JP5014705B2 - Organic electroluminescence device using phosphorescent compound - Google Patents

Organic electroluminescence device using phosphorescent compound Download PDF

Info

Publication number
JP5014705B2
JP5014705B2 JP2006222368A JP2006222368A JP5014705B2 JP 5014705 B2 JP5014705 B2 JP 5014705B2 JP 2006222368 A JP2006222368 A JP 2006222368A JP 2006222368 A JP2006222368 A JP 2006222368A JP 5014705 B2 JP5014705 B2 JP 5014705B2
Authority
JP
Japan
Prior art keywords
compound
group
organic
polymer compound
above formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006222368A
Other languages
Japanese (ja)
Other versions
JP2007081392A (en
Inventor
哲彦 山口
良明 高橋
珠美 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2006222368A priority Critical patent/JP5014705B2/en
Publication of JP2007081392A publication Critical patent/JP2007081392A/en
Application granted granted Critical
Publication of JP5014705B2 publication Critical patent/JP5014705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、燐光発光性化合物を用いた有機エレクトロルミネッセンス素子に関する。より詳しくは、本発明は、燐光発光性化合物と高分子化合物とを含有する有機層を含み、製造工程が簡略化され、大面積化が実現できるとともに、高い発光効率および高い耐久性が得られる有機エレクトロルミネッセンス素子に関する。   The present invention relates to an organic electroluminescence device using a phosphorescent compound. More specifically, the present invention includes an organic layer containing a phosphorescent compound and a polymer compound, the manufacturing process is simplified, a large area can be realized, and high luminous efficiency and high durability can be obtained. The present invention relates to an organic electroluminescence element.

近年、有機エレクトロルミネッセンス素子(本明細書において、有機EL素子ともいう)の用途を拡大するために、高い発光効率を有する燐光発光性化合物を用いた材料開発が活発に行われている。   In recent years, in order to expand the use of organic electroluminescence elements (also referred to as organic EL elements in this specification), material development using phosphorescent compounds having high emission efficiency has been actively performed.

また、有機EL素子は、一般的に、陽極と陰極とに挟まれた1層または2層以上の有機層を含む構成をとる。これらの層を形成する材料として、高分子化合物を用いると、これを溶解した溶液を塗布して、簡便に成膜でき、素子の大面積化および量産化が可能となる。   Further, the organic EL element generally has a configuration including one or more organic layers sandwiched between an anode and a cathode. When a polymer compound is used as a material for forming these layers, a solution in which the polymer compound is dissolved can be applied to easily form a film, and the device can be increased in area and mass-produced.

例えば、特許文献1には、ホール輸送性のカルバゾール誘導体および電子輸送性のオキサジアゾール誘導体から導かれる構造単位を有する高分子化合物と、燐光発光性化合物とからなる層を有する有機EL素子が開示されている。   For example, Patent Document 1 discloses an organic EL element having a layer composed of a polymer compound having a structural unit derived from a hole-transporting carbazole derivative and an electron-transporting oxadiazole derivative, and a phosphorescent compound. Has been.

しかしながら、高分子化合物に、カルバゾール誘導体から導かれる構造単位が含まれる場合は、高い発光効率が得られず、素子の耐久性も低いという問題があった。
これに対して、特許文献2では、高い発光効率を得るために、ホール輸送性化合物として、カルバゾール誘導体に代えてトリフェニルアミン誘導体を用いる試みがされている。具体的には、トリフェニルアミン誘導体、オキサジアゾール誘導体、および燐光発光性化合物から導かれる構造単位を有する高分子化合物が開示されている。
However, when the polymer compound contains a structural unit derived from a carbazole derivative, there is a problem that high luminous efficiency cannot be obtained and the durability of the device is low.
On the other hand, Patent Document 2 attempts to use a triphenylamine derivative instead of a carbazole derivative as a hole transporting compound in order to obtain high luminous efficiency. Specifically, a polymer compound having a structural unit derived from a triphenylamine derivative, an oxadiazole derivative, and a phosphorescent compound is disclosed.

しかしながら、用いる単量体の組み合わせによっては、個々の化合物の重合性の相違のため、高分子化合物中で、各々の単量体から導かれる構造単位の分布が不均一となる場合があった。分布が不均一な高分子化合物を用いた有機EL素子では、高い発光効率は得られず、素子の耐久性も低いという問題があった。   However, depending on the combination of monomers used, there are cases where the distribution of structural units derived from each monomer in the polymer compound becomes non-uniform due to differences in the polymerizability of the individual compounds. In the organic EL device using a polymer compound having a non-uniform distribution, there is a problem that high luminous efficiency cannot be obtained and the durability of the device is low.

このため、大面積化および量産化に適するとともに、高い発光効率および高い耐久性が得られる材料の開発が望まれていた。
特開2002−363227号公報 特開2005−97589号公報
For this reason, it has been desired to develop a material that is suitable for large area and mass production, and that can obtain high luminous efficiency and high durability.
JP 2002-363227 A JP-A-2005-97589

本発明の目的は、製造工程が簡略化され、大面積化が実現できるとともに、高い発光効率および高い耐久性が得られる有機EL素子を提供することにある。   An object of the present invention is to provide an organic EL device that simplifies the manufacturing process, achieves a large area, and provides high luminous efficiency and high durability.

本発明者らは、上記課題を解決すべく鋭意研究した結果、
燐光発光性化合物と、特定のトリフェニルアミン誘導体から導かれる構造単位および特定のヘテロ環誘導体から導かれる構造単位を含む高分子化合物とを用いることにより、上記課題が解決されることを見出し、本発明を完成するに至った。
As a result of earnest research to solve the above problems, the present inventors,
It has been found that the above problems can be solved by using a phosphorescent compound and a polymer compound containing a structural unit derived from a specific triphenylamine derivative and a structural unit derived from a specific heterocyclic derivative. The invention has been completed.

すなわち、本発明は以下のとおりに要約される。
[1] 陽極と陰極とに挟まれた1層または2層以上の有機層を含む有機エレクトロルミネッセンス素子において、
上記有機層の少なくとも1層に、燐光発光性化合物と高分子化合物とを含み、
上記高分子化合物が、下記式(1)で表される単量体から導かれる構造単位と、2つ以上のヘテロ原子を含有するヘテロ環を有する単量体から導かれる構造単位とを含むことを特徴とする有機エレクトロルミネッセンス素子。
That is, the present invention is summarized as follows.
[1] In an organic electroluminescence device including one or more organic layers sandwiched between an anode and a cathode,
At least one of the organic layers includes a phosphorescent compound and a polymer compound,
The polymer compound includes a structural unit derived from a monomer represented by the following formula (1) and a structural unit derived from a monomer having a heterocycle containing two or more heteroatoms. An organic electroluminescence device characterized by the above.

Figure 0005014705
Figure 0005014705

(式中、R1〜R27は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、アミノ基
、炭素数1〜10のアルキル基、または炭素数1〜10のアルコキシ基を表し、R1〜R4、R5〜R9、R10〜R14、およびR15〜R19の、それぞれにおいて、ベンゼン環上に隣接する炭素原子に結合している2つの基は、互いに結合して縮合環を形成してもよい。X1
は、単結合、酸素原子(−O−)、硫黄原子(−S−)、−SO−、−SO2−、−NR
−(Rは、水素原子、炭素数1〜4のアルキル基、またはフェニル基を表す。)、−CO−、または炭素数1〜20の2価の有機基(該有機基は、酸素原子(−O−)、硫黄原子(−S−)、−SO−、−SO2−、−NR−(Rは、水素原子、炭素数1〜4のアルキ
ル基、またはフェニル基を表す。)および−CO−からなる群から選択される原子もしくは基によって置換されていてもよい。)を表し、Y1は、重合性官能基を表す。pは、0
または1を示す。)
[2]上記ヘテロ環を有する単量体が、オキサジアゾール誘導体またはトリアゾール誘導体であることを特徴とする上記[1]に記載の有機エレクトロルミネッセンス素子。
(Wherein R 1 to R 27 each independently represents a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, R 1 In each of ˜R 4 , R 5 ˜R 9 , R 10 ˜R 14 , and R 15 ˜R 19 , two groups bonded to adjacent carbon atoms on the benzene ring are bonded to each other and condensed. A ring may be formed X 1
Is a single bond, an oxygen atom (—O—), a sulfur atom (—S—), —SO—, —SO 2 —, —NR
-(R represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group), -CO-, or a divalent organic group having 1 to 20 carbon atoms (the organic group is an oxygen atom ( -O-), a sulfur atom (-S -), - SO - , - SO 2 -, -. NR- (R is a hydrogen atom, an alkyl group or a phenyl group, 1 to 4 carbon atoms) and - Y 1 represents a polymerizable functional group, which may be substituted with an atom or group selected from the group consisting of CO—. p is 0
Or 1 is shown. )
[2] The organic electroluminescence device as described in [1] above, wherein the monomer having a heterocycle is an oxadiazole derivative or a triazole derivative.

[3]上記ヘテロ環を有する単量体が、下記式(2)〜(5)で表される単量体からなる群から選択されることを特徴とする上記[2]に記載の有機エレクトロルミネッセンス素子。   [3] The organic electro according to [2], wherein the monomer having a heterocycle is selected from the group consisting of monomers represented by the following formulas (2) to (5): Luminescence element.

Figure 0005014705
Figure 0005014705

(式(2)〜(5)中、R28〜R71は、それぞれ、上記式(1)中のR1と同義であり、
28〜R31、R32〜R36、R37〜R40、R42〜R44、R45〜R49、R50〜R54、R58〜R62、R63〜R66、およびR67〜R71の、それぞれにおいて、ベンゼン環上に隣接する炭素原子に結合している2つの基は、互いに結合して縮合環を形成してもよく、X2〜X5は、それぞれ、上記式(1)中のX1と同義であり、Y2〜Y5は、それぞれ、上記式(1)中
のY1と同義である。上記式(5)中、Arは、フェニル基またはナフチル基を表す。)
[4]前記燐光発光性化合物が、イリジウム錯体であることを特徴とする上記[1]〜[3]のいずれかに記載の有機エレクトロルミネッセンス素子。
(In the formulas (2) to (5), R 28 to R 71 are respectively synonymous with R 1 in the above formula (1).
R 28 ~R 31, R 32 ~R 36, R 37 ~R 40, R 42 ~R 44, R 45 ~R 49, R 50 ~R 54, R 58 ~R 62, R 63 ~R 66, and R In each of 67 to R 71 , two groups bonded to adjacent carbon atoms on the benzene ring may be bonded to each other to form a condensed ring, and X 2 to X 5 are has the same meaning as X 1 in the formula (1), Y 2 to Y 5 are each the same meaning as Y 1 in the formula (1). In said formula (5), Ar represents a phenyl group or a naphthyl group. )
[4] The organic electroluminescent element according to any one of [1] to [3], wherein the phosphorescent compound is an iridium complex.

[5]上記[1]〜[4]のいずれかに記載の有機EL素子を用いた画像表示装置。
[6]上記[1]〜[4]のいずれかに記載の有機EL素子を用いた面発光光源。
[5] An image display device using the organic EL element according to any one of [1] to [4].
[6] A surface-emitting light source using the organic EL device according to any one of [1] to [4].

本発明によれば、製造工程が簡略化され、大面積化が実現できるとともに、高い発光効率および高い耐久性が得られる有機EL素子を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, while a manufacturing process is simplified and a large area can be implement | achieved, the organic EL element which can obtain high luminous efficiency and high durability can be provided.

以下、本発明について具体的に説明する。
本発明に係る有機EL素子は、陽極と陰極とに挟まれた1層または2層以上の有機層を含み、該有機層の少なくとも1層に、燐光発光性化合物と特定の高分子化合物とを含む。
Hereinafter, the present invention will be specifically described.
The organic EL device according to the present invention includes one or more organic layers sandwiched between an anode and a cathode, and at least one of the organic layers contains a phosphorescent compound and a specific polymer compound. Including.

1.高分子化合物
本発明に用いられる高分子化合物は、上記式(1)で表される単量体と、特定のヘテロ
環を有する単量体とを共重合して得られる。なお、上記高分子化合物の重合においては、1種または2種以上の上記式(1)で表される単量体と、1種または2種以上の上記ヘテロ環を有する単量体とを組み合わせて用いてもよい。
1. Polymer Compound The polymer compound used in the present invention is obtained by copolymerizing the monomer represented by the above formula (1) and a monomer having a specific heterocycle. In the polymerization of the polymer compound, one or more monomers represented by the formula (1) are combined with one or more monomers having the heterocycle. May be used.

上記式(1)で表される単量体は、ホール輸送性化合物であり、上記ヘテロ環を有する単量体は、電子輸送性化合物であるため、本発明に用いられる高分子化合物は、ホール輸送性部位と電子輸送性部位とを有する。このため、本発明に係る有機EL素子においては、上記高分子化合物と同一の有機層に含まれる燐光発光性化合物上で、ホールと電子とが効率よく再結合し、高い発光効率が得られる。   Since the monomer represented by the above formula (1) is a hole transporting compound, and the monomer having a heterocycle is an electron transporting compound, the polymer compound used in the present invention is a hole transporting compound. It has a transporting site and an electron transporting site. For this reason, in the organic EL device according to the present invention, holes and electrons are efficiently recombined on the phosphorescent compound contained in the same organic layer as the polymer compound, and high luminous efficiency is obtained.

上記式(1)で表される単量体は、トリフェニルアミン誘導体であり、この単量体から導かれる構造単位を含む高分子化合物を用いれば、燐光発光性化合物とともに有機層を形成したときに、高い発光効率および高い耐久性が得られる。   The monomer represented by the above formula (1) is a triphenylamine derivative. When a polymer compound containing a structural unit derived from this monomer is used, an organic layer is formed together with a phosphorescent compound. In addition, high luminous efficiency and high durability can be obtained.

