JP5019316B2 - FM-CW polarization radar equipment - Google Patents

FM-CW polarization radar equipment Download PDF

Info

Publication number
JP5019316B2
JP5019316B2 JP2007117275A JP2007117275A JP5019316B2 JP 5019316 B2 JP5019316 B2 JP 5019316B2 JP 2007117275 A JP2007117275 A JP 2007117275A JP 2007117275 A JP2007117275 A JP 2007117275A JP 5019316 B2 JP5019316 B2 JP 5019316B2
Authority
JP
Japan
Prior art keywords
polarization
signal
code
target
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007117275A
Other languages
Japanese (ja)
Other versions
JP2008275382A (en
Inventor
憲治 猪又
芳雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007117275A priority Critical patent/JP5019316B2/en
Publication of JP2008275382A publication Critical patent/JP2008275382A/en
Application granted granted Critical
Publication of JP5019316B2 publication Critical patent/JP5019316B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

この発明は、電波によるターゲットの識別等で利用される偏波を使用したFM−CW(Frequency Modulation-Cotinuous Wave)偏波レーダ装置に関するものである。   The present invention relates to an FM-CW (Frequency Modulation-Cotinuous Wave) polarization radar apparatus using polarized waves used for target identification by radio waves.

ターゲットはその素材、形状により特徴的な散乱をする。例えば、垂直に立ったポールは垂直偏波(V偏波)をよく反射するが、水平偏波(H偏波)はほとんど反射しない。また、金属面は右回り偏波が左回り偏波となって反射する。右回り偏波、左回り偏波はV偏波、H偏波の位相が90度ずれている状態である。他にも、斜め偏波、楕円偏波があり、これらは全て、V偏波とH偏波の振幅、位相関係で定まる。つまり、H偏波で送信した信号がH偏波やV偏波で受信されるHH偏波やVH偏波、V偏波で送信した信号がH偏波やV偏波で受信されるHV偏波やVV偏波の4成分を観測し解析することにより、ターゲットがどのように散乱するのか、その散乱状態によって、ターゲットはどのような素材、形状なのかを観測することができる。   The target has characteristic scattering depending on its material and shape. For example, a pole standing vertically reflects a vertical polarization (V polarization) well, but hardly reflects a horizontal polarization (H polarization). In addition, the metal surface reflects the right-handed polarization as a left-handed polarization. The clockwise polarization and the counterclockwise polarization are states in which the phases of the V polarization and the H polarization are shifted by 90 degrees. In addition, there are obliquely polarized waves and elliptically polarized waves, all of which are determined by the amplitude and phase relationship between the V polarization and the H polarization. That is, an HH polarization or VH polarization in which a signal transmitted by H polarization is received by H polarization or V polarization, and an HV polarization in which a signal transmitted by V polarization is received by H polarization or V polarization. By observing and analyzing the four components of waves and VV polarized waves, it is possible to observe the material and shape of the target depending on how the target scatters and its scattering state.

このHH偏波、VH偏波、HV偏波及びVV偏波の4成分を観測するFM−CW偏波レーダ装置として、例えば特許文献1のポーラリメトリック合成開口レーダ装置がある。
このポーラリメトリック合成開口レーダ装置は、人工衛星や航空機等の飛翔体に搭載されるもので、直線周波数変調した送信信号を水平偏波用アンテナと垂直偏波用アンテナとから交互に送信し、両アンテナで受信した対象物からの水平/垂直の各偏波信号の組み合わせにより取得したデータから任意の偏波に関するSAR画像を取得するものにおいて、送信信号を2つのアンテナ系へ2つの送信トリガ毎に切り替えて出力する手段と、2つのアンテナの受信信号を各送信トリガ毎に切り替えて取り出す手段と、切り替えて取り出した2系統の受信信号について受信処理をする1つの受信手段とを備えている。
As an FM-CW polarization radar apparatus for observing the four components of the HH polarization, VH polarization, HV polarization, and VV polarization, for example, there is a polarimetric synthetic aperture radar apparatus disclosed in Patent Document 1.
This polarimetric synthetic aperture radar device is mounted on a flying object such as an artificial satellite or an aircraft, and transmits a linear frequency modulated transmission signal alternately from a horizontal polarization antenna and a vertical polarization antenna, In an apparatus for acquiring a SAR image relating to an arbitrary polarization from data acquired by a combination of horizontal / vertical polarization signals from an object received by both antennas, a transmission signal is transmitted to two antenna systems for each of two transmission triggers. And a means for switching and outputting the reception signals of the two antennas for each transmission trigger, and a reception means for performing reception processing on the two systems of reception signals switched and extracted.

従来のFM−CW偏波レーダ装置は、HH偏波信号、VH偏波信号、HV偏波信号、VV偏波信号の4種類の偏波信号を時系列に観測し、偏波基底変換等を行って地表状態やターゲット形状の識別を行っていた。時系列に観測するのは、従来のFM−CW偏波レーダ装置では、同時に電波を放射すると、原理的に目的のデータが観測できないためである。これは、H偏波の電波とV偏波の電波を同時に送信すると散乱波は互いに干渉した波となってしまうためである。   The conventional FM-CW polarization radar apparatus observes four types of polarization signals of HH polarization signal, VH polarization signal, HV polarization signal, and VV polarization signal in time series, and performs polarization basis conversion and the like. I went to identify the surface condition and target shape. The reason for observing in time series is that the conventional FM-CW polarization radar apparatus cannot observe target data in principle if radio waves are simultaneously emitted. This is because if the H-polarized radio wave and the V-polarized radio wave are transmitted simultaneously, the scattered waves will interfere with each other.

例えば、H偏波で送信した信号がV偏波で受信されるVH偏波と、V偏波で送信した信号がV偏波で受信されるVV偏波は、受信時点ではどちらもV偏波同士なので分離ができない。また、H偏波で送信した信号がH偏波で受信されるHH偏波と、V偏波で送信した信号がH偏波で受信されるHV偏波は、受信時点ではどちらもH偏波同士なので分離ができない。よって、干渉を避けるため、少なくとも、HH偏波とVH偏波、HV偏波とVV偏波を交互に観測することになる。   For example, a VH polarization in which a signal transmitted by H polarization is received by V polarization and a VV polarization in which a signal transmitted by V polarization is received by V polarization are both V polarization at the time of reception. Because they are one another, they cannot be separated. In addition, the HH polarization in which a signal transmitted with H polarization is received in H polarization and the HV polarization in which a signal transmitted in V polarization is received with H polarization are both H polarization at the time of reception. Because they are one another, they cannot be separated. Therefore, in order to avoid interference, at least HH polarization and VH polarization, and HV polarization and VV polarization are alternately observed.

一般に、FM−CW偏波レーダ装置は、人工衛星、航空機、車両等の移動物体に搭載して運用するため、時々刻々とその位置が変化する。また、ターゲットの移動によっても位置が変化する。そのため、ターゲットとFM−CW偏波レーダ装置との位置関係は常に変化するため、HH偏波基底とVH偏波基底、HV偏波基底とVV偏波基底のそれぞれを観測したときのターゲットは実際の位置と異なってしまう。位置が異なると受信信号の振幅、位相は変化してしまうため、HH偏波基底とVH偏波基底、HV偏波基底とVV偏波基底は異なるターゲットの状態を観測したことになってしまう。   In general, the FM-CW polarization radar apparatus is mounted and operated on a moving object such as an artificial satellite, an aircraft, or a vehicle, and therefore its position changes from moment to moment. Also, the position changes with the movement of the target. For this reason, since the positional relationship between the target and the FM-CW polarization radar device always changes, the target when the HH polarization base and the VH polarization base and the HV polarization base and the VV polarization base are observed is actually It will be different from the position. If the positions are different, the amplitude and phase of the received signal change, and therefore, the HH polarization base and the VH polarization base, and the HV polarization base and the VV polarization base have observed different target states.

特開平5−87919号公報(段落0011)JP-A-5-87919 (paragraph 0011)

従来のFM−CW偏波レーダ装置は以上のように構成されているので、観測したときのターゲットは実際の位置と異なり、異なるターゲットの状態を観測してしまい、ターゲット情報が精密に得られず、ターゲットの識別性能が劣化するという課題があった。
近年、高分解能信号処理が発達し、より高度な信号処理を行うとき、この誤差が大きな課題となっている。
Since the conventional FM-CW polarization radar apparatus is configured as described above, the observed target is different from the actual position, and the state of a different target is observed, and target information cannot be obtained accurately. There has been a problem that target identification performance deteriorates.
In recent years, high-resolution signal processing has been developed, and this error becomes a major issue when more advanced signal processing is performed.

この発明は上記のような課題を解決するためになされたもので、ターゲット情報を精密に得ることができ、ターゲットの識別性能を向上することができるFM−CW偏波レーダ装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an FM-CW polarization radar apparatus that can accurately obtain target information and improve target identification performance. And

この発明に係るFM−CW偏波レーダ装置は、符号Vとの相互相関が所定値以下の符号Hを発生し、入力電圧に応じて周波数が変化するチャープ信号を上記符号Hで符号変調して、水平偏波であるH偏波の送信信号Hをターゲットに送信するH偏波符号変調手段と、上記符号Hとの相互相関が所定値以下の符号Vを発生し、上記チャープ信号を上記符号Vで符号変調して、垂直偏波であるV偏波の送信信号Vを上記ターゲットに送信するV偏波符号変調手段と、上記ターゲットで反射された上記送信信号HによるH偏波の反射波と上記ターゲットで反射された上記送信信号VによるH偏波の反射波を合成した受信信号Hを受信し、上記受信信号Hと上記符号Hの遅延符号である遅延符号Hを乗算して受信チャープ信号HHを生成するHH偏波抽出手段と、上記ターゲットで反射された上記送信信号HによるV偏波の反射波と上記ターゲットで反射された送信信号VによるV偏波の反射波を合成した受信信号Vを受信し、上記受信信号Vと上記遅延符号Hを乗算して受信チャープ信号VHを生成するVH偏波抽出手段と、上記受信信号Hを受信し、上記受信信号Hと上記符号Vの遅延符号である遅延符号Vを乗算して受信チャープ信号HVを生成するHV偏波抽出手段と、上記受信信号Vを受信し、上記受信信号Vと上記遅延符号Vを乗算して受信チャープ信号VVを生成するVV偏波抽出手段とを備え、上記遅延符号H及び上記遅延符号Vの遅延量を最大測定距離にあるターゲットからの反射遅延時間に対応させたものである。
The FM-CW polarization radar apparatus according to the present invention generates a code H whose cross-correlation with the code V is equal to or less than a predetermined value, and code-modulates the chirp signal whose frequency changes according to the input voltage with the code H. H-polarization code modulation means for transmitting the H-polarization transmission signal H, which is horizontal polarization, to the target, and a code V whose cross-correlation with the code H is a predetermined value or less is generated, and the chirp signal is represented by the code V-polarization code modulation means for code-modulating with V and transmitting a V-polarized transmission signal V, which is vertically polarized, to the target, and an H-polarized wave reflected by the transmission signal H reflected by the target And a reception signal H obtained by synthesizing a reflected wave of H polarization by the transmission signal V reflected by the target and multiplying the reception signal H by a delay code H which is a delay code of the code H. HH polarization that generates signal HH A receiving signal V obtained by synthesizing a V-polarized wave reflected by the transmission signal H reflected from the target and the V-polarized wave reflected by the transmission signal V reflected by the target; VH polarization extracting means for multiplying the signal V and the delay code H to generate a received chirp signal VH; receiving the received signal H; and receiving a delay code V which is a delay code of the received signal H and the code V HV polarization extraction means for generating a reception chirp signal HV by multiplication, and VV polarization extraction means for receiving the reception signal V and multiplying the reception signal V and the delay code V to generate a reception chirp signal VV The delay amounts of the delay code H and the delay code V correspond to the reflection delay time from the target at the maximum measurement distance .

この発明により、ターゲット情報を精密に得ることができ、ターゲットの識別性能を向上することができるという効果が得られる。   According to the present invention, it is possible to obtain target information precisely and to improve the target identification performance.

実施の形態1.
図1はこの発明の実施の形態1によるFM−CW偏波レーダ装置の構成を示すブロック図である。このFM−CW偏波レーダ装置は、ノコギリ波発生器101、電圧制御信号発生器(VCO)102、符号発生器103,104、変調器105,106、H偏波アンテナ107,109、V偏波アンテナ108,110、乗算器111,112,113,114、遅延回路115,116、乗算器117,118,119,120、受信部121,122,123,124、信号処理部125及びメモリ126を備え、ターゲット1に対して電波を送信し、ターゲット1からの反射波を受信して、ターゲット1を識別しターゲット1までの距離を測定する。
Embodiment 1 FIG.
1 is a block diagram showing the configuration of an FM-CW polarization radar apparatus according to Embodiment 1 of the present invention. This FM-CW polarization radar apparatus includes a sawtooth wave generator 101, a voltage control signal generator (VCO) 102, code generators 103 and 104, modulators 105 and 106, H polarization antennas 107 and 109, V polarization. Antennas 108, 110, multipliers 111, 112, 113, 114, delay circuits 115, 116, multipliers 117, 118, 119, 120, receiving units 121, 122, 123, 124, a signal processing unit 125, and a memory 126 are provided. The radio wave is transmitted to the target 1 and the reflected wave from the target 1 is received to identify the target 1 and measure the distance to the target 1.

図1において、符号発生器103、変調器105及びH偏波アンテナ107によりH偏波符号変調手段を構成し、符号発生器104、変調器106及びV偏波アンテナ108によりV偏波符号変調手段を構成している。   In FIG. 1, the code generator 103, the modulator 105, and the H polarization antenna 107 constitute an H polarization code modulation means, and the code generator 104, the modulator 106, and the V polarization antenna 108 constitute a V polarization code modulation means. Is configured.

