrode iii before press molding before filling the paste for the purpose of making the filling of the active material paste uniform. Table 4 shows the thickness of the nickel electrodes i to vi before pressure molding, the thickness after pressure molding, and the compression ratio.

Figure 0005062724
Figure 0005062724

表4に示すニッケル電極を幅32mm、長さ315mmとなるように裁断して正極とした。この正極に対して、実施例1と同様のMmNi系の5元系水素吸蔵合金を用いて負極を作製した。本例の負極の寸法は、幅32mm、長さ315mm、厚さ380μmであり、容量比N/Pは1.4である。また、セパレータおよび電解液も実施例1と同様のものを使用した。これら正極(i〜vi)、セパレータ、負極を重ねた状態で巻回し、SubCサイズの容器に収納してタブレス方式の電池I〜VIを作製した。各電池の公称容量は2.20〜2.22mAhの範囲であり、各電池間でほとんど差はなかった。   The nickel electrode shown in Table 4 was cut to a width of 32 mm and a length of 315 mm to obtain a positive electrode. With respect to this positive electrode, a negative electrode was prepared using the same MmNi-based ternary hydrogen storage alloy as in Example 1. The dimensions of the negative electrode in this example are a width of 32 mm, a length of 315 mm, a thickness of 380 μm, and a capacity ratio N / P of 1.4. In addition, the same separator and electrolyte as in Example 1 were used. These positive electrodes (i to vi), separators, and negative electrodes were wound in a stacked state and housed in a SubC size container to produce tabless batteries I to VI. The nominal capacity of each battery ranged from 2.20 to 2.22 mAh, with little difference between each battery.

作製した各電池I〜VIを以下に示す工程により化成した。
1. 0.2Cの定電流で公称容量の130%充電、0.2Cで終止電圧0.95Vの放電を1回
2. 0.5Cの定電流で公称容量の120%充電、0.5Cで終止電圧0.90Vの放電を1回
Each of the produced batteries I to VI was formed by the steps shown below.
1. Charge at 130% of nominal capacity at a constant current of 0.2C, discharge once at a final voltage of 0.95V at 0.2C
2. Charging 120% of nominal capacity at a constant current of 0.5C, discharging once at a final voltage of 0.90V at 0.5C

上記のようにして作製した電池I〜VIの45℃での電池の性能を調べた。電池の性能は、充放電サイクルに伴う容量維持率により評価した。評価の方法は実施例1と同様である。なお、高温環境下では、ニッケル電極の充電効率が若干低下するため、各電池の1サイクル目の放電容量は、公称容量の98%であった。従って、この容量を100として各電池の容量維持率を評価した。その結果を、表5に示す。   The performance of the batteries at 45 ° C. of the batteries I to VI produced as described above was examined. The performance of the battery was evaluated by the capacity maintenance rate accompanying the charge / discharge cycle. The evaluation method is the same as in Example 1. Note that, under a high temperature environment, the charging efficiency of the nickel electrode slightly decreased, and thus the discharge capacity at the first cycle of each battery was 98% of the nominal capacity. Therefore, the capacity maintenance rate of each battery was evaluated with this capacity as 100. The results are shown in Table 5.

Figure 0005062724
Figure 0005062724

表5から明らかなように、250サイクルの時点で電池II〜V(圧縮率1.58〜2.37)は92%以上の放電容量を維持しているのに対して、電池I(圧縮率2.63)およびVI(圧縮率1.32)は放電容量が89%以下に低下した。また、サイクル数の増加に伴い、電池II〜Vの容量と電池I、VIとの容量との差が顕著となった。さらに、800サイクルでは、電池III〜V(圧縮率1.58〜2.11)の容量が85%以上を維持しているのに対して、電池I、II(圧縮率2.37)、VIの容量は80%未満であった。以上のことから、電極の厚さを薄くした高出力用途の電池において、所定の範囲の圧縮率を有するニッケル電極を使用することで、非常に優れた寿命特性を有する電池を作製できることが明らかになった。さらに、電池I,IIの電極i,iiの伸びは、10%超であり、それ以外の電極の伸びは10%以下であった。   As is clear from Table 5, batteries II to V (compression ratio 1.58 to 2.37) maintained a discharge capacity of 92% or more at 250 cycles, whereas batteries I (compression ratio 2.63) and VI (Compression rate 1.32) decreased the discharge capacity to 89% or less. Further, as the number of cycles increased, the difference between the capacity of the batteries II to V and the capacity of the batteries I and VI became significant. Furthermore, at 800 cycles, the capacity of batteries III to V (compression ratio 1.58 to 2.11) is maintained at 85% or higher, whereas the capacity of batteries I, II (compression ratio 2.37) and VI is less than 80%. Met. From the above, it is clear that a battery having very excellent life characteristics can be produced by using a nickel electrode having a compression ratio in a predetermined range in a battery for high output use with a thin electrode. became. Furthermore, the elongation of the electrodes i and ii of the batteries I and II was over 10%, and the elongation of the other electrodes was 10% or less.

また、表5には示していないが、この実施例でも発泡状ニッケルを正極とした電池の性能を調べた。発泡状ニッケルの加圧成形前の厚さは1250μm、圧縮率は3.29であった。これを用いた電池は、電池Iよりもさらに容量低下が著しかった。   Although not shown in Table 5, the performance of the battery using foamed nickel as the positive electrode was also examined in this example. The thickness of the foamed nickel before press molding was 1250 μm, and the compression ratio was 3.29. The battery using this had a much lower capacity than battery I.

<実施例3>
本実施例では、実施例1の電池よりも高容量の電池を作製した。高容量の電池は、使用する電極の厚さを厚くし、活物質の充填量を増やすことで製造する。そこで、実施例3では、ニッケル電極(正極)厚さを平均で530μmとしたニッケル電極g〜lを作製した。
<Example 3>
In this example, a battery having a higher capacity than the battery of Example 1 was produced. A high-capacity battery is manufactured by increasing the thickness of the electrode used and increasing the filling amount of the active material. Therefore, in Example 3, nickel electrodes g to l having a nickel electrode (positive electrode) thickness of 530 μm on average were produced.

ニッケル電極g〜lは、実施例1と同様に、厚さの異なる電極基板に活物質ペーストを充填させて、厚さ530μmとなるように圧縮することで作製した。なお、電極gと電極hは、活物質ペーストの充填性を均一にする目的で、ペーストの充填前に電極lと同程度の厚さに調圧した。表6にニッケル電極g〜lの加圧成形前の厚さ、加圧成形後の厚さ、および圧縮率を示す。   Similarly to Example 1, the nickel electrodes g to l were prepared by filling an electrode substrate with different thicknesses with an active material paste and compressing to a thickness of 530 μm. The electrode g and the electrode h were adjusted to have the same thickness as that of the electrode l before filling the paste in order to make the filling property of the active material paste uniform. Table 6 shows the thickness of the nickel electrodes g to l before pressing, the thickness after pressing, and the compression ratio.

Figure 0005062724
Figure 0005062724

表6に示すニッケル電極(正極)を幅32mm、長さ230mmとなるように裁断した。この正極に対して、実施例1と同様の5元系水素吸蔵合金を用いて負極を作製した。負極の寸法は、幅32mm、長さ230mm、厚さ380μmである。本例のN/Pは1.4である。また、セパレータおよび電解液も実施例1と同様のものを使用した。これら正極(g〜l)、セパレータ、負極を重ねた状態で巻回し、SubCサイズの容器に収納してタブレス方式の電池G〜Lを作製した。各電池の公称容量は2.82〜2.84mAhの範囲であり、各電池間でほとんど差はなかった。   The nickel electrode (positive electrode) shown in Table 6 was cut to have a width of 32 mm and a length of 230 mm. For this positive electrode, a negative electrode was produced using the same ternary hydrogen storage alloy as in Example 1. The negative electrode has a width of 32 mm, a length of 230 mm, and a thickness of 380 μm. N / P in this example is 1.4. In addition, the same separator and electrolyte as in Example 1 were used. These positive electrodes (g to l), separators, and negative electrodes were wound in a stacked state and housed in a SubC size container to produce tabless batteries G to L. The nominal capacity of each battery ranged from 2.82 to 2.84 mAh, and there was little difference between each battery.

作製した各電池G〜Lを以下に示す工程により化成した。
1. 0.1Cの定電流で公称容量の130%充電、0.2Cで終止電圧0.95Vの放電を1回
2. 0.2Cの定電流で公称容量の130%充電、0.2Cで終止電圧0.95Vの放電を1回
3. 0.5Cの定電流で公称容量の120%充電、0.5Cで終止電圧0.90Vの放電を1回
Each of the produced batteries G to L was formed by the steps shown below.
1. Charge at 130% of nominal capacity with a constant current of 0.1C, discharge once with a final voltage of 0.95V at 0.2C
2. Charge at 130% of nominal capacity at a constant current of 0.2C, discharge once at a final voltage of 0.95V at 0.2C
3. Charging 120% of nominal capacity at a constant current of 0.5C, discharging once at a final voltage of 0.90V at 0.5C

上記のようにして作製した電池G〜Lの45℃での電池の性能を調べた。電池の性能は、充放電サイクルに伴う容量維持率により評価した。評価の方法は実施例1と同様である。なお、高温環境下のため、各電池の1サイクル目の放電容量は、公称容量の97%であった。従って、この容量を100として各電池の容量維持率を評価した。その結果を、表7に示す。   The performance of the batteries G to L produced as described above at 45 ° C. was examined. The performance of the battery was evaluated by the capacity maintenance rate accompanying the charge / discharge cycle. The evaluation method is the same as in Example 1. Note that because of the high temperature environment, the discharge capacity of the first cycle of each battery was 97% of the nominal capacity. Therefore, the capacity maintenance rate of each battery was evaluated with this capacity as 100. The results are shown in Table 7.

Figure 0005062724
Figure 0005062724

表7から明らかなように、200サイクルでは、電池H〜K(圧縮率1.42〜2.17)は容量90%以上を維持しているのに対して、電池G(圧縮率2.36)および電池L(圧縮率1.23)は容量が87%以下であった。さらに、充放電サイクルの増加に伴い、電池H〜Kの容量と、電池G、Lの容量との差は顕著になった。以上のことから、電池の厚さを厚くした高容量用途の電池において、所定の範囲の圧縮率を有するニッケル電極を使用することにより、非常に優れた寿命特性を有する電池を作製できることが明らかになった。さらに、電池Gの電極gの伸びは、10%超であり、それ以外の電極の伸びは10%以下であった。   As is clear from Table 7, at 200 cycles, batteries H to K (compression ratio 1.42 to 2.17) maintain a capacity of 90% or more, whereas battery G (compression ratio 2.36) and battery L (compression) The rate 1.23) had a capacity of 87% or less. Furthermore, with the increase in the charge / discharge cycle, the difference between the capacities of the batteries H to K and the capacities of the batteries G and L became significant. From the above, it is clear that a battery having very excellent life characteristics can be produced by using a nickel electrode having a compression ratio in a predetermined range in a battery for high capacity use with a thick battery. became. Furthermore, the elongation of the electrode g of the battery G was more than 10%, and the elongation of the other electrodes was 10% or less.

また、表7には示していないが、この実施例でも発泡状ニッケルを正極とした電池の性能を調べた。発泡状ニッケルの加圧成形前の厚さは1250μm、圧縮率は電池Gと同じであった。これを用いた電池は、電池Gとほぼ同じ容量維持率であった。   Although not shown in Table 7, the performance of the battery using foamed nickel as the positive electrode was also examined in this example. The thickness of the foamed nickel before press molding was 1250 μm, and the compression rate was the same as that of the battery G. The battery using this had almost the same capacity maintenance rate as the battery G.

なお、本発明は上述の実施例に何ら限定されることはない。即ち、上述した実施例に記載のニッケル電極の構成は、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、不織布に被覆するニッケルの量を50〜150g/m2程度としたニッケル電極で電池を作製した場合であっても、従来のニッケル電極を使用した電池よりも高い寿命特性が期待できる。 In addition, this invention is not limited to the above-mentioned Example at all. That is, the configuration of the nickel electrode described in the above-described embodiments can be appropriately changed without departing from the gist of the present invention. For example, even when a battery is manufactured using a nickel electrode in which the amount of nickel coated on the nonwoven fabric is about 50 to 150 g / m 2, higher life characteristics can be expected than a battery using a conventional nickel electrode.

本発明アルカリ電池用ニッケル電極およびその製造方法は、充放電の繰り返しに伴って、電池性能が劣化しにくい電池の製造に好適に利用可能である。   The nickel electrode for alkaline batteries of the present invention and the method for producing the same can be suitably used for the production of batteries in which battery performance is unlikely to deteriorate with repeated charging and discharging.

Claims (12)

不織布の繊維表面にニッケルを被覆した電極基板に活物質合剤を充填した後、加圧成形して電極とするアルカリ電池用ニッケル電極の製造方法であって、
不織布はポリオレフィン系樹脂であり、
前記加圧成形は、加圧成形後の電極の厚みをtとしたとき、1.4t〜1.8tの厚みの電極基板を用いて、tが350μm〜700μmとなるように行い、
加圧成形後に、80℃以上130℃以下で5分以上60分以下の熱処理を行なうことを特徴とするアルカリ電池用ニッケル電極の製造方法。
A method for producing a nickel electrode for an alkaline battery comprising filling an electrode substrate in which the surface of a non-woven fiber is coated with nickel into an active material mixture, followed by pressure forming into an electrode,
The nonwoven fabric is a polyolefin resin,
The pressure molding is performed such that t is 350 μm to 700 μm using an electrode substrate having a thickness of 1.4 t to 1.8 t, where t is the thickness of the electrode after pressure molding.
A method for producing a nickel electrode for an alkaline battery, comprising performing heat treatment at 80 ° C. to 130 ° C. for 5 minutes to 60 minutes after the pressure forming.
不織布の表面に導電性を付与した後、電極基板に被覆されるニッケル量が50〜220g/mとなるように、電解メッキを行なうことを特徴とする請求項1に記載のアルカリ電池用ニッケル電極の製造方法。 2. The nickel for alkaline batteries according to claim 1, wherein electroplating is performed so that the amount of nickel coated on the electrode substrate is 50 to 220 g / m 2 after imparting conductivity to the surface of the nonwoven fabric. Electrode manufacturing method. 不織布の表面への導電性の付与は、スパッタリング法または無電解メッキのいずれかにより行なうことを特徴とする請求項に記載のアルカリ電池用ニッケル電極の製造方法。 The method for producing a nickel electrode for an alkaline battery according to claim 2 , wherein the imparting of conductivity to the surface of the nonwoven fabric is performed by either a sputtering method or electroless plating. 前記加圧成形は、ローラプレス機で行なうことを特徴とする請求項1〜3のいずれか一項に記載のアルカリ電池用ニッケル電極の製造方法。 The said pressure molding is performed with a roller press, The manufacturing method of the nickel electrode for alkaline batteries as described in any one of Claims 1-3 characterized by the above-mentioned. 活物質合剤は、活物質として水酸化ニッケルを含有し、
さらに、コバルトあるいはコバルト化合物を含むことを特徴とする請求項1〜4のいずれか一項に記載のアルカリ電池用ニッケル電極の製造方法。
The active material mixture contains nickel hydroxide as the active material,
Furthermore, cobalt or a cobalt compound is contained, The manufacturing method of the nickel electrode for alkaline batteries as described in any one of Claims 1-4 characterized by the above-mentioned.
活物質合剤は、表面にコバルト酸化物を被覆した球状の水酸化ニッケルを活物質として含有することを特徴とする請求項1〜4のいずれか一項に記載のアルカリ電池用ニッケル電極の製造方法。 The production of a nickel electrode for an alkaline battery according to any one of claims 1 to 4, wherein the active material mixture contains spherical nickel hydroxide whose surface is coated with cobalt oxide as an active material. Method. 不織布の繊維表面にニッケルを被覆した電極基板に活物質合剤を充填した後、加圧成形することで得られたアルカリ電池用ニッケル電極であって、
不織布はポリオレフィン系樹脂であり、
加圧成形後の電極の厚みをtとしたとき、1.4t〜1.8tの厚みの電極基板を、tが350μm〜700μmとなるように加圧成形し、この加圧成形の後に80℃以上130℃以下で5分以上60分以下の熱処理を行なって得たことを特徴とするアルカリ電池用ニッケル電極。
A nickel electrode for an alkaline battery obtained by filling an electrode substrate in which the surface of the non-woven fiber is coated with nickel with an active material mixture, followed by pressure molding,
The nonwoven fabric is a polyolefin resin,
When the thickness of the pressure molding after the electrode was t, the electrode substrate having a thickness of 1.4t~1.8t, t is pressure-molded so that 350μm~700μm, 80 ℃ after this pressing A nickel electrode for an alkaline battery obtained by performing a heat treatment at 130 ° C. or lower for 5 minutes to 60 minutes.
不織布表面に被覆されるニッケル量が50〜220g/mであることを特徴とする請求項に記載のアルカリ電池用ニッケル電極。 Alkaline battery nickel electrode according to claim 7, the amount of nickel to be coated on the surface of the nonwoven fabric is characterized in that it is a 50~220g / m 2. 活物質合剤は、活物質として水酸化ニッケルを含有し、さらに、コバルトあるいはコバルト化合物を含有することを特徴とする請求項7または8に記載のアルカリ電池用ニッケル電極。 The nickel electrode for an alkaline battery according to claim 7 or 8 , wherein the active material mixture contains nickel hydroxide as an active material, and further contains cobalt or a cobalt compound. 活物質合剤は、表面にコバルト酸化物を被覆した球状の水酸化ニッケルを含有することを特徴とする請求項7または8に記載のアルカリ電池用ニッケル電極。 The nickel electrode for an alkaline battery according to claim 7 or 8 , wherein the active material mixture contains spherical nickel hydroxide whose surface is coated with cobalt oxide. 厚さtは、350μm〜550μmで、  The thickness t is 350 μm to 550 μm,
容量密度は、300mAh/cc〜550mAh/ccである高出力用途のアルカリ電池用ニッケル電極であることを特徴とする請求項7〜10のいずれか一項に記載のアルカリ電池用ニッケル電極。  11. The nickel electrode for an alkaline battery according to claim 7, wherein the nickel electrode for an alkaline battery has a capacity density of 300 mAh / cc to 550 mAh / cc for high output use.
厚さtは、550μm〜700μmで、  The thickness t is 550 μm to 700 μm,
容量密度は、550mAh/cc〜750mAh/ccである高容量用途のアルカリ電池用ニッケル電極であることを特徴とする請求項7〜10のいずれか一項に記載のアルカリ電池用ニッケル電極。  The nickel electrode for an alkaline battery according to any one of claims 7 to 10, wherein the nickel electrode for an alkaline battery for high capacity use has a capacity density of 550 mAh / cc to 750 mAh / cc.
JP2006247099A 2006-09-12 2006-09-12 Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery Expired - Fee Related JP5062724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247099A JP5062724B2 (en) 2006-09-12 2006-09-12 Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247099A JP5062724B2 (en) 2006-09-12 2006-09-12 Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery

Publications (2)

Publication Number Publication Date
JP2008071533A JP2008071533A (en) 2008-03-27
JP5062724B2 true JP5062724B2 (en) 2012-10-31

Family

ID=39292956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247099A Expired - Fee Related JP5062724B2 (en) 2006-09-12 2006-09-12 Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery

Country Status (1)

Country Link
JP (1) JP5062724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546152A (en) * 2018-11-13 2019-03-29 南昌大学 A kind of solid lithium battery electrode material and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565114B2 (en) * 2010-06-04 2014-08-06 住友電気工業株式会社 Capacitor using porous metal
KR101801615B1 (en) 2010-05-31 2017-11-27 스미토모덴키고교가부시키가이샤 Capacitor
JP5565113B2 (en) * 2010-06-04 2014-08-06 住友電気工業株式会社 Electrode using porous aluminum as current collector, and capacitor using the same
JP2011249706A (en) * 2010-05-31 2011-12-08 Sumitomo Electric Ind Ltd Capacitor and manufacturing method thereof
JP5565112B2 (en) * 2010-06-04 2014-08-06 住友電気工業株式会社 Capacitor using porous metal
JP2014187382A (en) * 2014-06-03 2014-10-02 Sumitomo Electric Ind Ltd Electrode using aluminum porous body as current collector, and capacitor arranged by use thereof
JP2014187383A (en) * 2014-06-03 2014-10-02 Sumitomo Electric Ind Ltd Capacitor arranged by use of metal porous body
JP2014187384A (en) * 2014-06-03 2014-10-02 Sumitomo Electric Ind Ltd Capacitor arranged by use of metal porous body
JP2018518029A (en) * 2015-06-17 2018-07-05 ビーエーエスエフ コーポレーション Metal hydride battery electrodes
KR101745335B1 (en) * 2016-10-21 2017-06-13 한국에너지기술연구원 Electrode for Electrolysis and the Fabrication Method Thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298941A (en) * 1976-02-13 1977-08-19 Japan Storage Battery Co Ltd Method of manufacturing positive electrode plate for alkaline storage battery
JPS61208756A (en) * 1985-03-12 1986-09-17 Hitachi Maxell Ltd Electrode for alkaline secondary battery
JP2002124253A (en) * 2000-10-19 2002-04-26 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery and its manufacturing method
JP2005347177A (en) * 2004-06-04 2005-12-15 Sanoh Industrial Co Ltd Alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546152A (en) * 2018-11-13 2019-03-29 南昌大学 A kind of solid lithium battery electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP2008071533A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
CN1087510C (en) Alkaline accumulator
AU2014212256B2 (en) Coated iron electrode and method of making same
JP2003317694A (en) Nickel hydride storage battery
JP2014139880A (en) Separator for alkaline electrolyte secondary battery, alkaline electrolyte secondary battery, and method for manufacturing alkaline electrolyte secondary battery
JP2008078037A (en) Electrode substrate for battery and electrode for battery
JP4634322B2 (en) Battery electrode
JP2000048823A (en) Non-sintering type electrode and manufacture thereof
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
US5940946A (en) Alkali storage cell employing a spongelike metal substrate
JP2000340202A (en) Alkaline storage battery
JP5116080B2 (en) Battery electrode substrate, battery electrode and battery
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JP2981538B2 (en) Electrodes for alkaline batteries
JP2926732B2 (en) Alkaline secondary battery
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JP2008117579A (en) Hydrogen absorbing alloy negative electrode for alkaline battery
JP2009026562A (en) Electrode substrate for battery, electrode for battery, and battery
JP4531874B2 (en) Nickel metal hydride battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2005071844A (en) Current collection material for electrochemical element and battery using this as well as electric double layer capacitor using this
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3374995B2 (en) Manufacturing method of nickel electrode
JP5013361B2 (en) Method for producing nickel electrode for alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

R150 Certificate of patent or registration of utility model

Ref document number: 5062724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees