JP5013986B2 - Manufacturing method of glass substrate - Google Patents

Manufacturing method of glass substrate Download PDF

Info

Publication number
JP5013986B2
JP5013986B2 JP2007165609A JP2007165609A JP5013986B2 JP 5013986 B2 JP5013986 B2 JP 5013986B2 JP 2007165609 A JP2007165609 A JP 2007165609A JP 2007165609 A JP2007165609 A JP 2007165609A JP 5013986 B2 JP5013986 B2 JP 5013986B2
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
probe
polished
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007165609A
Other languages
Japanese (ja)
Other versions
JP2009000791A (en
Inventor
和彦 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007165609A priority Critical patent/JP5013986B2/en
Publication of JP2009000791A publication Critical patent/JP2009000791A/en
Application granted granted Critical
Publication of JP5013986B2 publication Critical patent/JP5013986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、ガラス基板の製造方法に関する。   The present invention relates to a method for manufacturing a glass substrate.

近年のメモリーハードディスクドライブには、高容量・小径化を目的として、記録密度を上げるために磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが求められている。それに伴い、磁気ディスク基板の製造工程においても研磨後に要求される表面品質は年々厳しくなってきている。即ち、ヘッドの低浮上化に応じて、表面粗さ、微小うねり、ロールオフ及び突起を低減する必要があり、単位記録面積の減少に応じて基板片面当たりのスクラッチ数、大きさ、深さもさらに低減する必要がある。このような磁気ディスク基板に要求される表面品質を実現するため、ハードディスク基板としては、従来広く用いられていたアルミニウム基板に代えて、ガラス基板が用いられるようになっている。ガラス基板は、アルミニウム基板に比較して、表面の平坦性及び基板強度において好ましい性能を示す。なお、このようなガラス基板としては、基板強度を上げるために、化学強化されたガラス基板や、結晶化によって基板強度を上げた結晶化ガラス基板が用いられることもある。また、ガラス基板は、集積回路の製造時に用いられるEUVリソグラフィ技術におけるマスク用の基板としても利用されつつある(例えば、特許文献1参照)。EUVリソグラフィに用いられるマスク用のガラス基板も、高い表面平坦性が要求される。   Recent memory hard disk drives are required to reduce the flying height of the magnetic head to reduce the unit recording area in order to increase the recording density for the purpose of increasing the capacity and reducing the diameter. Along with this, the surface quality required after polishing in the manufacturing process of the magnetic disk substrate is becoming stricter year by year. That is, it is necessary to reduce the surface roughness, micro waviness, roll-off and protrusions according to the lower flying height of the head, and the number of scratches, size, and depth per one side of the substrate further according to the decrease of the unit recording area. There is a need to reduce. In order to realize the surface quality required for such a magnetic disk substrate, a glass substrate is used as the hard disk substrate instead of the conventionally widely used aluminum substrate. The glass substrate exhibits favorable performance in terms of surface flatness and substrate strength compared to an aluminum substrate. As such a glass substrate, a chemically strengthened glass substrate or a crystallized glass substrate whose substrate strength is increased by crystallization may be used in order to increase the substrate strength. Further, the glass substrate is being used as a mask substrate in EUV lithography technology used at the time of manufacturing an integrated circuit (see, for example, Patent Document 1). A glass substrate for a mask used for EUV lithography is also required to have high surface flatness.

基板を研磨する場合に研磨後の基板の表面粗さを低減する方法としては、平均一次粒子径が50nm以下のコロイダルシリカを含有した酸性研磨液組成物を用いて研磨して研磨後の表面粗さを所定の数値以下とする研磨方法が開示されている(特許文献1)。また、化学的腐食剤を使用して基板の一部分を軟化させ、この部分をコロイド粒子を用いて除去することを含む研磨方法も開示されている(特許文献2)。
特開2006−35413号公報 特開平7−240025号公報
As a method of reducing the surface roughness of the substrate after polishing when polishing the substrate, the surface roughness after polishing by polishing with an acidic polishing composition containing colloidal silica having an average primary particle size of 50 nm or less is used. A polishing method for reducing the thickness to a predetermined value or less is disclosed (Patent Document 1). A polishing method including softening a part of a substrate using a chemical corrosive agent and removing the part using colloidal particles is also disclosed (Patent Document 2).
JP 2006-35413 A JP-A-7-240025

上述したとおり、ガラス基板の製造における研磨工程において、研磨後の基板の表面粗さを低減して基板品質を向上することは重要である。しかし、それとともに、生産性に優れる経済的な研磨速度を達成・維持することも重要である。   As described above, in the polishing process in the production of the glass substrate, it is important to improve the substrate quality by reducing the surface roughness of the substrate after polishing. However, it is also important to achieve and maintain an economical polishing rate with excellent productivity.

本発明は、ガラス基板の製造方法であって、基板品質に優れるガラス基板を生産性よく製造できる方法を提供する。本発明は、また、被研磨ガラス基板の研磨に適したガラス基板用研磨液組成物の評価方法を提供する。   The present invention provides a method for producing a glass substrate, which can produce a glass substrate excellent in substrate quality with high productivity. The present invention also provides a method for evaluating a polishing composition for a glass substrate suitable for polishing a glass substrate to be polished.

本発明のガラス基板の製造方法は、研磨材及び水を含有する研磨液組成物を研磨パッドと被研磨ガラス基板との間に存在させて研磨する工程を有し、前記研磨液組成物のpHは4以下であり、前記研磨液組成物及び前記被研磨ガラス基板が、前記研磨液組成物に浸漬した前記被研磨ガラス基板の表面に原子間力顕微鏡の探針を押し付けて測定される探針の進入深さが4nm以下となる関係を満たす、ガラス基板の製造方法である。   The method for producing a glass substrate of the present invention comprises a step of polishing a polishing composition containing an abrasive and water between a polishing pad and a glass substrate to be polished, and the pH of the polishing composition. Is 4 or less, and the polishing composition and the glass substrate to be polished are measured by pressing a probe of an atomic force microscope against the surface of the glass substrate to be polished immersed in the polishing composition. This is a method for manufacturing a glass substrate that satisfies the relationship that the depth of penetration is 4 nm or less.

本発明のガラス基板用研磨液組成物の評価方法は、ガラス基板用研磨液組成物に浸漬した被研磨ガラス基板の表面に探針を押し付けて基板表面への探針の進入深さを測定すること、及び、前記進入深さの測定値を指標として前記ガラス基板用研磨液組成物の前記被研磨ガラス基板への使用適性を評価することを含むガラス基板用研磨液組成物の評価方法である。   The glass substrate polishing liquid composition evaluation method of the present invention measures the depth of penetration of the probe into the substrate surface by pressing the probe against the surface of the glass substrate to be polished immersed in the glass substrate polishing liquid composition. And evaluating the suitability of the glass substrate polishing liquid composition for use in the glass substrate to be polished using the measured value of the penetration depth as an index. .

本発明のガラス基板の製造方法によれば、例えば、研磨の工程において研磨後の表面粗さが低減され、かつ、経済的な研磨速度を有する研磨が可能となり、それにより基板品質が向上したガラス基板を生産性よく製造できるという効果が奏される。   According to the method for producing a glass substrate of the present invention, for example, glass whose surface roughness after polishing is reduced in the polishing step and polishing having an economical polishing rate is possible, thereby improving the substrate quality. There is an effect that the substrate can be manufactured with high productivity.

本発明のガラス基板用研磨液組成物の評価方法によれば、例えば、被研磨ガラス基板の研磨において経済的な研磨速度を達成でき、かつ、研磨後の表面粗さを低減できる研磨液組成物を選択でき、また、その研磨液組成物を使用できるという効果を奏する。   According to the method for evaluating a polishing composition for a glass substrate of the present invention, for example, a polishing composition that can achieve an economical polishing rate in polishing a glass substrate to be polished and can reduce the surface roughness after polishing. And the polishing composition can be used.

一般に、ガラス基板は化学的耐久性があり、pHが4以下の酸性条件下でもほとんど腐食しないといわれている。その一方、酸性研磨液組成物を用いたガラス基板の研磨では、研磨後の表面粗さが悪化することが知られている。本発明者は、酸性研磨液組成物を用いてガラス基板を研磨すると、酸性研磨液組成物と接触しているガラス基板表層の硬さが変化し、その結果、研磨後の表面粗さが悪化するという知見を得た。ナトリウム(Na)を含有するガラス基板は、酸性溶液と接触すると、ガラス基板からNaがイオンとして溶出して溶液中のヒドロニウムイオンがガラス基板に入り込むイオン交換反応を引き起こし、イオン交換反応が生じたガラス基板の表層では構造が疎になり脆くなって、研磨後のガラス基板の表面粗さが悪化すると推定される。   In general, a glass substrate is chemically durable and is said to hardly corrode even under acidic conditions with a pH of 4 or less. On the other hand, it is known that the surface roughness after polishing deteriorates in polishing of a glass substrate using an acidic polishing liquid composition. When the present inventors polish a glass substrate using an acidic polishing composition, the hardness of the glass substrate surface layer in contact with the acidic polishing composition changes, and as a result, the surface roughness after polishing deteriorates. I got the knowledge to do. When a glass substrate containing sodium (Na) comes into contact with an acidic solution, Na elutes as ions from the glass substrate, causing an ion exchange reaction in which hydronium ions in the solution enter the glass substrate, resulting in an ion exchange reaction. It is presumed that the surface layer of the glass substrate becomes sparse and brittle, and the surface roughness of the polished glass substrate deteriorates.

本発明は、酸性研磨液組成物と接触した被研磨ガラス基板の表層の硬さが低下した変質層の厚さを制御することで、研磨後の基板の表面粗さを低下できるという知見に基づく。   The present invention is based on the knowledge that the surface roughness of the substrate after polishing can be reduced by controlling the thickness of the altered layer in which the hardness of the surface layer of the glass substrate to be polished that has been in contact with the acidic polishing composition is reduced. .