また、図1において、符号発生器103、遅延回路115、乗算器111、乗算器117及び受信部121によりHH偏波抽出手段を構成し、符号発生器103、遅延回路115、乗算器112、乗算器118及び受信部122によりVH偏波抽出手段を構成し、符号発生器104、遅延回路116、乗算器113、乗算器119及び受信部123によりHV偏波抽出手段を構成し、符号発生器104、遅延回路116、乗算器114、乗算器120及び受信部124によりVV偏波抽出手段を構成している。   Further, in FIG. 1, the code generator 103, the delay circuit 115, the multiplier 111, the multiplier 117, and the receiving unit 121 constitute an HH polarization extraction means, and the code generator 103, the delay circuit 115, the multiplier 112, and the multiplication The generator 118 and the receiver 122 constitute VH polarization extraction means, and the code generator 104, the delay circuit 116, the multiplier 113, the multiplier 119, and the receiver 123 constitute HV polarization extraction means, and the code generator 104 The delay circuit 116, the multiplier 114, the multiplier 120, and the receiving unit 124 constitute a VV polarization extraction means.

次に動作について説明する。
ノコギリ波発生器101は、信号処理部125の指令に基づき、ノコギリ型に時間的に電圧が変化するノコギリ波信号を生成して電圧制御信号発生器102に出力する。電圧制御信号発生器102は、入力電圧によって指定される周波数の正弦波信号を出力するもので、ノコギリ波発生器101からのノコギリ波信号の電圧に応じて周波数が変化するチャープ信号を出力する。電圧制御信号発生器102から出力されるチャープ信号は、変調器105,106及び乗算器117,118,119,120に入力される。
Next, the operation will be described.
The sawtooth wave generator 101 generates a sawtooth wave signal whose voltage temporally changes in accordance with a command from the signal processing unit 125 and outputs the sawtooth wave signal to the voltage control signal generator 102. The voltage control signal generator 102 outputs a sine wave signal having a frequency specified by an input voltage, and outputs a chirp signal whose frequency changes according to the voltage of the sawtooth wave signal from the sawtooth wave generator 101. The chirp signal output from the voltage control signal generator 102 is input to the modulators 105 and 106 and the multipliers 117, 118, 119 and 120.

符号発生器103と符号発生器104が発生する符号はそれぞれ異なり、互いの相互相関値が所定値以下の符号系列の符号Hと符号Vを発生する。上記所定値にはゼロに近い値が設定される。つまり、符号Hと符号Vとの相互相関値が所定値以下であると、符号Hと符号Vとの相互相関値が非常に小さいか又は理論的にゼロとなる。このような符号には、例えば、GOLD系列の擬似ランダム符号やアダマール系列等の直交符号がある。ここで、符号レートはターゲット1の最大測定距離の往復の伝搬時間の逆数よりも十分大きな値とするのが、この発明の特徴である。符号の遅延時間からターゲット距離を測定するスペクトル拡散レーダでは、高速な符号レートが利用されるが、ここでは、最大測定距離でも高々1/4チップ程度しか遅延しないような低速な符号レートを選択する。そして、符号H及び符号Vの符号長はできるだけ短い方が良い。符号の1周期とスイープ時間を同じ時間にしても良いが、できるだけ多くの周期を入れるようにした方が良い。   The codes generated by the code generator 103 and the code generator 104 are different from each other, and generate a code H and a code V of a code sequence whose cross-correlation value is a predetermined value or less. A value close to zero is set as the predetermined value. That is, if the cross-correlation value between the code H and the code V is less than or equal to a predetermined value, the cross-correlation value between the code H and the code V is very small or theoretically zero. Such codes include, for example, orthogonal codes such as GOLD sequence pseudo-random codes and Hadamard sequences. Here, it is a feature of the present invention that the code rate is sufficiently larger than the reciprocal of the round-trip propagation time of the maximum measurement distance of the target 1. In the spread spectrum radar that measures the target distance from the delay time of the code, a high code rate is used. Here, a low code rate that delays only about 1/4 chip at the maximum measurement distance is selected. . The code lengths of the codes H and V are preferably as short as possible. One cycle of the code and the sweep time may be the same time, but it is better to include as many cycles as possible.

符号発生器103が発生した符号Hは変調器105に入力され、変調器105はこの符号Hに基づいてチャープ信号を位相変調し送信信号Hを出力する。また、符号発生器104が発生した符号Vは変調器106に入力され、変調器106はこの符号Vに基づいてチャープ信号を位相変調し送信信号Vを出力する。   The code H generated by the code generator 103 is input to the modulator 105, and the modulator 105 phase-modulates the chirp signal based on the code H and outputs a transmission signal H. The code V generated by the code generator 104 is input to the modulator 106, and the modulator 106 phase-modulates the chirp signal based on the code V and outputs a transmission signal V.

送信信号HはH偏波アンテナ107で水平偏波であるH偏波の電波として送信され、送信信号VはV偏波アンテナ108で垂直偏波であるV偏波の電波として送信される。   The transmission signal H is transmitted as an H-polarized radio wave that is a horizontal polarization by the H-polarization antenna 107, and the transmission signal V is transmitted as a V-polarization radio wave that is a vertical polarization by the V-polarization antenna 108.

このように、符号発生器103、変調器105及びH偏波アンテナ107により構成されたH偏波符号変調手段は、符号Vとの相互相関が所定値以下(非常に低いか又はゼロ)の符号Hを発生し、入力電圧に応じて周波数が変化するチャープ信号を符号Hで符号変調して、水平偏波であるH偏波の送信信号Hをターゲット1に送信し、符号発生器104、変調器106及びV偏波アンテナ108により構成されたV偏波符号変調手段は、符号Hとの相互相関が所定値以下(非常に低いか又はゼロ)の符号Vを発生し、チャープ信号を符号Vで符号変調して、垂直偏波であるV偏波の送信信号Vをターゲット1に送信する。   As described above, the H-polarization code modulation means including the code generator 103, the modulator 105, and the H-polarization antenna 107 has a code whose cross-correlation with the code V is equal to or less than a predetermined value (very low or zero). H is generated, a chirp signal whose frequency changes according to the input voltage is code-modulated with the code H, and a H-polarized transmission signal H that is a horizontal polarization is transmitted to the target 1, and the code generator 104 modulates V-polarization code modulation means constituted by the device 106 and the V-polarization antenna 108 generates a code V whose cross-correlation with the code H is not more than a predetermined value (very low or zero), and converts the chirp signal into the code V The V-polarized transmission signal V, which is vertically polarized, is transmitted to the target 1 by code modulation.

送信されたH偏波の送信信号Hの電波はターゲット1でH偏波の反射波とV偏波の反射波となって反射し、H偏波の反射波はH偏波アンテナ109でHH受信信号として受信され、V偏波の反射波はV偏波アンテナ110でVH受信信号として受信される。   The transmitted radio wave of the H-polarized transmission signal H is reflected by the target 1 as an H-polarized reflected wave and a V-polarized reflected wave, and the H-polarized reflected wave is received by the H-polarized antenna 109 as HH. The V-polarized reflected wave is received as a VH received signal by the V-polarized antenna 110.