上記式(1)中、R1〜R27は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基
、アミノ基、炭素数1〜10のアルキル基、または炭素数1〜10のアルコキシ基を表す。
In formula (1), R 1 to R 27 each independently represent a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms. .

上記ハロゲン原子としては、フッ素、塩素、臭素、およびヨウ素が挙げられる。
上記炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ターシャリーブチル基、アミル基、ヘキシル基などが挙げられる。
Examples of the halogen atom include fluorine, chlorine, bromine, and iodine.
Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tertiary butyl group, an amyl group, and a hexyl group.

上記炭素数1〜10のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロプキシ基、イソプロポキシ基、イソブトキシ基、およびターシャルブトキシ基などが挙げられる。   Examples of the alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an isobutoxy group, and a tertiary butoxy group.

これらのうちで、R1〜R27は、それぞれ独立に、水素原子、フッ素原子、炭素数1〜
8の直鎖アルキル基であることが好ましい。
1〜R4において、ベンゼン環上に隣接する炭素原子に結合している2つの基は、互いに結合して縮合環を形成してもよい。R5〜R9、R10〜R14、およびR15〜R19の、それぞれにおいても、R1〜R4と同様である。これらのうちで、R10とR11とで、R8とR9とで、互いに結合して縮合環を形成している単量体が好ましい。
Among these, R < 1 > -R < 27 > is respectively independently a hydrogen atom, a fluorine atom, C1-C1.
8 linear alkyl groups are preferred.
In R 1 to R 4 , two groups bonded to adjacent carbon atoms on the benzene ring may be bonded to each other to form a condensed ring. R 5 to R 9 , R 10 to R 14 , and R 15 to R 19 are the same as R 1 to R 4 . Of these, monomers in which R 10 and R 11 and R 8 and R 9 are bonded to each other to form a condensed ring are preferable.

1は、連結基であり、単結合、酸素原子(−O−)、硫黄原子(−S−)、−SO−
、−SO2−、−NR−(Rは、水素原子、炭素数1〜4のアルキル基、またはフェニル
基を表す。)、−CO−、または炭素数1〜20の2価の有機基(該有機基は、酸素原子(−O−)、硫黄原子(−S−)、−SO−、−SO2−、−NR−(Rは、水素原子、
炭素数1〜4のアルキル基、またはフェニル基を表す。)および−CO−からなる群から選択される原子もしくは基によって置換されていてもよい。)を表す。酸素原子(−O−)は、1つまたは2つ以上含まれていてもよく、硫黄原子(−S−)、−SO−、−SO2−、−NR−、−CO−についても同様である。また、酸素原子(−O−)、硫黄原子
(−S−)、−SO−、−SO2−、−NR−および−CO−からなる群から選択される
原子もしくは基を、2種以上含んでいてもよい。
X 1 is a linking group, and is a single bond, an oxygen atom (—O—), a sulfur atom (—S—), —SO—.
, —SO 2 —, —NR— (R represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group), —CO—, or a divalent organic group having 1 to 20 carbon atoms ( The organic group includes an oxygen atom (—O—), a sulfur atom (—S—), —SO—, —SO 2 —, —NR— (R represents a hydrogen atom,
An alkyl group having 1 to 4 carbon atoms or a phenyl group is represented. And an atom or group selected from the group consisting of —CO—. ). One or two or more oxygen atoms (—O—) may be contained, and the same applies to sulfur atoms (—S—), —SO—, —SO 2 —, —NR—, and —CO—. is there. In addition, it contains two or more atoms or groups selected from the group consisting of oxygen atom (—O—), sulfur atom (—S—), —SO—, —SO 2 —, —NR— and —CO—. You may go out.

これらのうちで、X1は、単結合、酸素原子(−O−)、下記式(S1)〜(S3)で
表される連結基であることが好ましい。下記式(S1)中、nは、0〜5の整数を示す。
Among these, X 1 is preferably a single bond, an oxygen atom (—O—), or a linking group represented by the following formulas (S1) to (S3). In the following formula (S1), n represents an integer of 0 to 5.

Figure 0005014705
Figure 0005014705

また、X1は、フェニル基に結合している窒素原子Nに対して、パラ位に結合している
ことが好ましい。
1は、重合性官能基を表し、該官能基は、ラジカル重合性、カチオン重合性、アニオ
ン重合性、付加重合性、および縮合重合性の官能基のいずれであってもよい。これらのうちで、ラジカル重合性の官能基は、共重合体の製造が容易であるため好ましい。
X 1 is preferably bonded to the para position with respect to the nitrogen atom N bonded to the phenyl group.
Y 1 represents a polymerizable functional group, and the functional group may be any of radical polymerizable, cationic polymerizable, anionic polymerizable, addition polymerizable, and condensation polymerizable functional groups. Of these, the radical polymerizable functional group is preferable because the copolymer can be easily produced.

1としては、例えば、アリル基、アルケニル基、アクリレート基、メタクリレート基
、メタクリロイルオキシエチルカルバメート基等のウレタン(メタ)アクリレート基、ビニルアミド基およびそれらの誘導体などを挙げることができる。これらのうちで、アルケニル基が好ましい。
Examples of Y 1 include urethane (meth) acrylate groups such as allyl group, alkenyl group, acrylate group, methacrylate group, methacryloyloxyethyl carbamate group, vinylamide group, and derivatives thereof. Of these, alkenyl groups are preferred.

1およびY1で形成される部分構造としては、具体的には、下記式(A1)〜(A12)で表される部分構造であることが好ましい。これらのうちで、下記式(A1)、(A5)、(A8)、(A12)で表される部分構造は、官能基が容易に導入できるためさらに好ましい。 Specifically, the partial structure formed by X 1 and Y 1 is preferably a partial structure represented by the following formulas (A1) to (A12). Among these, the partial structures represented by the following formulas (A1), (A5), (A8), and (A12) are more preferable because functional groups can be easily introduced.

Figure 0005014705
Figure 0005014705

pは、0または1を示す。
上記式(1)で表される単量体としては、高分子化合物中でのキャリア移動度の観点から、具体的には、下記式(B1)〜(B6)で表される単量体が好適に用いられ、下記式(B1)、(B2)、(B5)で表される単量体がより好適に用いられる。
p represents 0 or 1.
Specific examples of the monomer represented by the above formula (1) include monomers represented by the following formulas (B1) to (B6) from the viewpoint of carrier mobility in the polymer compound. The monomers represented by the following formulas (B1), (B2), and (B5) are more preferably used.

Figure 0005014705
Figure 0005014705

本発明に用いられるヘテロ環を有する単量体において、該ヘテロ環は、2つ以上のヘテロ原子を含む。上記単量体は、このようなヘテロ環を1つまたは2つ以上含んでいてもよい。上記単量体から導かれる構造単位を含む高分子化合物は、燐光発光性化合物とともに有機層を形成したときに、高い発光効率および高い耐久性が得られる。   In the monomer having a heterocycle used in the present invention, the heterocycle contains two or more heteroatoms. The monomer may contain one or more such heterocycles. A polymer compound containing a structural unit derived from the monomer can have high luminous efficiency and high durability when an organic layer is formed together with a phosphorescent compound.

上記ヘテロ環としては、例えば、イミダゾール、ピラゾール、ピリダジン、ピリミジン、ピラジン、オキサジゾール、チアゾール、イソオキサゾール、イソチアゾール、トリアゾール、テトラゾール、オキサジアゾール、チアジアゾール、およびそれらの縮合環などが挙げられる。これらのうちで、オキサジアゾール、トリアゾールが好ましい。すなわち、上記ヘテロ環を有する単量体としては、オキサジアゾール誘導体およびトリアゾール誘導体が好ましい。   Examples of the heterocycle include imidazole, pyrazole, pyridazine, pyrimidine, pyrazine, oxadiazole, thiazole, isoxazole, isothiazole, triazole, tetrazole, oxadiazole, thiadiazole, and condensed rings thereof. Of these, oxadiazole and triazole are preferable. That is, as the monomer having a heterocycle, an oxadiazole derivative and a triazole derivative are preferable.

上記ヘテロ環を有する単量体としては、上記式(2)〜(5)で表される単量体がより好ましい。
上記式(2)〜(5)において、R28〜R71は、それぞれ、前記式(1)中のR1と同
義である。これらのうちで、R28〜R71は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜8の直鎖アルキル基、ターシャリーブチル基であることが好ましい。上記式(2)においては、R34は、ターシャリーブチル基であることがより好ましく、上記式(3)においては、R47は、ターシャリーブチル基であることがより好ましい。
As the monomer having a heterocyclic ring, monomers represented by the above formulas (2) to (5) are more preferable.
In said formula (2)-(5), R < 28 > -R < 71 > is synonymous with R < 1 > in said Formula (1), respectively. Among these, R 28 to R 71 are preferably each independently a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 8 carbon atoms, or a tertiary butyl group. In the above formula (2), R 34 is more preferably a tertiary butyl group, and in the above formula (3), R 47 is more preferably a tertiary butyl group.

28〜R31において、ベンゼン環上に隣接する炭素原子に結合している2つの基は、互いに結合して縮合環を形成してもよく、R32〜R36、R37〜R40、R42〜R44、R45〜R49、R50〜R54、R58〜R62、R63〜R66、およびR67〜R71の、それぞれにおいても、R28〜R31と同様である。上記式(2)においては、R28とR29とで、R32とR33とで、互いに結合して縮合環を形成している単量体が好ましい。 In R 28 to R 31 , two groups bonded to adjacent carbon atoms on the benzene ring may be bonded to each other to form a condensed ring, and R 32 to R 36 , R 37 to R 40 , R 42 to R 44 , R 45 to R 49 , R 50 to R 54 , R 58 to R 62 , R 63 to R 66 , and R 67 to R 71 are the same as R 28 to R 31 . is there. In the above formula (2), a monomer in which R 28 and R 29 and R 32 and R 33 are bonded to each other to form a condensed ring is preferable.

上記式(5)において、Arは、フェニル基またはナフチル基を表す。
2は、上記式(1)中のX1と同義であり、好ましい範囲も同じである。X3〜X5についても、それぞれ、X2と同様である。
In the above formula (5), Ar represents a phenyl group or a naphthyl group.
X 2 has the same meaning as X 1 in formula (1), and the preferred range is also the same. X 3 to X 5 are also the same as X 2 .

2は、上記式(1)中のY1と同義であり、好ましい範囲も同じである。Y3〜Y5についても、それぞれ、Y2と同様である。
2とY2とで、X3とY3とで、X4とY4とで、およびX5とY5とで形成される部分構造としては、具体的には、それぞれ、上記式(A1)〜(A12)で表される部分構造であることが好ましい。これらのうちで、上記式(A1)、(A5)、(A8)、(A12)で表される部分構造は、ヘテロ環を有する単量体に官能基が容易に導入できるためさらに好ましい。
Y 2 has the same meaning as Y 1 in the above formula (1), and the preferred range is also the same. Y 3 to Y 5 are also the same as Y 2 .
Specific examples of the partial structure formed by X 2 and Y 2 , X 3 and Y 3 , X 4 and Y 4 , and X 5 and Y 5 include the above formulas ( A partial structure represented by A1) to (A12) is preferable. Among these, the partial structures represented by the above formulas (A1), (A5), (A8), and (A12) are more preferable because a functional group can be easily introduced into a monomer having a heterocycle.

上記ヘテロ環を有する単量体としては、高分子化合物中でのキャリア移動度の観点から、具体的には、下記式(C1)〜(C4)で表される単量体が好適に用いられ、下記式(C1)〜(C3)で表される単量体がより好適に用いられる。   As the monomer having a heterocyclic ring, from the viewpoint of carrier mobility in the polymer compound, specifically, monomers represented by the following formulas (C1) to (C4) are preferably used. The monomers represented by the following formulas (C1) to (C3) are more preferably used.

Figure 0005014705
Figure 0005014705

本発明に用いられる高分子化合物としては、具体的には、上記式(B2)および上記式(C1)から導かれる構造単位を含む高分子化合物、上記式(B5)および上記式(C2)から導かれる構造単位を含む高分子化合物、ならびに上記式(B1)および上記式(C3)から導かれる構造単位を含む高分子化合物が好適に用いられる。これらの高分子化合物を用いると、燐光発光性化合物上で、ホールと電子とがより効率よく再結合し、より高い発光効率が得られる。また、燐光発光性化合物とともに、均一な分布の有機層を形成でき、耐久性に優れた有機EL素子が得られる。   Specifically, the polymer compound used in the present invention includes a polymer compound containing a structural unit derived from the above formula (B2) and the above formula (C1), the above formula (B5) and the above formula (C2). A polymer compound containing a structural unit derived and a polymer compound containing a structural unit derived from the above formulas (B1) and (C3) are preferably used. When these polymer compounds are used, holes and electrons recombine more efficiently on the phosphorescent compound, and higher luminous efficiency can be obtained. In addition, an organic layer having a uniform distribution can be formed together with the phosphorescent compound, and an organic EL element having excellent durability can be obtained.

なお、上記高分子化合物は、本願の目的に反しない範囲で、さらに、他の重合性化合物から導かれる構造単位を含んでいてもよい。このような重合性化合物としては、例えば、アクリル酸メチル、メタクリル酸メチル等の(メタ)アクリル酸アルキルエステル、スチレンおよびその誘導体などのキャリア輸送性を有しない化合物が挙げられるが、何らこれらに限定されるものではない。   The polymer compound may further contain a structural unit derived from another polymerizable compound as long as it does not contradict the purpose of the present application. Examples of such polymerizable compounds include (meth) acrylic acid alkyl esters such as methyl acrylate and methyl methacrylate, and compounds having no carrier transport properties such as styrene and derivatives thereof, but are not limited thereto. Is not to be done.

また、本発明に用いられる高分子化合物の重量平均分子量は、1,000〜2,000,000であることが好ましく、5,000〜1,000,000であることがより好ましい。本明細書における分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法を用いて測定されるポリスチレン換算分子量をいう。上記分子量がこの範囲にあると、重合体が有機溶媒に可溶であり、均一な薄膜を得られるため好ましい。   In addition, the weight average molecular weight of the polymer compound used in the present invention is preferably 1,000 to 2,000,000, and more preferably 5,000 to 1,000,000. The molecular weight in this specification means the polystyrene conversion molecular weight measured using GPC (gel permeation chromatography) method. It is preferable for the molecular weight to be in this range since the polymer is soluble in an organic solvent and a uniform thin film can be obtained.

上記高分子化合物は、ランダム共重合体、ブロック共重合体、および交互共重合体のいずれでもよい。
上記高分子化合物中、上記式(1)で表される単量体から導かれる構造単位の含有量は、好ましくは5〜95mol%、より好ましくは20〜80mol%であり、上記へテロ環を有する単量体から導かれる構造単位の含有量は、好ましくは5〜95mol%、より好ましくは20〜80mol%である(ここで、上記式(1)で表される単量体から導かれる構造単位の含有量および上記へテロ環を有する単量体から導かれる構造単位の含有量の合計は100mol%である。)。
The polymer compound may be a random copolymer, a block copolymer, or an alternating copolymer.
In the polymer compound, the content of the structural unit derived from the monomer represented by the formula (1) is preferably 5 to 95 mol%, more preferably 20 to 80 mol%. The content of the structural unit derived from the monomer having is preferably 5 to 95 mol%, more preferably 20 to 80 mol% (wherein the structure derived from the monomer represented by the formula (1) above) The total of the content of the unit and the content of the structural unit derived from the monomer having a hetero ring is 100 mol%.)

上記高分子化合物の重合方法は、ラジカル重合、カチオン重合、アニオン重合、および付加重合のいずれでもよいが、ラジカル重合が好ましい。上記高分子化合物を、構造単位の含有量が上記範囲に入るように、上記単量体を用いて重合することが望ましい。   The polymer compound may be polymerized by radical polymerization, cationic polymerization, anionic polymerization, or addition polymerization, but radical polymerization is preferred. It is desirable to polymerize the polymer compound using the monomer so that the content of the structural unit falls within the above range.

2.燐光発光性化合物
本発明に用いる燐光発光性化合物は、室温で燐光を発光する低分子化合物であれば、特に制限されない。なお、本発明において、上記燐光発光性化合物は、1種単独で、または2種以上を組み合わせて用いてもよい。
2. Phosphorescent compound The phosphorescent compound used in the present invention is not particularly limited as long as it is a low-molecular compound that emits phosphorescence at room temperature. In the present invention, the phosphorescent compounds may be used alone or in combination of two or more.

本発明に係る有機EL素子に用いる、燐光発光性化合物と高分子化合物とを含む有機層においては、上記燐光発光性化合物が、高分子化合物で形成されるマトリックス中に分散した状態で含まれている。このため、通常は利用が困難な発光、すなわち燐光発光性化合物の三重項励起状態を経由する発光が得られる。したがって、上記有機層を用いる場合は、高い発光効率が得られる。   In the organic layer containing the phosphorescent compound and the polymer compound used for the organic EL device according to the present invention, the phosphorescent compound is contained in a state dispersed in a matrix formed of the polymer compound. Yes. For this reason, it is possible to obtain light emission that is usually difficult to use, that is, light emission via the triplet excited state of the phosphorescent compound. Therefore, when using the organic layer, high luminous efficiency can be obtained.

上記燐光発光性化合物としては、遷移金属錯体が好ましく用いられる。この遷移金属錯体に用いられる遷移金属とは、周期律表の第一遷移元素系列すなわち原子番号21のScから30のZnまで、第二遷移元素系列すなわち原子番号39のYから48のCdまで、第三遷移元素系列すなわち原子番号72のHfから80のHgまでのいずれかの金属原子である。これらうちで、上記遷移金属錯体としては、パラジウム錯体、オスミウム錯体、イリジウム錯体、プラチナ錯体、および金錯体が好ましく、イリジウム錯体およびプラチナ錯体がより好ましく、イリジウム錯体が最も好ましい。   As the phosphorescent compound, a transition metal complex is preferably used. The transition metal used in this transition metal complex is the first transition element series of the periodic table, that is, Sc of atomic number 21 to Zn of 30, the second transition element series, that is, Y of atomic number 39 to Cd of 48, The third transition element series, that is, any metal atom from Hf of atomic number 72 to Hg of 80. Among these, as the transition metal complex, a palladium complex, an osmium complex, an iridium complex, a platinum complex, and a gold complex are preferable, an iridium complex and a platinum complex are more preferable, and an iridium complex is most preferable.

上記イリジウム錯体としては、具体的には、高い発光効率と共に、長寿命の有機EL素子が得られるため、下記式(E−1)〜(E−34)で表される錯体が好ましく、下記式(E−1)、(E−2)、(E−17)、(E−32)〜(E−34)で表される錯体がより好ましい。   As the iridium complex, specifically, a complex represented by the following formulas (E-1) to (E-34) is preferable because a long-life organic EL device is obtained with high luminous efficiency. Complexes represented by (E-1), (E-2), (E-17), and (E-32) to (E-34) are more preferable.

Figure 0005014705
Figure 0005014705

Figure 0005014705
Figure 0005014705

Figure 0005014705
Figure 0005014705

Figure 0005014705
Figure 0005014705

上記式(E−1)〜(E−34)で表されるイリジウム錯体は、公知の方法によって得られる。
3.有機EL素子
<燐光発光性化合物と高分子化合物とを含む有機層>
本発明に係る有機EL素子は、陽極と陰極とに挟まれた1層または2層以上の有機層を含み、該有機層の少なくとも1層に、上記燐光発光性化合物と上記高分子化合物とを含む。
The iridium complexes represented by the above formulas (E-1) to (E-34) are obtained by a known method.
3. Organic EL device <organic layer containing phosphorescent compound and polymer compound>
The organic EL device according to the present invention includes one or more organic layers sandwiched between an anode and a cathode, and the phosphorescent compound and the polymer compound are contained in at least one of the organic layers. Including.

本発明に係る有機EL素子の構成の一例を図1に示すが、本発明に係る有機EL素子の構成は、これに限定されない。図1では、透明基板(1)上に設けた陽極(2)および陰極(6)の間に、ホール輸送層(3)、発光層(4)および電子輸送層(5)を、この順で設けている。上記有機EL素子では、例えば、陽極(2)と陰極(6)の間に、1)ホール輸送層/発光層、2)発光層/電子輸送層、3)発光層のみのいずれかを設けてもよい。また、発光層を2層以上積層してもよい。   An example of the configuration of the organic EL element according to the present invention is shown in FIG. 1, but the configuration of the organic EL element according to the present invention is not limited to this. In FIG. 1, a hole transport layer (3), a light emitting layer (4) and an electron transport layer (5) are arranged in this order between an anode (2) and a cathode (6) provided on a transparent substrate (1). Provided. In the organic EL element, for example, between the anode (2) and the cathode (6), either 1) a hole transport layer / light emitting layer, 2) a light emitting layer / electron transport layer, or 3) only a light emitting layer is provided. Also good. Two or more light emitting layers may be stacked.

上記において、上記燐光発光性化合物と上記高分子化合物とを含む有機層は、ホール輸送性および電子輸送性を併せ持つ発光層として利用できる。このため、他の有機材料からなる層を設けなくても、高い発光効率を有する有機EL素子を作成できる利点がある。   In the above, the organic layer containing the phosphorescent compound and the polymer compound can be used as a light emitting layer having both hole transport properties and electron transport properties. For this reason, even if it does not provide the layer which consists of another organic material, there exists an advantage which can produce the organic EL element which has high luminous efficiency.

上記有機層に含まれる化合物の組み合わせとしては、具体的には、上記式(B2)および上記式(C1)から導かれる構造単位を含む高分子化合物と、上記式(E−2)で表されるイリジウム錯体との組み合わせ、上記式(B5)および上記式(C2)から導かれる構造単位を含む高分子化合物と、上記式(E−33)で表されるイリジウム錯体との組み合わせ、上記式(B1)および上記式(C3)から導かれる構造単位を含む高分子化合物と、上記式(E−17)で表されるイリジウム錯体との組み合わせ、ならびに上記式(B1)および上記式(C3)から導かれる構造単位を含む高分子化合物と、上記式(E−34)で表されるイリジウム錯体との組み合わせが特に好ましい。これらの組み合わせによって、より均一な分布の有機層が得られ、優れた耐久性とともに、より高い発光効率を示す素子が得られる。   As a combination of the compounds contained in the organic layer, specifically, a polymer compound containing a structural unit derived from the above formula (B2) and the above formula (C1) and the above formula (E-2) are used. A combination of a polymer compound containing a structural unit derived from the above formula (B5) and the above formula (C2) and an iridium complex represented by the above formula (E-33), A combination of a polymer compound containing a structural unit derived from B1) and the above formula (C3) and an iridium complex represented by the above formula (E-17), and from the above formula (B1) and the above formula (C3) A combination of the polymer compound containing the derived structural unit and the iridium complex represented by the above formula (E-34) is particularly preferable. By combining these, an organic layer having a more uniform distribution can be obtained, and an element exhibiting higher luminous efficiency as well as excellent durability can be obtained.

上記燐光発光性化合物と上記高分子化合物とを含む有機層は、上記高分子化合物100重量部に対して、上記燐光発光性化合物を好ましくは0.1〜50重量部、より好ましくは1〜20重量部含むことが望ましい。   The organic layer containing the phosphorescent compound and the polymer compound is preferably 0.1 to 50 parts by weight, more preferably 1 to 20 parts by weight of the phosphorescent compound with respect to 100 parts by weight of the polymer compound. It is desirable to include parts by weight.

上記有機層の製造方法としては、特に限定されないが、例えば、以下のように製造することができる。まず、上記燐光発光性化合物と上記高分子化合物とを溶解した溶液を調製する。なお、上記溶液を、上記燐光発光性化合物の含有量が上記範囲となるように、上記燐光発光性化合物および上記高分子化合物を用いて調製することが好ましい。上記溶液の調製に用いる溶媒としては、特に限定されないが、例えば、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン、アニソール等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒などが用いられる。次いで、このように調製した溶液を、インクジェット法、スピンコート法、ディップコート法または印刷法などを用いて基板上に成膜する。上記溶液中、上記燐光発光性化合物および上記高分子化合物の濃度の合計は、用いる化合物および成膜条件などに依存するが、例えば、スピンコート法やディップコート法の場合には、0.1〜10wt%であることが好ましい。このように、上記有機層は簡便に成膜されるため、製造工程の簡略化が実現できるとともに、素子の大面積化が図れる。
<その他の材料>
上記の各層は、バインダとして高分子材料を混合して、形成されていてもよい。上記高分子材料としては、例えば、ポリメチルメタクリレート、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイドなどが挙げられる。
Although it does not specifically limit as a manufacturing method of the said organic layer, For example, it can manufacture as follows. First, a solution in which the phosphorescent compound and the polymer compound are dissolved is prepared. The solution is preferably prepared using the phosphorescent compound and the polymer compound so that the content of the phosphorescent compound is in the above range. The solvent used for the preparation of the solution is not particularly limited. For example, a chlorine solvent such as chloroform, methylene chloride, dichloroethane, an ether solvent such as tetrahydrofuran and anisole, an aromatic hydrocarbon solvent such as toluene and xylene, Ketone solvents such as acetone and methyl ethyl ketone, and ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate are used. Next, the solution prepared in this manner is formed on a substrate using an inkjet method, a spin coating method, a dip coating method, a printing method, or the like. The total concentration of the phosphorescent compound and the polymer compound in the solution depends on the compound used and the film formation conditions. For example, in the case of a spin coating method or a dip coating method, It is preferable that it is 10 wt%. As described above, since the organic layer is easily formed, the manufacturing process can be simplified and the area of the device can be increased.
<Other materials>
Each of the above layers may be formed by mixing a polymer material as a binder. Examples of the polymer material include polymethyl methacrylate, polycarbonate, polyester, polysulfone, and polyphenylene oxide.

また、上記の各層に用いられる材料は、機能の異なる材料、例えば、発光材料、ホール輸送材料、電子輸送材料などを混合して、各層を形成していてもよい。上記燐光発光性化合物と上記高分子化合物とを含む有機層においても、キャリア輸送性を補う目的で、さらに他のホール輸送材料および/または電子輸送材料が含まれていてもよい。このような輸送材料としては、低分子化合物であっても、高分子化合物であってもよい。   In addition, the materials used for each of the layers may be formed by mixing materials having different functions, for example, a light emitting material, a hole transport material, an electron transport material, and the like. The organic layer containing the phosphorescent compound and the polymer compound may further contain other hole transport materials and / or electron transport materials for the purpose of supplementing carrier transport properties. Such a transport material may be a low molecular compound or a high molecular compound.

上記ホール輸送層を形成するホール輸送材料、または発光層中に混合させるホール輸送材料としては、例えば、TPD(N,N’−ジメチル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’ジアミン);α−NPD(4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル);m−MTDATA(4、4’,4’’−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン)等の低分子トリフェニルアミン誘導体;ポリビニルカルバゾール;前記トリフェニルアミン誘導体に重合性置換基を導入して重合した高分子化合物;ポリパラフェニレンビニレン、ポリジアルキルフルオレン等の蛍光発光性高分子化合物などが挙げられる。上記高分子化合物としては、例えば、特開平8−157575号公報に開示されているトリフェニルアミン骨格の高分子化合物などが挙げられる。上記ホール輸送材料は、1種単独でも、2種以上を混合して用いてもよく、異なるホール輸送材料を積層して用いてもよい。ホール輸送層の厚さは、ホール輸送層の導電率などに依存するため、一概に限定できないが、好ましくは1nm〜5μm、より好ましくは5nm〜1μm、特に好ましくは10nm〜500nmであることが望ましい。   As the hole transport material for forming the hole transport layer or the hole transport material mixed in the light emitting layer, for example, TPD (N, N′-dimethyl-N, N ′-(3-methylphenyl) -1,1 '-Biphenyl-4,4'diamine); α-NPD (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl); m-MTDATA (4,4', 4 '' -Low molecular triphenylamine derivatives such as tris (3-methylphenylphenylamino) triphenylamine); polyvinylcarbazole; a polymer compound obtained by polymerizing by introducing a polymerizable substituent into the triphenylamine derivative; polyparaphenylene vinylene And fluorescent light-emitting polymer compounds such as polydialkylfluorene. Examples of the polymer compound include a polymer compound having a triphenylamine skeleton disclosed in JP-A-8-157575. The hole transport materials may be used singly or in combination of two or more, or different hole transport materials may be laminated and used. The thickness of the hole transport layer depends on the conductivity of the hole transport layer and cannot be generally limited, but is preferably 1 nm to 5 μm, more preferably 5 nm to 1 μm, and particularly preferably 10 nm to 500 nm. .

上記電子輸送層を形成する電子輸送材料、または発光層中に混合させる電子輸送材料としては、例えば、Alq3(アルミニウムトリスキノリノレート)等のキノリノール誘導体金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、トリアジン誘導体、トリアリールボラン誘導体等の低分子化合物;上記の低分子化合物に重合性置換基を導入して重合した高分子化合物などが挙げられる。上記高分子化合物としては、例えば、特開平10−1665号公報に開示されているポリPBDなどが挙げられる。上記電子輸送材料は、1種単独でも、2種以上を混合して用いてもよく、異なる電子輸送材料を積層して用いてもよい。電子輸送層の厚さは、電子輸送層の導電率などに依存するため、一概に限定できないが、好ましくは1nm〜5μm、より好ましくは5nm〜1μm、特に好ましくは10nm〜500nmであることが望ましい。   Examples of the electron transport material for forming the electron transport layer or the electron transport material mixed in the light emitting layer include quinolinol derivative metal complexes such as Alq3 (aluminum trisquinolinolate), oxadiazole derivatives, triazole derivatives, imidazole. Low molecular compounds such as derivatives, triazine derivatives, and triarylborane derivatives; high molecular compounds obtained by polymerizing a low molecular compound by introducing a polymerizable substituent. Examples of the polymer compound include poly PBD disclosed in JP-A-10-1665. The electron transport materials may be used singly or in combination of two or more, or different electron transport materials may be laminated and used. The thickness of the electron transport layer depends on the conductivity of the electron transport layer and cannot be generally limited, but is preferably 1 nm to 5 μm, more preferably 5 nm to 1 μm, and particularly preferably 10 nm to 500 nm. .

また、発光層の陰極側に隣接して、ホールが発光層を通過することを抑え、発光層内でホールと電子とを効率よく再結合させる目的で、ホール・ブロック層が設けられていてもよい。上記ホール・ブロック層を形成するために、トリアゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体などの公知の材料が用いられる。   Further, a hole block layer may be provided adjacent to the cathode side of the light emitting layer for the purpose of suppressing holes from passing through the light emitting layer and efficiently recombining holes and electrons in the light emitting layer. Good. In order to form the hole block layer, known materials such as triazole derivatives, oxadiazole derivatives, and phenanthroline derivatives are used.

陽極とホール輸送層との間、または陽極と陽極に隣接して積層される有機層との間に、ホール注入において注入障壁を緩和するために、バッファ層が設けられていてもよい。上記バッファ層を形成するために、銅フタロシアニン、ポリエチレンジオキシチオフェンとポリスチレンスルホン酸との混合物(PEDOT:PSS)などの公知の材料が用いられる。   A buffer layer may be provided between the anode and the hole transport layer or between the anode and the organic layer stacked adjacent to the anode in order to relax the injection barrier in hole injection. In order to form the buffer layer, a known material such as copper phthalocyanine, a mixture of polyethylenedioxythiophene and polystyrenesulfonic acid (PEDOT: PSS) is used.

陰極と電子輸送層との間、または陰極と陰極に隣接して積層される有機層との間に、電子注入効率を向上するために、厚さ0.1〜10nmの絶縁層が設けられていてもよい。上記絶縁層を形成するために、フッ化リチウム、フッ化マグネシウム、酸化マグネシウム、アルミナなどの公知の材料が用いられる。   An insulating layer having a thickness of 0.1 to 10 nm is provided between the cathode and the electron transport layer or between the cathode and the organic layer laminated adjacent to the cathode in order to improve the electron injection efficiency. May be. In order to form the insulating layer, known materials such as lithium fluoride, magnesium fluoride, magnesium oxide, and alumina are used.

上記陽極材料としては、例えば、ITO(酸化インジウムスズ)、酸化錫、酸化亜鉛、ポリチオフェン、ポリピロール、ポリアニリン等の導電性高分子など、公知の透明導電材料が用いられる。この透明導電材料によって形成された電極の表面抵抗は、1〜50Ω/□(オーム/スクエアー)であることが好ましい。陽極の厚さは50〜300nmであることが好ましい。   As the anode material, for example, a known transparent conductive material such as ITO (indium tin oxide), tin oxide, zinc oxide, polythiophene, polypyrrole, polyaniline or other conductive polymer is used. The surface resistance of the electrode formed of the transparent conductive material is preferably 1 to 50Ω / □ (ohm / square). The thickness of the anode is preferably 50 to 300 nm.

上記陰極材料としては、例えば、Li、Na、K、Cs等のアルカリ金属;Mg、Ca
、Ba等のアルカリ土類金属;Al;MgAg合金;AlLi、AlCa等のAlとアルカリ土類金属またはアルカリ金属との合金など、公知の陰極材料が用いられる。陰極の厚さは、好ましくは10nm〜1μm、より好ましくは50〜500nmであることが望ましい。アルカリ金属、アルカリ土類金属などの活性の高い金属を陰極として使用する場合には、陰極の厚さは、好ましくは0.1〜100nm、より好ましくは0.5〜50nmであることが望ましい。また、この場合には、上記陰極金属を保護する目的で、この陰極上に、大気に対して安定な金属層が積層される。上記金属層を形成する金属として、例えば、Al、Ag、Au、Pt、Cu、Ni、Crなどが挙げられる。上記金属層の厚さは、好ましくは10nm〜1μm、より好ましくは50〜500nmであることが望ましい。
Examples of the cathode material include alkali metals such as Li, Na, K, and Cs; Mg, Ca
Al, MgAg alloys; Al and alkaline earth metals or alloys of alkali metals such as AlLi, AlCa and the like, and known cathode materials are used. The thickness of the cathode is preferably 10 nm to 1 μm, more preferably 50 to 500 nm. When a highly active metal such as an alkali metal or alkaline earth metal is used as the cathode, the thickness of the cathode is preferably 0.1 to 100 nm, more preferably 0.5 to 50 nm. In this case, a metal layer that is stable to the atmosphere is laminated on the cathode for the purpose of protecting the cathode metal. Examples of the metal forming the metal layer include Al, Ag, Au, Pt, Cu, Ni, and Cr. The thickness of the metal layer is preferably 10 nm to 1 μm, more preferably 50 to 500 nm.

本発明に係る有機EL素子の基板としては、上記発光材料の発光波長に対して透明な絶縁性基板が使用され、ガラスのほか、PET(ポリエチレンテレフタレート)、ポリカーボネート等の透明プラスチックなどが用いられる。   As the substrate of the organic EL device according to the present invention, an insulating substrate transparent to the emission wavelength of the light emitting material is used, and transparent plastics such as PET (polyethylene terephthalate) and polycarbonate are used in addition to glass.

上記のホール輸送層、発光層および電子輸送層の成膜方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、インクジェット法、スピンコート法、印刷法、スプレー法、ディスペンサー法などが用いられる。低分子化合物の場合は、抵抗加熱蒸着または電子ビーム蒸着が好適に用いられ、高分子材料の場合は、インクジェット法、スピンコート法、または印刷法が好適に用いられる。   Examples of the film formation method of the hole transport layer, the light emitting layer, and the electron transport layer include a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ink jet method, a spin coating method, a printing method, a spray method, and a dispenser method. Is used. In the case of a low molecular compound, resistance heating vapor deposition or electron beam vapor deposition is preferably used, and in the case of a polymer material, an ink jet method, a spin coating method, or a printing method is suitably used.

また、上記陽極材料の成膜方法としては、例えば、電子ビーム蒸着法、スパッタリング法、化学反応法、コーティング法などが用いられ、上記陰極材料の成膜方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などが用いられる。   In addition, as a method for forming the anode material, for example, an electron beam evaporation method, a sputtering method, a chemical reaction method, a coating method, or the like is used. As a method for forming the cathode material, for example, a resistance heating evaporation method, An electron beam evaporation method, a sputtering method, an ion plating method, or the like is used.

4.用途
本発明に係る有機EL素子は、公知の方法で、マトリックス方式またはセグメント方式による画素として画像表示装置に好適に用いられる。また、上記有機EL素子は、画素を形成せずに、面発光光源としても好適に用いられる。
4). Use The organic EL device according to the present invention is suitably used in an image display device as a pixel by a matrix method or a segment method by a known method. The organic EL element is also suitably used as a surface light source without forming pixels.

本発明に係る有機EL素子は、具体的には、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信などに好適に用いられる。   Specifically, the organic EL device according to the present invention includes a display device such as a computer, a television, a mobile terminal, a mobile phone, a car navigation, a viewfinder of a video camera, a backlight, an electrophotography, an illumination light source, a recording light source, and an exposure. It is suitably used for light sources, reading light sources, signs, signboards, interiors, optical communications, and the like.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例]
[合成例1]高分子化合物(I)の合成
密閉容器に、上記式(B2)で表される化合物(特許文献2に記載の方法に従って合成した)500mgおよび上記式(C1)で表される化合物(特開平10−1665号公報に記載の方法に従って合成した)500mgを入れ、脱水トルエン(9.9mL)を加えた。次いで、V−601(和光純薬工業(株)製)のトルエン溶液(0.1M、198μL)を加え、凍結脱気操作を5回繰り返した。真空のまま密閉し、60℃で60時間撹拌した。反応後、反応液をアセトン500mL中に滴下し、沈殿を得た。さらにトルエン−アセトンでの再沈殿精製を2回繰り返した後、50℃で一晩真空乾燥して、高分子化合物(I)を得た。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.
[Example]
[Synthesis Example 1] Synthesis of polymer compound (I) In a sealed container, 500 mg of the compound represented by the above formula (B2) (synthesized according to the method described in Patent Document 2) and the above formula (C1) 500 mg of a compound (synthesized according to the method described in JP-A-10-1665) was added, and dehydrated toluene (9.9 mL) was added. Subsequently, a toluene solution (0.1 M, 198 μL) of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the freeze degassing operation was repeated 5 times. It sealed in vacuum and stirred at 60 ° C. for 60 hours. After the reaction, the reaction solution was dropped into 500 mL of acetone to obtain a precipitate. Further, reprecipitation purification with toluene-acetone was repeated twice, followed by vacuum drying at 50 ° C. overnight to obtain a polymer compound (I).

高分子化合物(I)の重量平均分子量(Mw)は68100、分子量分布指数(Mw/
Mn)1.96であった。13C−NMR測定の結果から見積もった高分子化合物(I)における上記式(B2)で表される化合物から導かれる構造単位の数xと上記式(C1)で表される化合物から導かれる構造単位の数yとの比(X:Y)は40:60であった。
[合成例2]高分子化合物(II)の合成
(2−1)上記式(C2)で表される化合物の合成
The weight average molecular weight (Mw) of the polymer compound (I) is 68100, and the molecular weight distribution index (Mw /
Mn) was 1.96. The number of structural units derived from the compound represented by the above formula (B2) in the polymer compound (I) estimated from the result of 13 C-NMR measurement and the structure derived from the compound represented by the above formula (C1) The ratio (X: Y) with the number y of units was 40:60.
[Synthesis Example 2] Synthesis of polymer compound (II) (2-1) Synthesis of compound represented by formula (C2)

Figure 0005014705
Figure 0005014705

スキーム(1)のように合成した。4−tert−ブチル安息香酸5.0g(28mmol)および4−ビニル安息香酸4.2g(28mmol)に30mLの塩化チオニルを加え、3時間加熱還流した。得られた溶液を減圧乾固し、残渣にN,N−ジメチルホルムアミド(DMF)20mLおよびピリジン4.5g(57mmol)を加えて溶解し、イソフタル酸ジヒドラジド5.4g(28mmol)を加えて室温で5時間撹拌した。反応液を500mLの水中に投入し、生じた沈殿を濾取して乾燥した。得られた固体にオキシ塩化リン15gおよびクロロホルム30mLを加えて3時間加熱還流した。反応液を500mLの飽和炭酸ナトリウム水溶液に投入し、100mLのクロロホルムを加えて、有機層を減圧濃縮した。これにメタノールを加えて−50℃に冷却し、生じた固体を濾取して乾燥した。さらにシリカゲルカラムクロマトグラフィーで精製し、上記式(C2)で表される化合物1.1g(2.5mmol)を得た。   Synthesized as in scheme (1). 30 mL of thionyl chloride was added to 5.0 g (28 mmol) of 4-tert-butylbenzoic acid and 4.2 g (28 mmol) of 4-vinylbenzoic acid, and the mixture was heated to reflux for 3 hours. The obtained solution was dried under reduced pressure, 20 mL of N, N-dimethylformamide (DMF) and 4.5 g (57 mmol) of pyridine were dissolved in the residue, and 5.4 g (28 mmol) of isophthalic acid dihydrazide was added at room temperature. Stir for 5 hours. The reaction solution was poured into 500 mL of water, and the resulting precipitate was collected by filtration and dried. To the obtained solid, 15 g of phosphorus oxychloride and 30 mL of chloroform were added and heated under reflux for 3 hours. The reaction solution was poured into 500 mL of saturated aqueous sodium carbonate solution, 100 mL of chloroform was added, and the organic layer was concentrated under reduced pressure. Methanol was added to this and cooled to −50 ° C., and the resulting solid was collected by filtration and dried. The product was further purified by silica gel column chromatography to obtain 1.1 g (2.5 mmol) of the compound represented by the above formula (C2).

化合物(C2)の同定データは以下の通りである。
元素分析: 計算値(C282442) C,74.98;H,5.39;N,12.49. 測定値 C,75.30;H,5.18;N,12.26.
質量分析(EI): 448(M+).
(2−2)高分子化合物(II)の合成
上記式(B2)で表される化合物および上記式(C1)で表される化合物の代わりに、上記式(B5)で表される化合物(特許文献2に記載の方法に従って合成した)および上記式(C2)で表される化合物を用いたほかは、合成例1と同様にして、高分子化合物(II)を得た。
Identification data of the compound (C2) are as follows.
Calcd (C 28 H 24 N 4 O 2) C, 74.98; H, 5.39; N, 12.49. Measurement C, 75.30; H, 5.18; N, 12.26.
Mass spectrometry (EI): 448 (M + ).
(2-2) Synthesis of polymer compound (II) Instead of the compound represented by the above formula (B2) and the compound represented by the above formula (C1), a compound represented by the above formula (B5) (patent) Polymer compound (II) was obtained in the same manner as in Synthesis Example 1, except that the compound represented by the above formula (C2) and the compound represented by the above formula (C2) were used.

高分子化合物(II)の重量平均分子量(Mw)は100500、分子量分布指数(Mw/Mn)2.33であった。13C−NMR測定の結果から見積もった高分子化合物(II)における上記式(B5)で表される化合物から導かれる構造単位の数xと上記式(C2)で表される化合物から導かれる構造単位の数yとの比(X:Y)は48:52であった。
[合成例3]高分子化合物(III)の合成
(3−1)上記式(C3)で表される化合物の合成
The weight average molecular weight (Mw) of the polymer compound (II) was 100500, and the molecular weight distribution index (Mw / Mn) was 2.33. The number of structural units derived from the compound represented by the above formula (B5) in the polymer compound (II) estimated from the result of 13 C-NMR measurement and the structure derived from the compound represented by the above formula (C2) The ratio (X: Y) to the number y of units was 48:52.
[Synthesis Example 3] Synthesis of Polymer Compound (III) (3-1) Synthesis of Compound Represented by Formula (C3) above

Figure 0005014705
Figure 0005014705

スキーム(2)のように合成した。4−tert−ブチル安息香酸メチル3.5g(18mmol)をエタノール50mLに溶解し、ヒドラジン一水和物2.0g(40mmo
l)を加えて10時間加熱還流した。得られた反応混合物を300mLの水中に投入し、固体を濾取して乾燥した。この固体にピリジン20mLおよび4−ブロモベンゾイルクロライド4.4g(20mmol)を加えて、室温で5時間撹拌した。得られた溶液を300mLの水中に投入し、固体を濾取して乾燥した。この固体にo−ジクロロベンゼン20mL、アニリン1.8g(19mmol)および三塩化リン6.5g(47mmol)を加えて3時間加熱還流した。反応液を300mLの水中に投入してクロロホルムで有機物を抽出した。抽出液を減圧濃縮後、1,2−ジメトキシエタン50mL、4−ビニルフェニルボロン酸3.0g(20mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.23g(0.20mmol)および炭酸ナトリウム6.3g(59mmol)を含む水溶液50mLを加えて、3時間加熱還流した。反応液を室温まで冷却後、有機層を減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製して、上記式(C3)で表される化合物2.8g(6.1mmol)を得た。
Synthesized as in scheme (2). Methyl 4-tert-butylbenzoate (3.5 g, 18 mmol) was dissolved in ethanol (50 mL), and hydrazine monohydrate (2.0 g, 40 mmol) was dissolved.
l) was added and heated to reflux for 10 hours. The obtained reaction mixture was poured into 300 mL of water, and the solid was collected by filtration and dried. To this solid, 20 mL of pyridine and 4.4 g (20 mmol) of 4-bromobenzoyl chloride were added and stirred at room temperature for 5 hours. The resulting solution was poured into 300 mL of water, and the solid was collected by filtration and dried. To this solid, 20 mL of o-dichlorobenzene, 1.8 g (19 mmol) of aniline and 6.5 g (47 mmol) of phosphorus trichloride were added and heated to reflux for 3 hours. The reaction solution was poured into 300 mL of water, and organic substances were extracted with chloroform. After concentration of the extract under reduced pressure, 50 mL of 1,2-dimethoxyethane, 3.0 g (20 mmol) of 4-vinylphenylboronic acid, 0.23 g (0.20 mmol) of tetrakis (triphenylphosphine) palladium and 6.3 g of sodium carbonate ( 59 mL of an aqueous solution containing 59 mmol) was added, and the mixture was heated to reflux for 3 hours. After cooling the reaction solution to room temperature, the organic layer was concentrated under reduced pressure and purified by silica gel column chromatography to obtain 2.8 g (6.1 mmol) of the compound represented by the above formula (C3).

化合物(C3)の同定データは以下の通りである。
元素分析: 計算値(C32293) C,84.36;H,6.42;N,9.22.
測定値 C,84.57;H,6.33;N,9.04.
質量分析(EI): 455(M+).
(3−2)高分子化合物(III)の合成
上記式(B2)で表される化合物および上記式(C1)で表される化合物の代わりに、上記式(B1)で表される化合物(特許文献2に記載の方法に従って合成した)および上記式(C3)で表される化合物を用いたほかは、合成例1と同様にして、高分子化合物(III)を得た。
Identification data of the compound (C3) are as follows.
Calcd (C 32 H 29 N 3) C, 84.36; H, 6.42; N, 9.22.
Measurement C, 84.57; H, 6.33; N, 9.04.
Mass spectrometry (EI): 455 (M + ).
(3-2) Synthesis of polymer compound (III) Instead of the compound represented by the above formula (B2) and the compound represented by the above formula (C1), a compound represented by the above formula (B1) (patent) A polymer compound (III) was obtained in the same manner as in Synthesis Example 1 except that the compound represented by the above formula (C3) was used and the compound represented by the above formula (C3) was used.

高分子化合物(III)の重量平均分子量(Mw)は55900、分子量分布指数(Mw/Mn)2.04であった。13C−NMR測定の結果から見積もった高分子化合物(III)における上記式(B1)で表される化合物から導かれる構造単位の数xと上記式(C3)で表される化合物から導かれる構造単位の数yとの比(X:Y)は45:55であった。
[合成例4]イリジウム錯体(E−2)の合成
The weight average molecular weight (Mw) of the polymer compound (III) was 55900, and the molecular weight distribution index (Mw / Mn) was 2.04. The number of structural units derived from the compound represented by the formula (B1) in the polymer compound (III) estimated from the result of 13 C-NMR measurement and the structure derived from the compound represented by the formula (C3) The ratio (X: Y) with the number y of units was 45:55.
[Synthesis Example 4] Synthesis of iridium complex (E-2)

Figure 0005014705
Figure 0005014705

(4−1)化合物(a)の合成
スキーム(3)のように合成した。2−ブロモピリジン6.0g(38mmol)、4−tert−ブチルフェニルボロン酸6.8g(38mmol)、テトラキス(トリフェニルホスフィン)パラジウム0.50g(0.43mmol)、炭酸カリウム14g(100mmol)を含む水溶液50mL、および1,2−ジメトキシエタン50mLを混合し、3時間加熱還流した。反応液を室温まで冷却した後、酢酸エチルを加えて、有機層を分取し、減圧で溶媒を留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して、化合物(a)7.5g(35mmol)を得た。
(4−2)イリジウム錯体(b)の合成
化合物(a)4.9g(23mmol)および三塩化イリジウム三水和物4.0g(11mmol)の混合物に、2−エトキシエタノール75mLおよび水25mLを加え、24時間加熱還流した。生じた沈殿を濾取し、冷メタノールで洗浄した後、乾燥して、イリジウム錯体(b)7.0g(5.4mmol)を得た。
(4−3)イリジウム錯体(E−2)の合成
イリジウム錯体(b)3.0g(2.3mmol)および化合物(a)3.0g(14mmol)の混合物にグリセリン20mLを加え、200℃で24時間加熱撹拌した。反応液を室温まで冷却した後、水200mLを加え、沈殿を濾取し、乾燥した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して、イリジウム錯体(E−2)1.6g(1.9mmol)を得た。
(4-1) Synthesis of Compound (a) The compound (a) was synthesized as shown in Scheme (3). Contains 6.0 g (38 mmol) of 2-bromopyridine, 6.8 g (38 mmol) of 4-tert-butylphenylboronic acid, 0.50 g (0.43 mmol) of tetrakis (triphenylphosphine) palladium, and 14 g (100 mmol) of potassium carbonate. 50 mL of an aqueous solution and 50 mL of 1,2-dimethoxyethane were mixed and heated to reflux for 3 hours. After cooling the reaction solution to room temperature, ethyl acetate was added, the organic layer was separated, and the solvent was distilled off under reduced pressure. The resulting crude product was purified by silica gel column chromatography to obtain 7.5 g (35 mmol) of compound (a).
(4-2) Synthesis of iridium complex (b) To a mixture of 4.9 g (23 mmol) of compound (a) and 4.0 g (11 mmol) of iridium trichloride trihydrate, 75 mL of 2-ethoxyethanol and 25 mL of water were added. , And refluxed for 24 hours. The resulting precipitate was collected by filtration, washed with cold methanol, and then dried to obtain 7.0 g (5.4 mmol) of an iridium complex (b).
(4-3) Synthesis of iridium complex (E-2) 20 mL of glycerin was added to a mixture of 3.0 g (2.3 mmol) of iridium complex (b) and 3.0 g (14 mmol) of compound (a), Stir for hours. After cooling the reaction solution to room temperature, 200 mL of water was added, and the precipitate was collected by filtration and dried. The obtained crude product was purified by silica gel column chromatography to obtain 1.6 g (1.9 mmol) of an iridium complex (E-2).

イリジウム錯体(E−2)の同定データは以下の通りである。
元素分析: 計算値(C4548IrN3) C,65.66;H,5.88;N,5.1
1. 測定値 C,65.73;H,5.82;N,5.06.
質量分析(FAB): 823(M+).
[合成例5]イリジウム錯体(E−17)の合成
Identification data of the iridium complex (E-2) is as follows.
Calcd (C 45 H 48 IrN 3) C, 65.66; H, 5.88; N, 5.1
1. Measurement C, 65.73; H, 5.82; N, 5.06.
Mass spectrometry (FAB): 823 (M + ).
[Synthesis Example 5] Synthesis of iridium complex (E-17)

Figure 0005014705
Figure 0005014705

スキーム(4)のように合成した。2−ブロモピリジンの代わりに1−クロロイソキノリンを用いたほかは、化合物(a)の合成と同様な方法で、化合物(c)を合成した。次に、化合物(a)の代わりに化合物(c)を用いたほかは、イリジウム錯体(b)の合成と同様な方法で、イリジウム錯体(d)を合成した。イリジウム錯体(d)1.2g(0.80mmol)および化合物(c)1.0g(3.8mmol)の混合物にグリセリン20mLを加え、200℃で24時間加熱撹拌した。反応液を室温まで冷却した後、水200mLを加え、沈殿を濾取し、乾燥した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して、イリジウム錯体(E−17)0.30g(0.31mmol)を得た。   Synthesized as in scheme (4). Compound (c) was synthesized by the same method as the synthesis of compound (a) except that 1-chloroisoquinoline was used instead of 2-bromopyridine. Next, an iridium complex (d) was synthesized by the same method as the synthesis of the iridium complex (b) except that the compound (c) was used instead of the compound (a). 20 mL of glycerol was added to a mixture of 1.2 g (0.80 mmol) of the iridium complex (d) and 1.0 g (3.8 mmol) of the compound (c), and the mixture was heated and stirred at 200 ° C. for 24 hours. After cooling the reaction solution to room temperature, 200 mL of water was added, and the precipitate was collected by filtration and dried. The obtained crude product was purified by silica gel column chromatography to obtain 0.30 g (0.31 mmol) of an iridium complex (E-17).

イリジウム錯体(E−17)の同定データは以下の通りである。
元素分析: 計算値(C5754IrN3) C,70.34;H,5.59;N,4.3
2. 測定値 C,70.51;H,5.50;N,4.19.
質量分析(FAB): 973(M+).
[合成例6]高分子化合物(IV)の合成
上記式(B2)で表される化合物の代わりに、N−ビニルカルバゾールを用いたほかは、合成例1と同様にして、高分子化合物(IV)を得た。
Identification data of the iridium complex (E-17) is as follows.
Calcd (C 57 H 54 IrN 3) C, 70.34; H, 5.59; N, 4.3
2. Measurement C, 70.51; H, 5.50; N, 4.19.
Mass spectrometry (FAB): 973 (M + ).
[Synthesis Example 6] Synthesis of polymer compound (IV) Polymer compound (IV) was synthesized in the same manner as in Synthesis Example 1 except that N-vinylcarbazole was used instead of the compound represented by formula (B2). )

高分子化合物(IV)の重量平均分子量(Mw)は51000、分子量分布指数(Mw/Mn)2.31であった。13C−NMR測定の結果から見積もった高分子化合物(IV)におけるN−ビニルカルバゾールから導かれる構造単位の数xと上記式(C1)で表される化合物から導かれる構造単位の数yとの比(X:Y)は67:33であった。
[合成例7]高分子化合物(V)の合成
(7−1)化合物(f)の合成
The weight average molecular weight (Mw) of the polymer compound (IV) was 51000, and the molecular weight distribution index (Mw / Mn) was 2.31. The number x of structural units derived from N-vinylcarbazole in the polymer compound (IV) estimated from the result of 13 C-NMR measurement and the number y of structural units derived from the compound represented by the above formula (C1) The ratio (X: Y) was 67:33.
[Synthesis Example 7] Synthesis of polymer compound (V) (7-1) Synthesis of compound (f)

Figure 0005014705
Figure 0005014705

スキーム(5)のように合成した。4−tert−ブチルフェニルボロン酸の代わりに4−ブロモフェニルボロン酸を用いたほかは、化合物(a)の合成と同様な方法で、化合物(e)を合成した。マグネシウム0.48g(20mmol)にテトラヒドロフラン(THF)10mLを加え、これに、化合物(e)4.0g(17mmol)のTHF溶液40mLを1時間かけて滴下した。滴下後さらに室温で1時間撹拌し、氷冷しながらアセトン3.0g(52mmol)のTHF溶液20mLを滴下した。室温で1時間撹拌後、得られた反応液に水500mLを加えた。酢酸エチルで有機物を抽出し、水および飽和食塩水で洗浄後、硫酸マグネシウムを加えて乾燥した。この溶液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製して、化合物(f)2.1g(9.8mmol)を得た。
(7−2)イリジウム錯体(g)の合成
Synthesized as in scheme (5). Compound (e) was synthesized by the same method as the synthesis of compound (a) except that 4-bromophenylboronic acid was used instead of 4-tert-butylphenylboronic acid. To 0.48 g (20 mmol) of magnesium was added 10 mL of tetrahydrofuran (THF), and 40 mL of a THF solution of 4.0 g (17 mmol) of compound (e) was added dropwise thereto over 1 hour. After dropping, the mixture was further stirred at room temperature for 1 hour, and 20 mL of a THF solution of 3.0 g (52 mmol) of acetone was added dropwise while cooling with ice. After stirring at room temperature for 1 hour, 500 mL of water was added to the resulting reaction solution. The organic matter was extracted with ethyl acetate, washed with water and saturated brine, and dried by adding magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 2.1 g (9.8 mmol) of compound (f).
(7-2) Synthesis of iridium complex (g)

Figure 0005014705
Figure 0005014705

スキーム(6)のように合成した。イリジウム錯体(b)0.50g(0.30mmol)および化合物(f)0.15g(0.70mmol)の混合物に、グリセリン10mLを加え、200℃で12時間加熱撹拌した。反応液を室温まで冷却した後、100mLの水を加え、沈殿を濾取し、乾燥した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して、イリジウム錯体(g)0.22g(0.27mmol)を得た。   Synthesized as in scheme (6). To a mixture of iridium complex (b) 0.50 g (0.30 mmol) and compound (f) 0.15 g (0.70 mmol), 10 mL of glycerin was added, and the mixture was heated and stirred at 200 ° C. for 12 hours. After cooling the reaction solution to room temperature, 100 mL of water was added, and the precipitate was collected by filtration and dried. The obtained crude product was purified by silica gel column chromatography to obtain 0.22 g (0.27 mmol) of an iridium complex (g).

イリジウム錯体(g)の同定データは以下の通りである。
元素分析: 計算値(C4444IrN3) C,65.48;H,5.50;N,5.2
1. 測定値 C,65.77;H,5.36;N,5.04.
質量分析(FAB): 807(M+).
(7−3)高分子化合物(V)の合成
密閉容器に、イリジウム錯体(g)80mg、上記式(B2)で表される化合物460mg、および上記式(C1)で表される化合物460mgを入れ、脱水トルエン(9.9mL)を加えた。次いで、V−601(和光純薬工業(株)製)のトルエン溶液(0.1M、198μL)を加え、凍結脱気操作を5回繰り返した。真空のまま密閉し、60℃で
60時間撹拌した。反応後、反応液をアセトン500mL中に滴下し、沈殿を得た。さらにトルエン−アセトンでの再沈殿精製を2回繰り返した後、50℃で一晩真空乾燥して、高分子化合物(V)を得た。
Identification data of the iridium complex (g) is as follows.
Calcd (C 44 H 44 IrN 3) C, 65.48; H, 5.50; N, 5.2
1. Measurement C, 65.77; H, 5.36; N, 5.04.
Mass spectrometry (FAB): 807 (M + ).
(7-3) Synthesis of polymer compound (V) In a sealed container, put 80 mg of the iridium complex (g), 460 mg of the compound represented by the above formula (B2), and 460 mg of the compound represented by the above formula (C1). , Dehydrated toluene (9.9 mL) was added. Subsequently, a toluene solution (0.1 M, 198 μL) of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the freeze degassing operation was repeated 5 times. It sealed in vacuum and stirred at 60 ° C. for 60 hours. After the reaction, the reaction solution was dropped into 500 mL of acetone to obtain a precipitate. Further, reprecipitation purification with toluene-acetone was repeated twice, followed by vacuum drying at 50 ° C. overnight to obtain a polymer compound (V).

高分子化合物(V)の重量平均分子量(Mw)は70500、分子量分布指数(Mw/Mn)1.86であった。ICP元素分析および13C−NMR測定の結果から見積もった高分子化合物(V)におけるイリジウム錯体(g)から導かれる構造単位の数z、上記式(B2)で表される化合物から導かれる構造単位の数xおよび上記式(C1)で表される化合物から導かれる構造単位の数yの比(Z:X:Y)は5:38:57であった。
[合成例8]高分子化合物(VI)の合成
上記式(B2)で表される化合物および上記式(C1)で表される化合物の代わりに、9−エチル−3−ビニルカルバゾール(特許文献1に記載の方法に従って合成した)および上記式(C2)で表される化合物を用いたほかは、合成例1と同様にして、高分子化合物(VI)を得た。
The weight average molecular weight (Mw) of the polymer compound (V) was 70500, and the molecular weight distribution index (Mw / Mn) was 1.86. Number z of structural units derived from the iridium complex (g) in the polymer compound (V) estimated from the results of ICP elemental analysis and 13 C-NMR measurement, structural units derived from the compound represented by the above formula (B2) And the ratio (Z: X: Y) of the number y of structural units derived from the compound represented by the formula (C1) was 5:38:57.
[Synthesis Example 8] Synthesis of polymer compound (VI) Instead of the compound represented by the above formula (B2) and the compound represented by the above formula (C1), 9-ethyl-3-vinylcarbazole (Patent Document 1) The polymer compound (VI) was obtained in the same manner as in Synthesis Example 1, except that the compound represented by the above formula (C2) was used.

高分子化合物(VI)の重量平均分子量(Mw)は81500、分子量分布指数(Mw/Mn)2.31であった。13C−NMR測定の結果から見積もった高分子化合物(VI)における9−エチル−3−ビニルカルバゾールから導かれる構造単位の数xと上記式(C2)で表される化合物から導かれる構造単位の数yとの比(X:Y)は70:30であった。
[合成例9]高分子化合物(VII)の合成
イリジウム錯体(g)、上記式(B2)で表される化合物、および上記式(C1)で表される化合物の代わりに、下記式で表されるイリジウム錯体(h)(特開2003−206320号公報に記載の方法に従って合成した)、上記式(B5)で表される化合物、および上記式(C2)で表される化合物を用いたほかは、合成例7(7−3)と同様にして、高分子化合物(VII)を得た。
The polymer compound (VI) had a weight average molecular weight (Mw) of 81500 and a molecular weight distribution index (Mw / Mn) of 2.31. The number x of structural units derived from 9-ethyl-3-vinylcarbazole in the polymer compound (VI) estimated from the results of 13 C-NMR measurement and the structural units derived from the compound represented by the above formula (C2) The ratio (X: Y) with the number y was 70:30.
[Synthesis Example 9] Synthesis of polymer compound (VII) Instead of the iridium complex (g), the compound represented by the above formula (B2), and the compound represented by the above formula (C1), Iridium complex (h) (synthesized according to the method described in JP-A-2003-206320), a compound represented by the above formula (B5), and a compound represented by the above formula (C2) The polymer compound (VII) was obtained in the same manner as in Synthesis Example 7 (7-3).

高分子化合物(VII)の重量平均分子量(Mw)は94500、分子量分布指数(Mw/Mn)2.55であった。ICP元素分析および13C−NMR測定の結果から見積もった高分子化合物(VII)におけるイリジウム錯体(h)から導かれる構造単位の数z、上記式(B5)で表される化合物から導かれる構造単位の数xおよび上記式(C2)で表される化合物から導かれる構造単位の数yの比(Z:X:Y)は6:47:47であった。 The polymer compound (VII) had a weight average molecular weight (Mw) of 94500 and a molecular weight distribution index (Mw / Mn) of 2.55. Number z of structural units derived from the iridium complex (h) in the polymer compound (VII) estimated from the results of ICP elemental analysis and 13 C-NMR measurement, structural units derived from the compound represented by the above formula (B5) And the ratio (Z: X: Y) of the number y of structural units derived from the compound represented by the above formula (C2) was 6:47:47.

Figure 0005014705
Figure 0005014705

[合成例10]高分子化合物(VIII)の合成
上記式(B2)で表される化合物および上記式(C1)で表される化合物の代わりに、N−ビニルカルバゾールおよび上記式(C3)で表される化合物を用いたほかは、合成例1と同様にして、高分子化合物(VIII)を得た。
[Synthesis Example 10] Synthesis of polymer compound (VIII) In place of the compound represented by the above formula (B2) and the compound represented by the above formula (C1), N-vinylcarbazole and the above formula (C3) are used. A polymer compound (VIII) was obtained in the same manner as in Synthesis Example 1 except that the above compound was used.

高分子化合物(VIII)の重量平均分子量(Mw)は51000、分子量分布指数(Mw/Mn)2.25であった。13C−NMR測定の結果から見積もった高分子化合物(
VIII)におけるN−ビニルカルバゾールから導かれる構造単位の数xと上記式(C3)で表される化合物から導かれる構造単位の数yとの比(X:Y)は68:32であった。
[合成例11]高分子化合物(IX)の合成
(11−1)化合物(i)の合成
The weight average molecular weight (Mw) of the high molecular compound (VIII) was 51000, and the molecular weight distribution index (Mw / Mn) was 2.25. Polymer compounds estimated from the results of 13 C-NMR measurement (
The ratio (X: Y) of the number x of structural units derived from N-vinylcarbazole and the number y of structural units derived from the compound represented by the above formula (C3) in VIII) was 68:32.
Synthesis Example 11 Synthesis of Polymer Compound (IX) (11-1) Synthesis of Compound (i)

Figure 0005014705
Figure 0005014705

スキーム(7)のように合成した。1−クロロイソキノリン5.0g(33mmol)、4−アセチルフェニルボロン酸5.5g(34mmol)およびテトラキス(トリフェニルホスフィン)パラジウム0.35g(0.30mmol)を1,2−ジメトキシエタン50mLに溶解し、炭酸カリウム12.3g(89mmol)の水溶液50mLを加えて3時間加熱還流した。得られた反応液を室温まで放冷後、水100mLおよび酢酸エチル100mLを加え、有機層を硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣にジエチルエーテル50mL、およびメチルリチウムのジエチルエーテル溶液(1.0mol/l)35mL(35mmol)を加えて、室温で2時間撹拌した。溶媒を留去して得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して、化合物(i)4.8g(19mmol)を得た。
(11−2)イリジウム錯体(j)の合成
Synthesized as in scheme (7). Dissolve 5.0 g (33 mmol) of 1-chloroisoquinoline, 5.5 g (34 mmol) of 4-acetylphenylboronic acid and 0.35 g (0.30 mmol) of tetrakis (triphenylphosphine) palladium in 50 mL of 1,2-dimethoxyethane. Then, 50 mL of an aqueous solution of 12.3 g (89 mmol) of potassium carbonate was added and heated to reflux for 3 hours. The resulting reaction solution was allowed to cool to room temperature, 100 mL of water and 100 mL of ethyl acetate were added, and the organic layer was dried over magnesium sulfate. The solvent was distilled off under reduced pressure, 50 mL of diethyl ether and 35 mL (35 mmol) of diethyl ether solution of methyllithium (1.0 mol / l) were added to the residue, and the mixture was stirred at room temperature for 2 hours. The crude product obtained by distilling off the solvent was purified by silica gel column chromatography to obtain 4.8 g (19 mmol) of compound (i).
(11-2) Synthesis of iridium complex (j)

Figure 0005014705
Figure 0005014705

スキーム(8)のように合成した。イリジウム錯体(d)0.61g(0.41mmol)と化合物(i)0.22g(0.88mmol)の混合物にグリセリン10mLを加え、200℃で12時間加熱撹拌した。反応液を室温にまで冷却した後、100mLの水を加え、沈殿を濾取、乾燥した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、イリジウム錯体(j)0.16g(0.17mmol)を得た。   Synthesized as in scheme (8). 10 mL of glycerol was added to a mixture of 0.61 g (0.41 mmol) of the iridium complex (d) and 0.22 g (0.88 mmol) of the compound (i), and the mixture was heated and stirred at 200 ° C. for 12 hours. After cooling the reaction solution to room temperature, 100 mL of water was added, and the precipitate was collected by filtration and dried. The obtained crude product was purified by silica gel column chromatography to obtain 0.16 g (0.17 mmol) of an iridium complex (j).

イリジウム錯体(j)の同定データは以下の通りである。
元素分析: 計算値(C5650IrN3) C,70.26;H,5.26;N,4.3
9. 測定値 C,69.90;H,5.38;N,4.61.
質量分析(FAB): 957(M+).
(11−3)高分子化合物(IX)の合成
イリジウム錯体(g)、上記式(B2)で表される化合物、および上記式(C1)で表される化合物の代わりに、イリジウム錯体(j)、上記式(B1)で表される化合物、および上記式(C3)で表される化合物を用いたほかは、合成例7(7−3)と同様にして、高分子化合物(IX)を得た。
Identification data of the iridium complex (j) is as follows.
Calcd (C 56 H 50 IrN 3) C, 70.26; H, 5.26; N, 4.3
9. Measurement C, 69.90; H, 5.38; N, 4.61.
Mass spectrometry (FAB): 957 (M + ).
(11-3) Synthesis of polymer compound (IX) Instead of the iridium complex (g), the compound represented by the above formula (B2), and the compound represented by the above formula (C1), an iridium complex (j) A polymer compound (IX) was obtained in the same manner as in Synthesis Example 7 (7-3) except that the compound represented by the above formula (B1) and the compound represented by the above formula (C3) were used. It was.

高分子化合物(IX)の重量平均分子量(Mw)は61900、分子量分布指数(Mw/Mn)2.18であった。ICP元素分析および13C−NMR測定の結果から見積もった高分子化合物(IX)におけるイリジウム錯体(j)から導かれる構造単位の数z、上記式(B1)で表される化合物から導かれる構造単位の数xおよび上記式(C3)で表される化合物から導かれる構造単位の数yの比(Z:X:Y)は5:43:52であった。[合成例12]イリジウム錯体(E−34)の合成 The polymer compound (IX) had a weight average molecular weight (Mw) of 61900 and a molecular weight distribution index (Mw / Mn) of 2.18. Number z of structural units derived from the iridium complex (j) in the polymer compound (IX) estimated from the results of ICP elemental analysis and 13 C-NMR measurement, structural units derived from the compound represented by the above formula (B1) And the ratio (Z: X: Y) of the number y of structural units derived from the compound represented by the formula (C3) was 5:43:52. [Synthesis Example 12] Synthesis of iridium complex (E-34)

Figure 0005014705
Figure 0005014705

スキーム(9)のように合成した。4−tert−ブチルフェニルボロン酸の代わりに4−n−ブチルフェニルボロン酸を用いたほかは、化合物(c)の合成と同様な方法で、化合物(k)を合成した。次に、化合物(a)の代わりに化合物(k)を用いたほかは、イリジウム錯体(b)の合成と同様な方法で、イリジウム錯体(l)を合成した。イリジウム錯体(l)2.4g(1.6mmol)および化合物(k)2.0g(7.6mmol)の混合物にグリセリン20mlを加え、200℃で24時間加熱撹拌した。反応液を室温まで冷却した後、水200mLを加え、沈殿を濾取し、乾燥した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して、イリジウム錯体(E−34)0.60g(0.62mmol)を得た。   Synthesized as in scheme (9). Compound (k) was synthesized by the same method as the synthesis of compound (c) except that 4-n-butylphenylboronic acid was used instead of 4-tert-butylphenylboronic acid. Next, an iridium complex (l) was synthesized by the same method as the synthesis of the iridium complex (b) except that the compound (k) was used instead of the compound (a). 20 ml of glycerin was added to a mixture of 2.4 g (1.6 mmol) of iridium complex (l) and 2.0 g (7.6 mmol) of compound (k), and the mixture was heated and stirred at 200 ° C. for 24 hours. After cooling the reaction solution to room temperature, 200 mL of water was added, and the precipitate was collected by filtration and dried. The obtained crude product was purified by silica gel column chromatography to obtain 0.60 g (0.62 mmol) of an iridium complex (E-34).

イリジウム錯体(E−34)の同定データは以下の通りである。
元素分析: 計算値(C5754IrN3) C,70.34;H,5.59;N,4.3
2. 測定値 C,70.38;H,5.61;N,4.19.
質量分析(FAB): 973(M+).
[合成例13]高分子化合物(X)の合成
(13−1)化合物(n)の合成
Identification data of the iridium complex (E-34) is as follows.
Calcd (C 57 H 54 IrN 3) C, 70.34; H, 5.59; N, 4.3
2. Measurement C, 70.38; H, 5.61; N, 4.19.
Mass spectrometry (FAB): 973 (M + ).
[Synthesis Example 13] Synthesis of polymer compound (X) (13-1) Synthesis of compound (n)

Figure 0005014705
Figure 0005014705

スキーム(10)のように合成した。2−ブロモピリジンの代わりに1−クロロイソキノリンを用いたほかは、化合物(e)の合成と同様な方法で、化合物(m)を合成した。化合物(m)1.5g(5.3mmol)とジクロロ(ビス(ジフェニルホスフィノ)プロパン)ニッケル0.10g(0.18mmol)を20mlのTHFに溶解した。この溶液に氷冷しながら臭化5−ヘキセニルマグネシウムのTHF溶液(0.50M)15ml(7.5mmol)を滴下し、室温で5時間撹拌した。得られた反応液に5mlのメタノールを加えた後、減圧で溶媒を留去し、シリカゲルカラムクロマトグラフィーで精製することによって、化合物(n)0.90g(3.1mmol)を得た。
(13−2)イリジウム錯体(o)の合成
Synthesized as in scheme (10). The compound (m) was synthesized by the same method as the synthesis of the compound (e) except that 1-chloroisoquinoline was used instead of 2-bromopyridine. Compound (m) (1.5 g, 5.3 mmol) and dichloro (bis (diphenylphosphino) propane) nickel (0.10 g, 0.18 mmol) were dissolved in 20 ml of THF. To this solution, 15 ml (7.5 mmol) of 5-hexenylmagnesium bromide in THF (0.50 M) was added dropwise while cooling with ice, and the mixture was stirred at room temperature for 5 hours. After adding 5 ml of methanol to the obtained reaction solution, the solvent was distilled off under reduced pressure and purified by silica gel column chromatography to obtain 0.90 g (3.1 mmol) of compound (n).
(13-2) Synthesis of iridium complex (o)

Figure 0005014705
Figure 0005014705

スキーム(11)のように合成した。イリジウム錯体(l)0.50g(0.33mmol)と化合物(n)0.20g(0.70mmol)の混合物にグリセリン10mlを加え、180℃で48時間加熱撹拌した。反応液を室温にまで冷却した後、100mlの水を加え、沈殿を濾取、乾燥した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、イリジウム錯体(o)0.10g(0.10mmol)を得た。   Synthesized as in scheme (11). 10 ml of glycerol was added to a mixture of 0.50 g (0.33 mmol) of the iridium complex (l) and 0.20 g (0.70 mmol) of the compound (n), and the mixture was heated and stirred at 180 ° C. for 48 hours. The reaction solution was cooled to room temperature, 100 ml of water was added, and the precipitate was collected by filtration and dried. The obtained crude product was purified by silica gel column chromatography to obtain 0.10 g (0.10 mmol) of an iridium complex (o).

イリジウム錯体(o)の同定データは以下の通りである。
元素分析: 計算値(C5956IrN3) C,70.91;H,5.65;N,4.2
0. 測定値 C,70.65;H,5.82;N,4.44.
質量分析(FAB): 999(M+).
(13−3)高分子化合物(X)の合成
イリジウム錯体(g)、上記式(B2)で表される化合物、および上記式(C1)で表
される化合物の代わりに、イリジウム錯体(o)、上記式(B1)で表される化合物、および上記式(C3)で表される化合物を用いたほかは、合成例7(7−3)と同様にして、高分子化合物(X)を得た。
Identification data of the iridium complex (o) is as follows.
Calcd (C 59 H 56 IrN 3) C, 70.91; H, 5.65; N, 4.2
0. Measurement C, 70.65; H, 5.82; N, 4.44.
Mass spectrometry (FAB): 999 (M + ).
(13-3) Synthesis of polymer compound (X) Instead of the iridium complex (g), the compound represented by the above formula (B2), and the compound represented by the above formula (C1), an iridium complex (o) A polymer compound (X) was obtained in the same manner as in Synthesis Example 7 (7-3) except that the compound represented by the above formula (B1) and the compound represented by the above formula (C3) were used. It was.

高分子化合物(X)の重量平均分子量(Mw)は61900、分子量分布指数(Mw/Mn)2.50であった。ICP元素分析および13C−NMR測定の結果から見積もった高分子化合物(IX)におけるイリジウム錯体(j)から導かれる構造単位の数z、上記式(B1)で表される化合物から導かれる構造単位の数xおよび上記式(C3)で表される化合物から導かれる構造単位の数yの比(Z:X:Y)は4:45:51であった。
[合成例14]塗布溶液(I)
高分子化合物(I)92mgおよびイリジウム錯体(E−2)8mgをトルエン2900mgに溶解し、この溶液を孔径0.2μmのフィルターでろ過し、塗布溶液(I)を調製した。
[合成例15]塗布溶液(II)
高分子化合物(I)およびイリジウム錯体(E−2)の代わりに、高分子化合物(II)およびイリジウム錯体(E−33)(特表2004−506305号公報に記載の方法に従って合成した)を用いたほかは、合成例14と同様にして、塗布溶液(II)を調製した。
[合成例16]塗布溶液(III)
高分子化合物(I)およびイリジウム錯体(E−2)の代わりに、高分子化合物(III)およびイリジウム錯体(E−17)を用いたほかは、合成例14と同様にして、塗布溶液(III)を調製した。
[合成例17]塗布溶液(IV)
高分子化合物(I)およびイリジウム錯体(E−2)の代わりに、高分子化合物(IV)およびイリジウム錯体(E−2)を用いたほかは、合成例14と同様にして、塗布溶液(IV)を調製した。
[合成例18]塗布溶液(V)
高分子化合物(V)100mgをトルエン2900mgに溶解し、この溶液を孔径0.2μmのフィルターでろ過し、塗布溶液(V)を調製した。
[合成例19]塗布溶液(VI)
高分子化合物(I)およびイリジウム錯体(E−2)の代わりに、高分子化合物(VI)およびイリジウム錯体(E−33)を用いたほかは、合成例14と同様にして、塗布溶液(VI)を調製した。
[合成例20]塗布溶液(VII)
高分子化合物(V)の代わりに高分子化合物(VII)を用いたほかは、合成例18と同様にして、塗布溶液(VII)を調製した。
[合成例21]塗布溶液(VIII)
高分子化合物(I)およびイリジウム錯体(E−2)の代わりに、高分子化合物(VIII)およびイリジウム錯体(E−17)を用いたほかは、合成例14と同様にして、塗布溶液(VIII)を調製した。
[合成例22]塗布溶液(IX)
高分子化合物(V)の代わりに高分子化合物(IX)を用いたほかは、合成例18と同様にして、塗布溶液(IX)を調製した。
[合成例23]塗布溶液(X)
高分子化合物(I)およびイリジウム錯体(E−2)の代わりに、高分子化合物(III)およびイリジウム錯体(E−34)を用いたほかは、合成例14と同様にして、塗布溶液(X)を調製した。
[合成例24]塗布溶液(XI)
高分子化合物(I)およびイリジウム錯体(E−2)の代わりに、高分子化合物(VIII)およびイリジウム錯体(E−34)を用いたほかは、合成例14と同様にして、塗
布溶液(XI)を調製した。
[合成例25]塗布溶液(XII)
高分子化合物(V)の代わりに、高分子化合物(X)を用いたほかは、合成例18と同様にして、塗布溶液(XII)を調製した。
[実施例1]有機EL素子の作製および発光特性の評価
ITO付き基板(ニッポ電機(株)製)を用いた。これは、25mm角のガラス基板の一方の面に、幅4mmのITO(酸化インジウム錫)電極(陽極)が、ストライプ状に2本形成された基板であった。
The weight average molecular weight (Mw) of the polymer compound (X) was 61900, and the molecular weight distribution index (Mw / Mn) was 2.50. Number z of structural units derived from the iridium complex (j) in the polymer compound (IX) estimated from the results of ICP elemental analysis and 13 C-NMR measurement, structural units derived from the compound represented by the above formula (B1) And the ratio (Z: X: Y) of the number y of structural units derived from the compound represented by the above formula (C3) was 4:45:51.
[Synthesis Example 14] Coating solution (I)
92 mg of the polymer compound (I) and 8 mg of the iridium complex (E-2) were dissolved in 2900 mg of toluene, and this solution was filtered with a filter having a pore size of 0.2 μm to prepare a coating solution (I).
[Synthesis Example 15] Coating solution (II)
Instead of polymer compound (I) and iridium complex (E-2), polymer compound (II) and iridium complex (E-33) (synthesized according to the method described in JP-T-2004-506305) are used. The coating solution (II) was prepared in the same manner as in Synthesis Example 14, except that
[Synthesis Example 16] Coating solution (III)
A coating solution (III) was prepared in the same manner as in Synthesis Example 14 except that the polymer compound (III) and the iridium complex (E-17) were used instead of the polymer compound (I) and the iridium complex (E-2). ) Was prepared.
[Synthesis Example 17] Coating solution (IV)
A coating solution (IV) was prepared in the same manner as in Synthesis Example 14 except that the polymer compound (IV) and the iridium complex (E-2) were used instead of the polymer compound (I) and the iridium complex (E-2). ) Was prepared.
[Synthesis Example 18] Coating solution (V)
100 mg of the polymer compound (V) was dissolved in 2900 mg of toluene, and this solution was filtered with a filter having a pore size of 0.2 μm to prepare a coating solution (V).
[Synthesis Example 19] Coating solution (VI)
A coating solution (VI) was prepared in the same manner as in Synthesis Example 14 except that the polymer compound (VI) and the iridium complex (E-33) were used instead of the polymer compound (I) and the iridium complex (E-2). ) Was prepared.
[Synthesis Example 20] Coating solution (VII)
A coating solution (VII) was prepared in the same manner as in Synthesis Example 18, except that the polymer compound (VII) was used instead of the polymer compound (V).
[Synthesis Example 21] Coating solution (VIII)
A coating solution (VIII) was prepared in the same manner as in Synthesis Example 14 except that the polymer compound (VIII) and the iridium complex (E-17) were used instead of the polymer compound (I) and the iridium complex (E-2). ) Was prepared.
[Synthesis Example 22] Coating solution (IX)
A coating solution (IX) was prepared in the same manner as in Synthesis Example 18, except that the polymer compound (IX) was used instead of the polymer compound (V).
[Synthesis Example 23] Coating solution (X)
A coating solution (X) was prepared in the same manner as in Synthesis Example 14 except that the polymer compound (III) and the iridium complex (E-34) were used instead of the polymer compound (I) and the iridium complex (E-2). ) Was prepared.
[Synthesis Example 24] Coating solution (XI)
A coating solution (XI) was prepared in the same manner as in Synthesis Example 14 except that the polymer compound (VIII) and the iridium complex (E-34) were used instead of the polymer compound (I) and the iridium complex (E-2). ) Was prepared.
[Synthesis Example 25] Coating solution (XII)
A coating solution (XII) was prepared in the same manner as in Synthesis Example 18, except that the polymer compound (X) was used instead of the polymer compound (V).
[Example 1] Preparation of organic EL element and evaluation of light emission characteristics A substrate with ITO (manufactured by Nippon Electric Co., Ltd.) was used. This was a substrate in which two ITO (indium tin oxide) electrodes (anodes) having a width of 4 mm were formed in one stripe on one surface of a 25 mm square glass substrate.

まず、上記ITO付き基板上に、ポリ(3,4−エチレンジオキシチオフェン)・ポリスチレンスルホン酸(バイエル(株)製、商品名「バイトロンP」)を、回転数3500rpm、塗布時間40秒の条件で、スピンコート法により塗布した。その後、真空乾燥器で減圧下、60℃で2時間乾燥し、陽極バッファ層を形成した。得られた陽極バッファ層の膜厚は、約50nmであった。   First, poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid (manufactured by Bayer Co., Ltd., trade name “BYTRON P”) on the above-mentioned ITO-attached substrate under conditions of a rotation speed of 3500 rpm and a coating time of 40 seconds. Then, it was applied by spin coating. Then, it dried for 2 hours at 60 degreeC under pressure reduction with the vacuum dryer, and formed the anode buffer layer. The film thickness of the obtained anode buffer layer was about 50 nm.

次に、上記陽極バッファ層上に、塗布溶液(I)を、回転数3000rpm、塗布時間30秒の条件で、スピンコート法により塗布した。塗布後、室温(25℃)で30分間乾燥し、発光層を形成した。得られた発光層の膜厚は、約100nmであった。   Next, the coating solution (I) was coated on the anode buffer layer by a spin coating method under the conditions of a rotation speed of 3000 rpm and a coating time of 30 seconds. After the application, it was dried at room temperature (25 ° C.) for 30 minutes to form a light emitting layer. The film thickness of the obtained light emitting layer was about 100 nm.

次に、発光層を形成した基板を蒸着装置内に載置した。次いで、カルシウムおよびアルミニウムを重量比1:10で共蒸着し、陽極の延在方向に対して直交するように、幅3mmの陰極をストライプ状に2本形成した。得られた陰極の膜厚は、約50nmであった。   Next, the substrate on which the light emitting layer was formed was placed in a vapor deposition apparatus. Next, calcium and aluminum were co-evaporated at a weight ratio of 1:10, and two cathodes having a width of 3 mm were formed in a stripe shape so as to be orthogonal to the extending direction of the anode. The film thickness of the obtained cathode was about 50 nm.

最後に、アルゴン雰囲気中で、陽極と陰極とにリード線(配線)を取り付けて、縦4mm×横3mmの有機EL素子を4個作製した。上記有機EL素子に、プログラマブル直流電圧/電流源(TR6143、(株)アドバンテスト社製)を用いて電圧を印加して発光させた。その発光輝度を、輝度計(BM−8、(株)トプコン社製)を用いて測定した。作製した有機EL素子の発光色、最大発光外部量子効率、100cd/m2点灯時の輝度
半減寿命を表1に示す。
[実施例2〜4および比較例1〜8]有機EL素子の作製および発光特性の評価
塗布溶液を表1に示す溶液に変更したほかは、実施例1と同様にして、有機EL素子を作製し、測定を行った。作製した有機EL素子の発光色、最大発光外部量子効率、100cd/m2点灯時の輝度半減寿命を表1に示す。
Finally, lead wires (wirings) were attached to the anode and the cathode in an argon atmosphere, and four organic EL elements measuring 4 mm in length and 3 mm in width were produced. A voltage was applied to the organic EL element to emit light using a programmable DC voltage / current source (TR6143, manufactured by Advantest Corporation). The emission luminance was measured using a luminance meter (BM-8, manufactured by Topcon Corporation). Table 1 shows the emission color, the maximum emission external quantum efficiency, and the luminance half-life at 100 cd / m 2 lighting of the produced organic EL element.
[Examples 2 to 4 and Comparative Examples 1 to 8] Preparation of organic EL elements and evaluation of light emission characteristics Organic EL elements were prepared in the same manner as in Example 1 except that the coating solution was changed to the solution shown in Table 1. And measured. Table 1 shows the emission color, the maximum emission external quantum efficiency, and the luminance half-life at 100 cd / m 2 lighting of the produced organic EL element.

Figure 0005014705
Figure 0005014705

図1は、本発明に係る有機EL素子の例の断面図である。FIG. 1 is a cross-sectional view of an example of an organic EL element according to the present invention.

符号の説明Explanation of symbols

1: ガラス基板
2: 陽極
3: ホール輸送層
4: 発光層
5: 電子輸送層
6: 陰極
1: Glass substrate 2: Anode 3: Hole transport layer 4: Light emitting layer 5: Electron transport layer 6: Cathode

Claims (7)

陽極と陰極とに挟まれた1層または2層以上の有機層を含む有機エレクトロルミネッセンス素子において、
前記有機層の少なくとも1層に、燐光発光性化合物と高分子化合物とを含み、
前記高分子化合物が、下記式(B1)〜(B6)のいずれかで表される単量体から導かれる構造単位と、2つ以上のヘテロ原子を含有するヘテロ環を有する単量体から導かれる構造単位とを含むことを特徴とする有機エレクトロルミネッセンス素子。
Figure 0005014705
In an organic electroluminescence device including one or more organic layers sandwiched between an anode and a cathode,
At least one of the organic layers includes a phosphorescent compound and a polymer compound,
The polymer compound is derived from a structural unit derived from a monomer represented by any of the following formulas (B1) to (B6) and a monomer having a heterocycle containing two or more heteroatoms. An organic electroluminescence device comprising a structural unit to be cut.
Figure 0005014705
前記ヘテロ環を有する単量体が、オキサジアゾール誘導体またはトリアゾール誘導体であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence device according to claim 1, wherein the monomer having a heterocycle is an oxadiazole derivative or a triazole derivative. 前記ヘテロ環を有する単量体が、下記式(2)〜(5)で表される単量体からなる群から選択されることを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。
Figure 0005014705
(式(2)〜(5)中、R28〜R71は、それぞれ、水素原子、ハロゲン原子、シアノ基、アミノ基、炭素数1〜10のアルキル基、または炭素数1〜10のアルコキシ基を表し、R28〜R31、R32〜R36、R37〜R40、R42〜R44、R45〜R49、R50〜R54、R58〜R62、R63〜R66、およびR67〜R71の、それぞれにおいて、ベンゼン環上に隣接する炭素原子に結合している2つの基は、互いに結合して縮合環を形成してもよく、X2〜X5は、それぞれ、単結合、酸素原子(−O−)、硫黄原子(−S−)、−SO−、−SO 2 −、−NR−(Rは、水素原子、炭素数1〜4のアルキル基、またはフェニル基を表す。)、−CO−、または炭素数1〜20の2価の有機基(該有機基は、酸素原子(−O−)、硫黄原子(−S−)、−SO−、−SO 2 −、−NR−(Rは、水素原子、炭素数1〜4のアルキル基、またはフェニル基を表す。)および−CO−からなる群から選択される原子もしくは基によって置換されていてもよい。)を表し、Y2〜Y5は、それぞれ、重合性官能基を表す。前記式(5)中、Arは、フェニル基またはナフチル基を表す。)
The organic electroluminescence device according to claim 2, wherein the monomer having a heterocycle is selected from the group consisting of monomers represented by the following formulas (2) to (5).
Figure 0005014705
(In formulas (2) to (5), R 28 to R 71 are each a hydrogen atom, a halogen atom, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms. the stands, R 28 ~R 31, R 32 ~R 36, R 37 ~R 40, R 42 ~R 44, R 45 ~R 49, R 50 ~R 54, R 58 ~R 62, R 63 ~R 66 , And R 67 to R 71 , two groups bonded to adjacent carbon atoms on the benzene ring may be bonded to each other to form a condensed ring, and X 2 to X 5 are Single bond, oxygen atom (—O—), sulfur atom (—S—), —SO—, —SO 2 —, —NR— (R represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or Represents a phenyl group), -CO-, or a divalent organic group having 1 to 20 carbon atoms (the organic group includes an oxygen atom (-O-), a sulfur atom (-S ), - SO -, - SO 2 -, - NR- (R is a hydrogen atom, or atoms selected from the group consisting of) and -CO- represents an alkyl group or a phenyl group, having 1 to 4 carbon atoms. And Y 2 to Y 5 each represents a polymerizable functional group . In the formula (5), Ar represents a phenyl group or a naphthyl group.)
前記ヘテロ環を有する単量体が、下記式(C1)〜(C4)のいずれかで表されることを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 3, wherein the monomer having a heterocycle is represented by any of the following formulas (C1) to (C4).
Figure 0005014705
Figure 0005014705
前記燐光発光性化合物が、イリジウム錯体であることを特徴とする請求項1〜のいずれかに記載の有機エレクトロルミネッセンス素子。 The phosphorescence-emitting compound, an organic electroluminescent device according to any one of claims 1 to 4, characterized in that an iridium complex. 請求項1〜のいずれかに記載の有機エレクトロルミネッセンス素子を用いた画像表示装置。 The image display apparatus using the organic electroluminescent element in any one of Claims 1-5 . 請求項1〜のいずれかに記載の有機エレクトロルミネッセンス素子を用いた面発光光源。 The surface emitting light source using the organic electroluminescent element in any one of Claims 1-5 .
JP2006222368A 2005-08-17 2006-08-17 Organic electroluminescence device using phosphorescent compound Active JP5014705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222368A JP5014705B2 (en) 2005-08-17 2006-08-17 Organic electroluminescence device using phosphorescent compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005236511 2005-08-17
JP2005236511 2005-08-17
JP2006222368A JP5014705B2 (en) 2005-08-17 2006-08-17 Organic electroluminescence device using phosphorescent compound

Publications (2)

Publication Number Publication Date
JP2007081392A JP2007081392A (en) 2007-03-29
JP5014705B2 true JP5014705B2 (en) 2012-08-29

Family

ID=37941312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222368A Active JP5014705B2 (en) 2005-08-17 2006-08-17 Organic electroluminescence device using phosphorescent compound

Country Status (1)

Country Link
JP (1) JP5014705B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2234991A1 (en) * 2007-12-21 2010-10-06 Georgia Tech Research Corporation Romp-polymerizable electron transport materials based on a bis-oxadiazole moiety
JP2010034528A (en) * 2008-06-23 2010-02-12 Sumitomo Chemical Co Ltd Composition and light-emitting element using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225043B2 (en) * 2002-12-03 2009-02-18 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT DEVICE, ITS MANUFACTURING METHOD, DISPLAY DEVICE, LIGHTING DEVICE, AND LIGHT SOURCE
JP2006249283A (en) * 2005-03-11 2006-09-21 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element and organic electroluminescent element using the same

Also Published As

Publication number Publication date
JP2007081392A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP5008835B2 (en) Polymer light emitting material and organic light emitting device
JP4879591B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP5043329B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP2007031678A (en) Polymeric luminescent material and organic electroluminescence element using the polymeric luminescent material
JP5043330B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
US7872411B2 (en) Organic electroluminescence device using a copolymer and a phosphorescent compound
JP4916791B2 (en) Organic electroluminescence element and display device
JP2007106793A (en) Polymeric luminescent material and organic electroluminescent element
JP4823601B2 (en) Polymer light emitting material, organic electroluminescence element, and display device
JP5014705B2 (en) Organic electroluminescence device using phosphorescent compound
JP4932238B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP4916792B2 (en) Organic electroluminescence element and display device
JP5132227B2 (en) Organic electroluminescence device and use thereof
JP2007084612A (en) High molecular light emission material, organic electroluminescent element and display
JP2008066380A (en) Organic electroluminescence element and application of the same
JP5043332B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP4790381B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP4943029B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP5105782B2 (en) Organic electroluminescence element and display device
JP4932239B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP2007269894A (en) Polymer luminescent material, organic electroluminescent element, and display device
JP4932246B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP2007197575A (en) Polymer luminescent material, organic electroluminescent element and display
JP2008028119A (en) Organic electroluminescence element, and application thereof
JP2007269895A (en) Polymer luminescent material, organic electroluminescent element, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250