本発明のガラス基板の製造方法は、研磨材及び水を含有する研磨液組成物を研磨パッドと被研磨ガラス基板との間に存在させて研磨する工程を有するガラス基板の製造方法であって、前記研磨液組成物のpHは4以下であり、前記研磨液組成物及び前記被研磨ガラス基板が、前記研磨液組成物に浸漬した前記被研磨ガラス基板の表面に原子間力顕微鏡の探針を押し付けて測定される探針の進入深さが4nm以下となる関係を満たすものである。これにより、例えば、研磨後の表面粗さが低減され、かつ、経済的な研磨速度を有する研磨が可能となり、その結果、基板品質が向上したガラス基板を生産性よく製造できるという効果が奏される。   The method for producing a glass substrate of the present invention is a method for producing a glass substrate, comprising a step of polishing a polishing composition containing an abrasive and water between a polishing pad and a glass substrate to be polished. The polishing liquid composition has a pH of 4 or less, and the polishing liquid composition and the glass substrate to be polished are provided with an atomic force microscope probe on the surface of the glass substrate to be polished immersed in the polishing liquid composition. This satisfies the relationship that the probe penetration depth measured by pressing is 4 nm or less. As a result, for example, the surface roughness after polishing is reduced and polishing with an economical polishing rate is possible, and as a result, an effect that a glass substrate with improved substrate quality can be produced with high productivity is exhibited. The

[探針の進入深さ]
本発明のガラス基板の製造方法(以下、本発明の製造方法ともいう)において、探針の進入深さとは、研磨液組成物に浸漬したガラス基板の表面に原子間力顕微鏡(AFM)の探針を押し付けて測定される探針の進入深さをいい、より具体的には、下記の標準試験により測定される探針の進入深さをいう。研磨後の基板の表面粗さの低減の観点から、探針の進入深さは、好ましくは3nm以下、より好ましくは2nm以下であり、研磨速度向上の観点から、好ましくは0.5nm以上、より好ましくは1nm以上である。
[Probe penetration depth]
In the method for manufacturing a glass substrate of the present invention (hereinafter also referred to as the manufacturing method of the present invention), the penetration depth of the probe is the probe of an atomic force microscope (AFM) on the surface of the glass substrate immersed in the polishing composition. It refers to the probe penetration depth measured by pressing the needle, and more specifically, the probe penetration depth measured by the following standard test. From the viewpoint of reducing the surface roughness of the substrate after polishing, the penetration depth of the probe is preferably 3 nm or less, more preferably 2 nm or less, and from the viewpoint of improving the polishing rate, preferably 0.5 nm or more, more Preferably it is 1 nm or more.

[標準試験]
まず、被測定ガラス基板を測定可能なサイズに切断し、研磨液組成物に浸漬した状態でAFM装置にセットする。前記サイズとしては、使用するAFM装置に依存するが、例えば、10mm×10mmが挙げられる。続いて、研磨された新生面が次々に現れる実際の研磨をシミュレートするため前処理として0.5μm×0.5μmの範囲を0.73μNの荷重をかけて1Hzでスキャンして新生面を作る。そして、下記の条件で前記新生面にAFM装置の探針を押し付けて進入深さを求める。
測定(押し付け)条件
ガラス基板移動距離:100nm
接近速度 :1Hz(200nm/s)
測定場所 :新生面0.5μm×0.5μmの中央付近
測定回数 :場所を変えてN=3回
カンチレバー :Veeco社製NP−S(Si3N4チップ)
折り返し(押し込み終了)設定値:カンチレバーの反り返り量=40nm
進入深さの最上面は、被測定ガラス基板表面に探針が接触してカンチレバーが反り始めた位置とする。さらに探針を押し込んでいき、カンチレバーの反りが40nmに達した時点で押し込みを終了し、その位置を最下面とする。この最上面と最下面との位置の差を進入深さと定義し、計3回の平均値を探針の進入深さとする。
[Standard test]
First, the glass substrate to be measured is cut into a measurable size and set in an AFM apparatus in a state of being immersed in the polishing composition. Although the size depends on the AFM apparatus to be used, for example, 10 mm × 10 mm can be mentioned. Subsequently, in order to simulate actual polishing in which polished new surfaces appear one after another, a new surface is formed by scanning a range of 0.5 μm × 0.5 μm at 1 Hz with a load of 0.73 μN as preprocessing. Then, the penetration depth is obtained by pressing the probe of the AFM device against the new surface under the following conditions.
Measurement (pressing) conditions <br/> Glass substrate moving distance: 100 nm
Approach speed: 1Hz (200nm / s)
Measurement location: Number of measurements near the center of the new surface 0.5 μm × 0.5 μm: N = 3 times at different locations Cantilever: NP-S (Si3N4 chip) manufactured by Veeco
Folding (pushing end) set value: Cantilever warping amount = 40 nm
The uppermost surface of the penetration depth is a position where the probe comes into contact with the surface of the glass substrate to be measured and the cantilever starts to warp. Further, the probe is pushed in, and when the cantilever warpage reaches 40 nm, the pushing is finished, and the position is set as the lowermost surface. The difference in position between the uppermost surface and the lowermost surface is defined as the penetration depth, and the average of three times is defined as the penetration depth of the probe.

この標準試験に使用するAFM装置の一例としては、下記の装置が挙げられる。
測定装置の概要(一例)
製造元:Veeco社製(旧Digital Instruments社製)
コントローラー:NanoScope IIIa
本体:Multi−mode AFM
スキャナ:JVスキャナ
なお、上記装置は一例であって、標準試験に用いるAFM装置はこれに限定されない。
Examples of the AFM apparatus used for this standard test include the following apparatuses.
Outline of measuring device (example)
Manufacturer: Veeco (formerly Digital Instruments)
Controller: NanoScope IIIa
Body: Multi-mode AFM
Scanner: JV Scanner The above apparatus is an example, and the AFM apparatus used for the standard test is not limited to this.

[研磨液組成物]
本発明における研磨液組成物は、研磨材及び水を含み、pHが4以下である。研磨液組成物のpHは、研磨速度の向上の観点から、好ましくはpH1〜4、より好ましくはpH1〜3、さらに好ましくはpH1〜2である。研磨液組成物は、研磨後の基板の表面粗さの低減の観点から、さらに水溶性高分子を含有することが好ましい。水溶性高分子を研磨液組成物に添加することで、好ましくは、探針の進入深さを制御できる。
[Polishing liquid composition]
The polishing composition in the present invention contains an abrasive and water and has a pH of 4 or less. The pH of the polishing composition is preferably pH 1 to 4, more preferably pH 1 to 3, and still more preferably pH 1 to 2, from the viewpoint of improving the polishing rate. It is preferable that the polishing composition further contains a water-soluble polymer from the viewpoint of reducing the surface roughness of the substrate after polishing. By adding a water-soluble polymer to the polishing composition, the depth of penetration of the probe can be preferably controlled.

[研磨材]
本発明における研磨材としては、研磨用に一般的に使用されている研磨材を使用することができ、金属、金属若しくは半金属の炭化物、窒化物、酸化物、又はホウ化物、ダイヤモンド等が挙げられる。金属又は半金属元素は、周期律表(長周期型)の2A、2B、3A、3B、4A、4B、5A、6A、7A又は8族由来のものである。研磨材の具体例としては、酸化珪素(以下、シリカという)、酸化アルミニウム(以下、アルミナという)、炭化珪素、ダイヤモンド、酸化マンガン、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化セリウム、酸化ジルコニウム等、またこれら研磨材の表面を官能基で修飾あるいは表面改質したもの、界面活性剤や研磨材で複合粒子化したもの等が挙げられ、これらを一種以上使用することは表面粗さを低減させる観点から好ましい。更に、研磨後の基板の表面粗さの低減及びスクラッチの低減の観点から、コロイダル粒子とヒュームドシリカ粒子が好ましく、より好ましくはコロイダル粒子あり、中でもコロイダルシリカが好ましい。なお、研磨材は、上記のものを単独で又は2種以上を混合して用いても良い。研磨材は、使用時には研磨液組成物中で分散していることが好ましい。
[Abrasive]
As the abrasive in the present invention, an abrasive generally used for polishing can be used, and examples thereof include metal, metal or metalloid carbide, nitride, oxide, boride, diamond, and the like. It is done. The metal or metalloid element is derived from Group 2A, 2B, 3A, 3B, 4A, 4B, 5A, 6A, 7A or Group 8 of the periodic table (long period type). Specific examples of the abrasive include silicon oxide (hereinafter referred to as silica), aluminum oxide (hereinafter referred to as alumina), silicon carbide, diamond, manganese oxide, magnesium oxide, zinc oxide, titanium oxide, cerium oxide, zirconium oxide, and the like. In addition, the surface of these abrasives may be modified or surface-modified with a functional group, or may be compounded with a surfactant or an abrasive, and the use of one or more of these may reduce surface roughness. To preferred. Furthermore, colloidal particles and fumed silica particles are preferable from the viewpoint of reducing the surface roughness of the substrate after polishing and reducing scratches, more preferably colloidal particles, and of these, colloidal silica is particularly preferable. In addition, you may use the above-mentioned thing individually or in mixture of 2 or more types as an abrasive. The abrasive is preferably dispersed in the polishing composition at the time of use.

コロイダルシリカは、珪酸ナトリウム等の珪酸アルカリ金属塩を原料とし、水溶液中で縮合反応させて粒子を成長させる水ガラス法、またはテトラエトキシシラン等のアルコキシシランを原料とし、アルコール等の水溶性有機溶媒を含有する水中で縮合反応させて成長させるアルコキシシラン法で得られる。また、ヒュームドシリカは、四塩化珪素等の揮発性珪素化合物を原料とし、酸素水素バーナーによる1000℃以上の高温下で加水分解させて成長させる気相法で得られる。   Colloidal silica is a water-glass method in which alkali metal silicates such as sodium silicate are used as raw materials, and are subjected to a condensation reaction in an aqueous solution to grow particles, or alkoxysilanes such as tetraethoxysilane as raw materials, and water-soluble organic solvents such as alcohols. It is obtained by an alkoxysilane method in which a condensation reaction is carried out in water containing. Further, fumed silica is obtained by a vapor phase method in which a volatile silicon compound such as silicon tetrachloride is used as a raw material and is hydrolyzed and grown at a high temperature of 1000 ° C. or higher with an oxygen-hydrogen burner.

シリカの一次粒子の平均粒径は、研磨後の基板の表面粗さの低減の観点から、1〜50nmであることが好ましい。さらに研磨速度を向上させる観点から、より好ましくは3〜50nm、さらに好ましくは5〜40nm、さらにより好ましくは5〜30nmである。本発明における一次粒子の平均粒径の決定には、透過型電子顕微鏡(TEM)での観察画像の画像解析による方法を用いた。即ち、シリカ粒子を透過型電子顕微鏡(JEM−2000FX、製造元;日本電子)で、加速電圧80kV、撮影倍率1万〜5万倍の条件で観察した写真を、パーソナルコンピューターに接続したスキャナにて画像データとして取り込み、画像解析ソフト(WinROOF、販売元;三谷商事)を用いて1個1個のシリカ粒子の円相当径(シリカ粒子の投影面積と同一面積を有する円の直径)を粒径とみなして求め、1000個以上のシリカ粒子データを集積した後、表計算ソフト「EXCEL」(マイクロソフト社製)を用いて算出する。小粒径側からの累積体積が50%となる粒径(D50)が、本発明でいう一次粒子の平均粒径である。 The average particle size of the primary particles of silica is preferably 1 to 50 nm from the viewpoint of reducing the surface roughness of the substrate after polishing. From the viewpoint of further improving the polishing rate, it is more preferably 3 to 50 nm, further preferably 5 to 40 nm, and still more preferably 5 to 30 nm. In the determination of the average particle size of the primary particles in the present invention, a method by image analysis of an observation image with a transmission electron microscope (TEM) was used. That is, a photograph obtained by observing silica particles with a transmission electron microscope (JEM-2000FX, manufacturer: JEOL) under the conditions of an acceleration voltage of 80 kV and a photographing magnification of 10,000 to 50,000 times is displayed with a scanner connected to a personal computer. Imported as data, and using image analysis software (WinROOF, distributor: Mitani Shoji), the equivalent circle diameter of each silica particle (the diameter of a circle having the same area as the projected area of the silica particles) is regarded as the particle size. After accumulating 1000 or more pieces of silica particle data, it is calculated using spreadsheet software “EXCEL” (manufactured by Microsoft). The particle size (D 50 ) at which the cumulative volume from the small particle size side becomes 50% is the average particle size of the primary particles as referred to in the present invention.

シリカが二次粒子を形成している場合、二次粒子の平均粒径は、スクラッチを低減する観点及び表面粗さを低減する観点から、10〜100nmが好ましく、15〜90nmがより好ましく、15〜80nmがさらに好ましい。二次粒子径の測定法としては、動的光散乱法や超音波減衰法、キャピラリー(CHDF)法等が挙げられる。   When silica forms secondary particles, the average particle size of the secondary particles is preferably 10 to 100 nm, more preferably 15 to 90 nm, from the viewpoint of reducing scratches and reducing the surface roughness. More preferably, it is 80 nm. Examples of the method for measuring the secondary particle diameter include a dynamic light scattering method, an ultrasonic attenuation method, and a capillary (CHDF) method.

研磨液組成物中におけるシリカの含有量としては、シリカ研磨後の基板の表面粗さの低減及び研磨速度の向上の観点から、0.1〜50重量%が好ましく、1〜45重量%がより好ましく、5〜40重量%がさらに好ましい。   The content of silica in the polishing composition is preferably 0.1 to 50% by weight, more preferably 1 to 45% by weight from the viewpoint of reducing the surface roughness of the substrate after silica polishing and improving the polishing rate. Preferably, 5 to 40% by weight is more preferable.

[水]
本発明に用いる水としては、イオン交換水、蒸留水、超純水等が好適に用いられる。研磨液組成物中における水の含有量としては、研磨液組成物の流動性を保ち、かつ、研磨速度を向上させる観点から、40〜99重量%が好ましく、50〜98重量%がより好ましく、50〜97重量%がさらに好ましく、50〜95重量%がさらにより好ましい。
[water]
As the water used in the present invention, ion exchange water, distilled water, ultrapure water or the like is preferably used. The water content in the polishing composition is preferably 40 to 99% by weight, more preferably 50 to 98% by weight from the viewpoint of maintaining the fluidity of the polishing composition and improving the polishing rate. 50 to 97% by weight is more preferred, and 50 to 95% by weight is even more preferred.

[水溶性高分子]
本発明の製造方法に用いる研磨液組成物に含めることができる水溶性高分子としては、カルボン酸基を有する単量体由来の構成単位及びスルホン酸基を有する単量体由来の構成単位からなる群から選択される少なくとも1種の構成単位を有する(共)重合体(以下、アニオン性水溶性高分子ともいう)が好ましい。カルボン酸基を有する単量体としては、例えば、イタコン酸、(メタ)アクリル酸、マレイン酸等が挙げられる。スルホン酸基を有する単量体としては、例えば、イソプレンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、スチレンスルホン酸、メタリルスルホン酸、ビニルスルホン酸、アリルスルホン酸、イソアミレンスルホン酸等が挙げられる。中でも、表面粗さ低減の観点から、イソプレンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸が好ましい。アニオン性水溶性高分子には、カルボン酸基を有する単量体由来の構成単位、及び、スルホン酸基を有する単量体由来の構成単位は、それぞれ、2種類以上含まれてもよい。また、アニオン性水溶性高分子は、これら以外の構成単位成分を含有することができる。
[Water-soluble polymer]
The water-soluble polymer that can be included in the polishing composition used in the production method of the present invention comprises a structural unit derived from a monomer having a carboxylic acid group and a structural unit derived from a monomer having a sulfonic acid group. A (co) polymer (hereinafter also referred to as an anionic water-soluble polymer) having at least one structural unit selected from the group is preferred. Examples of the monomer having a carboxylic acid group include itaconic acid, (meth) acrylic acid, maleic acid and the like. Examples of the monomer having a sulfonic acid group include isoprene sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, styrene sulfonic acid, methallyl sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, isoamido Examples include lensulfonic acid. Of these, isoprenesulfonic acid and 2- (meth) acrylamide-2-methylpropanesulfonic acid are preferable from the viewpoint of reducing the surface roughness. The anionic water-soluble polymer may contain two or more types of structural units derived from a monomer having a carboxylic acid group and structural units derived from a monomer having a sulfonic acid group. In addition, the anionic water-soluble polymer can contain structural unit components other than these.

好ましいアニオン性水溶性高分子としては、研磨後の基板の表面粗さの低減の観点から、(メタ)アクリル酸とイソプレンスルホン酸とを重合させて得られる共重合体、(メタ)アクリル酸と2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸とを重合させて得られる共重合体、(メタ)アクリル酸、イソプレンスルホン酸及び2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸を重合させて得られる共重合体等が挙げられる。   As a preferable anionic water-soluble polymer, from the viewpoint of reducing the surface roughness of the substrate after polishing, a copolymer obtained by polymerizing (meth) acrylic acid and isoprenesulfonic acid, (meth) acrylic acid and A copolymer obtained by polymerizing 2- (meth) acrylamido-2-methylpropanesulfonic acid, polymerizing (meth) acrylic acid, isoprenesulfonic acid and 2- (meth) acrylamido-2-methylpropanesulfonic acid. And a copolymer obtained in the above manner.

アニオン性水溶性高分子の全構成単位中に占めるスルホン酸基含有単量体由来の構成単位の含有率は、研磨後の基板の表面粗さの低減、研磨速度の向上及び共重合体自身の残存性の観点から、10〜100モル%が好ましく、より好ましくは20〜100モル%、さらに好ましくは40〜100モル%である。尚、ここでスルホン酸基を含むアクリル酸単量体は、スルホン酸基含有単量体として数える。   The content of the structural unit derived from the sulfonic acid group-containing monomer in all the structural units of the anionic water-soluble polymer is reduced in the surface roughness of the substrate after polishing, the polishing rate is improved, and the copolymer itself. From the viewpoint of persistence, 10 to 100 mol% is preferable, more preferably 20 to 100 mol%, and still more preferably 40 to 100 mol%. Here, the acrylic acid monomer containing a sulfonic acid group is counted as a sulfonic acid group-containing monomer.

アニオン性水溶性高分子の重量平均分子量は、研磨後の基板の表面粗さの低減、研磨速度の向上及び共重合体自身の残存性の観点から、500〜20000が好ましく、500〜10000がより好ましく、500〜5000がさらに好ましく、500〜3000がさらにより好ましく、500〜1500がよりいっそう好ましい。この重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した結果を、ポリスチレンスルホン酸ナトリウムを標準サンプルとして作成した検量線を用いて換算して行うことができる。GPC条件を以下に示す。
GPC条件
カラム;G4000PWXL(東ソー社製)+G2500PWXL(東ソー社製)
溶離液:0.2Mリン酸バッファー/アセトニトリル=9/1(容量比)
流速:1.0mL/min
温度:40℃
検出:210nm
サンプル:濃度5mg/mL(注入量100μL)
The weight average molecular weight of the anionic water-soluble polymer is preferably from 500 to 20,000, more preferably from 500 to 10,000, from the viewpoints of reduction of the surface roughness of the substrate after polishing, improvement of the polishing rate, and persistence of the copolymer itself. Preferably, 500 to 5000 is more preferable, 500 to 3000 is even more preferable, and 500 to 1500 is even more preferable. The measurement of this weight average molecular weight can be performed by converting the result measured by gel permeation chromatography (GPC) using a calibration curve prepared using sodium polystyrene sulfonate as a standard sample. The GPC conditions are shown below.
GPC condition column; G4000PWXL (manufactured by Tosoh Corporation) + G2500PWXL (manufactured by Tosoh Corporation)
Eluent: 0.2M phosphate buffer / acetonitrile = 9/1 (volume ratio)
Flow rate: 1.0 mL / min
Temperature: 40 ° C
Detection: 210nm
Sample: concentration 5 mg / mL (injection volume 100 μL)

アニオン性水溶性高分子は、例えば、ジエン構造あるいは芳香族構造を含むベースポリマーを、公知の方法、例えば、(社)日本化学会編集、新実験化学講座14(有機化合物の合成と反応III、1773頁、1978年)などに記載された方法でスルホン化して得られる。また、アニオン性水溶性高分子は、塩の形態であってもよい。塩を形成させるための対イオンは、特に限定されないが、ナトリウム、カリウム等のアルカリ金属イオン、アンモニウムイオン、アルキルアンモニウムイオン等から1種以上を用いることができる。   An anionic water-soluble polymer is obtained by, for example, converting a base polymer containing a diene structure or an aromatic structure into a known method, for example, edited by The Chemical Society of Japan, New Experimental Chemistry Course 14 (Synthesis and Reaction of Organic Compounds III, 1773, 1978) and the like. The anionic water-soluble polymer may be in the form of a salt. Although the counter ion for forming a salt is not specifically limited, 1 or more types can be used from alkali metal ions, such as sodium and potassium, ammonium ion, alkylammonium ion, etc.

研磨液組成物中における水溶性高分子又はアニオン性水溶性高分子の含有量は、研磨後の基板の表面粗さの低減及び研磨速度の向上の観点から、0.0001〜10重量%が好ましく、より好ましくは0.001〜5重量%、さらに好ましくは0.005〜1重量%である。   The content of the water-soluble polymer or anionic water-soluble polymer in the polishing composition is preferably 0.0001 to 10% by weight from the viewpoint of reducing the surface roughness of the substrate after polishing and improving the polishing rate. More preferably, it is 0.001 to 5 weight%, More preferably, it is 0.005 to 1 weight%.

上述のとおり、水溶性高分子又はアニオン性水溶性高分子を研磨液組成物に添加することで、好ましくは、探針の進入深さを制御できる。例えば、水と研磨剤とからなる研磨液組成物とある被研磨ガラス基板とが探針の進入深さ4nmを超える場合、水溶性高分子又はアニオン性水溶性高分子を研磨液組成物に添加することで、探針の進入深さを4nm以下とすることができる。水溶性高分子又はアニオン性水溶性高分子により探針の進入深さが低減される機構は明らかでないが、次のように考えられる。すなわち、研磨中のガラス基板表面には研磨新生面が次々と生成する。この研磨新生面は通常のガラス基板表面に比べて非常に活性な状態にあるため、水溶性高分子中のカルボキシル基などのアニオン性基が吸着しやすく、吸着した水溶性高分子がガラス基板中のNaイオンの溶出を防止することによりガラス基板表層の脆化が抑制され、その結果、探針の進入深さが低減される。なお、カルボキシル基と更にスルホン酸基を含有する水溶性高分子の場合には、酸性条件下での水溶性がより高まるため研磨新生面への吸着速度が速くなり、探針の進入深さがより制御されると推定される。   As described above, the depth of penetration of the probe can be preferably controlled by adding a water-soluble polymer or an anionic water-soluble polymer to the polishing composition. For example, when a polishing composition composed of water and an abrasive and a glass substrate to be polished exceed a probe penetration depth of 4 nm, a water-soluble polymer or an anionic water-soluble polymer is added to the polishing composition. By doing so, the penetration depth of the probe can be set to 4 nm or less. The mechanism by which the penetration depth of the probe is reduced by the water-soluble polymer or the anionic water-soluble polymer is not clear, but is considered as follows. That is, new polishing surfaces are successively generated on the surface of the glass substrate being polished. Since this polished new surface is in a very active state compared to the normal glass substrate surface, anionic groups such as carboxyl groups in the water-soluble polymer are easily adsorbed, and the adsorbed water-soluble polymer is in the glass substrate. By preventing the elution of Na ions, embrittlement of the surface layer of the glass substrate is suppressed, and as a result, the penetration depth of the probe is reduced. In the case of a water-soluble polymer containing a carboxyl group and a sulfonic acid group, the water-soluble property under acidic conditions is further increased, so that the adsorption rate to the newly polished surface is increased and the probe penetration depth is further increased. Presumed to be controlled.

[研磨液組成物の製造方法]
研磨液組成物は、前記の各成分(水、研磨剤、必要に応じて水溶性高分子などのその他の成分)を公知の方法で混合することにより調製することができる。研磨液組成物は経済性の観点から、通常、濃縮液として製造され、これを使用時に希釈する場合が多い。なお、上述の標準試験は、使用時の研磨液組成物で行うことが好ましい。研磨液組成物のpHは、例えば、酸の含有量によって調整できる。かかる酸としては無機酸や有機酸が挙げられる。無機酸としては、塩酸、硝酸、硫酸、リン酸、ポリリン酸、アミド硫酸等が挙げられる。また、有機酸としては、カルボン酸、有機リン酸、アミノ酸等が挙げられ、例えば、カルボン酸は、酢酸、グリコール酸、アスコルビン酸等の一価カルボン酸、蓚酸、酒石酸等の二価カルボン酸、クエン酸等の三価カルボン酸が挙げられ、有機リン酸としては、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸(HEDP)、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等が挙げられる。また、アミノ酸としては、グリシン、アラニン等が挙げられる。これらの中でも、表面粗さ低減の観点から、無機酸、カルボン酸及び有機リン酸が好ましく、例えば、塩酸、硝酸、硫酸、リン酸、ポリリン酸、グリコール酸、酸、クエン酸、HEDP、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)が適している。これらpHを調整するための酸は、1種単独で使用しても、あるいは2種以上を混合して用いても良い。
[Method for producing polishing composition]
The polishing composition can be prepared by mixing the above-described components (water, abrasive, and other components such as a water-soluble polymer as required) by a known method. From the viewpoint of economy, the polishing liquid composition is usually produced as a concentrated liquid and is often diluted at the time of use. In addition, it is preferable to perform the above-mentioned standard test with the polishing liquid composition at the time of use. The pH of the polishing composition can be adjusted by, for example, the acid content. Such acids include inorganic acids and organic acids. Examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, amidosulfuric acid and the like. Examples of organic acids include carboxylic acids, organic phosphoric acids, amino acids, and the like. For example, carboxylic acids include monovalent carboxylic acids such as acetic acid, glycolic acid, and ascorbic acid, divalent carboxylic acids such as oxalic acid and tartaric acid, Examples of the organic phosphoric acid include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid), ethylenediaminetetra ( Methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and the like. Examples of amino acids include glycine and alanine. Among these, inorganic acid, carboxylic acid and organic phosphoric acid are preferable from the viewpoint of surface roughness reduction. For example, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, glycolic acid, acid, citric acid, HEDP, aminotri ( Methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) are suitable. These acids for adjusting the pH may be used singly or in combination of two or more.

[任意成分]
研磨液組成物は、さらに、酸化剤、殺菌剤、抗菌剤、増粘剤、分散剤、防錆剤、塩基性物質、界面活性剤及びpH調整剤等を含んでもよい。研磨液組成物中におけるこれらの成分の含有量は、研磨特性の観点から、10重量%以下が好ましく、より好ましくは8重量%以下、さらに好ましくは6重量%以下である。
[Optional ingredients]
The polishing liquid composition may further contain an oxidizing agent, a bactericidal agent, an antibacterial agent, a thickener, a dispersant, a rust preventive agent, a basic substance, a surfactant, a pH adjuster, and the like. The content of these components in the polishing composition is preferably 10% by weight or less, more preferably 8% by weight or less, and still more preferably 6% by weight or less from the viewpoint of polishing characteristics.

[被研磨ガラス基板/製造されるガラス基板]
本発明の製造方法により製造されるガラス基板は、例えば磁気ディスク、光磁気ディスク用のガラスハードディスク基板が挙げられ、液晶ディスプレイ、プラズマディスプレイ(以下PDという。)、無機及び有機エレクトロルミネッセンスディスプレイ、フィールドエミッションディスプレイ等のフラットパネルディスプレイ用のガラス基板、フォトマスク基板、その他、光ディスク、光学レンズ、光学ミラー、光学プリズム、半導体基板などの精密部品用ガラス基板が挙げられる。したがって、本発明の製造方法における被研磨ガラス基板としては、これらの製造されるガラス基板の被研磨ガラス基板が挙げられる。被研磨ガラス基板の材質としては、例えば、石英ガラス、ソーダライムガラス、アルミノシリケートガラス、ボロシリケートガラス、アルミノボロシリケートガラス、無アルカリガラス、結晶化ガラス、ガラス状カーボン等が挙げられる。これらの中でも、ナトリウム(Na)を含有するガラス基板に対して本発明は特に顕著な効果を奏する。また、被研磨ガラス基板の材質としては、強化ガラス基板用のアルミノシリケートガラスや、ガラスセラミック基板(結晶化ガラス基板)であってもよい。被研磨ガラス基板の形状には、特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平坦部を有する形状や、レンズ等の曲面部を有する形状であってもよい。
[Polished glass substrate / manufactured glass substrate]
Examples of the glass substrate produced by the production method of the present invention include a magnetic hard disk substrate for a magnetic disk and a magneto-optical disk, and include a liquid crystal display, a plasma display (hereinafter referred to as PD), an inorganic and organic electroluminescence display, and a field emission. Examples include glass substrates for flat panel displays such as displays, photomask substrates, and other glass substrates for precision parts such as optical disks, optical lenses, optical mirrors, optical prisms, and semiconductor substrates. Therefore, examples of the glass substrate to be polished in the production method of the present invention include glass substrates to be polished of these produced glass substrates. Examples of the material of the glass substrate to be polished include quartz glass, soda lime glass, aluminosilicate glass, borosilicate glass, aluminoborosilicate glass, alkali-free glass, crystallized glass, and glassy carbon. Among these, this invention has a remarkable effect with respect to the glass substrate containing sodium (Na). The material of the glass substrate to be polished may be an aluminosilicate glass for a tempered glass substrate or a glass ceramic substrate (crystallized glass substrate). There is no restriction | limiting in particular in the shape of a glass substrate to be polished, For example, the shape which has flat parts, such as a disk shape, plate shape, slab shape, prism shape, and the shape which has curved surface parts, such as a lens, may be sufficient.

[ガラス基板の製造方法]
本発明の製造方法は、pHは4以下の研磨液組成物を研磨パッドと被研磨ガラス基板との間に存在させて研磨する工程であって、研磨液組成物と被研磨ガラス基板とが探針の進入深さが4nm以下となる関係を満たす研磨する工程(以下、「研磨する工程」ともいう)を有する。この「研磨する工程」における研磨する方法としては、研磨装置を用いる研磨方法が挙げられる。具体的には、被研磨ガラス基板をキャリアで保持し、研磨パッドを貼り付けた研磨定盤で挟み込み、研磨液組成物を研磨パッドと被研磨ガラス基板との間に供給し、所定の圧力の下で研磨定盤及び/又は被研磨ガラス基板を動かすことにより、研磨液組成物を被研磨ガラス基板に接触させながら研磨する研磨方法が挙げられる。この「研磨する工程」において、探針の深さが4nm以下となる関係を満たす研磨液組成物を用いて被研磨ガラス基板を研磨することにより、例えば、研磨の工程において研磨後の表面粗さが低減され、かつ、経済的な研磨速度を有する研磨が可能となり、それにより基板品質が向上したガラス基板を生産性よく製造できる。
[Glass substrate manufacturing method]
The production method of the present invention is a step of polishing a polishing composition having a pH of 4 or less between a polishing pad and a glass substrate to be polished, wherein the polishing liquid composition and the glass substrate to be polished are searched. There is a polishing step (hereinafter also referred to as “polishing step”) that satisfies the relationship that the needle penetration depth is 4 nm or less. As a polishing method in this “polishing step”, a polishing method using a polishing apparatus may be mentioned. Specifically, the glass substrate to be polished is held by a carrier, sandwiched by a polishing platen to which a polishing pad is attached, a polishing composition is supplied between the polishing pad and the glass substrate to be polished, and a predetermined pressure is applied. There is a polishing method in which the polishing liquid composition is moved while the polishing liquid composition is in contact with the glass substrate to be polished by moving the polishing platen and / or the glass substrate to be polished. In this “polishing step”, by polishing the glass substrate to be polished using a polishing composition that satisfies the relationship that the probe depth is 4 nm or less, for example, the surface roughness after polishing in the polishing step And a glass substrate with improved substrate quality can be manufactured with high productivity.

本発明の製造方法に用いるガラス基板の研磨装置としては、特に制限はなく、例えば、被研磨ガラス基板を保持する手段(キャリア;アラミド製等)と研磨布(研磨パッド)を備える研磨装置を用いることができる。中でも、ポリッシング工程に用いられる両面研磨装置が好ましく使用できる。本発明の製造方法において研磨荷重は、研磨時に被研磨ガラス基板の研磨面に加えられる圧力をいうが、研磨速度の向上の観点から、3kPa以上が好ましく、4kPa以上がより好ましく、5kPa以上がさらにより好ましく、5.5kPa以上がよりいっそう好ましい。また、研磨後の基板の表面粗さを低減させる観点から、20kPa以下が好ましく、15kPa以下がより好ましく、10kPa以下がさらにより好ましく、9kPa以下がよりいっそう好ましい。従って、研磨後のガラス基板の表面粗さの低減及び研磨速度の向上の観点から、好ましくは3〜20kPa、より好ましくは4〜15kPa、さらにより好ましくは5〜10kPa、よりいっそう好ましくは5.5〜9kPaである。「研磨する工程」における研磨液組成物の好ましい供給速度は、被研磨ガラス基板と接触する研磨パッドの面積と投入した基板の総面積によって、更に研磨液組成物の種類によって異なるため、一概には決められないが、研磨後のガラス基板の表面粗さの低減及び研磨速度の向上の観点から、被研磨ガラス基板の単位被研磨面積(1cm2)当り、0.06〜5mL/minが好ましく、0.08〜4mL/minがより好ましく、0.1〜3mL/minがさらに好ましい。 The glass substrate polishing apparatus used in the production method of the present invention is not particularly limited, and for example, a polishing apparatus including means for holding a glass substrate to be polished (carrier: made of aramid, etc.) and a polishing cloth (polishing pad) is used. be able to. Especially, the double-side polish apparatus used for a polishing process can be used preferably. In the production method of the present invention, the polishing load refers to the pressure applied to the polishing surface of the glass substrate to be polished at the time of polishing. From the viewpoint of improving the polishing rate, it is preferably 3 kPa or more, more preferably 4 kPa or more, and further 5 kPa or more. More preferably, 5.5 kPa or more is even more preferable. Further, from the viewpoint of reducing the surface roughness of the substrate after polishing, it is preferably 20 kPa or less, more preferably 15 kPa or less, even more preferably 10 kPa or less, and even more preferably 9 kPa or less. Therefore, from the viewpoint of reducing the surface roughness of the glass substrate after polishing and improving the polishing rate, it is preferably 3 to 20 kPa, more preferably 4 to 15 kPa, even more preferably 5 to 10 kPa, and even more preferably 5.5. ~ 9kPa. Since the preferable supply rate of the polishing liquid composition in the “polishing step” varies depending on the area of the polishing pad in contact with the glass substrate to be polished and the total area of the loaded substrate, and further on the type of polishing liquid composition, Although not determined, 0.06 to 5 mL / min per unit polished area (1 cm 2 ) of the glass substrate to be polished is preferable from the viewpoint of reducing the surface roughness of the glass substrate after polishing and improving the polishing rate. 0.08-4 mL / min is more preferable, and 0.1-3 mL / min is more preferable.

[ガラスハードディスク基板の製造方法]
製造されるガラス基板がガラスハードディスク基板である本発明の製造方法の一実施形態を説明する。この場合ガラスハードディスク基板は、例えば、溶融ガラスの型枠プレス又はシートガラスから切り出す方法によってガラス基板を得る工程から、粗研削工程、形状加工工程、端面鏡面加工工程、精研削工程、研磨工程、洗浄工程を経て製造される。そして、さらに磁気ディスク製造工程を得ることで磁気ディスクとなる。また、一般に、この製造工程の途中、強化ガラス基板の場合は、洗浄工程の次に、硝酸カリウムと硝酸ナトリウムの化学強化塩を加熱した中に基板を浸漬処理して表層のイオンを置換させる化学強化工程が行われる。結晶化ガラス基板の場合は、この製造工程の前に、熱処理により結晶核を生成させて結晶相とする結晶化工程が予め行われる。また、例えば、粗研削工程では#400程度のアルミナ砥粒、形状加工工程では円筒状の砥石、端面鏡面加工工程ではブラシ、精研削工程では#1000程度のアルミナ砥粒が用いられる。研磨工程は、一般に、第一研磨工程と第二研磨工程に分かれるが、表面品質の向上を目的として更に最終(仕上げ)研磨工程を行う場合が多い。第一研磨工程では酸化セリウム、最終(仕上げ)研磨工程ではシリカが好適に用いられる。従って、本発明の製造方法における「研磨する工程」は、例えば、ガラスハードディスク基板の製造方法における研磨工程で用いられ、第二研磨工程以降として用いられることが好ましく、表面粗さを顕著に低減し、優れた表面平滑性を得る観点から、仕上げ研磨工程に用いられることがより好ましい。なお、仕上げ研磨工程とは、複数の研磨工程がある場合、少なくとも一つの最後の研磨工程を指す。ガラスハードディスク基板には、磁気ヘッドの読み書きエラーが発生しない平滑性が要求される。即ち、基板表面の平坦性(粗さ、うねり等)や欠陥(砥粒等の凸部、スクラッチやピット等の凹部)に優れることが求められ、ガラスハードディスク基板の製造工程の中で研磨工程がその役割を担い、第二研磨工程又は最終(仕上げ)研磨工程が特に重要である。研磨工程後は、ガラス基板表面に残留したシリカ砥粒や研磨屑を除去するためにスクラブ洗浄、及び/又は該残留物を溶解除去するために水酸化ナトリウム水溶液等を用いた強アルカリ超音波洗浄を行い、次いで純水、イソプロパノール等での浸漬洗浄、及びイソプロパノール等での蒸気乾燥が行われる。その後、シード層、下地層、中間層、磁性層、保護層、潤滑層を成膜して磁気ディスクとなる。したがって、本発明は、その他の態様として、「研磨する工程」を含む磁気ディスクの製造方法である。
[Glass hard disk substrate manufacturing method]
An embodiment of the production method of the present invention in which the glass substrate to be produced is a glass hard disk substrate will be described. In this case, the glass hard disk substrate is, for example, from a process of obtaining a glass substrate by a mold press of molten glass or a method of cutting out from sheet glass, a rough grinding process, a shape processing process, an end mirror processing process, a fine grinding process, a polishing process, and a cleaning process. It is manufactured through a process. Further, a magnetic disk is obtained by obtaining a magnetic disk manufacturing process. In general, in the case of a tempered glass substrate in the middle of this manufacturing process, next to the cleaning step, chemical strengthening is performed by immersing the substrate in a heated chemical strengthening salt of potassium nitrate and sodium nitrate to replace ions on the surface layer. A process is performed. In the case of a crystallized glass substrate, prior to this manufacturing process, a crystallization process is performed in advance to generate crystal nuclei by heat treatment to form a crystal phase. Also, for example, about # 400 alumina abrasive grains are used in the rough grinding process, cylindrical grinding stones are used in the shape processing process, brushes are used in the end mirror processing process, and about # 1000 alumina abrasive grains are used in the fine grinding process. The polishing step is generally divided into a first polishing step and a second polishing step, but a final (finishing) polishing step is often performed for the purpose of improving the surface quality. Cerium oxide is preferably used in the first polishing step, and silica is preferably used in the final (finish) polishing step. Accordingly, the “polishing step” in the production method of the present invention is preferably used, for example, in the polishing step in the method for producing a glass hard disk substrate, and is preferably used as the second polishing step or later, which significantly reduces the surface roughness. From the viewpoint of obtaining excellent surface smoothness, it is more preferably used in the finish polishing step. Note that the finish polishing step refers to at least one final polishing step when there are a plurality of polishing steps. The glass hard disk substrate is required to have smoothness that does not cause a read / write error of the magnetic head. That is, the substrate surface is required to have excellent flatness (roughness, waviness, etc.) and defects (protrusions such as abrasive grains, recesses such as scratches and pits). The second polishing step or the final (finish) polishing step is particularly important. After the polishing step, scrub cleaning to remove silica abrasive grains and polishing debris remaining on the glass substrate surface, and / or strong alkali ultrasonic cleaning using an aqueous sodium hydroxide solution to dissolve and remove the residue Then, immersion cleaning with pure water, isopropanol or the like, and steam drying with isopropanol or the like are performed. Thereafter, a seed layer, an underlayer, an intermediate layer, a magnetic layer, a protective layer, and a lubricating layer are formed to form a magnetic disk. Accordingly, the present invention is a method of manufacturing a magnetic disk including a “polishing step” as another aspect.

[研磨パッド]
研磨パッドとしては、有機高分子系の発泡体、無発泡体、不織布状の研磨パッドを用いることができ、例えば、第一研磨工程ではスウェード調のウレタン製硬質パッド、第二研磨工程及び最終研磨工程ではスウェード調のウレタン製軟質パッドが好適に用いられる。
[Polishing pad]
As the polishing pad, organic polymer foam, non-foamed, non-woven polishing pad can be used. For example, in the first polishing step, a suede-like urethane hard pad, the second polishing step and the final polishing are used. In the process, a suede-like urethane soft pad is preferably used.

[研磨液組成物の評価方法]
本発明は、その他の態様において、ガラス基板用研磨液組成物の評価方法(以下、本発明の評価方法ともいう)であって、ガラス基板用研磨液組成物に浸漬した被研磨ガラス基板の表面に探針を押し付けて基板表面への探針の進入深さを測定すること、及び、前記進入深さの測定値を指標として前記ガラス基板用研磨液組成物の前記被研磨ガラス基板への使用適性を評価することを含む。研磨液組成物の被研磨ガラス基板への使用適性の評価とは、その研磨液組成物を被研磨ガラス基板の研磨に使用した場合に、経済的な研磨速度及び研磨後の表面粗さの低減が達成できるか否かの評価をいう。本発明の評価方法によれば、例えば、被研磨ガラス基板の研磨において経済的な研磨速度を達成でき、かつ、研磨後の表面粗さを低減できる研磨液組成物を選択でき、また、その研磨液組成物を使用できるという効果を奏する。
[Evaluation method of polishing liquid composition]
In another aspect, the present invention is a method for evaluating a polishing composition for a glass substrate (hereinafter also referred to as an evaluation method of the present invention), which is a surface of a glass substrate to be polished immersed in the polishing composition for a glass substrate. The probe is pressed against the substrate surface to measure the depth of penetration of the probe into the substrate surface, and the glass substrate polishing liquid composition is used for the glass substrate to be polished with the measured value of the penetration depth as an index. Includes assessing suitability. Evaluation of the suitability of the polishing composition for use on a glass substrate to be polished means that when the polishing composition is used for polishing a glass substrate to be polished, the polishing rate is reduced and the surface roughness after polishing is reduced. An assessment of whether or not can be achieved. According to the evaluation method of the present invention, for example, it is possible to select a polishing liquid composition that can achieve an economical polishing rate in polishing a glass substrate to be polished and can reduce the surface roughness after polishing. There exists an effect that a liquid composition can be used.

本発明の評価方法における探針の進入深さの測定方法は、原子間力顕微鏡を用いた方法が挙げられ、例えば、上述の標準試験方法による測定が挙げられる。探針の進入深さの測定方法が上述の標準試験に依る場合、研磨後の基板の表面粗さの低減の観点から、探針の進入深さは、4nm以下であり、好ましくは3以下、より好ましくは2nm以下、研磨速度向上の観点から、好ましくは0.5nm以上、より好ましくは1nm以上である。本発明の評価方法における研磨液組成物及び被研磨ガラス基板は、本発明の製造方法におけるものと同様のものを使用できる。本発明は、その他の態様として、本発明の評価方法を用いて被研磨ガラス基板の研磨液組成物を選択することを含むガラス基板の製造方法であってもよい。   The method for measuring the penetration depth of the probe in the evaluation method of the present invention includes a method using an atomic force microscope, for example, measurement by the standard test method described above. When the method for measuring the penetration depth of the probe is based on the above standard test, the penetration depth of the probe is 4 nm or less, preferably 3 or less, from the viewpoint of reducing the surface roughness of the substrate after polishing. More preferably, it is 2 nm or less, and from the viewpoint of improving the polishing rate, it is preferably 0.5 nm or more, more preferably 1 nm or more. The thing similar to the thing in the manufacturing method of this invention can be used for the polishing liquid composition and the glass substrate to be polished in the evaluation method of this invention. As another aspect, the present invention may be a glass substrate manufacturing method including selecting a polishing liquid composition for a glass substrate to be polished using the evaluation method of the present invention.

1.被研磨ガラス基板
セリアを研磨材として含有する研磨液組成物で予め第一及び第二研磨工程を行って表面粗さを0.3nmとした厚さ0.635mmの外径65mmφで内径20mmφのハードディスク用アルミノシリケート製ガラス基板を、被研磨ガラス基板として用いた。なお、表面粗さの測定方法は、後述のとおりである。
1. Glass substrate to be polished A hard disk having an outer diameter of 65 mmφ having an outer diameter of 65 mmφ and an inner diameter of 20 mmφ in which the first and second polishing steps are performed in advance with a polishing liquid composition containing ceria as an abrasive, and the surface roughness is 0.3 nm. An aluminosilicate glass substrate for use was used as the glass substrate to be polished. In addition, the measuring method of surface roughness is as mentioned later.

2.被研磨組成物の調製
研磨剤として下記表1に示すコロイダルシリカスラリーをシリカ粒子換算で5.0重量%、アニオン性水溶性高分子として下記表1のアクリル酸/アクリルアミド−2−メチルプロパンスルホン酸(AA/AMPS)(共)重合体を有効分換算で0.10重量%、酸としてHEDP(ソルーシアジャパン社製、固形分濃度60重量%)を有効分換算で0.13重量%、硫酸(和光純薬工業社製、濃硫酸、試薬特級)を有効分換算で0.40重量%、残部としてイオン交換水を混合して、下記実施例1〜7及び比較例1,2の研磨液組成物を調製した。具体的には、イオン交換水で5倍に希釈した前記アニオン性水溶液高分子の所定量をHEDP及び硫酸の水溶液の撹拌下に加えて混合し、コロイダルシリカスラリーを最後に加えて混合、調製した。得られた研磨液組成物のpHは、下記表1のとおりであった。
2. Preparation of composition to be polished As a polishing agent, colloidal silica slurry shown in Table 1 below is 5.0% by weight in terms of silica particles, and acrylic acid / acrylamido-2-methylpropanesulfonic acid in Table 1 below as an anionic water-soluble polymer (AA / AMPS) (co) polymer is 0.10% by weight in terms of effective component, and HEDP (manufactured by Solusia Japan, solid content concentration 60% by weight) as an acid is 0.13% by weight in terms of effective component, sulfuric acid (Wako Pure Chemical Industries, Ltd., concentrated sulfuric acid, reagent special grade) 0.40% by weight in terms of effective component, and ion-exchanged water as the balance were mixed, and polishing liquids of Examples 1 to 7 and Comparative Examples 1 and 2 below. A composition was prepared. Specifically, a predetermined amount of the anionic aqueous solution polymer diluted 5-fold with ion-exchanged water was added and mixed under stirring of an aqueous solution of HEDP and sulfuric acid, and the colloidal silica slurry was added last to be mixed and prepared. . The pH of the resulting polishing composition was as shown in Table 1 below.

実施例1〜3で使用したAA/AMPS共重合体は、スルホン酸基を有する単量体(APMS)含有率30モル%、重量平均分子量1300、固形分濃度40重量%、ナトリウム中和品であった。実施例4〜7で使用したAA/AMPS(共)重合体のAPMS含有率及び重量平均分子量は、下記表1のとおりである。   The AA / AMPS copolymer used in Examples 1 to 3 is a sulfonic acid group-containing monomer (APMS) content of 30 mol%, a weight average molecular weight of 1300, a solid content concentration of 40 wt%, and a sodium neutralized product. there were. The APMS content and weight average molecular weight of the AA / AMPS (co) polymers used in Examples 4 to 7 are as shown in Table 1 below.

実施例1、3〜7、比較例1,2で使用したコロイダルシリカスラリーは、デュポン社製、一次粒子の平均粒子径18nm、シリカ粒子濃度40重量%、残部は水であり、実施例2で使用したコロイダルシリカスラリーは、一次粒子の平均粒子径が28nmである以外は同様のコロイダルシリカスラリーであった。   The colloidal silica slurry used in Examples 1 and 3 to 7 and Comparative Examples 1 and 2 was manufactured by DuPont, the average particle diameter of primary particles was 18 nm, the silica particle concentration was 40% by weight, and the balance was water. The colloidal silica slurry used was the same colloidal silica slurry except that the average particle size of the primary particles was 28 nm.

3.標準試験
原子間力顕微鏡(AFM)装置に10mm×10mmにサイズに切断した前記被測定ガラス基板を前記研磨液組成物に浸漬した状態で装置にセットした。続いて、次から次に新生面が現われる実際の研磨をシミュレートするため前処理として0.5μm×0.5μmの範囲を0.73μNの荷重をかけて1Hzでスキャンして新生面を作成した。平均して、浸漬してからここまで30min程度であった。そして、下記条件で該新生面に探針を押付けて進入深さを求めた。その結果を下記表1に示す。
AFM測定装置
製造元:Veeco社製(旧Digital Instruments社製)
コントローラー:NanoScope IIIa
本体:Multi−mode AFM
スキャナ:JVスキャナ
測定(押付け)条件
ガラス基板移動距離:100nm
接近速度:1Hz(200nm/s)
測定場所:新生面0.5um×0.5umの中央付近
測定回数:場所を変えてN=3回
カンチレバー:Veeco社製NP−S(Si3N4チップ)
折り返し(押込み終了)設定値:カンチレバーの反り量=40nm
被測定ガラス基板表面に探針が接触してカンチレバーが反り始めた位置を進入深さの最上面とし、さらに探針を押し込んでいきカンチレバーの反りが40nmに達した時点で押し込みを終了し、その位置を最下面とした。この最上面と最下面との位置の差を進入深さと定義し、計3回の平均値を探針の進入深さとした。
3. Standard Test The glass substrate to be measured, which had been cut to a size of 10 mm × 10 mm, was set in an atomic force microscope (AFM) apparatus while immersed in the polishing composition. Subsequently, in order to simulate actual polishing in which a new surface appears next, a new surface was created by scanning at 1 Hz over a range of 0.5 μm × 0.5 μm with a load of 0.73 μN as a pretreatment. On average, it was about 30 minutes so far after immersion. Then, a probe was pressed against the new surface under the following conditions to determine the penetration depth. The results are shown in Table 1 below.
AFM measuring device Manufacturer: Veeco (formerly Digital Instruments)
Controller: NanoScope IIIa
Body: Multi-mode AFM
Scanner: JV scanner
Measurement (pushing) conditions Glass substrate movement distance: 100 nm
Approach speed: 1Hz (200nm / s)
Measurement location: near the center of the new surface 0.5 um × 0.5 um Number of measurements: N = 3 times at different locations Cantilever: NP-S (Si3N4 chip) manufactured by Veeco
Folding (push end) set value: Cantilever warpage = 40 nm
The position where the probe comes into contact with the surface of the glass substrate to be measured and the cantilever starts to warp is taken as the uppermost surface of the depth of penetration. Further, the probe is pushed in and when the warpage of the cantilever reaches 40 nm, the pushing is finished. The position was the bottom surface. The difference in position between the uppermost surface and the lowermost surface was defined as the depth of penetration, and the average of three times in total was defined as the depth of penetration of the probe.

4.研磨試験
実施例1〜7及び比較例1,2の前記研磨液組成物及び下記研磨条件で被研磨ガラス基板を研磨した。研磨速度及び研磨後の表面粗さを下記表1に示す。
研磨条件
研磨試験機:スピードファム社製、9B−5P−IV型両面研磨機
研磨パッド:ウレタン製仕上げ研磨用パッド
上定盤回転数:10r/min
下定盤回転数:30r/min
キャリア回転数:10r/min
キャリア:アラミド製、厚さ0.45mm
研磨液組成物供給速度:100mL/min(約0.3mL/min/cm2
本研磨時間:5min
本研磨荷重:5.9kPa
リンス条件:荷重=2.0kPa、時間=5min、イオン交換水供給量=約2L/min
ドレス条件:1回研磨毎にイオン交換水を供給しながらブラシドレスを2min行った。
4). Polishing Test The glass substrate to be polished was polished under the polishing composition of Examples 1 to 7 and Comparative Examples 1 and 2 and the following polishing conditions. The polishing rate and the surface roughness after polishing are shown in Table 1 below.
Polishing conditions Polishing tester: Speedfam Co., 9B-5P-IV type double-sided polishing machine Polishing pad: Urethane finish polishing pad surface plate rotation speed: 10r / min
Lower surface plate rotation speed: 30r / min
Carrier rotation speed: 10r / min
Carrier: Aramid, thickness 0.45mm
Polishing liquid composition supply rate: 100 mL / min (about 0.3 mL / min / cm 2 )
Final polishing time: 5 min
Final polishing load: 5.9 kPa
Rinse conditions: Load = 2.0 kPa, time = 5 min, ion exchange water supply amount = about 2 L / min
Dressing condition: Brush dressing was performed for 2 min while supplying ion-exchanged water for each polishing.

5.評価方法
(1)表面粗さ
表面粗さは、原子間力顕微鏡(AFM)を用いて下記のようにして求めた。
AFM測定方法
測定機器:Veeco社製、TM−M5E
Mode:non−contact
Scanrate:1.0Hz
Scanarea:10×10μm
評価方法:任意の基板中心線上の、内周と外周の中間付近を2点測定(二次元補正)し、その値の平均値を求め、表面粗さとした。
5. Evaluation method (1) Surface roughness The surface roughness was calculated | required as follows using atomic force microscope (AFM).
AFM measurement method Measuring instrument: manufactured by Veeco, TM-M5E
Mode: non-contact
Scanrate: 1.0 Hz
Scanarea: 10 × 10 μm
Evaluation method: Two points were measured (two-dimensional correction) in the vicinity of the middle between the inner periphery and the outer periphery on an arbitrary substrate center line, and the average value of the values was obtained to obtain the surface roughness.

(2)研磨速度
研磨前後の基板の重量差(g)を該基板の密度(2.46g/cm3)、基板の表面積(30.04cm2)、及び研磨時間(min)で除して単位時間当たりの研磨量を計算し、研磨速度(μm/min)を算出した。
(2) Polishing rate Unit of weight difference (g) of substrate before and after polishing divided by substrate density (2.46 g / cm 3 ), substrate surface area (30.04 cm 2 ), and polishing time (min) The polishing amount per hour was calculated, and the polishing rate (μm / min) was calculated.

Figure 0005013986
Figure 0005013986

上記表1に示すとおり、実施例1〜7の研磨液組成物を用いた研磨では、比較例1,2のものに比べ、研磨後の表面粗さが低減され、かつ、経済的な研磨速度を有する研磨が行われたことがわかる。   As shown in Table 1 above, in the polishing using the polishing liquid compositions of Examples 1 to 7, the surface roughness after polishing is reduced as compared with those of Comparative Examples 1 and 2, and the polishing rate is economical. It can be seen that polishing with

本発明を用いることにより、例えば、高記録密度化に適したガラスハードディスク基板などの基板品質が向上したガラス基板を効率よく製造することができる。   By using the present invention, for example, a glass substrate with improved substrate quality such as a glass hard disk substrate suitable for increasing the recording density can be efficiently produced.

Claims (7)

研磨材及び水を含有する研磨液組成物を研磨パッドと被研磨ガラス基板との間に存在させて研磨する工程を有するガラス基板の製造方法であって、
前記研磨液組成物のpHは4以下であり、
前記研磨液組成物及び前記被研磨ガラス基板は、前記研磨液組成物に浸漬した前記被研磨ガラス基板の表面に原子間力顕微鏡(AFM)の探針を押し付けて測定される探針の進入深さが4nm以下となる関係を満たし、
前記探針の進入深さは、以下の(1)〜(4)の工程により測定される、ガラス基板の製造方法。
(1)被測定ガラス基板を測定可能なサイズに切断し、研磨液組成物に浸漬した状態でAFM装置にセットする。
(2)研磨された新生面が次々に現れる実際の研磨をシミュレートするため前処理として0.5μm×0.5μmの範囲を0.73μNの荷重をかけて1Hzでスキャンして新生面を作る。
(3)下記の測定(押し付け)条件で前記新生面にAFM装置の探針を押し付ける。
[測定(押し付け)条件]
ガラス基板移動距離:100nm
接近速度 :1Hz(200nm/s)
測定場所 :新生面0.5μm×0.5μmの中央付近
測定回数 :場所を変えてN=3回
カンチレバー :Veeco社製NP−S(Si3N4チップ)
折り返し(押し込み終了)設定値:カンチレバーの反り返り量=40nm
(4)進入深さの最上面を、被測定ガラス基板表面に探針が接触してカンチレバーが反り始めた位置とし、さらに探針を押し込んでいき、カンチレバーの反りが40nmに達した時点で押し込みを終了し、その位置を最下面とする。この最上面と最下面との位置の差を進入深さと定義し、計3回の平均値を探針の進入深さとする。
A method for producing a glass substrate comprising a step of polishing a polishing composition containing an abrasive and water between a polishing pad and a glass substrate to be polished.
The polishing composition has a pH of 4 or less,
The polishing composition and the glass substrate to be polished are measured by pressing the probe of an atomic force microscope (AFM) against the surface of the glass substrate to be polished immersed in the polishing composition. Saga 4nm meet the following as the relationship,
The penetration depth of the probe is a method for manufacturing a glass substrate, which is measured by the following steps (1) to (4) .
(1) A glass substrate to be measured is cut into a measurable size and set in an AFM apparatus in a state immersed in a polishing composition.
(2) In order to simulate actual polishing in which polished new surfaces appear one after another, a new surface is created by scanning a range of 0.5 μm × 0.5 μm at 1 Hz with a load of 0.73 μN as preprocessing.
(3) The probe of the AFM apparatus is pressed against the new surface under the following measurement (pressing) conditions.
[Measurement (pushing) conditions]
Glass substrate moving distance: 100 nm
Approach speed: 1Hz (200nm / s)
Measurement location: Near the center of the new surface 0.5μm × 0.5μm
Number of measurements: N = 3 times at different locations
Cantilever: NP-S (Si3N4 chip) manufactured by Veeco
Folding (pushing end) set value: Cantilever warping amount = 40 nm
(4) The uppermost surface of the penetration depth is set to a position where the probe comes into contact with the surface of the glass substrate to be measured and the cantilever starts to warp. Further, the probe is pushed in and pushed when the cantilever warpage reaches 40 nm. And that position is the bottom surface. The difference in position between the uppermost surface and the lowermost surface is defined as the penetration depth, and the average of three times is defined as the penetration depth of the probe.
前記研磨液組成物が、さらに水溶性高分子を含有する、請求項1記載のガラス基板の製造方法。 The method for producing a glass substrate according to claim 1, wherein the polishing liquid composition further contains a water-soluble polymer. 前記水溶性高分子が、カルボン酸基を有する単量体由来の構成単位及びスルホン酸基を有する単量体由来の構成単位からなる群から選択される少なくとも1種の構成単位を有する(共)重合体又はその塩である、請求項2記載のガラス基板の製造方法。 The water-soluble polymer has at least one structural unit selected from the group consisting of a structural unit derived from a monomer having a carboxylic acid group and a structural unit derived from a monomer having a sulfonic acid group (co) The manufacturing method of the glass substrate of Claim 2 which is a polymer or its salt. 前記研磨液組成物が、研磨材としてコロイダルシリカを含有する、請求項1から3のいずれか一項に記載のガラス基板の製造方法。 The manufacturing method of the glass substrate as described in any one of Claim 1 to 3 with which the said polishing liquid composition contains colloidal silica as an abrasive | polishing material. 前記研磨における研磨荷重が3〜20kPaである、請求項1から4のいずれか一項に記載のガラス基板の製造方法。 The manufacturing method of the glass substrate as described in any one of Claim 1 to 4 whose grinding | polishing load in the said grinding | polishing is 3-20 kPa. 製造されるガラス基板がガラスハードディスク基板である、請求項1から5のいずれか一項に記載のガラス基板の製造方法。 The manufacturing method of the glass substrate as described in any one of Claim 1 to 5 whose glass substrate manufactured is a glass hard disk substrate. ガラス基板用研磨液組成物の評価方法であって、
ガラス基板用研磨液組成物に浸漬した被研磨ガラス基板の表面に原子間力顕微鏡(AFM)の探針を押し付けて基板表面への探針の進入深さを測定すること、及び、
前記進入深さの測定値を指標として前記ガラス基板用研磨液組成物の前記被研磨ガラス基板への使用適性を評価することを含み、
前記探針の進入深さは、以下の(1)〜(4)の工程により測定される、ガラス基板用研磨液組成物の評価方法。
(1)被測定ガラス基板を測定可能なサイズに切断し、研磨液組成物に浸漬した状態でAFM装置にセットする。
(2)研磨された新生面が次々に現れる実際の研磨をシミュレートするため前処理として0.5μm×0.5μmの範囲を0.73μNの荷重をかけて1Hzでスキャンして新生面を作る。
(3)下記の測定(押し付け)条件で前記新生面にAFM装置の探針を押し付ける。
[測定(押し付け)条件]
ガラス基板移動距離:100nm
接近速度 :1Hz(200nm/s)
測定場所 :新生面0.5μm×0.5μmの中央付近
測定回数 :場所を変えてN=3回
カンチレバー :Veeco社製NP−S(Si3N4チップ)
折り返し(押し込み終了)設定値:カンチレバーの反り返り量=40nm
(4)進入深さの最上面を、被測定ガラス基板表面に探針が接触してカンチレバーが反り始めた位置とし、さらに探針を押し込んでいき、カンチレバーの反りが40nmに達した時点で押し込みを終了し、その位置を最下面とする。この最上面と最下面との位置の差を進入深さと定義し、計3回の平均値を探針の進入深さとする。
A method for evaluating a polishing liquid composition for a glass substrate,
Measuring the depth of penetration of the probe into the substrate surface by pressing the probe of an atomic force microscope (AFM) against the surface of the glass substrate to be polished immersed in the polishing liquid composition for glass substrate; and
Look including evaluating the use suitability of the to be polished glass substrate of the penetration depth of the glass substrate polishing composition measurements as an indicator,
The penetration depth of the probe is a method for evaluating a polishing composition for a glass substrate, which is measured by the following steps (1) to (4) .
(1) A glass substrate to be measured is cut into a measurable size and set in an AFM apparatus in a state immersed in a polishing composition.
(2) In order to simulate actual polishing in which polished new surfaces appear one after another, a new surface is created by scanning a range of 0.5 μm × 0.5 μm at 1 Hz with a load of 0.73 μN as preprocessing.
(3) The probe of the AFM apparatus is pressed against the new surface under the following measurement (pressing) conditions.
[Measurement (pushing) conditions]
Glass substrate moving distance: 100 nm
Approach speed: 1Hz (200nm / s)
Measurement location: Near the center of the new surface 0.5μm × 0.5μm
Number of measurements: N = 3 times at different locations
Cantilever: NP-S (Si3N4 chip) manufactured by Veeco
Folding (pushing end) set value: Cantilever warping amount = 40 nm
(4) The uppermost surface of the penetration depth is set to a position where the probe comes into contact with the surface of the glass substrate to be measured and the cantilever starts to warp. Further, the probe is pushed in and pushed when the cantilever warpage reaches 40 nm. And that position is the bottom surface. The difference in position between the uppermost surface and the lowermost surface is defined as the penetration depth, and the average of three times is defined as the penetration depth of the probe.
JP2007165609A 2007-06-22 2007-06-22 Manufacturing method of glass substrate Active JP5013986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165609A JP5013986B2 (en) 2007-06-22 2007-06-22 Manufacturing method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165609A JP5013986B2 (en) 2007-06-22 2007-06-22 Manufacturing method of glass substrate

Publications (2)

Publication Number Publication Date
JP2009000791A JP2009000791A (en) 2009-01-08
JP5013986B2 true JP5013986B2 (en) 2012-08-29

Family

ID=40317737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165609A Active JP5013986B2 (en) 2007-06-22 2007-06-22 Manufacturing method of glass substrate

Country Status (1)

Country Link
JP (1) JP5013986B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY155734A (en) * 2010-04-26 2015-11-17 Kao Corp Polishing composition for glass hard disk substrate
JP5940278B2 (en) * 2010-10-27 2016-06-29 花王株式会社 Manufacturing method of glass hard disk substrate
JP5979744B2 (en) * 2011-05-26 2016-08-31 花王株式会社 Hard disk manufacturing method
JP5886108B2 (en) * 2012-03-30 2016-03-16 Hoya株式会社 Manufacturing method of glass substrate for information recording medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236542B1 (en) * 1994-01-21 2001-05-22 International Business Machines Corporation Substrate independent superpolishing process and slurry
JP2879679B1 (en) * 1998-03-26 1999-04-05 科学技術庁金属材料技術研究所長 Hardness test method for micro area
JP3995902B2 (en) * 2001-05-31 2007-10-24 Hoya株式会社 Glass substrate for information recording medium and magnetic information recording medium using the same
JP2004335978A (en) * 2003-05-12 2004-11-25 Jsr Corp Chemical mechanical polishing method
JP2005138197A (en) * 2003-11-04 2005-06-02 Fujimi Inc Polishing composition and polishing method
KR100612595B1 (en) * 2004-01-05 2006-08-17 한국기계연구원 Afm cantilever with nanoindentation test functionality
JP2005236275A (en) * 2004-01-23 2005-09-02 Jsr Corp Water disperse form for chemical mechanical polishing and chemical mechanical polishing method
JP4414292B2 (en) * 2004-06-29 2010-02-10 花王株式会社 Polishing speed improvement method
JP2005286160A (en) * 2004-03-30 2005-10-13 Hitachi Chem Co Ltd Cmp polishing agent and polishing method of substrate
JP5090633B2 (en) * 2004-06-22 2012-12-05 旭硝子株式会社 Glass substrate polishing method

Also Published As

Publication number Publication date
JP2009000791A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP5283247B2 (en) Polishing liquid composition for glass substrate
JP5008350B2 (en) Polishing liquid composition for glass substrate
US20070145014A1 (en) Polishing composition for glass substrate
JP4231632B2 (en) Polishing liquid composition
JP5289877B2 (en) Polishing liquid composition for magnetic disk substrate
JP4451347B2 (en) Polishing liquid composition
TWI509039B (en) Polishing liquid composition
JP5630992B2 (en) Polishing liquid composition for magnetic disk substrate
JP4667848B2 (en) Polishing liquid composition for glass substrate
JP2009172709A (en) Polishing liquid composition for magnetic disk substrate
JP2002030274A (en) Abrasive composition
JP5473544B2 (en) Polishing liquid composition for magnetic disk substrate
WO2010053096A1 (en) Polishing liquid composition for magnetic disk substrate
US9053736B2 (en) Method for manufacturing an aluminosilicate glass substrate for hard disks
JP5013986B2 (en) Manufacturing method of glass substrate
CN103247304B (en) The manufacture method of substrate and the manufacture method of disk
WO2015046542A1 (en) Method for producing glass substrate and method for producing magnetic disk
JP4286168B2 (en) How to reduce nanoscratches
JP4104335B2 (en) Method for reducing microprojections
JP2006130638A (en) Encased abrasive material particle dispersed liquid
JP4640981B2 (en) Substrate manufacturing method
JP5748331B2 (en) Polishing liquid composition for glass hard disk substrate
JP2011031324A (en) Polishing liquid composition for glass substrate
JP2004204116A (en) Agent for reducing small undulation
JP6239973B2 (en) Manufacturing method of glass hard disk substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5013986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250