一方、送信されたV偏波の送信信号Vの電波はターゲット1でH偏波の反射波とV偏波の反射波となって反射し、H偏波の反射波はH偏波アンテナ109でHV受信信号として受信され、V偏波の反射波はV偏波アンテナ110でVV受信信号として受信される。   On the other hand, the transmitted radio wave of the V-polarized transmission signal V is reflected by the target 1 as an H-polarized reflected wave and a V-polarized reflected wave, and the H-polarized reflected wave is reflected by the H-polarized antenna 109. The signal is received as an HV reception signal, and the reflected wave of V polarization is received by the V polarization antenna 110 as a VV reception signal.

H偏波アンテナ109ではHH受信信号とHV受信信号が合成された受信信号Hが受信され、V偏波アンテナ110ではVH受信信号とVV受信信号が合成された受信信号Vが受信される。受信信号Hは乗算器111と乗算器113に入力され、受信信号Vは乗算器112と乗算器114に入力される。   The H polarization antenna 109 receives a reception signal H obtained by combining the HH reception signal and the HV reception signal, and the V polarization antenna 110 receives a reception signal V obtained by combining the VH reception signal and the VV reception signal. Received signal H is input to multiplier 111 and multiplier 113, and received signal V is input to multiplier 112 and multiplier 114.

符号発生器103が出力する符号Hは遅延回路115にも入力され、遅延回路115は符号Hを遅延させて遅延符号Hを出力する。符号発生器104が出力する符号Vは遅延回路116にも入力され、遅延回路116は符号Vを遅延させて遅延符号Vを出力する。   The code H output from the code generator 103 is also input to the delay circuit 115, and the delay circuit 115 delays the code H and outputs the delay code H. The code V output from the code generator 104 is also input to the delay circuit 116, which delays the code V and outputs the delay code V.

この遅延回路115及び遅延回路116の遅延量は最大測定距離で遅延するチップ数にする。ここで、先ほど最大測定距離でも高々1/4チップ程度しか遅延しないような、低速な符号レートを選んだので、遅延量は1/4チップとする。1/4チップの遅延は、例えば、4倍のクロックで駆動させるフリップフロップで実現できる。   The delay amounts of the delay circuit 115 and the delay circuit 116 are the number of chips that are delayed by the maximum measurement distance. Here, since a low-speed code rate is selected so as to delay only about 1/4 chip at the maximum measurement distance, the delay amount is set to 1/4 chip. The 1/4 chip delay can be realized by, for example, a flip-flop driven by a quadruple clock.

このように、遅延符号H及び遅延符号Vの遅延量を最大測定距離にあるターゲットからの反射遅延時間に対応させることにより、近傍のターゲット散乱レベルを押さえ、遠方のターゲット散乱レベルを上げられるため、システムのダイナミックレンジを押さえられ、遠方のターゲットをより精密に計測することができる。   In this way, by making the delay amounts of the delay code H and the delay code V correspond to the reflection delay time from the target at the maximum measurement distance, the target scattering level in the vicinity can be suppressed and the target scattering level in the distance can be increased. The dynamic range of the system can be suppressed, and remote targets can be measured more precisely.

遅延回路115からの遅延符号Hは乗算器111,112へ出力され、遅延回路116からの遅延符号Vは乗算器113と114へ出力される。   The delay code H from the delay circuit 115 is output to the multipliers 111 and 112, and the delay code V from the delay circuit 116 is output to the multipliers 113 and 114.

乗算器111は受信信号Hと遅延符号Hを乗算して受信チャープ信号HHを乗算器117に出力し、乗算器112は受信信号Vと遅延符号Hを乗算して受信チャープ信号VHを乗算器118に出力し、乗算器113は受信信号Hと遅延符号Vを乗算して受信チャープ信号HVを乗算器119に出力し、乗算器114は受信信号Vと遅延符号Vを乗算して受信チャープ信号VVを乗算器120に出力する。   Multiplier 111 multiplies reception signal H and delay code H and outputs reception chirp signal HH to multiplier 117, and multiplier 112 multiplies reception signal V and delay code H to multiply reception chirp signal VH by multiplier 118. The multiplier 113 multiplies the received signal H and the delay code V to output the received chirp signal HV to the multiplier 119, and the multiplier 114 multiplies the received signal V and the delay code V to receive the received chirp signal VV. Is output to the multiplier 120.

乗算器117は受信チャープ信号HHと電圧制御信号発生器102により出力されたチャープ信号とを乗算してビート信号HHを受信部121に出力し、乗算器118は受信チャープ信号VHと電圧制御信号発生器102により出力されたチャープ信号とを乗算してビート信号VHを受信部122に出力し、乗算器119は受信チャープ信号HVと電圧制御信号発生器102により出力されたチャープ信号とを乗算してビート信号HVを受信部123に出力し、乗算器120は受信チャープ信号VVと電圧制御信号発生器102により出力されたチャープ信号とを乗算してビート信号VVを受信部124に出力する。
この受信チャープ信号と電圧制御信号発生器102により出力されたチャープ信号との乗算によりビート信号を得る過程は、一般的なFM−CW偏波レーダ装置の原理と同じである。
Multiplier 117 multiplies reception chirp signal HH by the chirp signal output from voltage control signal generator 102 and outputs beat signal HH to receiving section 121. Multiplier 118 generates reception chirp signal VH and a voltage control signal. The beat signal VH is multiplied by the chirp signal output from the multiplier 102 and output to the receiver 122. The multiplier 119 multiplies the received chirp signal HV and the chirp signal output from the voltage control signal generator 102. The beat signal HV is output to the reception unit 123, and the multiplier 120 multiplies the reception chirp signal VV and the chirp signal output from the voltage control signal generator 102 and outputs the beat signal VV to the reception unit 124.
The process of obtaining a beat signal by multiplying the received chirp signal and the chirp signal output from the voltage control signal generator 102 is the same as the principle of a general FM-CW polarization radar apparatus.

受信部121は、ビート信号HHの高周波成分を除去して低周波のビート信号HHを取り出し、デジタル信号HHに変換して信号処理部125に出力し、受信部122は、ビート信号VHの高周波成分を除去して低周波のビート信号VHを取り出し、デジタル信号VHに変換して信号処理部125に出力し、受信部123は、ビート信号HVの高周波成分を除去して低周波のビート信号HVを取り出し、デジタル信号HVに変換して信号処理部125に出力し、受信部124はビート信号VVの高周波成分を除去して低周波のビート信号VVを取り出し、デジタル信号VVに変換して信号処理部125に出力する。
ここで、受信部121,122,123,124がデジタル信号に変換する変換開始タイミングは、信号処理部125の指令に基づいており、ノコギリ波発生器101のノコギリ波の発生タイミングと同期が取られる。
The receiving unit 121 removes the high frequency component of the beat signal HH, extracts the low frequency beat signal HH, converts it into a digital signal HH, and outputs it to the signal processing unit 125. The receiving unit 122 outputs the high frequency component of the beat signal VH. The low-frequency beat signal VH is taken out, converted into a digital signal VH and output to the signal processing unit 125, and the reception unit 123 removes the high-frequency component of the beat signal HV and outputs the low-frequency beat signal HV. Extracted, converted into a digital signal HV and output to the signal processing unit 125, the receiving unit 124 removes the high frequency component of the beat signal VV to extract the low frequency beat signal VV, converted into the digital signal VV, and converted into a digital signal VV It outputs to 125.
Here, the conversion start timing at which the receiving units 121, 122, 123, and 124 convert into digital signals is based on the command of the signal processing unit 125, and is synchronized with the sawtooth wave generation timing of the sawtooth wave generator 101. .

このように、符号発生器103、遅延回路115、乗算器111、乗算器117及び受信部121により構成されたHH偏波抽出手段は、ターゲット1で反射された送信信号HによるH偏波の反射波とターゲット1で反射された送信信号VによるH偏波の反射波を合成した受信信号Hを受信し、受信信号Hと遅延符号Hを乗算して受信チャープ信号HHを生成し、生成した受信チャープ信号HHとチャープ信号を乗算してビート信号HHを生成し、生成したビート信号HHの高周波成分を除去してデジタル信号HHを出力する。   As described above, the HH polarization extraction unit configured by the code generator 103, the delay circuit 115, the multiplier 111, the multiplier 117, and the reception unit 121 reflects the H polarization by the transmission signal H reflected by the target 1. The received signal H obtained by synthesizing the reflected wave of the H polarization with the transmission signal V reflected by the target 1 is received, and the received signal H is multiplied by the delay code H to generate the received chirp signal HH. The beat signal HH is generated by multiplying the chirp signal HH and the chirp signal, and the high frequency component of the generated beat signal HH is removed to output the digital signal HH.

また、符号発生器103、遅延回路115、乗算器112、乗算器118及び受信部122により構成されたVH偏波抽出手段は、ターゲット1で反射された送信信号HによるV偏波の反射波とターゲット1で反射された送信信号VによるV偏波の反射波を合成した受信信号Vを受信し、受信信号Vと遅延符号Hを乗算して受信チャープ信号VHを生成し、生成した受信チャープ信号VHとチャープ信号を乗算してビート信号VHを生成し、生成したビート信号VHの高周波成分を除去してデジタル信号VHを出力する。   Further, the VH polarization extraction means constituted by the code generator 103, the delay circuit 115, the multiplier 112, the multiplier 118, and the reception unit 122 is a reflected wave of V polarization by the transmission signal H reflected by the target 1. A reception signal V obtained by synthesizing a reflected wave of V polarization by the transmission signal V reflected by the target 1 is received, the reception signal V and the delay code H are multiplied to generate a reception chirp signal VH, and the generated reception chirp signal The beat signal VH is generated by multiplying VH and the chirp signal, and the high frequency component of the generated beat signal VH is removed to output the digital signal VH.

さらに、符号発生器104、遅延回路116、乗算器113、乗算器119及び受信部123により構成されたHV偏波抽出手段は、受信信号Hを受信し、受信信号Hと遅延符号Vを乗算して受信チャープ信号HVを生成し、生成した受信チャープ信号HVとチャープ信号を乗算してビート信号HVを生成し、生成したビート信号HVの高周波成分を除去してデジタル信号HVを出力する。   Further, the HV polarization extraction means configured by the code generator 104, the delay circuit 116, the multiplier 113, the multiplier 119, and the reception unit 123 receives the reception signal H and multiplies the reception signal H by the delay code V. Then, the reception chirp signal HV is generated, the generated reception chirp signal HV and the chirp signal are multiplied to generate the beat signal HV, the high frequency component of the generated beat signal HV is removed, and the digital signal HV is output.

さらに、符号発生器104、遅延回路116、乗算器114、乗算器120及び受信部124により構成されたVV偏波抽出手段は、受信信号Vを受信し、受信信号Vと遅延符号Vを乗算して受信チャープ信号VVを生成し、生成した受信チャープ信号VVとチャープ信号を乗算してビート信号VVを生成し、生成したビート信号VVの高周波成分を除去してデジタル信号VVを出力する。   Further, the VV polarization extraction means configured by the code generator 104, the delay circuit 116, the multiplier 114, the multiplier 120, and the reception unit 124 receives the reception signal V and multiplies the reception signal V and the delay code V. The reception chirp signal VV is generated, the generated reception chirp signal VV and the chirp signal are multiplied to generate the beat signal VV, the high frequency component of the generated beat signal VV is removed, and the digital signal VV is output.

信号処理部125は、ノコギリ波の上昇が終了するまで、デジタル信号HH、デジタル信号VH、デジタル信号HV、デジタル信号VVをメモリ126に蓄積する。ノコギリ波の上昇時間は予めスイープ時間として規定されるため、上昇の終了は指令開始からの時間を計測することで分かる。   The signal processing unit 125 accumulates the digital signal HH, the digital signal VH, the digital signal HV, and the digital signal VV in the memory 126 until the rising of the sawtooth wave is completed. Since the rising time of the sawtooth wave is defined in advance as a sweep time, the end of the rising can be found by measuring the time from the start of the command.

ノコギリ波の上昇終了後、つまり、計測終了後、信号処理部125はメモリ126に蓄積されたデジタル信号HH、デジタル信号VH、デジタル信号HV、デジタル信号VVを読み出し、それぞれフーリエ変換する。フーリエ変換後の周波数スペクトルは距離方向のターゲットレスポンスに相当し、図1のようにターゲット1が1つの場合は、ターゲット1の距離に対応する周波数にピークが立つ。これは一般的なFM−CW偏波レーダ装置と同じ原理である。また、一般的なレーダ処理として、レンジ方向のパルス圧縮、操作方向の合成開口処理により分解能を向上させることもできる。このピーク位置の振幅、位相は複素ターゲット散乱信号である。   After the rising of the sawtooth wave, that is, after the measurement is completed, the signal processing unit 125 reads out the digital signal HH, the digital signal VH, the digital signal HV, and the digital signal VV stored in the memory 126, and respectively performs Fourier transform. The frequency spectrum after Fourier transform corresponds to the target response in the distance direction, and when there is one target 1 as shown in FIG. 1, a peak appears at the frequency corresponding to the distance of the target 1. This is the same principle as a general FM-CW polarization radar apparatus. Further, as general radar processing, resolution can be improved by pulse compression in the range direction and synthetic aperture processing in the operation direction. The amplitude and phase of this peak position are complex target scattering signals.

信号処理部125によるフーリエ変換によって、デジタル信号HH、デジタル信号VH、デジタル信号HV、デジタル信号VVからそれぞれターゲットの距離と複素ターゲット散乱信号が得られる。ターゲットの距離は4セットできるが、H偏波アンテナ107、V偏波アンテナ108、H偏波アンテナ109、V偏波アンテナ110の物理的な位置の差を補正することにより1つの値となり、複素ターゲット散乱信号は、それぞれ、HH偏波信号、VH偏波信号、HV偏波信号、VV偏波信号と偏波4成分となる。   A target distance and a complex target scattering signal are obtained from the digital signal HH, the digital signal VH, the digital signal HV, and the digital signal VV, respectively, by Fourier transform by the signal processing unit 125. Although the target distance can be set to four, it becomes one value by correcting the physical position difference between the H polarization antenna 107, the V polarization antenna 108, the H polarization antenna 109, and the V polarization antenna 110. The target scattering signal is an HH polarization signal, a VH polarization signal, an HV polarization signal, a VV polarization signal, and a polarization four component, respectively.

信号処理部125は、この偏波4成分を基底変換等の偏波に関する信号処理により、ターゲット1の特徴量を抽出して解析情報を本装置の計測結果として出力する。   The signal processing unit 125 extracts the feature quantity of the target 1 by signal processing relating to polarization such as basis conversion of the four polarization components, and outputs analysis information as a measurement result of the apparatus.

図2はH偏波符号変調手段及びV偏波符号変調手段の処理を説明する図である。ノコギリ波発生器101から出力されたノコギリ波201はノコギリ状に時間的に電圧レベルが変化する。電圧制御信号発生器102は、このノコギリ波201の電圧レベルに応じた周波数でチャープ信号202を生成する。チャープ信号204は説明のため、チャープ信号202の一部を拡大したものである。H偏波符号変調手段及びV偏波符号変調手段は、それぞれ相互相関が所定値以下(非常に低い又は理論的にゼロ)の符号H及び符号Vに相当する符号205を発生してチャープ信号を位相変調し、送信信号H及び送信信号Vに相当する送信信号206を生成してターゲット1に送信する。   FIG. 2 is a diagram for explaining the processing of the H polarization code modulation means and the V polarization code modulation means. The sawtooth wave 201 output from the sawtooth wave generator 101 changes its voltage level with time in a sawtooth manner. The voltage control signal generator 102 generates a chirp signal 202 at a frequency corresponding to the voltage level of the sawtooth wave 201. The chirp signal 204 is an enlargement of a part of the chirp signal 202 for explanation. The H-polarization code modulation means and the V-polarization code modulation means respectively generate a code 205 corresponding to a code H and a code V whose cross-correlation is equal to or smaller than a predetermined value (very low or theoretically zero) and generate a chirp signal. Phase modulation is performed, and a transmission signal 206 corresponding to the transmission signal H and the transmission signal V is generated and transmitted to the target 1.

図3はHH偏波抽出手段の処理を説明する図であり、最大測定距離にあるターゲット1から戻ったHH受信信号301と遅延符号H302との乗算結果である乗算信号HH303(受信チャープ信号)を示している。このように、HH偏波抽出手段はHH受信信号301から符号成分を取り除くことができる。   FIG. 3 is a diagram for explaining the processing of the HH polarization extraction means. A multiplication signal HH303 (reception chirp signal) that is a multiplication result of the HH reception signal 301 returned from the target 1 at the maximum measurement distance and the delay code H302 is obtained. Show. In this way, the HH polarization extraction unit can remove the code component from the HH received signal 301.

図4はVH偏波抽出手段の処理を説明する図であり、最大測定距離にあるターゲット1から戻ったHH受信信号301と遅延符号V401との乗算結果である乗算信号VH303(受信チャープ信号)を示している。このように、VH偏波抽出手段はHH受信信号301の符号成分を取り除かない。   FIG. 4 is a diagram for explaining the processing of the VH polarization extracting means. A multiplication signal VH303 (reception chirp signal) that is a multiplication result of the HH reception signal 301 returned from the target 1 at the maximum measurement distance and the delay code V401 is obtained. Show. As described above, the VH polarization extraction unit does not remove the code component of the HH reception signal 301.

符号成分が取り除かれた乗算信号は、一般的なFM−CW偏波レーダ装置の受信信号と同じように、電圧制御信号発生器102が出力するチャープ信号と乗算され、乗算した結果のビート信号をフーリエ変換で解析することでターゲット情報を得られるが、符号成分が残った信号のビート信号は、符号によって低周波成分が抑圧され、符号レートの周波数となる。これは受信部121〜124の高周波成分を除去する動作によって取り除かれるため、結果として遅延符号と相関のない成分は除去される。   The multiplication signal from which the code component has been removed is multiplied by the chirp signal output from the voltage control signal generator 102 in the same manner as a reception signal of a general FM-CW polarization radar apparatus, and the beat signal obtained as a result of multiplication is multiplied. Target information can be obtained by analysis by Fourier transform, but the low frequency component of the beat signal of the signal in which the code component remains is suppressed by the code and becomes the frequency of the code rate. This is removed by the operation of removing the high-frequency components of the receiving units 121 to 124, and as a result, a component not correlated with the delay code is removed.

よって、HH偏波抽出手段はHH受信信号の成分を抽出し、VH偏波抽出手段はVH受信信号の成分を抽出し、HV偏波抽出手段はHV受信信号の成分を抽出し、VV偏波抽出手段はVV受信信号の成分を抽出することができる。   Therefore, the HH polarization extraction means extracts the component of the HH reception signal, the VH polarization extraction means extracts the component of the VH reception signal, the HV polarization extraction means extracts the component of the HV reception signal, and the VV polarization The extraction means can extract a component of the VV reception signal.

さて、近距離のターゲット1では、受信信号に含まれる符号と遅延符号とは一致しないが、もっとも近距離で符号差は1/4チップである。1/4チップ差の相関演算は電力が1/4になることが知られており、後でターゲット距離から補正することができる。それ以上に、通常、レーダ装置は遠方のターゲット1をより大きく受信するため、例えばパルスレーダ装置では、時間と共に増幅度が上がる受信アンプ等を使って、これを実現している。しかし、この実施の形態1では、この遅延符号によって同じような動作を実現することができる。これにより、システムのダイナミックレンジを押さえられ、遠方のターゲット1をより精密に計測することができる。   Now, in the short-distance target 1, the code included in the received signal does not match the delay code, but the code difference is ¼ chip at the shortest distance. The correlation calculation of the 1/4 chip difference is known to have a power of 1/4 and can be corrected later from the target distance. In addition, since the radar apparatus normally receives a far target 1 more greatly, for example, in a pulse radar apparatus, this is realized by using a reception amplifier whose degree of amplification increases with time. However, in the first embodiment, the same operation can be realized by this delay code. Thereby, the dynamic range of the system can be suppressed, and the far target 1 can be measured more precisely.

図5はビート信号抽出後の処理を説明する図であり、受信チャープ信号501を電圧制御信号発生器102が出力するチャープ信号202と乗算したビート信号502と、ビート信号502をフーリエ変換によって得られる周波数スペクトル503を示したものである。図5において、周波数スペクトル503はターゲット1の反射信号であり、周波数軸は距離軸に対応する。   FIG. 5 is a diagram for explaining the processing after extracting the beat signal. The beat signal 502 obtained by multiplying the received chirp signal 501 by the chirp signal 202 output from the voltage control signal generator 102 and the beat signal 502 are obtained by Fourier transform. A frequency spectrum 503 is shown. In FIG. 5, a frequency spectrum 503 is a reflected signal of the target 1, and the frequency axis corresponds to the distance axis.

ここで、符号H及び符号Vの符号長をできるだけ短い方が良いとした理由を説明する。
一般にターゲット1からの反射波は周波数によってレベルが異なるため、受信チャープ信号は一定ではない。特に、マルチパス干渉により、特定の周波数成分が小さくなる周波数選択性フェージングがある。これは、符号の相関特性に悪影響を及ぼす恐れがある。短周期の符号ではその符号周期区間内ではほぼ一定の受信電力となるため、相関におけるレベル差の影響を最小限に抑えられる。
Here, the reason why the code lengths of the codes H and V should be as short as possible is described.
In general, since the level of the reflected wave from the target 1 varies depending on the frequency, the received chirp signal is not constant. In particular, there is frequency selective fading in which a specific frequency component is reduced due to multipath interference. This can adversely affect the correlation properties of the code. In a short cycle code, the reception power is almost constant within the code cycle interval, so that the influence of the level difference in the correlation can be minimized.

このように、H偏波符号変調手段とV偏波符号変調手段が発生する電波は相関性がないため、H偏波符号変調手段が送信した送信信号HがH偏波となって反射したHH偏波と、V偏波符号変調手段が送信した送信信号VがH偏波となって反射したHV偏波は、それぞれ異なる符号で変調されているため、HH偏波抽出手段によってHH偏波を分離することができ、HV偏波抽出手段によってHV偏波を分離することができる。同様に、H偏波符号変調手段が送信した送信信号HがV偏波となって反射したVH偏波と、V偏波符号変調手段が送信した送信信号VがV偏波となって反射したVV偏波は、それぞれ異なる符号で変調されているため、VH偏波抽出手段によってVH偏波を分離することができ、VV偏波抽出手段によってVV偏波を分離することができる。
よって、H偏波とV偏波を同時に送信してもHH偏波、VH偏波、HV偏波、VV偏波を分離することができる。これは同時刻に測定されたものであり、そのため、ターゲット情報を精密に得ることができ、ターゲット識別性能を向上できる。
Thus, since the radio waves generated by the H polarization code modulation means and the V polarization code modulation means have no correlation, the transmission signal H transmitted by the H polarization code modulation means is reflected as H polarization. Since the polarization signal and the HV polarization signal reflected by the transmission signal V transmitted by the V polarization code modulation means are converted to the H polarization, the HH polarization extraction means converts the HH polarization. The HV polarization can be separated by the HV polarization extraction means. Similarly, the transmission signal H transmitted from the H polarization code modulation means is reflected as V polarization, and the transmission signal V transmitted from the V polarization code modulation means is reflected as V polarization. Since the VV polarization is modulated with a different code, the VH polarization extraction unit can separate the VH polarization, and the VV polarization extraction unit can separate the VV polarization.
Therefore, HH polarization, VH polarization, HV polarization, and VV polarization can be separated even if H polarization and V polarization are transmitted simultaneously. This is measured at the same time, so that the target information can be obtained accurately and the target identification performance can be improved.

以上のように、この実施の形態1によれば、H偏波の送信信号HとV偏波の送信信号Vは、相互相関が所定値以下(非常に低い又は理論的にゼロ)の符号で符号変調されているため、同時にターゲット1に送信することができ、受信したHH偏波信号、VH偏波信号、HV偏波信号、VV偏波信号は同時刻に計測されたものであるため、FM−CW偏波レーダ装置とターゲット1の物理的な位置関係は同じであり、ターゲット情報を精密に得ることができ、ターゲット1の識別性能を向上することができるという効果が得られる。   As described above, according to the first embodiment, the H-polarized transmission signal H and the V-polarized transmission signal V are codes having a cross-correlation of a predetermined value or less (very low or theoretically zero). Since it is code-modulated, it can be transmitted to the target 1 at the same time, and since the received HH polarization signal, VH polarization signal, HV polarization signal, and VV polarization signal are measured at the same time, The physical positional relationship between the FM-CW polarization radar apparatus and the target 1 is the same, so that the target information can be obtained accurately and the identification performance of the target 1 can be improved.

また、この実施の形態1によれば、乗算器111,112,113,114による遅延符号との乗算により近傍のターゲット散乱レベルを押さえ、遠方のターゲット散乱レベルを上げられるため、システムのダイナミックレンジを押さえられ、遠方のターゲット1をより精密に計測することができるという効果が得られる。   Further, according to the first embodiment, multiplication of the delay codes by the multipliers 111, 112, 113, and 114 suppresses the target scattering level in the vicinity and raises the target scattering level in the distance, so that the dynamic range of the system is increased. The effect of being able to measure the target 1 far away and more accurately can be obtained.

この発明の実施の形態1によるFM−CW偏波レーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the FM-CW polarized wave radar apparatus by Embodiment 1 of this invention. この発明の実施の形態1によるFM−CW偏波レーダ装置のH偏波符号変調手段及びV偏波符号変調手段の処理を説明する図である。It is a figure explaining the process of the H polarization code modulation means and the V polarization code modulation means of the FM-CW polarization radar apparatus by Embodiment 1 of this invention. この発明の実施の形態1によるFM−CW偏波レーダ装置のHH偏波抽出手段の処理を説明する図である。It is a figure explaining the process of the HH polarized wave extraction means of the FM-CW polarized wave radar apparatus by Embodiment 1 of this invention. この発明の実施の形態1によるFM−CW偏波レーダ装置のVH偏波抽出手段の処理を説明する図である。It is a figure explaining the process of the VH polarized wave extraction means of the FM-CW polarized wave radar apparatus by Embodiment 1 of this invention. この発明の実施の形態1によるFM−CW偏波レーダ装置のビート信号抽出後の処理を説明する図である。It is a figure explaining the process after the beat signal extraction of the FM-CW polarized wave radar apparatus by Embodiment 1 of this invention.

符号の説明Explanation of symbols

101 ノコギリ波発生器、102 電圧制御信号発生器(VCO)、103,104 符号発生器、105,106 変調器、107,109 H偏波アンテナ、108,110 V偏波アンテナ、111,112,113,114,117,118,119,120 乗算器、115,116 遅延回路、121,122,123,124 受信部、125 信号処理部、126 メモリ。   DESCRIPTION OF SYMBOLS 101 Sawtooth wave generator, 102 Voltage control signal generator (VCO), 103,104 code generator, 105,106 modulator, 107,109 H polarization antenna, 108,110 V polarization antenna, 111,112,113 , 114, 117, 118, 119, 120 multiplier, 115, 116 delay circuit, 121, 122, 123, 124 receiver, 125 signal processor, 126 memory.

Claims (1)

符号Vとの相互相関が所定値以下の符号Hを発生し、入力電圧に応じて周波数が変化するチャープ信号を上記符号Hで符号変調して、水平偏波であるH偏波の送信信号Hをターゲットに送信するH偏波符号変調手段と、
上記符号Hとの相互相関が所定値以下の符号Vを発生し、上記チャープ信号を上記符号Vで符号変調して、垂直偏波であるV偏波の送信信号Vを上記ターゲットに送信するV偏波符号変調手段と、
上記ターゲットで反射された上記送信信号HによるH偏波の反射波と上記ターゲットで反射された上記送信信号VによるH偏波の反射波を合成した受信信号Hを受信し、上記受信信号Hと上記符号Hの遅延符号である遅延符号Hを乗算して受信チャープ信号HHを生成するHH偏波抽出手段と、
上記ターゲットで反射された上記送信信号HによるV偏波の反射波と上記ターゲットで反射された送信信号VによるV偏波の反射波を合成した受信信号Vを受信し、上記受信信号Vと上記遅延符号Hを乗算して受信チャープ信号VHを生成するVH偏波抽出手段と、
上記受信信号Hを受信し、上記受信信号Hと上記符号Vの遅延符号である遅延符号Vを乗算して受信チャープ信号HVを生成するHV偏波抽出手段と、
上記受信信号Vを受信し、上記受信信号Vと上記遅延符号Vを乗算して受信チャープ信号VVを生成するVV偏波抽出手段とを備え
上記遅延符号H及び上記遅延符号Vの遅延量を最大測定距離にあるターゲットからの反射遅延時間に対応させることを特徴とするFM−CW偏波レーダ装置。
A code H whose cross-correlation with the code V is equal to or less than a predetermined value is generated, and a chirp signal whose frequency changes in accordance with the input voltage is code-modulated with the code H, so that an H-polarized transmission signal H that is a horizontally polarized wave H-polarization code modulation means for transmitting to the target;
A code V whose cross-correlation with the code H is a predetermined value or less is generated, the chirp signal is code-modulated with the code V, and a V-polarized transmission signal V which is a vertical polarization is transmitted to the target V Polarization code modulation means;
Receiving a reception signal H obtained by combining a reflected wave of H polarization by the transmission signal H reflected by the target and a reflection wave of H polarization by the transmission signal V reflected by the target; HH polarization extraction means for multiplying a delay code H which is a delay code of the code H to generate a reception chirp signal HH;
A received signal V obtained by synthesizing a reflected wave of V polarization by the transmission signal H reflected by the target and a reflected wave of V polarization by the transmission signal V reflected by the target is received. VH polarization extraction means for multiplying the delay code H to generate a reception chirp signal VH;
HV polarization extraction means for receiving the received signal H and multiplying the received signal H by a delay code V that is a delay code of the code V to generate a received chirp signal HV;
VV polarization extraction means for receiving the received signal V and generating the received chirp signal VV by multiplying the received signal V and the delay code V ;
The FM-CW polarization radar apparatus , wherein delay amounts of the delay code H and the delay code V correspond to a reflection delay time from a target at a maximum measurement distance .
JP2007117275A 2007-04-26 2007-04-26 FM-CW polarization radar equipment Expired - Fee Related JP5019316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117275A JP5019316B2 (en) 2007-04-26 2007-04-26 FM-CW polarization radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117275A JP5019316B2 (en) 2007-04-26 2007-04-26 FM-CW polarization radar equipment

Publications (2)

Publication Number Publication Date
JP2008275382A JP2008275382A (en) 2008-11-13
JP5019316B2 true JP5019316B2 (en) 2012-09-05

Family

ID=40053516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117275A Expired - Fee Related JP5019316B2 (en) 2007-04-26 2007-04-26 FM-CW polarization radar equipment

Country Status (1)

Country Link
JP (1) JP5019316B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115818A2 (en) 2008-03-18 2009-09-24 Manchester Metropolitan University Remote detection and measurement of objects
GB0916300D0 (en) * 2009-09-17 2009-10-28 Univ Manchester Metropolitan Remote detection of bladed objects
JP5561013B2 (en) * 2010-08-17 2014-07-30 日本電気株式会社 SAR equipment
KR101154417B1 (en) 2010-08-18 2012-06-15 한국해양연구원 Marine radar for oceanographic observation having HH-polarization antenna and VV-polarization antenna
DE102013210256A1 (en) * 2013-06-03 2014-12-04 Robert Bosch Gmbh INTERFERENCE SUPPRESSION ON AN FMCW RADAR
JP6430215B2 (en) * 2014-11-06 2018-11-28 株式会社東芝 Radar system and radar signal processing method thereof
JP7390657B2 (en) * 2020-03-18 2023-12-04 パナソニックIpマネジメント株式会社 radar equipment
KR102665846B1 (en) * 2023-02-28 2024-05-14 엘아이지넥스원 주식회사 Gimbal and radar system including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2694257B2 (en) * 1989-06-12 1997-12-24 日本電信電話株式会社 Cross polarization interference compensation method
JP2624055B2 (en) * 1991-09-26 1997-06-25 日本電気株式会社 Polarimetric synthetic aperture radar system
JP2925518B2 (en) * 1997-08-04 1999-07-28 防衛庁技術研究本部長 A radio wave sensor that captures and tracks very close-range targets
JP3019829B2 (en) * 1997-12-08 2000-03-13 日本電気株式会社 Low data rate synthetic aperture radar system
JP3833606B2 (en) * 2002-12-19 2006-10-18 三菱電機株式会社 In-vehicle radar system
JP2004219096A (en) * 2003-01-09 2004-08-05 Japan Resources Observation System Organization Radar system

Also Published As

Publication number Publication date
JP2008275382A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5019316B2 (en) FM-CW polarization radar equipment
KR101908196B1 (en) Frequency modulation scheme for fmcw radar
US10365349B2 (en) Radar device
JP6818541B2 (en) Radar device and positioning method
US10955542B2 (en) Radar apparatus and direction-of-arrival estimation device
JP2018146443A (en) Radar apparatus and rader method
JP2016151425A (en) Radar system
JP6909023B2 (en) Radar device and radar method
EP2284565A1 (en) Continous wave radar
JP4704968B2 (en) Correlation detector
JP7266207B2 (en) Radar device and radar method
JP2005315820A (en) Obstacle detector
RU2337373C1 (en) Method for azimuth resolution of moving targets, method for surveillance pulse radar set operation in azimuth resolution mode for moving targets, and radar system for method implementation
JP2006226847A (en) Wireless sensing device and method
JP2020056589A (en) Radar device, and radar method
JP2011069779A (en) Radar system
KR20190135267A (en) Continuous wave radar and ranging method using the continuous wave radar
JP6375250B2 (en) Radar equipment
Shi et al. A novel ionospheric oblique-incidence sounding network consisting of the ionospheric oblique backscatter sounder and the parasitic oblique-incidence sounder
JP5980636B2 (en) Target detection device
JP2010197147A (en) Radar device
JP4103675B2 (en) Radar equipment
JP6376985B2 (en) Target detection device
JP4738059B2 (en) Pulse radar equipment
JP5501578B2 (en) Radar equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

R150 Certificate of patent or registration of utility model

Ref document number: 5019316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees