JP5010196B2 - Heat-resistant aluminum alloy shape manufacturing method, heat-resistant aluminum alloy shape material and heat-resistant aluminum alloy shape forming apparatus - Google Patents

Heat-resistant aluminum alloy shape manufacturing method, heat-resistant aluminum alloy shape material and heat-resistant aluminum alloy shape forming apparatus Download PDF

Info

Publication number
JP5010196B2
JP5010196B2 JP2006195724A JP2006195724A JP5010196B2 JP 5010196 B2 JP5010196 B2 JP 5010196B2 JP 2006195724 A JP2006195724 A JP 2006195724A JP 2006195724 A JP2006195724 A JP 2006195724A JP 5010196 B2 JP5010196 B2 JP 5010196B2
Authority
JP
Japan
Prior art keywords
heat
aluminum alloy
resistant aluminum
extrusion
welded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006195724A
Other languages
Japanese (ja)
Other versions
JP2008023532A (en
Inventor
輝 栄
英雄 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006195724A priority Critical patent/JP5010196B2/en
Priority to AT07011704T priority patent/ATE483831T1/en
Priority to DE602007009604T priority patent/DE602007009604D1/en
Priority to EP07011704A priority patent/EP1881084B1/en
Priority to PL07011704T priority patent/PL1881084T3/en
Publication of JP2008023532A publication Critical patent/JP2008023532A/en
Priority to HK08107668.8A priority patent/HK1117203A1/en
Application granted granted Critical
Publication of JP5010196B2 publication Critical patent/JP5010196B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/085Making tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Abstract

A manufacturing method for heat resistant aluminium alloy shaped products forms a shaped product by performing hot extrusion of a material (billet) made of a heat resistant aluminium alloy. The hot extrusion is performed causing a temperature of the shaped product immediately after the hot extrusion to fall within a range between 350°C and below 550°C.

Description

本発明は、耐熱アルミ合金製の形材の製造方法、耐熱アルミ合金製の形材及び耐熱アルミ合金製の形材の成形装置に関するものである。   The present invention relates to a method for producing a heat-resistant aluminum alloy profile, a heat-resistant aluminum alloy profile, and an apparatus for molding a heat-resistant aluminum alloy profile.

従来、高温強靭性、耐摩耗性及び高温疲労特性に優れた材料である耐熱アルミ合金材料が知られている(例えば、特許文献1参照)。   Conventionally, a heat-resistant aluminum alloy material, which is a material excellent in high-temperature toughness, wear resistance, and high-temperature fatigue properties, is known (see, for example, Patent Document 1).

上記特許文献1には、上記の耐熱アルミ合金材料が自動車の部品やエンジン部品等のような耐熱強度と軽量性とを要求される機械部品に好適に用いられることが開示されており、そのような機械部品は耐熱アルミ合金材料から熱間押出し加工の工程を経て形成されることが示されている。
特開2006−104561号公報
Patent Document 1 discloses that the above-mentioned heat-resistant aluminum alloy material is suitably used for mechanical parts that require heat-resistant strength and light weight such as automobile parts and engine parts. It has been shown that such mechanical parts are formed from a heat resistant aluminum alloy material through a hot extrusion process.
JP 2006-104561 A

しかしながら、上記特許文献1に開示された耐熱アルミ合金材料を実際に熱間押出し加工してみると、加工条件によっては素材に表面割れが生じることがあった。   However, when the heat-resistant aluminum alloy material disclosed in Patent Document 1 is actually hot-extruded, surface cracks may occur in the material depending on the processing conditions.

本発明は、上記のような課題を解決するためになされたものであり、その目的は表面割れが生じるのを抑制して熱間押出しにより良好な形状の耐熱アルミ合金製の形材を形成することである。   The present invention has been made in order to solve the above-mentioned problems, and its purpose is to form a heat-resistant aluminum alloy profile having a good shape by hot extrusion while suppressing surface cracking. That is.

本願発明者は、上記目的を達成するために鋭意検討した結果、押出し直後の形材の温度が所定の温度範囲内となるように熱間押出しすれば表面割れが生じるのを抑制可能であることを見出した。すなわち、本発明による耐熱アルミ合金製の形材の製造方法は、スプレーフォーミング法によって形成された耐熱アルミ合金からなる素材を熱間押出しすることにより形材を形成する耐熱アルミ合金製の形材の製造方法であって、前記耐熱アルミ合金は、体積分率で約50%〜約90%の金属間化合物相を含み且つ残部が金属アルミニウムマトリックスで構成されたアルミニウム基合金組織を含み、前記金属間化合物相を形成する元素としてCr、Fe、Ti、Mn、V、Siから選択される3種の元素を総和で約15質量%〜約50質量%含み、押出し直後の前記形材の温度が350℃以上550℃未満となるように熱間押出しを行う。
As a result of intensive studies to achieve the above object, the inventors of the present application can suppress the occurrence of surface cracks if hot extrusion is performed so that the temperature of the shape immediately after extrusion is within a predetermined temperature range. I found. That is, the method of manufacturing a heat-resistant aluminum alloy profile according to the present invention is a method of manufacturing a heat-resistant aluminum alloy profile that forms a profile by hot extrusion of a material made of a heat-resistant aluminum alloy formed by a spray forming method. The heat-resistant aluminum alloy includes an aluminum-based alloy structure containing an intermetallic compound phase of about 50% to about 90% in volume fraction and the balance being composed of a metal aluminum matrix, 3 elements selected from Cr, Fe, Ti, Mn, V, and Si as elements forming the compound phase are included in a total of about 15% by mass to about 50% by mass, and the temperature of the profile immediately after extrusion is 350. Hot extrusion is performed so that the temperature is not lower than 550 ° C and lower than 550 ° C.

このように、押出し直後の形材の温度が350℃以上550℃未満となるように熱間押出しを行うことにより、表面割れが生じるのを抑制して熱間押出し成形により良好な形状の耐熱アルミ合金製の形材を形成することが可能となる。   In this way, by performing hot extrusion so that the temperature of the shape immediately after extrusion is 350 ° C. or higher and lower than 550 ° C., the occurrence of surface cracks is suppressed, and heat-resistant aluminum having a favorable shape is formed by hot extrusion. An alloy profile can be formed.

本発明による耐熱アルミ合金製の形材は、上記耐熱アルミ合金製の形材の製造方法によって製造される耐熱アルミ合金製の形材である。この耐熱アルミ合金製の形材では、その製造時に表面割れが生じるのを抑制することができるとともに、高温強靭性や優れた耐摩耗性及び優れた高温疲労特性を得ることができる。   The heat-resistant aluminum alloy profile according to the present invention is a heat-resistant aluminum alloy profile produced by the above-described method for producing a heat-resistant aluminum alloy profile. In this heat-resistant aluminum alloy shape, it is possible to suppress the occurrence of surface cracks during its production, and to obtain high-temperature toughness, excellent wear resistance, and excellent high-temperature fatigue characteristics.

上記耐熱アルミ合金製の形材の製造方法において、前記素材を熱間押出しするのに、複数の入側ポートと、前記複数の入側ポートと繋がる単一の合流部と、前記合流部に繋がる成形空間とを有するダイスを備えた成形装置を使用し、前記成形装置は、前記ダイス内に圧入される前記素材を前記複数の入側ポートに分流させるとともに、これらの各入側ポートを通過した素材を前記合流部で合流させて溶着させ、その後、前記成形空間から中空断面状に前記形材を押し出すものであり、前記形材の押出し方向に垂直な断面の面積に対する前記ダイス内に圧入される前の前記素材の押出し方向に垂直な断面の面積の比が11以上となるように設定されていることが好ましい。   In the manufacturing method of the heat-resistant aluminum alloy profile, in order to extrude the material hot, a plurality of inlet ports, a single junction connected to the plurality of inlet ports, and the junction are connected. A molding apparatus including a die having a molding space is used, and the molding apparatus diverts the material press-fitted into the die into the plurality of inlet ports and passes through each of the inlet ports. The material is joined and welded at the joining portion, and then the profile is extruded from the molding space into a hollow cross-sectional shape, and is press-fitted into the die with respect to the cross-sectional area perpendicular to the extrusion direction of the profile. It is preferable that the ratio of the area of the cross section perpendicular to the extrusion direction of the material before being set to be 11 or more.

