JP5062061B2 - Power module substrate manufacturing method - Google Patents

Power module substrate manufacturing method Download PDF

Info

Publication number
JP5062061B2
JP5062061B2 JP2008170448A JP2008170448A JP5062061B2 JP 5062061 B2 JP5062061 B2 JP 5062061B2 JP 2008170448 A JP2008170448 A JP 2008170448A JP 2008170448 A JP2008170448 A JP 2008170448A JP 5062061 B2 JP5062061 B2 JP 5062061B2
Authority
JP
Japan
Prior art keywords
power module
substrate
metal plate
ceramic substrate
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008170448A
Other languages
Japanese (ja)
Other versions
JP2010010562A (en
Inventor
慎介 青木
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008170448A priority Critical patent/JP5062061B2/en
Publication of JP2010010562A publication Critical patent/JP2010010562A/en
Application granted granted Critical
Publication of JP5062061B2 publication Critical patent/JP5062061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、大電流、高電圧を制御する半導体装置に用いられるパワーモジュール用基板の製造方法に関する。 The present invention relates to a method for manufacturing a power module substrate used in a semiconductor device that controls a large current and a high voltage.

一般に、半導体素子の中でも電力供給のためのパワーモジュールは発熱量が比較的高いため、このパワーモジュール用基板としては、例えば特許文献1に示されるように、AlN、Al、Si、SiC等からなるセラミックス基板上にアルミニウム板等の金属板をAl−Si系等のろう材料を介して接合させたものが用いられている。この金属板は、後工程のエッチング処理によって所望パターンの回路が形成されて回路層となる。そして、エッチング後は、この回路層の表面にはんだ材を介して電子部品(半導体チップ等のパワー素子)が搭載され、パワーモジュールとなるのである。
一方、この種のパワーモジュールは、回路層とは反対側の面が放熱のために冷却器に取り付けられるが、その場合に、セラミックス基板に放熱用金属板を接合し、該放熱用金属板を冷却器に接合するようにしている。また、特許文献2記載のパワーモジュールでは、放熱用金属板をセラミックス基板と熱膨張率の近似した材料からなる緩衝層を介在させて冷却器に接合することにより、熱歪みの発生を防止するようにしている。
特開2004−356502号公報 特開2007−273706号公報
In general, a power module for supplying power among semiconductor elements has a relatively high calorific value. As this power module substrate, for example, as shown in Patent Document 1, AlN, Al 2 O 3 , Si 3 N 4. A metal substrate such as an aluminum plate joined to a ceramic substrate made of SiC or the like via a brazing material such as an Al-Si type is used. This metal plate becomes a circuit layer by forming a circuit having a desired pattern by an etching process in a later step. Then, after etching, an electronic component (power element such as a semiconductor chip) is mounted on the surface of the circuit layer via a solder material to form a power module.
On the other hand, in this type of power module, the surface opposite to the circuit layer is attached to a cooler for heat dissipation. In this case, a metal plate for heat dissipation is joined to a ceramic substrate, and the metal plate for heat dissipation is attached. It is made to join with a cooler. Further, in the power module described in Patent Document 2, the heat radiating metal plate is joined to the cooler with a buffer layer made of a material having a thermal expansion coefficient approximate to that of the ceramic substrate, thereby preventing the occurrence of thermal distortion. I have to.
JP 2004-356502 A JP 2007-273706 A

ところで、近年、構造簡略化等の要請に伴い、緩衝層や放熱用金属板を使わずにセラミックス基板を冷却器に直接接触させることが検討されており、パワーモジュールとしては過酷な環境(熱サイクル)への適用が要求されてきている。
しかしながら、通常のハンドリングではセラミックス基板の表面にわずかなすり傷が発生し易く、セラミックス基板への熱サイクル環境が厳しくなると、その傷が起点となってセラミックス基板の割れにつながるという懸念が生じてきた。この場合、セラミックス基板の表面を再研磨することも考えられるが、再研磨により、いわゆるマイクロクラックが発生して、新たな割れの原因となるおそれがある。
By the way, in recent years, due to the demand for structural simplification and the like, it has been studied to directly contact the ceramic substrate with the cooler without using a buffer layer or a heat radiating metal plate. ) Has been required to be applied.
However, in ordinary handling, slight scratches are likely to occur on the surface of the ceramic substrate, and if the thermal cycle environment to the ceramic substrate becomes severe, there is a concern that the scratch will start and lead to cracking of the ceramic substrate. . In this case, the surface of the ceramic substrate may be repolished. However, the repolishing may cause so-called microcracks, which may cause new cracks.

本発明は、このような事情に鑑みてなされたものであって、過酷な熱サイクル環境の下でも割れ等の発生のないパワーモジュール用基板の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a power module substrate that does not cause cracking or the like even under a severe thermal cycle environment.

従来のセラミックス基板は、合紙を介在させた状態で複数枚積み重ねられ、その積み重ね状態で搬送される。また、このセラミックス基板の表面に金属板をろう付けする際には、積み重ね状態のセラミックス基板を1枚ずつ取り出しながら、合紙を外して表面の傷を検査するが、このときに表面のすり傷が発見されることが多い。このすり傷は、搬送中の振動等によってセラミックス基板の表面が擦られることにより生じるものと考えられる。本発明者は、このすり傷をなくせば、セラミックス基板の割れの問題が解消すると考え、以下の解決手段を採用した。   A plurality of conventional ceramic substrates are stacked with interleaving paper interposed therebetween, and conveyed in the stacked state. Also, when brazing metal plates to the surface of this ceramic substrate, remove the interleaf and inspect the surface for scratches while taking out the stacked ceramic substrates one by one. Is often discovered. This scratch is considered to be caused by the surface of the ceramic substrate being rubbed by vibration during transportation. The inventor considered that the problem of cracking of the ceramic substrate would be eliminated if this scratch was eliminated, and the following solution was adopted.

すなわち、本発明のパワーモジュール用基板の製造方法は、セラミックス基板の両面に有機物樹脂をコーティングして樹脂コーティング層を形成するとともに、その樹脂コーティング層の上にろう材箔を貼付したパワーモジュール用絶縁基板とした状態で搬送し、前記パワーモジュール用絶縁基板の前記ろう材箔に金属板を積層し、積層方向に加圧した状態で加熱して、前記金属板を前記セラミックス基板にろう付けすることを特徴とする。
このパワーモジュール用絶縁基板は、両面に貼付されたろう材箔によってセラミックス基板の表面が覆われた状態となっている。しかも、これらろう材箔は、樹脂コーティング層によってセラミックス基板の表面に仮止めされており、搬送中の振動等によって動くことはない。
That is, the method for manufacturing a power module substrate according to the present invention comprises a resin substrate coated with an organic resin on both sides of a ceramic substrate, and a brazing material foil attached to the resin coating layer. It conveys in the state made into the board | substrate, a metal plate is laminated | stacked on the said brazing material foil of the said insulating substrate for power modules, it heats in the state pressurized in the lamination direction, and the said metal plate is brazed to the said ceramic substrate. It is characterized by.
The insulating substrate for power module is in a state where the surface of the ceramic substrate is covered with the brazing material foil stuck on both sides. In addition, these brazing material foils are temporarily fixed to the surface of the ceramic substrate by the resin coating layer, and do not move due to vibration during transportation.

また、本発明のパワーモジュール用基板の製造方法において、前記パワーモジュール用絶縁基板を複数組積み重ね、この積み重ね状態で搬送し、前記積み重ね状態の中から前記パワーモジュール用絶縁基板を取り出して、その両面の前記ろう材箔に前記金属板を積層して、積層方向に加圧した状態で加熱することにより、前記金属板を前記セラミックス基板にろう付けするようにしてもよい。
このパワーモジュール用絶縁基板は、両面にろう材箔が貼付されているので、これを積み重ね状態とする場合、ろう材箔どうしが接触することになり、セラミックス基板どうしが直接接触することはない。したがって、搬送中に振動等が生じたとしても、セラミックス基板表面が擦れることはなく、すり傷の発生を確実に防止することができる。
本発明のパワーモジュール用基板の製造方法において、前記有機物樹脂はオクタンジオールである構成としてもよい。
オクタンジオールは、可塑剤等として用いられているもので、常温で液体(融点−40℃以下)であるので、コーティングし易く、また、沸点も244℃であり、その後のろう付け温度(例えば640℃)で完全に脱脂される。
Further, in the method for manufacturing a power module substrate of the present invention, a plurality of the power module insulating substrates are stacked, transported in the stacked state, the power module insulating substrate is taken out of the stacked state, and both surfaces thereof are taken. The metal plate may be laminated on the brazing material foil, and the metal plate may be brazed to the ceramic substrate by heating in a state where the metal plate is pressed in the laminating direction.
Since the brazing material foil is pasted on both surfaces of this insulating substrate for power modules, when it is stacked, the brazing material foils are in contact with each other, and the ceramic substrates are not in direct contact with each other. Therefore, even if vibration or the like occurs during conveyance, the surface of the ceramic substrate is not rubbed, and the generation of scratches can be reliably prevented.
In the method for manufacturing a power module substrate of the present invention, the organic resin may be octanediol.
Octanediol is used as a plasticizer or the like, and is liquid at ordinary temperature (melting point: −40 ° C. or lower). Therefore, it is easy to coat, has a boiling point of 244 ° C., and has a subsequent brazing temperature (for example, 640). Deg.) Completely degreased.

本発明によれば、セラミックス基板の両面に有機物樹脂をコーティングしてろう材箔を貼付した状態としているから、セラミックス基板の表面がろう材箔により覆われるとともに、このろう材箔が樹脂コーティング層によって仮止めされて動かないので、セラミックス基板の表面にすり傷が発生することを防止することができる。したがって、このセラミックス基板を用いたパワーモジュール用基板は、過酷な熱サイクル条件でも割れ等が生じにくく、その上にろう付けされる回路層用金属板の密着性も向上し、絶縁基板としての信頼性を高めることができる。しかも、予めろう箔が設けられているから、そのろう付け作業性もよい。   According to the present invention, the surface of the ceramic substrate is covered with the brazing material foil and the brazing material foil is covered with the resin coating layer because the organic resin is coated on both surfaces of the ceramic substrate and the brazing material foil is pasted. Since it is temporarily fixed and does not move, it is possible to prevent the surface of the ceramic substrate from being scratched. Therefore, the power module substrate using this ceramic substrate is less susceptible to cracking even under severe heat cycle conditions, and the adhesion of the metal layer for the circuit layer to be brazed on it is improved, making it reliable as an insulating substrate. Can increase the sex. Moreover, since the brazing foil is provided in advance, the brazing workability is also good.

以下、本発明の一実施形態を図面を参照しながら説明する。
最初に、本発明に係るパワーモジュール用絶縁基板が用いられるパワーモジュールについて図1により説明しておくと、このパワーモジュール1は、セラミックス基板2を有するパワーモジュール用基板3と、該パワーモジュール用基板3の表面に搭載された半導体チップ等の電子部品4と、パワーモジュール用基板3の裏面に接合される冷却器5とから構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, a power module using an insulating substrate for a power module according to the present invention will be described with reference to FIG. 1. This power module 1 includes a power module substrate 3 having a ceramic substrate 2 and the power module substrate. 3 is composed of an electronic component 4 such as a semiconductor chip mounted on the surface of 3 and a cooler 5 bonded to the back surface of the power module substrate 3.

パワーモジュール用基板3は、セラミックス基板2の表面側に電子部品4を搭載するための回路層用金属板6が積層され、セラミックス基板2の裏面側に放熱層用金属板7が積層され、この放熱層用金属板7に冷却器5が取り付けられる構成である。
また、セラミックス基板2は、例えばAlN(窒化アルミニウム)、Si(窒化珪素)等の窒化物系セラミックス、若しくはAl(アルミナ)等の酸化物系セラミックスを母材として形成されている。回路層用金属板6は、純アルミニウム若しくはアルミニウム合金により形成され、放熱層用金属板7は、純度99.0wt%以上の純アルミニウムにより形成されている。
In the power module substrate 3, a circuit layer metal plate 6 for mounting the electronic component 4 is laminated on the front surface side of the ceramic substrate 2, and a heat dissipation layer metal plate 7 is laminated on the back surface side of the ceramic substrate 2. The cooler 5 is attached to the metal plate 7 for heat dissipation layer.
Further, the ceramic substrate 2 is formed using, for example, a nitride ceramic such as AlN (aluminum nitride), Si 3 N 4 (silicon nitride), or an oxide ceramic such as Al 2 O 3 (alumina) as a base material. Yes. The circuit layer metal plate 6 is made of pure aluminum or an aluminum alloy, and the heat dissipation layer metal plate 7 is made of pure aluminum having a purity of 99.0 wt% or more.

また、これらセラミックス基板2、回路層用金属板6、放熱層用金属板7の相互間はろう付けによって接合されており、これら両金属板6,7のうち、回路層用金属板6には、エッチング処理がされて所望の回路パターンが形成されている。また、この回路層用金属板6は、その表面に、ニッケルめっき等のめっき被膜8が形成されている。   The ceramic substrate 2, the circuit layer metal plate 6, and the heat dissipation layer metal plate 7 are joined together by brazing. Of these two metal plates 6, 7, the circuit layer metal plate 6 is Etching is performed to form a desired circuit pattern. The circuit layer metal plate 6 has a plating film 8 such as nickel plating formed on the surface thereof.

そして、回路層用金属板6の上に、Sn−Ag−Cu系、Zn−Al系若しくはPb−Sn系等のはんだ材によって電子部品4が接合される。図中符号9がそのはんだ接合層を示す。なお、電子部品4と回路層用金属板6の端子部との間は、アルミニウムからなるボンディングワイヤ(図示略)により接続される。
一方、冷却器5は、アルミニウム合金の押し出し成形によって形成され、その長さ方向に沿って冷却水を流通させるための多数の流路10が形成されており、パワーモジュール用基板3との間はろう付け、はんだ付け、ボルト等によって接合される。
And the electronic component 4 is joined on the metal plate 6 for circuit layers by solder materials, such as Sn-Ag-Cu type, Zn-Al type, or Pb-Sn type. Reference numeral 9 in the drawing indicates the solder joint layer. The electronic component 4 and the terminal portion of the circuit layer metal plate 6 are connected by a bonding wire (not shown) made of aluminum.
On the other hand, the cooler 5 is formed by extrusion molding of an aluminum alloy, and is formed with a large number of flow paths 10 for circulating cooling water along the length direction thereof. Joined by brazing, soldering, bolts, etc.

このように構成されるパワーモジュール1を製造する場合、セラミックス基板2については、その両面にろう材箔が貼付されたパワーモジュール用絶縁基板21として提供される。
このパワーモジュール用絶縁基板21は、図2に示すように、セラミックス基板2の両面に有機物樹脂がコーティングされ、その樹脂コーティング層22の上にろう材箔23が貼付された構成とされている。樹脂コーティング層22の有機物樹脂としてはオクタンジオールが用いられる。また、ろう材箔23としては、Al−Si系、Al−Ge系、Al−Cu系、Al−Mg系またはAl−Mn系等が用いられる。
When manufacturing the power module 1 configured as described above, the ceramic substrate 2 is provided as an insulating substrate 21 for a power module in which a brazing material foil is pasted on both surfaces thereof.
As shown in FIG. 2, the power module insulating substrate 21 is configured such that an organic resin is coated on both surfaces of the ceramic substrate 2 and a brazing filler metal foil 23 is stuck on the resin coating layer 22. Octanediol is used as the organic resin of the resin coating layer 22. As the brazing filler metal foil 23, Al-Si, Al-Ge, Al-Cu, Al-Mg, Al-Mn, or the like is used.

このパワーモジュール用絶縁基板21は、このようにしてセラミックス基板2の両面にろう材箔23を貼付した状態で図3に示すように複数枚積み重ねられ、その積み重ね状態で搬送される。そして、ろう付け工程では、積み重ね状態の中から絶縁基板21を1枚ずつ取り出して、図4に示すように、その両面のろう材箔23に各金属板6,7を積層して一つのユニットとし、そのユニットを間にカーボン等を介在させた状態で複数ユニット積層した状態に組み立てる。この積層体(図示略)を熱処理炉の中に入れ、不活性ガス雰囲気、還元ガス雰囲気又は真空雰囲気において積層方向に加圧した状態で加熱し、ろう材箔を溶融させることによって両金属板6.7をセラミックス基板2にろう付けする。   A plurality of the power module insulating substrates 21 are stacked as shown in FIG. 3 with the brazing filler metal foil 23 attached to both surfaces of the ceramic substrate 2 in this way, and are conveyed in the stacked state. In the brazing process, the insulating substrates 21 are taken out one by one from the stacked state, and as shown in FIG. 4, the metal plates 6 and 7 are laminated on the brazing material foils 23 on both sides thereof to form one unit. The unit is assembled in a state where a plurality of units are stacked with carbon or the like interposed therebetween. This laminated body (not shown) is put in a heat treatment furnace, heated in an inert gas atmosphere, a reducing gas atmosphere or a vacuum atmosphere in a state of being pressurized in the laminating direction, and the both metal plates 6 are melted by melting the brazing material foil. 7 is brazed to the ceramic substrate 2.

このようにしてろう付け処理がなされると、図5に示すように、セラミックス基板2の両面に金属板6,7が接合したパワーモジュール用基板3が製造される。
その後は、回路層用金属板6,7をエッチングして回路パターンを形成し、その上にめっき被膜8を形成した後、冷却器5への接合、電子部品4のはんだ付け、ワイヤボンディング等を経て、パワーモジュール1として完成する。
When the brazing process is performed in this manner, the power module substrate 3 in which the metal plates 6 and 7 are bonded to both surfaces of the ceramic substrate 2 is manufactured as shown in FIG.
Thereafter, the circuit layer metal plates 6 and 7 are etched to form a circuit pattern, and a plating film 8 is formed thereon, followed by bonding to the cooler 5, soldering of the electronic component 4, wire bonding, and the like. After that, the power module 1 is completed.

この一連の製造工程において、絶縁基板21は、セラミックス基板2の両面に樹脂コーティング層22を介してろう材箔23が貼付され、このろう材箔23によって表面が覆われた状態で取り扱われる。このため、この絶縁基板21を積み重ねた状態で搬送する際にも、ろう材箔23どうしが接触し、セラミックス基板2は他のセラミックス基板2には接触しない。したがって、この搬送中に振動等を受けたとしても、セラミックス基板2にすり傷等が発生することが拘束される。そして、この積み重ね状態の中から絶縁基板21を1枚ずつ取り出して、両金属板6,7のろう付け作業を行う際にも、従来の合紙を挟んだ形態であると、合紙を剥がしてセラミックス基板の表面の傷発生状況を確認した後にろう付け作業を行う必要があったが、本実施形態の場合は、セラミックス基板2がろう材箔23により覆われた状態で、すり傷の発生がないとともに、ろう材箔23が既に貼付されているため、そのまま金属板6,7を積層してろう付け作業を行うことができ、作業性がよい。   In this series of manufacturing steps, the insulating substrate 21 is handled in a state in which the brazing material foil 23 is attached to both surfaces of the ceramic substrate 2 via the resin coating layer 22 and the surface is covered with the brazing material foil 23. For this reason, also when conveying this insulating substrate 21 in a stacked state, the brazing material foils 23 are in contact with each other, and the ceramic substrate 2 is not in contact with other ceramic substrates 2. Therefore, even if vibration or the like is received during the conveyance, the ceramic substrate 2 is restrained from being scratched. When the insulating substrates 21 are taken out one by one from the stacked state and the two metal plates 6 and 7 are brazed, the interleaving paper is peeled off when the conventional interleaving paper is sandwiched. It was necessary to perform a brazing operation after confirming the state of scratches on the surface of the ceramic substrate. However, in this embodiment, scratches are generated in a state where the ceramic substrate 2 is covered with the brazing material foil 23. In addition, since the brazing material foil 23 is already pasted, the metal plates 6 and 7 can be laminated as they are, and the brazing operation can be performed.

また、このろう付け処理においては、熱処理炉内が例えば640℃の高温状態とされることから、樹脂コーティング層22はその熱によってろう材箔23の溶融前に揮発してしまい、セラミックス基板2の表面は脱脂されるので、ろう付けを阻害することはなく、金属板6,7を確実に密着させることができる。
そして、セラミックス基板2にすり傷が生じていないので、その後の過酷な熱サイクル環境下においても、割れ等の発生がなく、パワーモジュール用基板3としての健全性を長期に維持することができる。
Further, in this brazing treatment, since the inside of the heat treatment furnace is brought to a high temperature state of, for example, 640 ° C., the resin coating layer 22 is volatilized by the heat before the brazing filler metal foil 23 is melted. Since the surface is degreased, brazing is not hindered, and the metal plates 6 and 7 can be reliably adhered.
And since the ceramic substrate 2 is not scratched, even in a severe heat cycle environment thereafter, there is no occurrence of cracks and the like, and the soundness as the power module substrate 3 can be maintained for a long time.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、前記実施形態では、セラミックス基板の両面に金属板をろう付け接合したが、回路層用金属板のみ接合し、反対面にはセラミックス基板に冷却器を直接ろう付けする構成としてもよい。また、樹脂コーティング層の有機物樹脂としてはオクタンジオールが好適であるが、ろう材箔を貼付した状態で仮止めすることができ、ろう付け時の熱によってろう材箔の溶融前に脱脂し得るものであれば、他の樹脂を適用してもよい。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
For example, in the above-described embodiment, the metal plates are brazed and bonded to both surfaces of the ceramic substrate, but only the metal plate for the circuit layer may be bonded and the cooler may be directly brazed to the ceramic substrate on the opposite surface. In addition, octanediol is suitable as the organic resin for the resin coating layer, but it can be temporarily fixed with the brazing foil attached, and can be degreased before the brazing foil is melted by heat during brazing. If so, other resins may be applied.

本発明に係るパワーモジュール用絶縁基板を用いて製作されるパワーモジュールの全体構成例を示す縦断面図である。It is a longitudinal section showing the example of whole composition of the power module manufactured using the insulating substrate for power modules concerning the present invention. パワーモジュール用絶縁基板の一実施例を示す斜視図である。It is a perspective view which shows one Example of the insulated substrate for power modules. 図2のパワーモジュール用絶縁基板を複数個積み重ねた状態を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing a state in which a plurality of power module insulating substrates of FIG. 2 are stacked. 図2のパワーモジュール用絶縁基板の両面に金属板を配置した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which has arrange | positioned the metal plate on both surfaces of the insulating substrate for power modules of FIG. 図4に示す状態から金属板をろう付け接合してなるパワーモジュール用基板を示す縦断面図である。It is a longitudinal cross-sectional view which shows the board | substrate for power modules formed by brazing a metal plate from the state shown in FIG.

符号の説明Explanation of symbols

1 パワーモジュール
2 セラミックス基板
3 パワーモジュール用基板
4 電子部品
5 冷却器
6 回路層用金属板
7 放熱層用金属板
8 めっき被膜
9 はんだ接合層
10 流路
21 パワーモジュール用絶縁基板
22 樹脂コーティング層
23 ろう材箔
DESCRIPTION OF SYMBOLS 1 Power module 2 Ceramic substrate 3 Power module substrate 4 Electronic component 5 Cooler 6 Metal plate for circuit layer 7 Metal plate for heat dissipation layer 8 Plating film 9 Solder joint layer 10 Channel 21 Insulation substrate 22 for power module Resin coating layer 23 Brazing foil

Claims (3)

セラミックス基板の両面に有機物樹脂をコーティングして樹脂コーティング層を形成するとともに、その樹脂コーティング層の上にろう材箔を貼付したパワーモジュール用絶縁基板とした状態で搬送し、前記パワーモジュール用絶縁基板の前記ろう材箔に金属板を積層し、積層方向に加圧した状態で加熱して、前記金属板を前記セラミックス基板にろう付けすることを特徴とするパワーモジュール用基板の製造方法A resin coating layer is formed by coating an organic resin on both surfaces of the ceramic substrate, and the insulating substrate for power module is transported in the state of being an insulating substrate for power module in which a brazing material foil is pasted on the resin coating layer. A method of manufacturing a power module substrate, comprising: laminating a metal plate on the brazing material foil, heating the metal plate in a state of being pressurized in the laminating direction, and brazing the metal plate to the ceramic substrate . 前記パワーモジュール用絶縁基板を複数組積み重ね、この積み重ね状態で搬送し、前記積み重ね状態の中から前記パワーモジュール用絶縁基板を取り出して、その両面の前記ろう材箔に前記金属板を積層して、積層方向に加圧した状態で加熱することにより、前記金属板を前記セラミックス基板にろう付けすることを特徴とする請求項1記載のパワーモジュール用基板の製造方法 Stacking a plurality of sets of insulating substrates for power modules, transporting in this stacked state, taking out the insulating substrate for power modules from the stacked state, and laminating the metal plate on the brazing material foil on both sides thereof, 2. The method of manufacturing a power module substrate according to claim 1, wherein the metal plate is brazed to the ceramic substrate by heating in a state of being pressurized in the stacking direction . 前記有機物樹脂はオクタンジオールであることを特徴とする請求項1又は請求項2に記載のパワーモジュール用基板の製造方法 The method of manufacturing a power module substrate according to claim 1, wherein the organic resin is octanediol .
JP2008170448A 2008-06-30 2008-06-30 Power module substrate manufacturing method Active JP5062061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170448A JP5062061B2 (en) 2008-06-30 2008-06-30 Power module substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170448A JP5062061B2 (en) 2008-06-30 2008-06-30 Power module substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2010010562A JP2010010562A (en) 2010-01-14
JP5062061B2 true JP5062061B2 (en) 2012-10-31

Family

ID=41590665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170448A Active JP5062061B2 (en) 2008-06-30 2008-06-30 Power module substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP5062061B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332472A (en) * 2001-03-07 2002-11-22 Sekisui Chem Co Ltd Adhesive, adhesive sheet and laminated body
JP3818947B2 (en) * 2002-09-18 2006-09-06 電気化学工業株式会社 Manufacturing method of joined body
JP4362597B2 (en) * 2003-05-30 2009-11-11 Dowaメタルテック株式会社 Metal-ceramic circuit board and manufacturing method thereof
JP4636329B2 (en) * 2006-03-31 2011-02-23 三菱マテリアル株式会社 Manufacturing method of heat dissipation buffer plate

Also Published As

Publication number Publication date
JP2010010562A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5892281B2 (en) Power module substrate with heat sink and power module
WO2013147144A1 (en) Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
JP4998404B2 (en) Power module substrate, manufacturing method thereof, and power module
KR20140147090A (en) Power module substrate, power module substrate with heat sink, and power module
KR20150135285A (en) Substrate for power modules, substrate with heat sink for power modules, and power module
JP2014183119A (en) Method for manufacturing substrate for power modules
KR20160047474A (en) Assembly and power-module substrate
JP6201827B2 (en) Manufacturing method of power module substrate with heat sink
JP2017073483A (en) Heat sink-attached power module substrate and power module
JP2011108999A (en) Substrate for power module, substrate for power module with heat sink, power module, and method of manufacturing substrate for power module
JP2006100640A (en) Ceramic circuit board and power semiconductor module using same
WO2016121838A1 (en) Resistor device and method for producing resistor device
KR102542686B1 (en) Manufacturing method of a light emitting module with a cooler and a light emitting module with a cooler
JP5640610B2 (en) Power module substrate manufacturing equipment
JP6330951B2 (en) Joints for manufacturing power module substrates
JP6149654B2 (en) Power module substrate manufacturing method
JP6750422B2 (en) Method for manufacturing insulated circuit board, insulated circuit board, power module, LED module, and thermoelectric module
JP4951932B2 (en) Power module substrate manufacturing method
JP5062061B2 (en) Power module substrate manufacturing method
JP2017063127A (en) Substrate for light-emitting module, light-emitting module, substrate for light-emitting module with cooler, and manufacturing method of substrate for light-emitting module
KR101774586B1 (en) Manufacturing method of substrate for power module equiptted with heat sink, substrate for power module equiptted with heat sink, and power module
JP5359953B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP6969471B2 (en) Insulated circuit board
JP6201297B2 (en) Power module substrate with copper plate and method for manufacturing power module substrate with copper plate
JP5131204B2 (en) Power module substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5062061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3