JP5012339B2 - Heat transfer plate manufacturing method and heat transfer plate - Google Patents

Heat transfer plate manufacturing method and heat transfer plate Download PDF

Info

Publication number
JP5012339B2
JP5012339B2 JP2007231179A JP2007231179A JP5012339B2 JP 5012339 B2 JP5012339 B2 JP 5012339B2 JP 2007231179 A JP2007231179 A JP 2007231179A JP 2007231179 A JP2007231179 A JP 2007231179A JP 5012339 B2 JP5012339 B2 JP 5012339B2
Authority
JP
Japan
Prior art keywords
heat medium
heat
medium pipe
base member
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007231179A
Other languages
Japanese (ja)
Other versions
JP2009061470A (en
Inventor
久司 堀
伸城 瀬尾
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007231179A priority Critical patent/JP5012339B2/en
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to US12/595,118 priority patent/US8365408B2/en
Priority to CN2008800119386A priority patent/CN101657289B/en
Priority to PCT/JP2008/055240 priority patent/WO2008132900A1/en
Priority to EP08722604.9A priority patent/EP2145719B1/en
Priority to EP13185217.0A priority patent/EP2679331B1/en
Priority to CN2011101601098A priority patent/CN102248276B/en
Priority to KR1020097023670A priority patent/KR101411143B1/en
Priority to TW097112783A priority patent/TW200843888A/en
Publication of JP2009061470A publication Critical patent/JP2009061470A/en
Application granted granted Critical
Publication of JP5012339B2 publication Critical patent/JP5012339B2/en
Priority to US13/731,229 priority patent/US8782892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/08Fastening; Joining by clamping or clipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements

Description

本発明は、熱部品を加熱または冷却するための熱媒体を循環させる熱媒体用管を板状のベース部材の内部に収容した伝熱板の製造方法および伝熱板に関する。   The present invention relates to a heat transfer plate manufacturing method and a heat transfer plate in which a heat medium tube for circulating a heat medium for heating or cooling a heat component is accommodated in a plate-like base member.

例えば、コンピュータの中央演算装置等の熱部品を冷却するための伝熱板は、冷却水などの冷却用熱媒体を循環させる熱媒体用管を板状のベース部材の内部に収容して構成されている。熱媒体用管は熱伝導の観点より、ベース部材に密着しているのが好ましい。例えば、特許文献1に示された伝熱板は、図6に示すように、熱伝導性プレート100(ベース部材)に形成された溝101に、伸縮性チューブ102(熱媒体用管)を挿入して、この伸縮性チューブ102を他の熱伝導性プレート103で溝101内に押し込んで、伸縮性チューブ102を変形させて溝101に密着させるように構成されている。   For example, a heat transfer plate for cooling a thermal component such as a central processing unit of a computer is configured by housing a heat medium pipe for circulating a heat medium for cooling such as cooling water inside a plate-like base member. ing. The heat medium pipe is preferably in close contact with the base member from the viewpoint of heat conduction. For example, in the heat transfer plate disclosed in Patent Document 1, an elastic tube 102 (heat medium tube) is inserted into a groove 101 formed in a heat conductive plate 100 (base member) as shown in FIG. Then, the stretchable tube 102 is pushed into the groove 101 by another heat conductive plate 103, and the stretchable tube 102 is deformed to be brought into close contact with the groove 101.

特開2007−24457号公報JP 2007-24457 A

しかしながら、特許文献1の伝熱板では、伸縮性チューブ102を溝に挿入した際に、伸縮性チューブ102の上部が熱伝導性プレート100の表面104から上方に突出している(図6参照)ので、他の熱伝導性プレート103で溝101内に押し込む際の伸縮性チューブ102の変形部分(図示せず)が溝101の外側に広がってしまい、伸縮性チューブ102を所望の形状に変形させることができない場合があるといった問題があった。また、伸縮性チューブ102を押し込む他の熱伝導性プレート103が、一枚の板で形成されているので、伸縮性チューブ102を押し込む押圧力が分散してしまい、大きな押圧力を必要とする問題があった。   However, in the heat transfer plate of Patent Document 1, when the elastic tube 102 is inserted into the groove, the upper portion of the elastic tube 102 protrudes upward from the surface 104 of the heat conductive plate 100 (see FIG. 6). When the other heat conductive plate 103 is pushed into the groove 101, a deformed portion (not shown) of the elastic tube 102 spreads outside the groove 101, thereby deforming the elastic tube 102 into a desired shape. There was a problem that could not be. Moreover, since the other heat conductive plate 103 which pushes in the elastic tube 102 is formed with one board, the pressing force which pushes in the elastic tube 102 will disperse | distribute, and the problem which requires a big pressing force was there.

そこで、本発明は前記の問題を解決するために案出されたものであって、小さい押圧力で、熱媒体用管を所望の形状に変形できる伝熱板の製造方法および伝熱板を提供することを課題とする。   Accordingly, the present invention has been devised to solve the above-described problems, and provides a heat transfer plate manufacturing method and a heat transfer plate capable of deforming a heat medium tube into a desired shape with a small pressing force. The task is to do.

前記課題を解決するための請求項1に係る発明は、熱部品を加熱または冷却するための熱媒体を循環させる熱媒体用管を板状のベース部材の内部に収容した伝熱板の製造方法において、前記ベース部材の表面に開口するとともに前記熱媒体用管の外径寸法よりも長い深さ寸法を有する凹溝に、前記熱媒体用管を挿入し、前記凹溝内の前記熱媒体用管上部の前記凹溝の開口部に蓋板を挿入し、その蓋板を前記凹溝の底部側に押圧することで、前記熱媒体用管を塑性変形させて前記凹溝に当接させるようにしたことを特徴とする伝熱板の製造方法である。   The invention according to claim 1 for solving the above-described problem is a method of manufacturing a heat transfer plate in which a heat medium tube for circulating a heat medium for heating or cooling a heat component is accommodated in a plate-like base member. The heat medium pipe is inserted into a groove having a depth that is longer than the outer diameter of the heat medium pipe and is open on the surface of the base member, and for the heat medium in the groove. By inserting a cover plate into the opening of the groove at the top of the tube and pressing the cover plate toward the bottom of the groove, the heat medium tube is plastically deformed and brought into contact with the groove. It is the manufacturing method of the heat exchanger plate characterized by having made it.

このような製造方法によれば、熱媒体用管は、凹溝の内部に完全に収容された状態で押圧されるので、凹溝の外側に変形することはなく、所望の形状に確実に変形させることができ、さらには、熱媒体用管とベース部材との接触面積が大きくなり、熱伝導性を高めることができる。また、蓋板は、凹溝ごとに設けられるので、蓋板を押圧するプレス機と蓋板との接触面積が小さくなるので、蓋板を集中的に押圧することができる。したがって、小さい押圧力で効率的に熱媒体用管を変形させることができ、製造が容易になる。   According to such a manufacturing method, the heat medium pipe is pressed in a state of being completely accommodated in the concave groove, so that it is not deformed to the outside of the concave groove and is reliably deformed into a desired shape. Furthermore, the contact area between the heat medium pipe and the base member is increased, and the thermal conductivity can be increased. Moreover, since the cover plate is provided for each concave groove, the contact area between the press machine that presses the cover plate and the cover plate is reduced, so that the cover plate can be pressed intensively. Therefore, the heat medium pipe can be efficiently deformed with a small pressing force, and the manufacture becomes easy.

請求項2に係る発明は、前記蓋板が、前記凹溝の開口部に挿入された際に前記ベース部材の表面よりも突出しており、前記蓋板の突出部分先端を前記ベース部材の表面まで押圧することで、前記熱媒体用管を塑性変形させることを特徴とする請求項1に記載の伝熱板の製造方法である。   In the invention according to claim 2, the lid plate protrudes from the surface of the base member when inserted into the opening of the concave groove, and the tip of the protruding portion of the lid plate extends to the surface of the base member. 2. The method for manufacturing a heat transfer plate according to claim 1, wherein the heat medium pipe is plastically deformed by pressing.

このような製造方法によれば、蓋板の突出部分先端を前記ベース部材の表面まで押圧することで、熱媒体用管を塑性変形させているので、熱媒体用管の変形量管理を容易に行うことができる。   According to such a manufacturing method, since the heat medium pipe is plastically deformed by pressing the protruding portion tip of the cover plate to the surface of the base member, it is easy to manage the deformation amount of the heat medium pipe. It can be carried out.

請求項3に係る発明は、前記凹溝の底部が、その幅方向両端の底部入隅部が曲面加工された曲面状に形成されており、前記熱媒体用管は、前記凹溝の底部に沿って略楕円状に塑性変形することを特徴とする請求項1または請求項2に記載の伝熱板の製造方法である。   According to a third aspect of the present invention, the bottom of the concave groove is formed in a curved shape in which bottom corners at both ends in the width direction are curved, and the heat medium pipe is formed at the bottom of the concave groove. The method of manufacturing a heat transfer plate according to claim 1, wherein the heat transfer plate is plastically deformed in a substantially elliptical shape.

このような製造方法によれば、その幅方向両端の底部入隅部が曲面加工された曲面状に形成されているので、熱媒体用管の変形部分が凹溝に追従しやすく、密着性が高まり、熱伝導性が向上する。   According to such a manufacturing method, since the bottom corners at both ends in the width direction are formed into a curved surface having a curved surface, the deformed portion of the heat medium pipe easily follows the concave groove, and adhesion is improved. Increases and improves thermal conductivity.

請求項4に係る発明は、前記蓋板が、押圧後に摩擦撹拌接合によって前記ベース部材に固定されることを特徴とする請求項1乃至請求項3のいずれか1項に記載の伝熱板の製造方法である。   The invention according to claim 4 is the heat transfer plate according to any one of claims 1 to 3, wherein the lid plate is fixed to the base member by friction stir welding after pressing. It is a manufacturing method.

このような製造方法によれば、摩擦撹拌接合によって蓋板とベース部材とが一体的に固定されるので、伝熱板の表面で一様に伝熱することができるとともに、熱伝導性をさらに向上させることができる。また、摩擦撹拌接合する際には、ベース部材と蓋板との境界部分を目視できるので、接合位置の特定を容易に行うことができる。   According to such a manufacturing method, the lid plate and the base member are integrally fixed by friction stir welding, so that heat can be uniformly transferred on the surface of the heat transfer plate, and thermal conductivity can be further increased. Can be improved. Moreover, when performing friction stir welding, since the boundary part of a base member and a cover board can be visually observed, specification of a joining position can be performed easily.

請求項5に係る発明は、塑性変形された前記熱媒体用管の周囲に形成された空隙部に、前記摩擦撹拌接合の摩擦熱によって流動化させた塑性流動材を流入させることを特徴とする請求項4に記載の伝熱板の製造方法である。   The invention according to claim 5 is characterized in that the plastic fluidized material fluidized by the frictional heat of the friction stir welding is caused to flow into the gap formed around the plastically deformed heat medium pipe. It is a manufacturing method of the heat exchanger plate of Claim 4.

このような製造方法によれば、熱媒体用管とベース部材との密着性をより一層高めることができ、熱伝導性をさらに向上させることができる。   According to such a manufacturing method, the adhesiveness between the heat medium pipe and the base member can be further improved, and the thermal conductivity can be further improved.

請求項6に係る発明は、熱部品を加熱または冷却するための熱媒体を循環させる熱媒体用管を板状のベース部材の内部に収容した伝熱板において、前記ベース部材は、その表面に開口するとともに前記熱媒体用管の外径寸法よりも長い深さ寸法を有する凹溝を備え、前記熱媒体用管は、前記凹溝に挿入されその上部の前記凹溝の開口部に挿入された蓋板を前記凹溝の底部側に押圧することで塑性変形されて前記凹溝の底部に当接されていることを特徴とする伝熱板である。   The invention according to claim 6 is the heat transfer plate in which the heat medium pipe for circulating the heat medium for heating or cooling the heat component is accommodated inside the plate-like base member, and the base member is disposed on the surface thereof. A groove having an opening and a depth longer than the outer diameter of the heat medium pipe. The heat medium pipe is inserted into the groove and is inserted into the opening of the groove above the groove. The heat transfer plate is characterized in that the cover plate is plastically deformed by being pressed against the bottom side of the groove and is in contact with the bottom of the groove.

このような構成によれば、請求項1に係る発明と同様に、熱媒体用管は、凹溝の内部に完全に収容された状態で押圧されるので、凹溝の外側に変形することはなく、所望の形状に確実に変形させることができ、熱媒体用管とベース部材との接触面積が大きくなり、熱伝導性を高めることができる。また、蓋板は、凹溝ごとに設けられ、蓋板を熱媒体用管へ直接押圧することで、熱媒体用管を変形させているので、蓋板への押圧力を熱媒体用管の変形に直接的に利用することができ、押圧力を小さくすることができる。   According to such a configuration, similarly to the invention according to claim 1, the heat medium tube is pressed in a state of being completely accommodated in the inside of the groove, so that it is not deformed to the outside of the groove. However, it can be reliably deformed into a desired shape, the contact area between the heat medium pipe and the base member is increased, and the thermal conductivity can be increased. In addition, the cover plate is provided for each concave groove, and the heat medium tube is deformed by directly pressing the cover plate against the heat medium tube. It can be used directly for deformation and the pressing force can be reduced.

本発明によれば、小さい押圧力で、熱媒体用管を所望の形状に変形でき、熱伝導性が高い伝熱板を容易に製造することができるといった優れた効果を発揮する。   According to the present invention, the heat medium pipe can be deformed into a desired shape with a small pressing force, and an excellent effect that a heat transfer plate having high thermal conductivity can be easily produced is exhibited.

次に、本発明を実施するための第一の最良の形態について、図面を適宜参照しながら詳細に説明する。   Next, a first best mode for carrying out the present invention will be described in detail with reference to the drawings as appropriate.

図1乃至図3に示すように、第一の実施形態に係る伝熱板1は、熱部品を加熱または冷却するための熱媒体を循環させる熱媒体用管20を板状のベース部材10の内部に収容して構成されている。そして、ベース部材10は、その表面11に開口するとともに熱媒体用管20の外径寸法よりも長い深さ寸法を有する凹溝12を備えている。熱媒体用管20は、凹溝12に挿入され、その上部の凹溝12の開口部12aに挿入された蓋板30を凹溝12の底部12b側に押圧することで塑性変形されて、凹溝12の底部12bに当接されている。なお、本実施形態では、熱媒体用管20は、塑性変形前に断面円形を呈している。   As shown in FIG. 1 to FIG. 3, the heat transfer plate 1 according to the first embodiment includes a heat medium pipe 20 that circulates a heat medium for heating or cooling a heat component of the plate-like base member 10. It is housed and configured inside. The base member 10 includes a concave groove 12 that opens to the surface 11 and has a depth dimension longer than the outer diameter dimension of the heat medium pipe 20. The heat medium pipe 20 is inserted into the concave groove 12 and is plastically deformed by pressing the cover plate 30 inserted into the opening 12a of the concave groove 12 on the upper side toward the bottom 12b of the concave groove 12. It is in contact with the bottom 12 b of the groove 12. In the present embodiment, the heat medium pipe 20 has a circular cross section before plastic deformation.

ベース部材10および蓋板30は、図2の(b)および図3に示すように、摩擦撹拌接合により形成された塑性化領域W,Wによって一体化されている。さらに、凹溝12と熱媒体用管20の外側面と蓋板30の下面とで形成された空隙部P,P(図1の(c)参照)には、摩擦撹拌接合により構成された塑性流動材Qが流入されている。 As shown in FIG. 2B and FIG. 3, the base member 10 and the cover plate 30 are integrated by plasticized regions W 1 and W 2 formed by friction stir welding. Furthermore, the gaps P and P (see FIG. 1C) formed by the concave groove 12, the outer surface of the heat medium pipe 20 and the lower surface of the cover plate 30 are plastic formed by friction stir welding. The fluid material Q is flowing in.

ベース部材10は、熱媒体用管20に流れる熱媒体の熱を外部に伝達させる役割を果たすものであって、アルミニウムまたはアルミニウム合金(例えば、JIS:A6061)からなる押出形材にて構成されている。図1に示すように、ベース部材10の片側の表面11には、凹溝12が開口して形成されている。   The base member 10 plays the role of transferring the heat of the heat medium flowing through the heat medium pipe 20 to the outside, and is constituted by an extruded shape made of aluminum or an aluminum alloy (for example, JIS: A6061). Yes. As shown in FIG. 1, a concave groove 12 is formed in an open surface 11 on one side of the base member 10.

凹溝12は、熱媒体用管20および蓋板30が収容される部分であって、ベース部材10の長手方向に亘って直線状に連続して形成されている。凹溝12は、ベース部材10の表面11に対して直交する内表面(内壁面)を有している。凹溝12の底部12bは、その幅方向両端の底部入隅部が曲面加工された曲面状に形成されており、凹溝12は、断面U字状を呈するように形成されている。凹溝12は、塑性変形前の熱媒体用管20の水平方向の外径寸法(直径寸法)よりも長い幅寸法を備えている。また、凹溝12の深さ寸法は、熱媒体用管20の高さ方向の外径寸法(直径寸法)よりも長く、且つ熱媒体用管20の高さ方向の外径寸法と蓋板30の厚さ寸法とを加えた寸法よりも短くなっている。   The concave groove 12 is a portion in which the heat medium pipe 20 and the lid plate 30 are accommodated, and is formed continuously in a straight line along the longitudinal direction of the base member 10. The concave groove 12 has an inner surface (inner wall surface) orthogonal to the surface 11 of the base member 10. The bottom 12b of the concave groove 12 is formed in a curved shape in which the bottom corners at both ends in the width direction are curved, and the concave groove 12 is formed to have a U-shaped cross section. The concave groove 12 has a width dimension longer than the horizontal outer diameter dimension (diameter dimension) of the heat medium pipe 20 before plastic deformation. Further, the depth dimension of the concave groove 12 is longer than the outer diameter dimension (diameter dimension) in the height direction of the heat medium pipe 20, and the outer diameter dimension in the height direction of the heat medium pipe 20 and the cover plate 30. It is shorter than the dimension including the thickness dimension.

熱媒体用管20は、塑性変形前は断面円形を呈した筒状部材にて構成されており、押圧されて塑性変形することで凹溝12の底部12bに面接触する。熱媒体用管20は、その内部に例えば、冷却水、冷却ガス、高温液、あるいは高温ガスなどの熱媒体を循環させて、ベース部材10に熱を伝達させる部材であって、例えば銅等の熱伝導性の高い部材で構成されている。   The heat medium pipe 20 is composed of a cylindrical member having a circular cross section before plastic deformation, and is brought into surface contact with the bottom 12b of the groove 12 by being pressed and plastically deformed. The heat medium pipe 20 is a member that circulates a heat medium such as cooling water, cooling gas, high-temperature liquid, or high-temperature gas therein and transfers heat to the base member 10. It is comprised with the member with high heat conductivity.

蓋板30は、図1に示すように、アルミニウムまたはアルミニウム合金(例えば、JIS:A6061)からなる押出形材にて構成されており、断面矩形を呈している。蓋板30は、凹溝12の幅寸法と同等の幅寸法を有している。   As shown in FIG. 1, the cover plate 30 is made of an extruded shape made of aluminum or an aluminum alloy (for example, JIS: A6061), and has a rectangular cross section. The lid plate 30 has a width dimension equivalent to the width dimension of the recessed groove 12.

空隙部Pは、図1の(c)に示すように、塑性変形後の熱媒体用管20の上面と、凹溝12の内側面と、蓋板30の下面とにより囲まれた空間であって、本実施形態においては、熱媒体用管20の上端と、蓋板30の下面とが、接触しているので、この接触部分を隔てて、図中左右方向に二つの空隙部P,Pが形成されている。空隙部Pは、外側が広がった断面略三角形を呈している。なお、空隙部Pは、凹溝12、熱媒体用管20および蓋板30の形状に基づいて適宜決定されるものであり、前記した形態に限定されるものではない。   As shown in FIG. 1C, the gap P is a space surrounded by the upper surface of the heat medium pipe 20 after plastic deformation, the inner surface of the groove 12, and the lower surface of the lid plate 30. In this embodiment, the upper end of the heat medium pipe 20 and the lower surface of the cover plate 30 are in contact with each other. Is formed. The gap P has a substantially triangular cross section with the outer side widened. In addition, the space | gap part P is suitably determined based on the shape of the ditch | groove 12, the heat medium pipe | tube 20, and the cover board 30, and is not limited to an above described form.

塑性化領域W,Wは、図2及び図3に示すように、突合せ部V,V(図1の(c)参照)に摩擦攪拌接合を施した際に、ベース部材10及び蓋板30の一部が塑性流動して一体化された領域である。なお、塑性化領域W,Wは、図2および図3においては、ハッチングにて示している。 As shown in FIGS. 2 and 3, the plasticized regions W 1 and W 2 are formed when the base member 10 and the butt portions V 1 and V 2 (see FIG. 1C) are subjected to friction stir welding. This is a region where a part of the cover plate 30 is integrated by plastic flow. The plasticized regions W 1 and W 2 are indicated by hatching in FIGS.

突合せ部V,Vに沿って、後記する回転ツール45(図2の(a)参照)を用いて摩擦攪拌接合を施すと、突合せ部V,Vの周辺にかかるベース部材10および蓋板30の金属材料が、回転ツール45の摩擦熱により流動化する。この際、流動化した金属材料(塑性流動材Q)は、空隙部P,Pに流入して隙間を埋めるとともに、硬化してベース部材10と蓋板30とを一体的に接合する。 Along the butted portion V 1, V 2, when subjected to friction stir welding using a later-described rotating tool 45 (the (a) see FIG. 2), the base member 10 according to the periphery of the butted portion V 1, V 2 and The metal material of the lid plate 30 is fluidized by the frictional heat of the rotary tool 45. At this time, the fluidized metal material (plastic fluid Q) flows into the gaps P and P, fills the gap, and cures to integrally bond the base member 10 and the cover plate 30 together.

摩擦攪拌接合を行う際には、空隙部Pの形状や大きさ等に基づいて、回転ツール45の押し込み量及び挿入位置等を設定することにより、空隙部Pに塑性流動材Qを好適に流入させることができる。つまり、熱媒体用管20に接触しないように回転ツールを近接させて、空隙部Pに塑性流動材Qが隙間なく流入させることが好ましい。   When performing friction stir welding, the plastic fluid material Q is preferably flowed into the gap P by setting the push-in amount and insertion position of the rotary tool 45 based on the shape and size of the gap P, etc. Can be made. That is, it is preferable that the rotary tool is brought close to the heat medium pipe 20 so as not to contact the heat medium pipe 20 and the plastic fluid material Q flows into the gap portion P without a gap.

次に、伝熱板1の製造方法について説明する。   Next, a method for manufacturing the heat transfer plate 1 will be described.

本実施形態に係る製造方法で伝熱板1を製造するに際しては、図1の(a)に示すように、まず、ベース部材10の表面11に開口して形成された凹溝12に、熱媒体用管20を挿入する(管挿入工程)。このとき、熱媒体用管20は、凹溝12の幅方向中央部に位置するように挿入する。凹溝12内の熱媒体用管20上部の凹溝12の開口部12aに蓋板30を挿入する(凹溝閉塞工程)。   When the heat transfer plate 1 is manufactured by the manufacturing method according to the present embodiment, first, as shown in FIG. 1A, first, heat is applied to the concave grooves 12 formed to open in the surface 11 of the base member 10. The medium tube 20 is inserted (tube insertion process). At this time, the heat medium pipe 20 is inserted so as to be positioned at the center in the width direction of the concave groove 12. The cover plate 30 is inserted into the opening 12a of the groove 12 above the heat medium pipe 20 in the groove 12 (the groove closing step).

本実施形態では、熱媒体用管20は、外径12.7mmで、厚さ1mmの銅管が用いられている。そして、凹溝12は、幅17mmで、深さ16.7mmに形成され、蓋板30は、幅17mmで、厚さ8mmに形成されている。   In the present embodiment, the heat medium pipe 20 is a copper pipe having an outer diameter of 12.7 mm and a thickness of 1 mm. The concave groove 12 has a width of 17 mm and a depth of 16.7 mm, and the cover plate 30 has a width of 17 mm and a thickness of 8 mm.

なお、ベース部材10は、アルミニウム合金の押出形材にて構成されており、凹溝12は押出時に形成されているが、アルミニウム合金製の平板の表面に、公知の切削加工等により半円形断面を備えた凹溝を形成するようにしてもよい。   The base member 10 is made of an extruded shape of an aluminum alloy, and the concave groove 12 is formed at the time of extrusion. A semicircular cross section is formed on the surface of a flat plate made of aluminum alloy by a known cutting process or the like. You may make it form the ditch | groove provided with.

蓋板30を熱媒体用管20上に挿入すると、蓋板30は、ベース部材10の表面11よりも4mm突出した状態となっている。   When the cover plate 30 is inserted onto the heat medium pipe 20, the cover plate 30 is in a state of protruding 4 mm from the surface 11 of the base member 10.

その後、図1の(b)に示すように、プレス機40にセットして蓋板30を凹溝12の底部12b側に押圧する。本実施形態では、蓋板30の突出部分先端がベース部材10の表面11と同じ高さになるまで押圧する(押圧工程)。   Thereafter, as shown in FIG. 1 (b), the cover plate 30 is set to the press machine 40 and presses the bottom plate 12 b of the groove 12. In this embodiment, it presses until the protrusion part front-end | tip of the cover board 30 becomes the same height as the surface 11 of the base member 10 (pressing process).

これによって、蓋板30が凹溝12の内部に押し込まれて、熱媒体用管20が、凹溝12の底部12bとの間に挟まれ押圧されて塑性変形する。このとき、熱媒体用管20、凹溝12および蓋板30が前記のような寸法および形状に設定されているので、熱媒体用管20は、図1の(c)に示すように、扁平形状に塑性変形する。また、蓋板30の側面と凹溝12の内側面とが面接触するとともに、蓋板30の上面が、ベース部材10の表面11と面一なる。ここで、凹溝12の内側面と蓋板30の側面によって突合せ部V,Vが形成される。 As a result, the cover plate 30 is pushed into the concave groove 12, and the heat medium pipe 20 is sandwiched and pressed between the bottom 12b of the concave groove 12 and plastically deformed. At this time, since the heat medium pipe 20, the concave groove 12, and the cover plate 30 are set to the above dimensions and shapes, the heat medium pipe 20 is flat as shown in FIG. Plastically deforms into shape. Further, the side surface of the cover plate 30 and the inner surface of the concave groove 12 are in surface contact, and the upper surface of the cover plate 30 is flush with the surface 11 of the base member 10. Here, the abutting portions V 1 and V 2 are formed by the inner surface of the concave groove 12 and the side surface of the lid plate 30.

このとき、熱媒体用管20は、凹溝12の内部に完全に収容された状態で、閉塞された空間内で蓋板30に押圧されるので、凹溝12の内表面に沿って変形することとなり、凹溝12の外側に変形することはなく、所望の形状に確実に変形させることができる。したがって、熱媒体用管20とベース部材10とは密に接触することとなり、熱媒体用管20とベース部材10との接触面積が大きくなるので、伝熱板1の熱伝導性を高めることができる。また、凹溝12が複数設けられている場合でも、蓋板30は、一つの凹溝12に一つずつ挿入されるので、プレス機40と蓋板30との接触面積を小さくできる。したがって、プレス機40の押圧力を蓋板30に集中的に伝達することができ、小さい押圧力で、熱媒体用管20を変形させることができる。すなわち、プレス機40の蓋板30への押圧力を、熱媒体用管20の変形に直接的に利用することで、押圧力を小さくすることができ、製造が容易になる。   At this time, the heat medium pipe 20 is pressed against the cover plate 30 in the closed space in a state of being completely accommodated in the inside of the groove 12, so that it deforms along the inner surface of the groove 12. That is, it does not deform to the outside of the concave groove 12, and can be reliably deformed into a desired shape. Therefore, the heat medium pipe 20 and the base member 10 are in close contact with each other, and the contact area between the heat medium pipe 20 and the base member 10 is increased, so that the heat conductivity of the heat transfer plate 1 can be improved. it can. Even when a plurality of the concave grooves 12 are provided, the cover plate 30 is inserted into the single concave groove 12 one by one, so that the contact area between the press machine 40 and the cover plate 30 can be reduced. Therefore, the pressing force of the press machine 40 can be transmitted intensively to the cover plate 30, and the heat medium pipe 20 can be deformed with a small pressing force. That is, by directly using the pressing force applied to the cover plate 30 of the press machine 40 for the deformation of the heat medium pipe 20, the pressing force can be reduced, and the manufacture is facilitated.

また、凹溝12の底部12bの幅方向両端の入隅部が曲面状に形成されているので、熱媒体用管20の変形部分が凹溝12の内表面に追従しやすく、熱媒体用管20が凹溝12の底部12bの形状に沿って変形する。これによって、熱媒体用管20が、凹溝12の底部12bの内表面に面接触することとなり、熱媒体用管20とベース部材10との密着性が高まり、伝熱板1の熱伝導性を向上することができる。   Further, since the corners at both ends in the width direction of the bottom 12b of the groove 12 are formed in a curved shape, the deformed portion of the heat medium tube 20 can easily follow the inner surface of the groove 12, and the heat medium tube 20 is deformed along the shape of the bottom 12 b of the groove 12. As a result, the heat medium pipe 20 comes into surface contact with the inner surface of the bottom portion 12b of the concave groove 12, and the adhesion between the heat medium pipe 20 and the base member 10 is enhanced, so that the heat conductivity of the heat transfer plate 1 is increased. Can be improved.

さらに、凹溝12、熱媒体用管20および蓋板30は、前記したような所定寸法に形成されており、これによって、蓋板30が、凹溝12の開口部12aに挿入された際にベース部材10の表面11よりも突出する。そして、蓋板30の突出部分先端をベース部材10の表面11まで押圧することで、熱媒体用管20を塑性変形させるようにしたことによって、蓋板30の押込み長さは一定に保たれるので、熱媒体用管20の変形量管理および変形形状管理を容易に行うことができる。   Further, the concave groove 12, the heat medium pipe 20 and the lid plate 30 are formed to have the predetermined dimensions as described above, whereby when the lid plate 30 is inserted into the opening 12a of the concave groove 12. It protrudes from the surface 11 of the base member 10. The pushing length of the cover plate 30 is kept constant by pressing the tip of the protruding portion of the cover plate 30 to the surface 11 of the base member 10 to plastically deform the heat medium pipe 20. Therefore, the deformation amount management and the deformation shape management of the heat medium pipe 20 can be easily performed.

次に、図2の(a)に示すように、突合せ部V,V(図2の(a)中ではV)に沿って、摩擦撹拌接合を順次施す(摩擦撹拌接合工程)。このとき、突合せ部V,Vは、ベース部材10の表面11で目視することができるので、摩擦撹拌接合を正確な位置で確実に行うことができる。 Next, as shown in FIG. 2 (a), the butted portion V 1, V 2 along the (V 1 is in FIG. 2 (a)), successively subjected to friction stir welding (FSW process). At this time, since the butted portions V 1 and V 2 can be visually observed on the surface 11 of the base member 10, the friction stir welding can be reliably performed at an accurate position.

摩擦撹拌接合は、公知の回転ツール45を用いて行う。回転ツール45は、例えば、工具鋼からなり、円柱形のツール本体46と、その底面46aの中心部から同心軸で垂下するピン47とを有する。ピン47は、先端に向けて幅狭となるテーパ状に形成されている。なお、ピン47の周面には、その軸方向に沿って図示しない複数の小溝や径方向に沿ったネジ溝が形成されていてもよい。   Friction stir welding is performed using a known rotary tool 45. The rotary tool 45 is made of, for example, tool steel, and includes a cylindrical tool body 46 and a pin 47 that hangs down on a concentric axis from the center of the bottom surface 46a. The pin 47 is formed in a tapered shape that becomes narrower toward the tip. A plurality of small grooves (not shown) and screw grooves along the radial direction may be formed on the peripheral surface of the pin 47 along the axial direction.

摩擦撹拌接合は、ベース部材10及び蓋板30を図示しない冶具により拘束した状態で、各突合せ部V,Vに高速回転する回転ツール45を押し込み、突合せ部V,Vに沿って移動させる。高速回転するピン47により、その周囲のベース部材10及び蓋板30のアルミニウム合金材料は、摩擦熱によって加熱され流動化する。そして、この流動した物質(塑性流動材Q)が、空隙部Pに流入する。 Friction stir welding is a state of being constrained by a jig not shown the base member 10 and the cover plate 30, pushing the rotating tool 45 rotating at a high speed to the respective butt portions V 1, V 2, along the butt portion V 1, V 2 Move. By the pins 47 rotating at high speed, the surrounding base member 10 and the aluminum alloy material of the cover plate 30 are heated and fluidized by frictional heat. Then, the fluidized material (plastic fluid material Q) flows into the gap P.

以上の工程によって、図3に示すように、突合せ部V,V(図1の(c)参照)に沿って塑性化領域W,Wが形成され、ベース部材10と蓋板30とで、熱媒体用管20が密閉される。さらに、空隙部Pに塑性流動材Qが流入されて(図2の(a)参照)空隙部Pが充填されるため、各部材同士が密着され、熱伝導性の高い伝熱板1を形成することができる。 Through the above steps, as shown in FIG. 3, plasticized regions W 1 and W 2 are formed along the butted portions V 1 and V 2 (see FIG. 1C), and the base member 10 and the cover plate 30 are formed. Thus, the heat medium pipe 20 is sealed. Furthermore, since the plastic fluid material Q is introduced into the gap P (see FIG. 2A) and the gap P is filled, the members are brought into close contact with each other to form the heat transfer plate 1 having high thermal conductivity. can do.

また、前記したように、熱媒体用管20の変形量管理および変形形状管理を容易に行うことができるので、熱媒体用管20を所望の形状に塑性変形できる。したがって、熱媒体用管20とベース部材10との密着性をより一層高めることができ、熱伝導性をさらに高めることができる。   Further, as described above, since the deformation amount management and the deformation shape management of the heat medium pipe 20 can be easily performed, the heat medium pipe 20 can be plastically deformed into a desired shape. Therefore, the adhesiveness between the heat medium pipe 20 and the base member 10 can be further enhanced, and the thermal conductivity can be further enhanced.

さらに、本実施形態によれば、ベース部材10が伝熱板1の厚さ方向全体に亘って一体に形成されているので、特許文献1のように、上面と下面とが別部材で形成されたものと比較して、熱を伝熱板1の全体に亘って一様に伝達することができる。   Furthermore, according to this embodiment, since the base member 10 is integrally formed over the entire thickness direction of the heat transfer plate 1, the upper surface and the lower surface are formed as separate members as in Patent Document 1. As compared with the above, heat can be transmitted uniformly over the entire heat transfer plate 1.

また、以上のような伝熱板1によれば、熱媒体用管20を扁平形状に塑性変形させているので、熱媒体の流量に対して熱媒体用管20の表面積を大きくすることができ、熱伝導性をより一層高めることができる。   Further, according to the heat transfer plate 1 as described above, since the heat medium pipe 20 is plastically deformed into a flat shape, the surface area of the heat medium pipe 20 can be increased with respect to the flow rate of the heat medium. The thermal conductivity can be further increased.

さらに、本実施形態では、断面円形の熱媒体用管20を凹溝12内に挿入した後に変形させているので、熱媒体用管20の加工を容易に行うことができる。すなわち、一つの伝熱板で凹溝が複数形成されている場合は、熱媒体用管は各凹溝を繋ぐように平面視S字状に形成されることとなるが、扁平形状に形成された熱媒体用管をS字状に変形するのは困難である。しかし、本実施形態に係る伝熱板の製造方法では、断面円形の熱媒体用管を、S字状に変形した後に、凹溝内で塑性変形するので、平面視S字状の扁平形状の熱媒体管を容易に形成することができる。   Furthermore, in this embodiment, since the heat medium pipe 20 having a circular cross section is deformed after being inserted into the concave groove 12, the heat medium pipe 20 can be easily processed. That is, when a plurality of concave grooves are formed with one heat transfer plate, the heat medium pipe is formed in an S shape in plan view so as to connect the concave grooves, but is formed in a flat shape. It is difficult to deform the heat medium pipe into an S shape. However, in the heat transfer plate manufacturing method according to the present embodiment, the heat medium pipe having a circular cross section is plastically deformed in the concave groove after being deformed into an S shape. The heat medium tube can be easily formed.

また、ベース部材10と蓋板30とが、塑性化領域W,Wにおいて、両者の金属材料が摩擦撹拌接合により塑性流動化されるとともに、流動化された塑性流動材Qが空隙部Pに流入されているので、ベース部材10と蓋板30とを接合するとともに、空隙部Pを埋めることができる。また、摩擦撹拌接合の際に、熱媒体用管20は、後記する回転ツールのツール本体(ジョルダ)の底面によって加圧されるので、凹溝12の底部12bとの接触性を高めることができる。これにより、熱媒体用管20中を循環する熱媒体からの熱エネルギーを、ベース部材10に効率よく伝達することができる。 Further, when the base member 10 and the cover plate 30 are plasticized in the plasticized regions W 1 and W 2 , both metal materials are plastically fluidized by friction stir welding, and the fluidized plastic fluidized material Q is the gap portion P. Therefore, the base member 10 and the cover plate 30 can be joined and the gap P can be filled. Further, during the friction stir welding, the heat medium tube 20 is pressurized by the bottom surface of the tool body (Jorda) of the rotary tool described later, so that the contact property with the bottom 12b of the concave groove 12 can be enhanced. . Thereby, the heat energy from the heat medium circulating in the heat medium pipe 20 can be efficiently transmitted to the base member 10.

次に、本発明を実施するための第二の最良の形態について、図面を適宜参照しながら詳細に説明する。   Next, a second best mode for carrying out the present invention will be described in detail with reference to the drawings as appropriate.

図4および図5に示すように、第二の実施形態に係る伝熱板1の製造方法は、蓋板30が、アルミニウム合金製の押出形材に代えて、鉄製治具31によって構成されていることを特徴とする。   As shown in FIGS. 4 and 5, in the method of manufacturing the heat transfer plate 1 according to the second embodiment, the lid plate 30 is configured by an iron jig 31 instead of the extruded shape made of aluminum alloy. It is characterized by being.

鉄製治具31は、熱媒体用管20を押圧する際の蓋板として利用されるものであって、その下面には、円弧状の凹部31aが形成されている。凹部31aは、所定の曲率半径で形成されており、熱媒体用管の上端部が円滑な曲面状に塑性変形するように構成されている。また、鉄製治具31は、凹溝12の幅寸法よりも僅かに小さい幅寸法を有している。さらに、鉄製治具31は、第一の実施形態のアルミニウム合金製の押出形材からなる蓋板30と同様に、熱媒体用管20の上部で凹溝12内に挿入したときに、鉄製治具31が、ベース部材10の表面11よりも突出するような寸法を有している。   The iron jig 31 is used as a cover plate when the heat medium pipe 20 is pressed, and an arcuate recess 31a is formed on the lower surface thereof. The recess 31a is formed with a predetermined radius of curvature, and is configured such that the upper end of the heat medium pipe is plastically deformed into a smooth curved surface. The iron jig 31 has a width dimension slightly smaller than the width dimension of the concave groove 12. Further, when the iron jig 31 is inserted into the concave groove 12 at the upper part of the heat medium pipe 20 in the same manner as the cover plate 30 made of the aluminum alloy extruded profile of the first embodiment, the iron jig 31 The tool 31 has a dimension that protrudes from the surface 11 of the base member 10.

本実施形態に係る製造方法で伝熱板1を製造するに際しては、図4の(a)に示すように、まず、ベース部材10の表面11に開口して形成された凹溝12に、熱媒体用管20を挿入して(管挿入工程)、凹溝12内の熱媒体用管20上部の凹溝12の開口部12aに鉄製治具31(蓋板30)を挿入する(凹溝閉塞工程)。   When the heat transfer plate 1 is manufactured by the manufacturing method according to the present embodiment, first, as shown in FIG. 4A, first, heat is applied to the concave grooves 12 formed in the surface 11 of the base member 10 so as to open. The medium tube 20 is inserted (tube insertion step), and an iron jig 31 (lid plate 30) is inserted into the opening 12a of the groove 12 above the heat medium tube 20 in the groove 12 (groove blockage). Process).

このとき、鉄製治具31は、ベース部材10の表面11よりも突出している。なお、鉄製治具31は、凹溝12よりも小さい幅寸法で形成されているので、熱媒体用管20の上部に載置するだけでよい。   At this time, the iron jig 31 protrudes from the surface 11 of the base member 10. In addition, since the iron jig 31 is formed with a width dimension smaller than that of the concave groove 12, it only needs to be placed on the upper part of the heat medium pipe 20.

その後、図4の(b)に示すように、プレス機40にセットして鉄製治具31を凹溝12の底部12b側に押圧する(押圧工程)。本実施形態では、鉄製治具31は、4トンの荷重をかけて、鉄製治具31の突出部分先端がベース部材10の表面11と同じ高さになるまで押圧する。これによって、鉄製治具31が凹溝12の内部に押し込まれて、熱媒体用管20が、鉄製治具31と凹溝12の底部12bとの間に挟まれて押圧され扁平形状に塑性変形する。このとき、鉄製治具31の下面には、凹部31aが形成されているので、熱媒体用管20は凹部31aに沿って変形し、塑性変形が円滑に行われる。なお、凹部31aは、一定曲率に限定されるものではなく、曲率が徐々に変化する楕円形状等の他の形状であってもよいのは勿論である。   Thereafter, as shown in FIG. 4B, the iron jig 31 is set to the bottom 12b side of the recessed groove 12 by pressing the iron jig 31 (pressing step). In the present embodiment, the iron jig 31 applies a load of 4 tons and presses the tip of the protruding portion of the iron jig 31 until it has the same height as the surface 11 of the base member 10. As a result, the iron jig 31 is pushed into the groove 12, and the heat medium pipe 20 is sandwiched and pressed between the iron jig 31 and the bottom 12b of the groove 12 to be plastically deformed into a flat shape. To do. At this time, since the recess 31a is formed on the lower surface of the iron jig 31, the heat medium pipe 20 is deformed along the recess 31a, and plastic deformation is smoothly performed. In addition, the recessed part 31a is not limited to a fixed curvature, Of course, other shapes, such as an elliptical shape from which a curvature changes gradually, may be sufficient.

プレス機40による鉄製治具31の押圧が完了したならば、図4の(c)に示すように、鉄製治具31を凹溝12から取り出して、別途の蓋板32を凹溝12内に挿入する(蓋板挿入工程)。この蓋板32は、断面矩形を呈しており、凹溝12の幅寸法と同等の幅寸法と、鉄製治具31の凹部31aの中央部と上面との厚さ寸法(最も薄い部分の寸法)と同等の厚さ寸法を有しており、凹溝12に嵌合されることとなる。そして、凹溝12に嵌合された蓋板32は、その上面が、ベース部材10の表面11と面一となるとともに、蓋板32の側面と凹溝12の内側面とが面接触する。ここで、凹溝12の内側面と蓋板32の側面によって突合せ部V,Vが形成される。 When the pressing of the iron jig 31 by the pressing machine 40 is completed, the iron jig 31 is taken out from the concave groove 12 and a separate cover plate 32 is placed in the concave groove 12 as shown in FIG. Insert (cover plate insertion step). The lid plate 32 has a rectangular cross section, a width dimension equivalent to the width dimension of the recessed groove 12, and a thickness dimension (dimension of the thinnest part) between the central portion and the upper surface of the recess 31 a of the iron jig 31. And has a thickness dimension equivalent to that of the concave groove 12. The top surface of the cover plate 32 fitted in the groove 12 is flush with the surface 11 of the base member 10, and the side surface of the cover plate 32 and the inner surface of the groove 12 are in surface contact. Here, the abutting portions V 1 and V 2 are formed by the inner side surface of the groove 12 and the side surface of the cover plate 32.

以下の工程は、第一の実施形態と同様である。図5の(b)に示すように、突合せ部V,V(図5の(b)中ではV)に沿って、摩擦撹拌接合を順次施す(摩擦撹拌接合工程)。これによって、突合せ部V,Vの周囲のベース部材10及び蓋板32のアルミニウム合金材料が、摩擦熱によって加熱され流動化して、この流動した物質(塑性流動材Q)が、空隙部Pに流入する。このとき、蓋板32は、断面矩形であって、その下面が平面状であるので、熱媒体用管20との間に形成される空隙部Pは、凹溝12の内側面に繋がる。すなわち、凹部31aを有する鉄製治具31で熱媒体用管20を押圧させて、熱媒体用管20の上面の円弧状に形成し、その上部に平板状の蓋板32を載置したことによって、空隙部Pが凹溝12の内側面に確実に繋がる。したがって、塑性流動材Qが、空隙部Pに確実に流入して、各部同士の密着性が高まり、伝熱板1の熱伝導性を高めることができる。 The following steps are the same as in the first embodiment. As shown in FIG. 5 (b), along the butt portion V 1, V 2 (V 1 is in (b) of FIG. 5), successively subjected to friction stir welding (FSW process). As a result, the base member 10 around the butt portions V 1 and V 2 and the aluminum alloy material of the cover plate 32 are heated and fluidized by frictional heat, and the fluidized material (plastic fluid material Q) becomes the void portion P. Flow into. At this time, since the lid plate 32 has a rectangular cross section and its lower surface is flat, the gap P formed between the cover plate 32 and the heat medium pipe 20 is connected to the inner surface of the groove 12. That is, by pressing the heat medium pipe 20 with the iron jig 31 having the recess 31a to form an arc shape on the upper surface of the heat medium pipe 20, and placing the flat cover plate 32 on the upper part. The gap P is reliably connected to the inner surface of the groove 12. Therefore, the plastic fluid material Q surely flows into the gap P, the adhesion between the respective parts is increased, and the thermal conductivity of the heat transfer plate 1 can be increased.

以上の工程によって、第一の実施形態と略同様の構成の伝熱板1が製造される(図5の(c)参照)。本実施形態では、第一の実施形態で得られる作用効果の他に、以下のような作用効果が得られる。要するに、本実施形態では、底面に曲面状の凹部31aが形成された鉄製治具31を用いて、熱媒体用管20を押圧しているので、熱媒体用管20の上面が凹部31aに沿って円滑に変形され、変形形状を管理しやすくなる。また、熱媒体用管20の上面中央部が内側に凹まないので、熱媒体用管20と蓋板32との間に塑性流動材Qを確実に流入させることができ、各部材同士の密着性を高めることができる。   Through the above steps, the heat transfer plate 1 having substantially the same configuration as that of the first embodiment is manufactured (see FIG. 5C). In the present embodiment, in addition to the operational effects obtained in the first embodiment, the following operational effects are obtained. In short, in the present embodiment, since the heat medium pipe 20 is pressed using the iron jig 31 having the curved concave portion 31a formed on the bottom surface, the upper surface of the heat medium pipe 20 extends along the concave portion 31a. Therefore, it is easy to manage the deformed shape. Further, since the central portion of the upper surface of the heat medium pipe 20 is not recessed inward, the plastic fluid material Q can surely flow between the heat medium pipe 20 and the cover plate 32, and the adhesiveness between the members. Can be increased.

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されることなく、その趣旨を逸脱しない範囲で適宜に設計変更が可能である。例えば、前記実施形態では、一つの伝熱板1に一列の凹溝12が設けられているが、凹溝を複数設けてもよいのは勿論である。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, one row of the grooves 12 is provided in one heat transfer plate 1, but it is needless to say that a plurality of grooves may be provided.

本発明に係る伝熱板の製造方法の第一の実施形態を示した図であって、(a)はベース部材に熱媒体用管と蓋板を挿入した状態を示した側面図、(b)は蓋板と熱媒体用管を押圧する状態を示した側面図、(c)は熱媒体用管を塑性変形した状態を示した側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed 1st embodiment of the manufacturing method of the heat exchanger plate which concerns on this invention, Comprising: (a) is the side view which showed the state which inserted the pipe | tube for heat-medium and the cover plate in the base member, (b) ) Is a side view showing a state in which the lid plate and the heat medium pipe are pressed, and (c) is a side view showing a state in which the heat medium pipe is plastically deformed. 本発明に係る伝熱板の製造方法の第一の実施形態を示した図であって、(a)は摩擦撹拌接合を施している状態を示した断面図、(b)は摩擦撹拌接合が完了した状態を示した断面図である。It is the figure which showed 1st embodiment of the manufacturing method of the heat exchanger plate which concerns on this invention, Comprising: (a) is sectional drawing which showed the state which has given friction stir welding, (b) is friction stir welding It is sectional drawing which showed the completed state. 本発明に係る伝熱板を示した斜視図である。It is the perspective view which showed the heat exchanger plate which concerns on this invention. 本発明に係る伝熱板の製造方法の第二の実施形態を示した図であって、(a)はベース部材に熱媒体用管と鉄製治具(蓋板)を挿入した状態を示した側面図、(b)は鉄製治具と熱媒体用管を押圧する状態を示した側面図、(c)は熱媒体用管を塑性変形した状態を示した側面図である。It is the figure which showed 2nd embodiment of the manufacturing method of the heat exchanger plate which concerns on this invention, Comprising: (a) showed the state which inserted the pipe | tube for heat media and the iron jig | tool (lid plate) in the base member. A side view, (b) is a side view showing a state where an iron jig and a heat medium pipe are pressed, and (c) is a side view showing a state where the heat medium pipe is plastically deformed. 本発明に係る伝熱板の製造方法の第二の実施形態を示した図であって、(a)は熱媒体用管上に他の蓋板を挿入した状態を示した側面図、(b)は摩擦撹拌接合を施している状態を示した断面図、(c)は摩擦撹拌接合が完了した状態を示した断面図である。It is the figure which showed 2nd embodiment of the manufacturing method of the heat exchanger plate which concerns on this invention, Comprising: (a) is the side view which showed the state which inserted the other cover plate on the pipe | tube for heat-medium, (b ) Is a cross-sectional view showing a state where friction stir welding is performed, and (c) is a cross-sectional view showing a state where friction stir welding is completed. 従来の伝熱板を示した側面図である。It is the side view which showed the conventional heat exchanger plate.

符号の説明Explanation of symbols

1 伝熱板
10 ベース部材
11 (ベース部材の)表面
12 凹溝
12a (凹溝の)開口部
12b (凹溝の)底部
20 熱媒体用管
30 蓋板
31 鉄製治具(蓋板)
DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 10 Base member 11 (Base member) surface 12 Groove 12a (Dove groove) opening 12b (Dove groove) bottom 20 Heat medium pipe 30 Lid plate 31 Iron jig (lid plate)

Claims (6)

熱部品を加熱または冷却するための熱媒体を循環させる熱媒体用管を板状のベース部材の内部に収容した伝熱板の製造方法において、
前記ベース部材の表面に開口するとともに前記熱媒体用管の外径寸法よりも長い深さ寸法を有する凹溝に、前記熱媒体用管を挿入し、
前記凹溝内の前記熱媒体用管上部の前記凹溝の開口部に蓋板を挿入し、
その蓋板を前記凹溝の底部側に押圧することで、前記熱媒体用管を塑性変形させて前記凹溝に当接させるようにした
ことを特徴とする伝熱板の製造方法。
In the method of manufacturing a heat transfer plate in which a heat medium tube for circulating a heat medium for heating or cooling a heat component is accommodated in a plate-like base member,
The heat medium pipe is inserted into a groove having an opening on the surface of the base member and having a depth dimension longer than the outer diameter dimension of the heat medium pipe,
Insert a cover plate into the opening of the groove at the top of the heat medium pipe in the groove,
A method of manufacturing a heat transfer plate, wherein the cover plate is pressed against the bottom side of the concave groove so that the heat medium pipe is plastically deformed and brought into contact with the concave groove.
前記蓋板は、前記凹溝の開口部に挿入された際に前記ベース部材の表面よりも突出しており、
前記蓋板の突出部分先端を前記ベース部材の表面まで押圧することで、前記熱媒体用管を塑性変形させる
ことを特徴とする請求項1に記載の伝熱板の製造方法。
The lid plate protrudes from the surface of the base member when inserted into the opening of the concave groove,
The method for manufacturing a heat transfer plate according to claim 1, wherein the heat medium pipe is plastically deformed by pressing a protruding portion tip of the lid plate to the surface of the base member.
前記凹溝の底部は、その幅方向両端の底部入隅部が曲面加工された曲面状に形成されており、
前記熱媒体用管は、前記凹溝の底部に沿って略楕円状に塑性変形する
ことを特徴とする請求項1または請求項2に記載の伝熱板の製造方法。
The bottom of the concave groove is formed in a curved shape in which the bottom corners at both ends in the width direction are curved.
The method for manufacturing a heat transfer plate according to claim 1, wherein the heat medium pipe is plastically deformed in a substantially elliptic shape along a bottom portion of the concave groove.
前記蓋板は、押圧後に摩擦撹拌接合によって前記ベース部材に固定される
ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の伝熱板の製造方法。
The said cover plate is fixed to the said base member by friction stir welding after pressing. The manufacturing method of the heat exchanger plate of any one of Claim 1 thru | or 3 characterized by the above-mentioned.
塑性変形された前記熱媒体用管の周囲に形成された空隙部に、前記摩擦撹拌接合の摩擦熱によって流動化させた塑性流動材を流入させる
ことを特徴とする請求項4に記載の伝熱板の製造方法。
The heat transfer material according to claim 4, wherein the plastic fluidized material fluidized by the frictional heat of the friction stir welding is caused to flow into a gap formed around the plastically deformed heat medium pipe. A manufacturing method of a board.
熱部品を加熱または冷却するための熱媒体を循環させる熱媒体用管を板状のベース部材の内部に収容した伝熱板において、
前記ベース部材は、その表面に開口するとともに前記熱媒体用管の外径寸法よりも長い深さ寸法を有する凹溝を備え、
前記熱媒体用管は、前記凹溝に挿入されその上部の前記凹溝の開口部に挿入された蓋板を前記凹溝の底部側に押圧することで塑性変形されて前記凹溝の底部に当接されている
ことを特徴とする伝熱板。
In a heat transfer plate in which a heat medium tube for circulating a heat medium for heating or cooling a heat component is accommodated inside a plate-like base member,
The base member includes a concave groove that opens on a surface thereof and has a depth dimension longer than an outer diameter dimension of the heat medium pipe;
The heat medium pipe is plastically deformed by pressing a lid plate inserted into the concave groove and inserted into the opening of the concave groove on the upper side toward the bottom side of the concave groove, so that the bottom of the concave groove is formed. A heat transfer plate that is in contact with each other.
JP2007231179A 2007-04-16 2007-09-06 Heat transfer plate manufacturing method and heat transfer plate Active JP5012339B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2007231179A JP5012339B2 (en) 2007-09-06 2007-09-06 Heat transfer plate manufacturing method and heat transfer plate
KR1020097023670A KR101411143B1 (en) 2007-04-16 2008-03-21 Method of producing heat transfer plate and heat transfer plate
PCT/JP2008/055240 WO2008132900A1 (en) 2007-04-16 2008-03-21 Method of producing heat transfer plate and heat transfer plate
EP08722604.9A EP2145719B1 (en) 2007-04-16 2008-03-21 Method of producing heat transfer plate and heat transfer plate
EP13185217.0A EP2679331B1 (en) 2007-04-16 2008-03-21 Method of producing heat transfer plate and heat transfer plate
CN2011101601098A CN102248276B (en) 2007-04-16 2008-03-21 Heat transfer plate and method of manufacturing same
US12/595,118 US8365408B2 (en) 2007-04-16 2008-03-21 Heat transfer plate and method of manufacturing the same
CN2008800119386A CN101657289B (en) 2007-04-16 2008-03-21 Method for manufacturing heat exchanger plate, and heat exchanger plate
TW097112783A TW200843888A (en) 2007-04-16 2008-04-09 Method of producing heat transfer plate and heat transfer plate
US13/731,229 US8782892B2 (en) 2007-04-16 2012-12-31 Heat transfer plate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231179A JP5012339B2 (en) 2007-09-06 2007-09-06 Heat transfer plate manufacturing method and heat transfer plate

Publications (2)

Publication Number Publication Date
JP2009061470A JP2009061470A (en) 2009-03-26
JP5012339B2 true JP5012339B2 (en) 2012-08-29

Family

ID=40556562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231179A Active JP5012339B2 (en) 2007-04-16 2007-09-06 Heat transfer plate manufacturing method and heat transfer plate

Country Status (1)

Country Link
JP (1) JP5012339B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071249B2 (en) * 2008-06-03 2012-11-14 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
WO2009142070A1 (en) * 2008-05-20 2009-11-26 日本軽金属株式会社 Method for producing heat exchanger plate, and heat exchanger plate
JP5125760B2 (en) * 2008-05-20 2013-01-23 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
JP5434251B2 (en) * 2009-05-13 2014-03-05 日本軽金属株式会社 Manufacturing method of heat transfer plate
KR101213247B1 (en) * 2008-06-27 2012-12-18 니폰게이긴조쿠가부시키가이샤 Heat exchange plate manufacturing method and heat exchange plate
JP5071274B2 (en) * 2008-06-27 2012-11-14 日本軽金属株式会社 Heat transfer plate manufacturing method and heat transfer plate
CN102790984B (en) 2009-03-13 2016-05-11 日本电气株式会社 Wireless communication system, wireless base station and wireless communications method
JP5267381B2 (en) * 2009-08-19 2013-08-21 日本軽金属株式会社 Manufacturing method of heat transfer plate
JP5707972B2 (en) * 2011-01-26 2015-04-30 トヨタ自動車株式会社 Heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025441B2 (en) * 1996-08-08 2000-03-27 日本原子力研究所 Method for manufacturing first cooling wall of fusion reactor
JP2006150454A (en) * 2000-12-22 2006-06-15 Hitachi Cable Ltd Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof
JP4385533B2 (en) * 2001-03-02 2009-12-16 日本軽金属株式会社 Manufacturing method of heat plate
JP2003329379A (en) * 2002-05-10 2003-11-19 Furukawa Electric Co Ltd:The Heat pipe circuit board
JP4126966B2 (en) * 2002-06-10 2008-07-30 株式会社日立製作所 Bonding structure of main body and lid
JP4325260B2 (en) * 2003-04-15 2009-09-02 日本軽金属株式会社 Manufacturing method of heat transfer element

Also Published As

Publication number Publication date
JP2009061470A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5012339B2 (en) Heat transfer plate manufacturing method and heat transfer plate
US8365408B2 (en) Heat transfer plate and method of manufacturing the same
JP6372516B2 (en) Liquid cooling jacket manufacturing method and liquid cooling jacket
US20180141152A1 (en) Method of manufacturing liquid-cooled jacket
JP4962423B2 (en) Manufacturing method of heat transfer plate
JP6036714B2 (en) Manufacturing method of liquid cooling jacket
US11712748B2 (en) Method for producing liquid-cooled jacket
JP6927068B2 (en) How to manufacture a liquid-cooled jacket
KR20180104172A (en) Method for producing heat exchanger plate and method for producing composite plate without channel in the inside
KR101179353B1 (en) Method for producing heat exchanger plate, and heat exchanger plate
JP2005324251A (en) Friction stir welding method, friction stir welding method for tubular member, and method for manufacturing hollow body
WO2019123679A1 (en) Method for manufacturing liquid cooling jacket
JP5440676B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5195098B2 (en) Manufacturing method of heat transfer plate
KR101213247B1 (en) Heat exchange plate manufacturing method and heat exchange plate
JP4888422B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2010089102A (en) Method for manufacturing heat transfer plate
JP5071132B2 (en) Manufacturing method of heat transfer plate
JP5953060B2 (en) Processing method of workpiece
JPWO2018003449A1 (en) Manufacturing method of heat transfer plate
JP5071249B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6365752B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP6547517B2 (en) Heat exchanger manufacturing method
JP5071274B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP5125760B2 (en) Heat transfer plate manufacturing method and heat transfer plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350