本願発明者は、鋭意検討した結果、上記のようにダイス内に圧入される素材を複数の入側ポートで分流させるとともに、これらの各入側ポートを通過した素材を合流部で合流させて溶着させ、その後、成形空間から中空断面状に形材を押し出す場合には、形材の押出し方向に垂直な断面の面積に対するダイス内に圧入される前の素材の押出し方向に垂直な断面の面積の比を11以上となるように設定することによって、各入側ポートを通過した素材同士の溶着部にその溶着部以外の非溶着部の強度の90%以上の強度を持たせることができることを見出した。この溶着部が非溶着部の強度の90%以上の強度を有するというレベルは、溶着部及び非溶着部それぞれでの強度のばらつきを考慮して溶着部と非溶着部との間でその強度に有意差がないと見なしてよいレベルである。すなわち、溶着部と非溶着部とがほぼ同等の強度を有していると見なせるので、中空状の形材全体の強度を均一に近づけることができる。このため、溶着部の強度が非溶着部の強度に比べて低くなる場合と異なり、形材に負荷がかかったときに溶着部が先に破損するのを抑制することができる。   As a result of diligent study, the inventor of the present application diverts the material press-fitted into the die as described above into a plurality of inlet ports, and joins the materials that have passed through these inlet ports by joining at the junction. After that, when extruding the profile from the molding space into a hollow cross-section, the area of the cross section perpendicular to the extrusion direction of the material before being press-fitted into the die with respect to the area of the cross section perpendicular to the extrusion direction of the profile It has been found that by setting the ratio to be 11 or more, the welded portion between the materials that have passed through each entry side port can have a strength of 90% or more of the strength of the non-welded portion other than the welded portion. It was. The level at which the welded portion has a strength of 90% or more of the strength of the non-welded portion is determined by the strength between the welded portion and the non-welded portion in consideration of the variation in strength between the welded portion and the non-welded portion. It is a level that can be regarded as having no significant difference. That is, since it can be considered that the welded portion and the non-welded portion have substantially the same strength, the strength of the entire hollow shape can be made close to uniform. For this reason, unlike the case where the intensity | strength of a welding part becomes low compared with the intensity | strength of a non-welding part, when a load is applied to a shape material, it can suppress that a welding part breaks previously.

本発明による耐熱アルミ合金製の形材は、上記形材の押出し方向に垂直な断面の面積に対するダイス内に圧入される前の素材の押出し方向に垂直な断面の面積の比が11以上となるように設定されている製造方法によって製造される中空状の耐熱アルミ合金製の形材であって、前記形材は、前記各入側ポートを通過した素材同士の溶着部と、その溶着部以外の非溶着部とを含み、前記溶着部は前記非溶着部の強度の90%以上の強度を有する。   In the heat-resistant aluminum alloy profile according to the present invention, the ratio of the area of the cross section perpendicular to the extrusion direction of the material before being press-fitted into the die to the area of the cross section perpendicular to the extrusion direction of the profile is 11 or more. A hollow heat-resistant aluminum alloy shape member manufactured by the manufacturing method set as described above, wherein the shape member is a welded portion between the materials that have passed through the respective inlet ports, and other than the welded portion. The welded portion has a strength of 90% or more of the strength of the non-welded portion.

この耐熱アルミ合金製の形材では、形材内の溶着部が非溶着部の強度の90%以上の強度を有しており、この溶着部が非溶着部の強度の90%以上の強度を有するというレベルは、溶着部及び非溶着部それぞれでの強度のばらつきを考慮して溶着部と非溶着部との間でその強度に有意差がないと見なしてよいレベルである。すなわち、溶着部と非溶着部とがほぼ同等の強度を有していると見なせるので、中空状の形材全体の強度を均一に近づけることができる。これにより、溶着部の強度が非溶着部の強度に比べて低い場合と異なり、形材に負荷がかかったときに溶着部が先に破損するのを抑制することができる。   In this heat-resistant aluminum alloy shape, the welded portion in the shape has a strength of 90% or more of the strength of the non-welded portion, and this welded portion has a strength of 90% or more of the strength of the non-welded portion. The level of having is a level that may be considered that there is no significant difference in strength between the welded portion and the non-welded portion in consideration of variations in strength between the welded portion and the non-welded portion. That is, since it can be considered that the welded portion and the non-welded portion have substantially the same strength, the strength of the entire hollow shape can be made close to uniform. Thereby, unlike the case where the intensity | strength of a welding part is low compared with the intensity | strength of a non-welding part, when a load is applied to a shape material, it can suppress that a welding part breaks previously.

本発明による耐熱アルミ合金製の形材の成形装置は、上記形材の押出し方向に垂直な断面の面積に対するダイス内に圧入される前の素材の押出し方向に垂直な断面の面積の比が11以上となるように設定されている形材の製造方法に用いる成形装置であることを前提として、前記熱間押出しする前の前記素材が装填される内孔を有するコンテナと、前記内孔に繋がる複数の入側ポートと、前記複数の入側ポートと繋がる単一の合流部と、前記合流部に繋がる成形空間とを有するダイスと、前記内孔内の前記素材を押し出して前記ダイス内に圧入するステムとを備えている。そして、前記成形空間の押出し方向に垂直な断面の面積に対する前記コンテナの内孔の押出し方向に垂直な断面の面積の比が11以上となるように設定されている。   In the molding apparatus for a heat-resistant aluminum alloy profile according to the present invention, the ratio of the area of the cross section perpendicular to the extrusion direction of the material before being press-fitted into the die to the area of the cross section perpendicular to the extrusion direction of the profile is 11 Assuming that the molding apparatus is used for the method of manufacturing a profile set to be as described above, a container having an inner hole into which the material before hot extrusion is loaded is connected to the inner hole. A die having a plurality of inlet ports, a single junction connected to the plurality of inlet ports, and a molding space connected to the junction, and press-fitting the material in the inner hole into the die And a stem. The ratio of the area of the cross section perpendicular to the extrusion direction of the inner hole of the container to the area of the cross section perpendicular to the extrusion direction of the molding space is set to 11 or more.

この耐熱アルミ合金製の形材の成形装置では、成形空間の押出し方向に垂直な断面の面積に対するコンテナの内孔の押出し方向に垂直な断面の面積の比が11以上となるように設定されているので、形材の押出し方向に垂直な断面の面積に対するダイス内に圧入される前の素材の押出し方向に垂直な断面の面積の比を11以上となるように設定することができる。このため、上記と同様、形材内の溶着部に非溶着部の強度の90%以上の強度を持たせることができるので、中空状の形材全体の強度を均一に近づけることができる。その結果、溶着部の強度が非溶着部の強度に比べて低くなる場合と異なり、形材に負荷がかかったときに溶着部が先に破損するのを抑制することができる。   In this heat-resistant aluminum alloy shape forming apparatus, the ratio of the area of the cross section perpendicular to the extrusion direction of the inner hole of the container to the area of the cross section perpendicular to the extrusion direction of the forming space is set to 11 or more. Therefore, the ratio of the area of the cross section perpendicular to the extrusion direction of the material before being pressed into the die to the area of the cross section perpendicular to the extrusion direction of the profile can be set to 11 or more. For this reason, similarly to the above, since the strength of the welded portion in the shape member can be 90% or more of the strength of the non-welded portion, the overall strength of the hollow shape member can be made close to uniform. As a result, unlike the case where the strength of the welded portion is lower than that of the non-welded portion, the welded portion can be prevented from being damaged first when a load is applied to the shape member.

以上説明したように、本発明によれば、表面割れが生じるのを抑制して熱間押出しにより良好な形状の耐熱アルミ合金製の形材を形成することができる。   As described above, according to the present invention, it is possible to form a heat-resistant aluminum alloy shape having a good shape by hot extrusion while suppressing the occurrence of surface cracks.

以下、本発明を実施するための最良の形態について図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1には、本発明の第1実施形態による耐熱アルミ合金製の形材の製造プロセスが示されている。この製造プロセスで用いる耐熱アルミ合金は、300℃近傍の高温において高温強靭性、優れた耐摩耗性及び優れた疲労特性を有する材料である。そして、耐熱アルミ合金は、体積分率で約50%〜約90%の金属間化合物相と、残部が金属アルミニウムマトリックスとで構成されたアルミニウム基合金組織を含んでいる。さらに、耐熱アルミ合金は、上記金属間化合物相を形成する元素としてCr、Fe、Ti、Mn、V、Siから選択される元素を3種含んでおり、これら3種の元素を総和で約15質量%〜約50質量%含む組成を有している。
(First embodiment)
FIG. 1 shows a manufacturing process of a heat-resistant aluminum alloy profile according to the first embodiment of the present invention. The heat-resistant aluminum alloy used in this manufacturing process is a material having high temperature toughness, excellent wear resistance, and excellent fatigue characteristics at a high temperature around 300 ° C. The heat-resistant aluminum alloy includes an aluminum-based alloy structure composed of an intermetallic compound phase having a volume fraction of about 50% to about 90% and the balance being a metal aluminum matrix. Further, the heat-resistant aluminum alloy contains three kinds of elements selected from Cr, Fe, Ti, Mn, V, and Si as elements forming the intermetallic compound phase, and the total of these three kinds of elements is about 15 It has a composition containing from mass% to about 50 mass%.

なお、上記金属間化合物相の組成がCr:約5質量%〜約30質量%、Fe:約1質量%〜約20質量%、Ti:約1質量%〜約15質量%からなるとともに、上記金属間化合物相がAl−Cr系、Al−Fe系またはAl−Ti系であることがより好ましい。この構成によれば、耐熱アルミ合金の高温疲労特性をより向上させることが可能である。   The composition of the intermetallic compound phase is Cr: about 5% by mass to about 30% by mass, Fe: about 1% by mass to about 20% by mass, Ti: about 1% by mass to about 15% by mass, More preferably, the intermetallic compound phase is Al—Cr, Al—Fe, or Al—Ti. According to this configuration, it is possible to further improve the high temperature fatigue characteristics of the heat-resistant aluminum alloy.

第1実施形態による製造プロセスでは、上記のような耐熱アルミ合金からなるビレット1(素材)を熱間押出しすることにより形材2を形成する。この際用いるビレット1は、いわゆるスプレーフォーミング法によって形成される。スプレーフォーミング法では、上記組成の耐熱アルミ合金を1250℃〜1600℃まで加熱して溶融させた後、100℃/h以上の冷却速度で冷却し、900℃〜1200℃まで冷却された時点で溶融状態の耐熱アルミ合金のスプレーを開始する。そして、スプレーした耐熱アルミ合金の粒子を堆積させることによってプリフォームを作成する。そして、密閉された真空容器中でこのプリフォームにHIP(Hot Isostatic Pressing)処理を行うことによってビレット1が作成される。このHIP処理は、高温下でプリフォームに高圧ガスの圧力を作用させてプリフォーム中の欠陥除去を行う処理である。なお、このようにして作成されるビレット1は円柱状に形成される。   In the manufacturing process according to the first embodiment, the shape 2 is formed by hot extruding the billet 1 (material) made of the heat-resistant aluminum alloy as described above. The billet 1 used at this time is formed by a so-called spray forming method. In the spray forming method, a heat-resistant aluminum alloy having the above composition is heated to 1250 ° C to 1600 ° C and melted, then cooled at a cooling rate of 100 ° C / h or more, and melted when cooled to 900 ° C to 1200 ° C. Start spraying heat-resistant aluminum alloy in state. Then, a preform is prepared by depositing sprayed heat-resistant aluminum alloy particles. And billet 1 is created by performing HIP (Hot Isostatic Pressing) processing to this preform in a sealed vacuum vessel. The HIP process is a process for removing defects in the preform by applying a high-pressure gas pressure to the preform at a high temperature. The billet 1 created in this way is formed in a cylindrical shape.

そして、第1実施形態による製造プロセスでは、ビレット1を成形装置10内に装填して熱間押出しを行う。熱間押出しに用いる成形装置10は、コンテナ12とステム14とダイス16とを備えている。   And in the manufacturing process by 1st Embodiment, the billet 1 is loaded in the shaping | molding apparatus 10, and hot extrusion is performed. A molding apparatus 10 used for hot extrusion includes a container 12, a stem 14, and a die 16.

コンテナ12には、ビレット1が装填される内孔12aが形成されており、この内孔12aはビレット1の押出し方向に沿って延びている。また、内孔12aは、押出し方向に垂直な断面が円形となるように形成されている。そして、内孔12aには図略の駆動機構によって駆動されるステム14が上記押出し方向に沿って進退移動可能に設けられている。ダイス16は、内孔12aの上記押出し方向(図1で右方向)の端部に設置されている。このダイス16には、内孔12aから押出されたビレット1が流入する成形孔16aが形成されている。そして、内孔12a内のビレット1をステム14で押出すことによりダイス16の成形孔16aの形状に対応する中実の形材2が押出されるようになっている。なお、この第1実施形態による製造方法では、図1に示すように平板状の形材2や角柱状の形材2等の種々の形状を有する中実の形材2を形成することができる。   An inner hole 12 a into which the billet 1 is loaded is formed in the container 12, and the inner hole 12 a extends along the extrusion direction of the billet 1. Further, the inner hole 12a is formed so that a cross section perpendicular to the extrusion direction is circular. A stem 14 that is driven by a drive mechanism (not shown) is provided in the inner hole 12a so as to be movable back and forth along the pushing direction. The die 16 is installed at the end of the inner hole 12a in the pushing direction (right direction in FIG. 1). The die 16 is formed with a molding hole 16a into which the billet 1 extruded from the inner hole 12a flows. The billet 1 in the inner hole 12a is pushed out by the stem 14, so that the solid shape member 2 corresponding to the shape of the forming hole 16a of the die 16 is pushed out. In the manufacturing method according to the first embodiment, as shown in FIG. 1, a solid shape member 2 having various shapes such as a flat shape member 2 and a prismatic shape member 2 can be formed. .

そして、第1実施形態における熱間押出しでは、成形装置10から押出された直後の形材2の温度が350℃以上550℃未満となるように熱間押出しを行う。従来の製造プロセスでは、耐熱アルミ合金素材を実際に熱間押出ししてみると、押出された形材の表面に割れが生じている場合があった。本願発明者は、このような表面割れの問題点を解消するために熱間押出し時の素材の温度に着目し、形材2に生じる表面割れと熱間押出し直後の形材2の温度との相関を調べる実験を行った。   And in the hot extrusion in 1st Embodiment, hot extrusion is performed so that the temperature of the shape material 2 immediately after extruded from the shaping | molding apparatus 10 may be 350 degreeC or more and less than 550 degreeC. In the conventional manufacturing process, when a heat-resistant aluminum alloy material is actually hot-extruded, cracks may occur on the surface of the extruded shape. The inventor of the present application pays attention to the temperature of the raw material at the time of hot extrusion in order to eliminate such problems of surface cracking, and the surface crack generated in the shape 2 and the temperature of the shape 2 immediately after the hot extrusion. Experiments were conducted to investigate the correlation.

この実験では、熱間押出しにおいて形材2の押出し方向に垂直な断面の面積に対する上記内孔12a内におけるビレット1の押出し方向に垂直な断面の面積の比(以下、押出し比という)を14.5〜65.5の間で変化させて複数の形材2を形成した。そして、成形装置10から押出された直後の各形材2の温度を測定するとともにその形材2の表面に割れが生じているか否かを観察した。この実験の結果が図2に示されている。   In this experiment, the ratio of the cross-sectional area perpendicular to the extrusion direction of the billet 1 in the inner hole 12a to the cross-sectional area perpendicular to the extrusion direction of the profile 2 in hot extrusion (hereinafter referred to as extrusion ratio) is 14. A plurality of profiles 2 were formed by changing between 5 and 65.5. And while measuring the temperature of each profile 2 immediately after extruded from the shaping | molding apparatus 10, it was observed whether the crack of the surface of the profile 2 had arisen. The result of this experiment is shown in FIG.

図2から判るように、押出された直後の形材2の温度が550℃に達する熱間押出しでは、各形材2で表面割れが生じ、良好な形状の形材を形成することができなかった。その一方、押出された直後の形材2の温度が550℃未満になるように熱間押出しを行った場合には、表面割れが生じることなく良好な形状の形材2を形成することができた。また、押出し直後の形材2の温度が350℃を下回るような熱間押出しでは、ビレット1の変形能が低くなり過ぎるため成形装置10からの形材2の押出しが困難となる。従って、押出し直後の形材2の温度が350℃以上550℃未満になるように熱間押出しを行うことにより、表面割れが生じるのを抑制して良好な形状の耐熱アルミ合金製の形材2を押出し成形できることが判明した。   As can be seen from FIG. 2, in the hot extrusion in which the temperature of the profile 2 immediately after extrusion reaches 550 ° C., surface cracks occur in each profile 2, and a profile with a good shape cannot be formed. It was. On the other hand, when hot extrusion is performed so that the temperature of the shape 2 immediately after extrusion is less than 550 ° C., the shape 2 having a good shape can be formed without causing surface cracks. It was. Further, in the case of hot extrusion in which the temperature of the profile 2 immediately after extrusion is lower than 350 ° C., the deformability of the billet 1 becomes too low, and it becomes difficult to extrude the profile 2 from the molding apparatus 10. Therefore, by performing hot extrusion so that the temperature of the shape 2 immediately after extrusion is 350 ° C. or more and less than 550 ° C., it is possible to suppress the occurrence of surface cracking and to form a shape 2 made of a heat-resistant aluminum alloy having a good shape. It was found that can be extruded.

押出し直後の形材2の温度は、コンテナ12の内孔12aに装填する前のビレット1の温度、ビレット1からの熱の放散量、コンテナ12の温度及び押出し成形時に生じる加工発熱等の要因によって変化するが、コンテナ12の内孔12aに装填する前のビレット1の加熱温度を調節することによって押出し直後の形材2の温度を所定の温度に調節することができる。具体的には、一度実際に熱間押出しを行って押出し直後の形材2の温度を測定し、その形材2の温度が550℃よりも高い場合には上記ビレット1の加熱温度を低下させる。このように、温度条件を設定するための押出しを行ってそのときの押出し直後の形材の温度に基づいて上記ビレット1の加熱温度を調節することにより、押出し直後の形材2の温度を上記350℃以上550℃未満の範囲内に入るように容易に調節することが可能である。   The temperature of the profile 2 immediately after extrusion depends on factors such as the temperature of the billet 1 before loading into the inner hole 12a of the container 12, the amount of heat dissipated from the billet 1, the temperature of the container 12, and the processing heat generated during extrusion molding. Although changing, the temperature of the profile 2 immediately after extrusion can be adjusted to a predetermined temperature by adjusting the heating temperature of the billet 1 before being loaded into the inner hole 12a of the container 12. Specifically, once the hot extrusion is performed and the temperature of the profile 2 immediately after extrusion is measured, and the temperature of the profile 2 is higher than 550 ° C., the heating temperature of the billet 1 is decreased. . Thus, by performing extrusion for setting the temperature condition and adjusting the heating temperature of the billet 1 based on the temperature of the shape immediately after extrusion at that time, the temperature of the shape 2 immediately after extrusion is adjusted to the above-mentioned temperature. It can be easily adjusted to fall within the range of 350 ° C. or more and less than 550 ° C.

以上説明したように、第1実施形態では、押出し直後の形材2の温度が350℃以上550℃未満となるように熱間押出しを行うことにより、表面割れが生じるのを抑制して押出し成形により良好な形状の耐熱アルミ合金製の形材2を形成することができる。   As described above, in the first embodiment, by performing hot extrusion so that the temperature of the shape 2 immediately after extrusion is 350 ° C. or more and less than 550 ° C., extrusion molding is performed while suppressing the occurrence of surface cracks. Thus, the profile 2 made of a heat-resistant aluminum alloy having a good shape can be formed.

また、第1実施形態の製造方法によって製造される耐熱アルミ合金製の形材2では、高温強靭性や優れた耐摩耗性及び優れた高温疲労特性を得ることができる。   Moreover, in the heat-resistant aluminum alloy shape member 2 manufactured by the manufacturing method of the first embodiment, high-temperature toughness, excellent wear resistance, and excellent high-temperature fatigue characteristics can be obtained.

(第2実施形態)
この第2実施形態による耐熱アルミ合金製の形材の製造方法は、上記第1実施形態による製造方法と異なり、図3に示すように中空断面状の形材22(以下、中空形材22という)が連続的に押し出される製造方法である。なお、図3には、本発明の第2実施形態による製造プロセスが示されている。この第2実施形態による製造方法では、後述するダイス36の成形空間Sの形状によって角筒形状の中空形材22a、角筒内の空間が長手方向に沿った2つの空間に隔壁で仕切られた形状を有する中空形材22c等の種々の形状の中空形材22を形成可能である。この第2実施形態の以下の説明では、角筒形状の中空形材22aを形成する場合について説明する。
(Second Embodiment)
Unlike the manufacturing method according to the first embodiment, the manufacturing method of the heat-resistant aluminum alloy profile according to the second embodiment is a hollow cross-sectional profile 22 (hereinafter referred to as a hollow profile 22) as shown in FIG. ) Is a continuous extrusion method. FIG. 3 shows a manufacturing process according to the second embodiment of the present invention. In the manufacturing method according to the second embodiment, the shape of the molding space S of the die 36, which will be described later, is divided into two spaces along the longitudinal direction by the rectangular hollow shape member 22a and the space in the rectangular tube. Various shapes of the hollow shape member 22 such as the hollow shape member 22c having a shape can be formed. In the following description of the second embodiment, a case of forming the hollow tube-shaped hollow member 22a will be described.

第2実施形態では上記第1実施形態と同様、スプレーフォーミング法により形成した耐熱アルミ合金からなるビレット1を成形装置30に装填し、熱間押出しすることにより中空形材22aを形成する。成形装置30は、コンテナ32と、ステム34と、ダイス36と、ダイホルダ38とを備えている。コンテナ32及びステム34の構成は、上記第1実施形態によるコンテナ12及びステム14の構成と同様であり、コンテナ32の内孔32a内に図略の駆動機構によって駆動されるステム34がビレット1の押出し方向に沿って進退移動可能に設けられている。   In the second embodiment, as in the first embodiment, the billet 1 made of a heat-resistant aluminum alloy formed by the spray forming method is loaded into the molding apparatus 30 and hot extruded to form the hollow shape member 22a. The molding apparatus 30 includes a container 32, a stem 34, a die 36, and a die holder 38. The configurations of the container 32 and the stem 34 are the same as the configurations of the container 12 and the stem 14 according to the first embodiment, and the stem 34 driven by a driving mechanism (not shown) is inserted into the inner hole 32a of the container 32. It is provided so as to be able to move forward and backward along the extrusion direction.

ダイホルダ38は、コンテナ32に対してビレット1の押出し方向の端部に配設されており、ダイホルダ38はこの位置で固定されている。ダイホルダ38には、ビレット1の押出し方向に貫通する保持孔38aが形成されており、この保持孔38aにダイス36が嵌合されている。   The die holder 38 is disposed at the end of the billet 1 in the pushing direction with respect to the container 32, and the die holder 38 is fixed at this position. The die holder 38 is formed with a holding hole 38a penetrating in the extrusion direction of the billet 1, and the die 36 is fitted into the holding hole 38a.

ダイス36は、雄型40と雌型41とによって構成されている。雄型40と雌型41とは、ビレット1の押出し方向にこの順番で設けられており、雌型41に対して雄型40が嵌め合わされている。雄型40には、図4に示すように、押出し方向に貫通する複数のエントリーポート40a(入側ポート)が形成されており、この複数のエントリーポート40aはコンテナ32の内孔32aと繋がっている。そして、ステム34によりコンテナ32の内孔32aから押出されたビレット1が各エントリーポート40aで素材1a(図5参照)に分流されて圧入されるようになっている。また、雄型40は、ビレット1の押出し方向に突設された突出部40bを有している。この突出部40bの雌型41側の端部は、その押出し方向に垂直な断面が中空形材22aの内部空間に対応する矩形状になるように形成されている。   The die 36 includes a male mold 40 and a female mold 41. The male mold 40 and the female mold 41 are provided in this order in the extrusion direction of the billet 1, and the male mold 40 is fitted to the female mold 41. As shown in FIG. 4, the male mold 40 is formed with a plurality of entry ports 40 a (entrance side ports) penetrating in the pushing direction, and the plurality of entry ports 40 a are connected to the inner holes 32 a of the container 32. Yes. And the billet 1 extruded from the inner hole 32a of the container 32 by the stem 34 is diverted and press-fitted into the material 1a (see FIG. 5) at each entry port 40a. Further, the male mold 40 has a protruding portion 40 b that protrudes in the pushing direction of the billet 1. The end of the protruding portion 40b on the female die 41 side is formed so that the cross section perpendicular to the pushing direction is a rectangular shape corresponding to the internal space of the hollow shape member 22a.

雌型41には、雄型40の複数のエントリーポート40aと繋がる単一の合流部41aと、その合流部41aに繋がる成形孔41bとが形成されている。雌型41の合流部41aは、上記各エントリーポート40aと成形孔41bとを連通させるものである。成形孔41bは、押出し方向に垂直な断面が中空形材22aの外周形状に対応する矩形状になるように形成されており、この成形孔41b内に雄型40の突出部40bが成形孔41bの内壁面との間に隙間を有した状態で挿入されている。これにより、雄型40の突出部40bと雌型41の成形孔41bの内壁面とによって中空形材22aの角筒形状に対応する角形の環状の成形空間S(図3参照)が構成されている。この成形空間Sは、上記合流部41aと繋がっている。   The female die 41 is formed with a single junction portion 41a connected to the plurality of entry ports 40a of the male die 40 and a molding hole 41b connected to the junction portion 41a. The confluence portion 41a of the female die 41 communicates the entry port 40a and the molding hole 41b. The molding hole 41b is formed so that a cross section perpendicular to the extrusion direction has a rectangular shape corresponding to the outer peripheral shape of the hollow shape member 22a, and the protruding portion 40b of the male mold 40 is formed in the molding hole 41b. It is inserted in a state having a gap with the inner wall surface. Thus, a rectangular annular molding space S (see FIG. 3) corresponding to the rectangular tube shape of the hollow shape member 22a is configured by the protruding portion 40b of the male mold 40 and the inner wall surface of the molding hole 41b of the female mold 41. Yes. The molding space S is connected to the merging portion 41a.

そして、ステム34によりコンテナ32の内孔32aからビレット1が圧入されるとともに各エントリーポート40aで素材1a(図5参照)に分流され、その状態で素材1aが各エントリーポート40aから流れ出る。そして、各エントリーポート40aを通過した素材1aは、合流部41aで合流されるとともに互いに溶着して一体の素材1b(図5参照)となる。この素材1bが成形空間S(図3参照)を通って押出されることにより角筒形状の中空形材22aが形成される。なお、この第2実施形態による製造方法でも上記第1実施形態による製造方法と同様、コンテナ32の内孔32aに装填する前のビレット1の加熱温度を調節することにより、押出し直後の中空形材22の温度が350℃以上550℃未満となるように熱間押出しを行う。   Then, the billet 1 is press-fitted from the inner hole 32a of the container 32 by the stem 34 and is diverted to the material 1a (see FIG. 5) at each entry port 40a, and in this state, the material 1a flows out from each entry port 40a. And the raw material 1a which passed each entry port 40a is joined by the joining part 41a, and mutually welds, and becomes the integral raw material 1b (refer FIG. 5). The material 1b is extruded through the molding space S (see FIG. 3), thereby forming a rectangular hollow tube 22a. Note that, in the manufacturing method according to the second embodiment, similarly to the manufacturing method according to the first embodiment, by adjusting the heating temperature of the billet 1 before being loaded into the inner hole 32a of the container 32, the hollow profile immediately after extrusion is adjusted. Hot extrusion is performed so that the temperature of 22 is 350 ° C. or higher and lower than 550 ° C.

そして、第2実施形態における熱間押出しでは、押出し比が11以上となるように設定する。すなわち、中空形材22aの押出し方向に垂直な断面の面積に対するダイス36内に圧入される前のビレット1(コンテナ32の内孔32a内でのビレット1)の押出し方向に垂直な断面の面積の比が11以上になるように設定する。中空形材22aの押出し方向に垂直な断面の面積は、上記成形空間Sの押出し方向に垂直な断面の面積に相当する一方、ダイス36内に圧入される前のビレット1の押出し方向に垂直な断面の面積は、上記内孔32aの押出し方向に垂直な断面の面積に相当する。従って、ダイス36の設計時に雄型40の突出部40bの外径と雌型41の成形孔41bの内径とを調節して成形空間Sの上記断面積を調節するとともに、コンテナ32の設計時に内孔32aの径を調節して内孔32aの上記断面積を調節することにより、上記押出し比が11以上となるように設定する。   And in the hot extrusion in 2nd Embodiment, it sets so that extrusion ratio may be 11 or more. That is, the cross-sectional area perpendicular to the extrusion direction of the billet 1 (the billet 1 in the inner hole 32a of the container 32) before being pressed into the die 36 with respect to the cross-sectional area perpendicular to the extrusion direction of the hollow shape member 22a. The ratio is set to 11 or more. The area of the cross section perpendicular to the extrusion direction of the hollow shape member 22a corresponds to the area of the cross section perpendicular to the extrusion direction of the molding space S, but is perpendicular to the extrusion direction of the billet 1 before being press-fitted into the die 36. The area of the cross section corresponds to the area of the cross section perpendicular to the extrusion direction of the inner hole 32a. Accordingly, when the die 36 is designed, the outer diameter of the protruding portion 40b of the male mold 40 and the inner diameter of the molding hole 41b of the female mold 41 are adjusted to adjust the cross-sectional area of the molding space S, and at the time of designing the container 32, By adjusting the diameter of the hole 32a and adjusting the cross-sectional area of the inner hole 32a, the extrusion ratio is set to 11 or more.

中空形材22a中には、各エントリーポート40aを通過した素材1a同士の溶着部22d(図5参照)と、溶着部22d以外の部分である非溶着部22eとが含まれる。溶着部22dは、中空形材22aの各角部に配設されているとともに、中空形材22aの押出し方向の全体に亘って形成されている。そして、溶着部22dは非溶着部22eに比べて強度が劣る場合が多い。溶着部22dの強度が非溶着部22eの強度よりもあまりに低くなると、中空形材22aの使用時に負荷が掛かったときに溶着部22dが先に破損する虞がある。そこで、本願発明者は、溶着部22dの強度低下を抑制するために熱間押出し時の上記押出し比に着目し、溶着部22dの強度と押出し比との相関関係を調べる実験を行った。   The hollow shape member 22a includes a welded portion 22d (see FIG. 5) between the materials 1a that have passed through the entry ports 40a and a non-welded portion 22e that is a portion other than the welded portion 22d. The welded portion 22d is disposed at each corner of the hollow shape member 22a, and is formed over the entire extrusion direction of the hollow shape member 22a. The welded portion 22d is often inferior in strength to the non-welded portion 22e. If the strength of the welded portion 22d is much lower than the strength of the non-welded portion 22e, the welded portion 22d may be damaged first when a load is applied during use of the hollow shape member 22a. In view of this, the inventor of the present application paid attention to the above-mentioned extrusion ratio at the time of hot extrusion in order to suppress the strength reduction of the welded portion 22d, and conducted an experiment to examine the correlation between the strength of the welded portion 22d and the extrusion ratio.

この実験では、図6に示すように溶着部22dが幅方向の中央部に位置する試験用の中空形材22aを形成した。この際、押出し直後の中空形材22aの温度が530℃となるように上記製造プロセスと同様の熱間押出しを行うとともに、上記押出し比を変化させて複数の中空形材22aを形成した。そして、図6に示すように、形成した各中空形材22aから溶着部22dを含む試験片50を切り出し、引張り強度試験に供した。引張り強度試験では、溶着部22dを挟んで両側に位置する試験片50の端部を試験片50が破断するまでそれぞれ反対側に引張り、その際の最大強度を測定した。また、この引張り強度試験は、試験片50を300℃に加熱した状態で行った。そして、各押出し比の条件毎に3つの試験片50について引張り強度試験を行い、それらの平均値を算出した。この実験の結果が図7に示されている。なお、図7において溶着部22dの引張り強度は非溶着部22eの引張り強度に対する割合(%)で示されている。   In this experiment, as shown in FIG. 6, a test hollow shape member 22a in which the welded portion 22d is located at the center in the width direction was formed. At this time, hot extrusion similar to the above manufacturing process was performed so that the temperature of the hollow shape 22a immediately after extrusion was 530 ° C., and a plurality of hollow shapes 22a were formed by changing the extrusion ratio. And as shown in FIG. 6, the test piece 50 containing the welding part 22d was cut out from each formed hollow shape material 22a, and it used for the tensile strength test. In the tensile strength test, the ends of the test piece 50 located on both sides of the welded portion 22d were pulled to the opposite side until the test piece 50 was broken, and the maximum strength at that time was measured. Moreover, this tensile strength test was performed in the state which heated the test piece 50 to 300 degreeC. And the tensile strength test was done about three test pieces 50 for every condition of each extrusion ratio, and those average values were computed. The result of this experiment is shown in FIG. In FIG. 7, the tensile strength of the welded portion 22d is shown as a ratio (%) to the tensile strength of the non-welded portion 22e.

図7から、上記押出し比を11以上に設定して作成した中空形材22aでは、溶着部22dが非溶着部22eの引張り強度の90%以上の引張り強度を有することが判る。この溶着部22dが非溶着部22eの引張り強度の90%以上の引張り強度を有するというレベルは、溶着部22d及び非溶着部22eそれぞれでの強度のばらつきを考慮して溶着部22dと非溶着部22eとの間でその強度に有意差がないと見なしても良いレベルである。一方、図7から、上記押出し比を7に設定して作成した中空形材22aでは、溶着部22dの強度が非溶着部22eの引張り強度の約50%しかなく、この押出し比では、溶着部22dの強度が非溶着部22eの強度に比べてかなり低下することが判る。従って、この実験から上記押出し比を11以上に設定することによって中空形材22a中の溶着部22dの強度を非溶着部22eの強度とほぼ同等にすることが可能であることが判明した。   From FIG. 7, it can be seen that in the hollow shape member 22a created by setting the extrusion ratio to 11 or more, the welded portion 22d has a tensile strength of 90% or more of the tensile strength of the non-welded portion 22e. The level at which the welded portion 22d has a tensile strength of 90% or more of the tensile strength of the non-welded portion 22e is determined by taking into account variations in strength between the welded portion 22d and the non-welded portion 22e. It is a level that may be considered that there is no significant difference in the intensity between 22e. On the other hand, from FIG. 7, in the hollow shape member 22a created by setting the extrusion ratio to 7, the strength of the welded portion 22d is only about 50% of the tensile strength of the non-welded portion 22e. It can be seen that the strength of 22d is considerably lower than the strength of the non-welded portion 22e. Therefore, it was found from this experiment that the strength of the welded portion 22d in the hollow shape member 22a can be made substantially equal to the strength of the non-welded portion 22e by setting the extrusion ratio to 11 or more.

以上説明したように、第2実施形態においても押出し直後の中空形材22の温度が350℃以上550℃未満となるように熱間押出しを行うので、表面割れが生じるのを抑制して熱間押出しにより良好な形状の耐熱アルミ合金製の中空形材22を形成することができるという上記第1実施形態と同様の効果を得ることができる。   As described above, in the second embodiment as well, since the hot extrusion is performed so that the temperature of the hollow shape member 22 immediately after extrusion is 350 ° C. or higher and lower than 550 ° C., the occurrence of surface cracks is suppressed and The same effect as the first embodiment can be obtained that the hollow shape 22 made of heat-resistant aluminum alloy having a good shape can be formed by extrusion.

また、第2実施形態では、中空形材22aの押出し方向に垂直な断面の面積に対するダイスに圧入される前のビレット1の押出し方向に垂直な断面の面積の比(押出し比)を11以上に設定することによって、中空形材22a中の溶着部22dに非溶着部22eの強度の90%以上の強度、すなわち非溶着部22eとほぼ同等の強度を持たせることができる。これにより、中空形材22a全体の強度を均一に近づけることができるので、溶着部22dの強度が非溶着部22eの強度に比べて低くなる場合と異なり、中空形材22aに負荷がかかったときに溶着部22dが先に破損するのを抑制することができる。   In the second embodiment, the ratio of the area of the cross section perpendicular to the extrusion direction of the billet 1 before being pressed into the die to the area of the cross section perpendicular to the extrusion direction of the hollow shape member 22a (extrusion ratio) is 11 or more. By setting, it is possible to give the welded portion 22d in the hollow shape member 22a a strength of 90% or more of the strength of the non-welded portion 22e, that is, substantially the same strength as the non-welded portion 22e. As a result, the strength of the entire hollow shape member 22a can be made closer to uniform, so that the load on the hollow shape member 22a is different from the case where the strength of the welded portion 22d is lower than the strength of the non-welded portion 22e. It is possible to prevent the welded portion 22d from being damaged first.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications within the scope.

例えば、上記第2実施形態では、雄型40と雌型41とが別体に構成されたダイス36を用いたが、これに限らず、雄型40と雌型41とが一体化されたダイスを用いてもよい。   For example, in the second embodiment, the die 36 in which the male die 40 and the female die 41 are configured separately is used. However, the die 36 is not limited to this, and the die in which the male die 40 and the female die 41 are integrated. May be used.

また、上記第2実施形態では、中空断面状の中空形材22を形成したが、これに限らず、上記中空形材22の一部が押出し方向に沿って開口された形状を有する形材や、一部の領域のみに中空断面状の部分を含む形材等を形成してもよい。   Moreover, in the said 2nd Embodiment, although the hollow cross-section-shaped hollow shape material 22 was formed, it is not restricted to this, The shape material which has a shape where a part of said hollow shape material 22 was opened along the extrusion direction, Alternatively, a shape member or the like including a hollow cross-sectional portion in only a part of the region may be formed.

本発明の第1実施形態による耐熱アルミ合金製の形材の製造プロセスを説明するための図である。It is a figure for demonstrating the manufacturing process of the shape material made from a heat-resistant aluminum alloy by 1st Embodiment of this invention. 第1実施形態による製造プロセスにおいて熱間押出し直後の形材の温度と形材の表面割れとの相関関係を示した相関図である。It is the correlation figure which showed the correlation with the temperature of the profile immediately after hot extrusion in the manufacturing process by 1st Embodiment, and the surface crack of a profile. 本発明の第2実施形態による耐熱アルミ合金製の中空形材の製造プロセスを説明するための図である。It is a figure for demonstrating the manufacturing process of the heat-resistant aluminum alloy hollow shape material by 2nd Embodiment of this invention. 図3に示した製造プロセスに用いる成形装置で中空形材を押出す状態を示した図である。It is the figure which showed the state which extrudes a hollow shape material with the shaping | molding apparatus used for the manufacturing process shown in FIG. 第2実施形態による成形装置内での素材の形状を表した斜視図である。It is a perspective view showing the shape of the raw material in the shaping | molding apparatus by 2nd Embodiment. 中空形材から引張り強度試験に供する試験片の採取方法を説明するための図である。It is a figure for demonstrating the sampling method of the test piece used for a tensile strength test from a hollow shape material. 中空形材中の溶着部の引張り強度と押出し比との相関関係を示した相関図である。It is the correlation figure which showed the correlation with the tensile strength of the welding part in a hollow shape material, and an extrusion ratio.

符号の説明Explanation of symbols

1 ビレット(素材)
2 形材
10、30 成形装置
22、22a、22c 中空形材
36 ダイス
40a エントリーポート(入側ポート)
41a 合流部
22d 溶着部
22e 非溶着部
S 成形空間
1 Billet (material)
2 Profile 10, 30 Molding device 22, 22a, 22c Hollow profile 36 Die 40a Entry port (entrance port)
41a Joining portion 22d Welding portion 22e Non-welding portion S Molding space

Claims (5)

スプレーフォーミング法によって形成された耐熱アルミ合金からなる素材を熱間押出しすることにより形材を形成する耐熱アルミ合金製の形材の製造方法であって、
前記耐熱アルミ合金は、体積分率で約50%〜約90%の金属間化合物相を含み且つ残部が金属アルミニウムマトリックスで構成されたアルミニウム基合金組織を含み、前記金属間化合物相を形成する元素としてCr、Fe、Ti、Mn、V、Siから選択される3種の元素を総和で約15質量%〜約50質量%含み、
押出し直後の前記形材の温度が350℃以上550℃未満となるように熱間押出しを行う、耐熱アルミ合金製の形材の製造方法。
A method of manufacturing a shape made of a heat-resistant aluminum alloy that forms a shape by hot extruding a material made of a heat-resistant aluminum alloy formed by a spray forming method ,
The heat-resistant aluminum alloy includes an intermetallic compound phase having a volume fraction of about 50% to about 90%, and the remainder includes an aluminum-based alloy structure composed of a metal aluminum matrix, and forms the intermetallic compound phase. Including a total of about 15% by mass to about 50% by mass of three elements selected from Cr, Fe, Ti, Mn, V, and Si,
A method for producing a heat-resistant aluminum alloy shaped material, wherein hot extrusion is performed so that the temperature of the shaped material immediately after extrusion is 350 ° C or higher and lower than 550 ° C.
請求項1に記載の耐熱アルミ合金製の形材の製造方法によって製造される耐熱アルミ合金製の形材。   A heat-resistant aluminum alloy profile produced by the method for producing a heat-resistant aluminum alloy profile according to claim 1. 前記素材を熱間押出しするのに、複数の入側ポートと、前記複数の入側ポートと繋がる単一の合流部と、前記合流部に繋がる成形空間とを有するダイスを備えた成形装置を使用し、前記成形装置は、前記ダイス内に圧入される前記素材を前記複数の入側ポートに分流させるとともに、これらの各入側ポートを通過した素材を前記合流部で合流させて溶着させ、その後、前記成形空間から中空断面状に前記形材を押し出すものであり、
前記形材の押出し方向に垂直な断面の面積に対する前記ダイス内に圧入される前の前記素材の押出し方向に垂直な断面の面積の比が11以上となるように設定されている、請求項1に記載の耐熱アルミ合金製の形材の製造方法。
In order to extrude the raw material hot, a molding apparatus provided with a die having a plurality of inlet ports, a single junction portion connected to the plurality of inlet ports, and a molding space connected to the junction portion is used. The molding apparatus splits the material press-fitted into the die into the plurality of inlet ports, joins the materials that have passed through the inlet ports at the junction, and welds them. , And extruding the profile from the molding space into a hollow cross-section,
The ratio of the area of the cross section perpendicular to the extrusion direction of the material before being press-fitted into the die to the area of the cross section perpendicular to the extrusion direction of the profile is set to be 11 or more. The manufacturing method of the shape material made from the heat-resistant aluminum alloy as described in 2.
請求項3に記載の耐熱アルミ合金製の形材の製造方法によって製造される耐熱アルミ合金製の形材であって、
前記形材は、前記各入側ポートを通過した素材同士の溶着部と、その溶着部以外の非溶着部とを含み、
前記溶着部は前記非溶着部の強度の90%以上の強度を有する、耐熱アルミ合金製の形材。
A heat-resistant aluminum alloy profile produced by the method for producing a heat-resistant aluminum alloy profile according to claim 3,
The profile includes a welded portion between the materials that have passed through the respective entry ports, and a non-welded portion other than the welded portion,
The welded portion is a heat-resistant aluminum alloy profile having a strength of 90% or more of the strength of the non-welded portion.
請求項3に記載の耐熱アルミ合金製の形材の製造方法に用いる耐熱アルミ合金製の形材の成形装置であって、
前記熱間押出しする前の前記素材が装填される内孔を有するコンテナと、
前記内孔に繋がる複数の入側ポートと、前記複数の入側ポートと繋がる単一の合流部と、前記合流部に繋がる成形空間とを有するダイスと、
前記内孔内の前記素材を押し出して前記ダイス内に圧入するステムとを備え、
前記成形空間の押出し方向に垂直な断面の面積に対する前記コンテナの内孔の押出し方向に垂直な断面の面積の比が11以上となるように設定されている、耐熱アルミ合金製の形材の成形装置。
A heat-resistant aluminum alloy profile forming apparatus used in the method for producing a heat-resistant aluminum alloy profile according to claim 3,
A container having an inner hole filled with the material before hot extrusion;
A die having a plurality of inlet ports connected to the inner hole, a single junction portion connected to the plurality of inlet ports, and a molding space connected to the junction portion;
A stem for extruding the material in the inner hole and press-fitting into the die,
Molding of a heat-resistant aluminum alloy profile whose ratio of the area of the cross section perpendicular to the extrusion direction of the inner hole of the container to the area of the cross section perpendicular to the extrusion direction of the molding space is set to 11 or more apparatus.
JP2006195724A 2006-07-18 2006-07-18 Heat-resistant aluminum alloy shape manufacturing method, heat-resistant aluminum alloy shape material and heat-resistant aluminum alloy shape forming apparatus Expired - Fee Related JP5010196B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006195724A JP5010196B2 (en) 2006-07-18 2006-07-18 Heat-resistant aluminum alloy shape manufacturing method, heat-resistant aluminum alloy shape material and heat-resistant aluminum alloy shape forming apparatus
AT07011704T ATE483831T1 (en) 2006-07-18 2007-06-14 PRODUCTION METHOD FOR PRODUCTS MOLDED FROM A HEAT RESISTANT ALUMINUM ALLOY AND PRODUCT MOLDED FROM A HEAT RESISTANT ALUMINUM ALLOY
DE602007009604T DE602007009604D1 (en) 2006-07-18 2007-06-14 A manufacturing method of heat resistant aluminum alloy molded products and a heat resistant aluminum alloy molded product
EP07011704A EP1881084B1 (en) 2006-07-18 2007-06-14 Manufacturing method for heat resistant aluminium alloy shaped products and heat resistant aluminium alloy shaped product
PL07011704T PL1881084T3 (en) 2006-07-18 2007-06-14 Manufacturing method for heat resistant aluminium alloy shaped products and heat resistant aluminium alloy shaped product
HK08107668.8A HK1117203A1 (en) 2006-07-18 2008-07-11 Manufacturing method for heat resistant aluminium alloy shaped products and heat resistant aluminium alloy shaped product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195724A JP5010196B2 (en) 2006-07-18 2006-07-18 Heat-resistant aluminum alloy shape manufacturing method, heat-resistant aluminum alloy shape material and heat-resistant aluminum alloy shape forming apparatus

Publications (2)

Publication Number Publication Date
JP2008023532A JP2008023532A (en) 2008-02-07
JP5010196B2 true JP5010196B2 (en) 2012-08-29

Family

ID=38582097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195724A Expired - Fee Related JP5010196B2 (en) 2006-07-18 2006-07-18 Heat-resistant aluminum alloy shape manufacturing method, heat-resistant aluminum alloy shape material and heat-resistant aluminum alloy shape forming apparatus

Country Status (6)

Country Link
EP (1) EP1881084B1 (en)
JP (1) JP5010196B2 (en)
AT (1) ATE483831T1 (en)
DE (1) DE602007009604D1 (en)
HK (1) HK1117203A1 (en)
PL (1) PL1881084T3 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786252B2 (en) 2005-03-02 2010-08-31 Eastman Chemical Company Preparation of transparent multilayered articles
US7838596B2 (en) 2005-09-16 2010-11-23 Eastman Chemical Company Late addition to effect compositional modifications in condensation polymers
US7955674B2 (en) 2005-03-02 2011-06-07 Eastman Chemical Company Transparent polymer blends containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US7955533B2 (en) 2005-03-02 2011-06-07 Eastman Chemical Company Process for the preparation of transparent shaped articles
US7959836B2 (en) 2005-03-02 2011-06-14 Eastman Chemical Company Process for the preparation of transparent, shaped articles containing polyesters comprising a cyclobutanediol
US7959998B2 (en) 2005-03-02 2011-06-14 Eastman Chemical Company Transparent, oxygen-scavenging compositions containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US7964258B2 (en) 2005-03-02 2011-06-21 Eastman Chemical Company Transparent, oxygen-scavenging compositions and articles prepared therefrom
US7968164B2 (en) 2005-03-02 2011-06-28 Eastman Chemical Company Transparent polymer blends and articles prepared therefrom
US8987408B2 (en) 2005-06-16 2015-03-24 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042063B (en) * 2012-12-21 2015-04-15 烟台首钢东星结晶器有限公司 Small square embryo crystallizer square tube manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196219A (en) * 1984-03-16 1985-10-04 Showa Alum Corp Production of wear resistant alluminum alloy extrudate
JPS62188738A (en) * 1986-02-15 1987-08-18 Honda Motor Co Ltd Structural member made of sintered al or al alloy and its production
JPH0762199B2 (en) * 1987-05-07 1995-07-05 株式会社神戸製鋼所 A1-based alloy
GB9308171D0 (en) * 1993-04-21 1993-06-02 Alcan Int Ltd Improvements in or related to the production of extruded aluminium-lithium alloys
JPH09271834A (en) * 1996-04-05 1997-10-21 Nippon Light Metal Co Ltd Extrusion die of aluminum hollow member
JP3324444B2 (en) * 1997-05-14 2002-09-17 日本軽金属株式会社 Manufacturing method of extruded aluminum material with excellent bending workability
JP2001020047A (en) * 1999-07-05 2001-01-23 Toyota Autom Loom Works Ltd Stock for aluminum alloy forging and its production
JP3668063B2 (en) * 1999-08-27 2005-07-06 株式会社神戸製鋼所 Hollow profile extrusion dies and hollow profile
JP4587588B2 (en) * 2001-03-28 2010-11-24 住友軽金属工業株式会社 Aluminum alloy extruded material with excellent axial crushing characteristics and method for producing the same
JP4092306B2 (en) * 2003-05-23 2008-05-28 株式会社神戸製鋼所 Hollow light metal member extrusion method, hollow extrusion die, and hollow light metal extrusion member
EP1637246B1 (en) * 2003-05-23 2012-03-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method of extruding hollow light metal member
JP4704720B2 (en) * 2004-10-08 2011-06-22 株式会社神戸製鋼所 Heat-resistant Al-based alloy with excellent high-temperature fatigue properties

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786252B2 (en) 2005-03-02 2010-08-31 Eastman Chemical Company Preparation of transparent multilayered articles
US7955674B2 (en) 2005-03-02 2011-06-07 Eastman Chemical Company Transparent polymer blends containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US7955533B2 (en) 2005-03-02 2011-06-07 Eastman Chemical Company Process for the preparation of transparent shaped articles
US7959836B2 (en) 2005-03-02 2011-06-14 Eastman Chemical Company Process for the preparation of transparent, shaped articles containing polyesters comprising a cyclobutanediol
US7959998B2 (en) 2005-03-02 2011-06-14 Eastman Chemical Company Transparent, oxygen-scavenging compositions containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US7964258B2 (en) 2005-03-02 2011-06-21 Eastman Chemical Company Transparent, oxygen-scavenging compositions and articles prepared therefrom
US7968164B2 (en) 2005-03-02 2011-06-28 Eastman Chemical Company Transparent polymer blends and articles prepared therefrom
US8133417B2 (en) 2005-03-02 2012-03-13 Eastman Chemical Company Process for the preparation of transparent shaped articles
US8304499B2 (en) 2005-03-02 2012-11-06 Eastman Chemical Company Transparent polymer blends and articles prepared therefrom
US8987408B2 (en) 2005-06-16 2015-03-24 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
US7838596B2 (en) 2005-09-16 2010-11-23 Eastman Chemical Company Late addition to effect compositional modifications in condensation polymers

Also Published As

Publication number Publication date
ATE483831T1 (en) 2010-10-15
HK1117203A1 (en) 2009-01-09
EP1881084A1 (en) 2008-01-23
JP2008023532A (en) 2008-02-07
PL1881084T3 (en) 2011-03-31
EP1881084B1 (en) 2010-10-06
DE602007009604D1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5010196B2 (en) Heat-resistant aluminum alloy shape manufacturing method, heat-resistant aluminum alloy shape material and heat-resistant aluminum alloy shape forming apparatus
EP2010689B1 (en) Method for fabrication of a structural element for aeronautical construction including a differential work hardening
US8191393B2 (en) Micro-channel tubes and apparatus and method for forming micro-channel tubes
Sandnes et al. Exploring the hybrid metal extrusion and bonding process for butt welding of Al–Mg–Si alloys
CN105722615A (en) Process for producing multilayer pipe having metallurgical bond by drawing, and multilayer pipe produced by the method
US8756815B2 (en) Methods of structural health monitoring using metal bodies containing microcavities
FR2883785A1 (en) PROCESS FOR PRODUCING CONSUMABLE DELIVERY METAL FOR WELDING OPERATION
KR20090023292A (en) Method and apparatus related to joining dissimilar metal
CN109290385A (en) Extrusion die, fine grain and 6061 aluminium alloy of perfect recrystallization and preparation method thereof
CA2939657A1 (en) Systems and methods for extruding tubes
Berto et al. Using the hybrid metal extrusion & bonding (HYB) process for dissimilar joining of AA6082-T6 and S355
Lv et al. Feasibility study of a novel multi-container extrusion method for manufacturing wide aluminium profiles with low force
Lv et al. Analysis of solid-state welding in extruding wide aluminium hollow profiles using a new three-container extrusion system
EP3205441B1 (en) Welding electrodes and methods of manufacturing same
CN105945080A (en) Extrusion method for alloy pipe hard to deform
US10300531B2 (en) Methods of manufacturing composite materials, composite wires, and welding electrodes
JPH032565B2 (en)
JPWO2016159361A1 (en) Aluminum alloy tube excellent in corrosion resistance and workability and method for producing the same
US20240024938A1 (en) Method and device for producing an extruded product
Sandnes et al. Using the Hybrid Metal Extrusion & Bonding (HYB) Process for Butt Welding of 4 mm Plates of AA6082-T6
JP2005007479A5 (en)
JPH02258903A (en) Manufacture of clad metal tube
Chugreeva et al. Production Chain of Hot-Forged Hybrid Bevel Gears from Depostition-Welded Blanks
JPH11314051A (en) Water ejecting device and production of hollow member
FR3037517A1 (en) PROCESS FOR OBTAINING A WELDING ELECTRODE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111226

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R150 Certificate of patent or registration of utility model

Ref document number: 5010196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees