JP5004070B2 - Lithium ion storage body and lithium ion storage method - Google Patents

Lithium ion storage body and lithium ion storage method Download PDF

Info

Publication number
JP5004070B2
JP5004070B2 JP2005351808A JP2005351808A JP5004070B2 JP 5004070 B2 JP5004070 B2 JP 5004070B2 JP 2005351808 A JP2005351808 A JP 2005351808A JP 2005351808 A JP2005351808 A JP 2005351808A JP 5004070 B2 JP5004070 B2 JP 5004070B2
Authority
JP
Japan
Prior art keywords
lithium ion
ion storage
walled carbon
carbon nanotube
peapod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005351808A
Other languages
Japanese (ja)
Other versions
JP2007153682A (en
Inventor
晋司 川崎
弘道 片浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Eneos Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, JXTG Nippon Oil and Energy Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005351808A priority Critical patent/JP5004070B2/en
Publication of JP2007153682A publication Critical patent/JP2007153682A/en
Application granted granted Critical
Publication of JP5004070B2 publication Critical patent/JP5004070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、リチウムイオン貯蔵体及びリチウムイオン貯蔵方法に関する。   The present invention relates to a lithium ion storage body and a lithium ion storage method.

従来、リチウムイオン貯蔵体としては、グラファイトやハードカーボン等が知られている(特許文献1)。これらは市販のリチウムイオン二次電池の負極材料等として利用されている。   Conventionally, graphite, hard carbon, etc. are known as a lithium ion storage body (patent document 1). These are used as negative electrode materials for commercially available lithium ion secondary batteries.

一方、単層カーボンナノチューブ(SWNT;Single-walled Carbon Nanotubes)のバルク試料は、多くの単層カーボンナノチューブがファンデルワールス力により凝集し、規則正しい二次元格子(バンドル)を形成する。このため、外部だけでなく、内部にも広大かつ多様なナノスペースを有する単層カーボンナノチューブは、リチウムイオン二次電池の新しい負極材料として注目されている(非特許文献1)。   On the other hand, in a bulk sample of single-walled carbon nanotubes (SWNT), many single-walled carbon nanotubes aggregate due to van der Waals force to form a regular two-dimensional lattice (bundle). For this reason, single-walled carbon nanotubes having a wide variety of nanospaces not only outside but also inside attract attention as a new negative electrode material for lithium ion secondary batteries (Non-patent Document 1).

特開2000−123876号公報JP 2000-123876 A 「炭素」2005[No.216]258−33、小宮山慎悟、宮脇瞳、沖野不二雄、片浦弘道、東原秀和 著“Carbon” 2005 [No. 216] 258-33, Shingo Komiyama, Hitomi Miyawaki, Fujio Okino, Hiromichi Kataura, Hidekazu Higashihara

しかし、従来公知のリチウムイオン貯蔵体は、LiC6が飽和組成であり、リチウムイオンの貯蔵特性はこれにより限定されてしまう。 However, in the conventionally known lithium ion storage body, LiC 6 has a saturated composition, and the storage characteristics of lithium ions are limited thereby.

また、単層カーボンナノチューブによるリチウム貯蔵メカニズムは十分に解明されていない。これには二つの大きな理由がある。一つは、現在入手できる単層カーボンナノチューブのバルク試料は直径や導電性(金属・半導体)がさまざまな単層カーボンナノチューブの混合物であることである。もう一つは、単層カーボンナノチューブは、通常の結晶試料のように、回折法等により構造を詳細に決定できないことである。   In addition, the mechanism of lithium storage by single-walled carbon nanotubes has not been fully elucidated. There are two main reasons for this. One is that currently available bulk samples of single-walled carbon nanotubes are a mixture of single-walled carbon nanotubes with various diameters and conductivity (metal / semiconductor). Another is that the structure of a single-walled carbon nanotube cannot be determined in detail by a diffraction method or the like, as in a normal crystal sample.

本発明は、より優れたリチウム貯蔵特性を発揮するリチウムイオン貯蔵体及びリチウムイオン貯蔵方法を提供することを解決すべき課題としている。   This invention makes it the problem which should be solved to provide the lithium ion storage body and lithium ion storage method which exhibit the more outstanding lithium storage characteristic.

そこで、発明者らは、前者の問題について、化学反応の選択性を利用して直径別、導電性別に単層カーボンナノチューブを分取し、分取した単層カーボンナノチューブについてリチウム貯蔵特性を評価することを試みた。また、発明者らは、後者の問題について、物理的な構造修飾を行った単層カーボンナノチューブ試料のリチウム貯蔵特性を評価することで、どのようなサイトがリチウム貯蔵に寄与しているかについて明らかにしたいと考えた。かかる試みにおいて、本発明のリチウムイオン貯蔵体であるピーポッドが優れたリチウムイオン貯蔵特性を有することを発見し、本発明を完成するに至った。   Therefore, the inventors fractionate single-walled carbon nanotubes by diameter and conductivity using the selectivity of chemical reaction, and evaluate lithium storage characteristics of the sorted single-walled carbon nanotubes. I tried to do that. In addition, the inventors clarified which sites contribute to lithium storage by evaluating the lithium storage characteristics of the single-walled carbon nanotube samples subjected to physical structural modification for the latter problem. Wanted to do. In such an attempt, the peapod, which is the lithium ion storage body of the present invention, was found to have excellent lithium ion storage characteristics, and the present invention was completed.

本発明のリチウムイオン貯蔵体は、カーボンナノチューブと、該カーボンナノチュ−ブ内に導入されたフラーレン(Fullerene)とからなることを特徴とする。   The lithium ion storage body of the present invention is characterized by comprising carbon nanotubes and fullerene introduced into the carbon nanotubes.

また、本発明のリチウムイオン貯蔵方法は、カーボンナノチューブと、該カーボンナノチュ−ブ内に導入されたフラーレンとからなるピーポッド(Peapod)によりリチウムイオンを貯蔵することを特徴とする。   The lithium ion storage method of the present invention is characterized in that lithium ions are stored by a peapod made of carbon nanotubes and fullerene introduced into the carbon nanotube.

発明者らの試験結果によれば、本発明のリチウムイオン貯蔵体及びリチウムイオン貯蔵方法は、中空のカーボンナノチューブに比べ、単位重量当りのリチウムイオン貯蔵量、単位体積当りのリチウムイオン貯蔵量を増加させることができる。   According to the test results of the inventors, the lithium ion storage body and the lithium ion storage method of the present invention increase the lithium ion storage amount per unit weight and the lithium ion storage amount per unit volume compared to the hollow carbon nanotube. Can be made.

カーボンナノチューブとしては、単層カーボンナノチューブの他、複層カーボンナノチューブも採用し得ると考えている。   As the carbon nanotube, in addition to the single-walled carbon nanotube, a multi-walled carbon nanotube can be adopted.

フラーレンとしては、C60に限られず、C70、C74、C76、C78、C80、C82等を採用することができると考えている。また、フラーレンは、2量体や3量体等の多量体であってもよく、金属を内包したものやフッ素や塩素等を化合させたものであってもよいと考えている。 The fullerene is not limited to C 60 , but C 70 , C 74 , C 76 , C 78 , C 80 , C 82 and the like can be used. Further, it is considered that fullerene may be a multimer such as a dimer or a trimer, or may be a metal-encapsulated or compounded fluorine or chlorine.

「物理修飾」
(1)チューブ端構造の制御(閉口、開口)
図1(A)に示すように、両端が閉口している単層カーボンナノチューブ1の試料を精製した後、これを空気中で420°C、20分処理し、図1(B)に示すように、両端を開口した中空の単層カーボンナノチューブ2とした。この温度は、予めTG−DTA測定を行い、急激に質量減少が始まる(単層カーボンナノチューブが燃え出す)ところに設定した。
Physical modification
(1) Control of tube end structure (closing, opening)
As shown in FIG. 1 (A), after purifying a sample of the single-walled carbon nanotube 1 having both ends closed, this was treated in air at 420 ° C. for 20 minutes, as shown in FIG. 1 (B). Further, a hollow single-walled carbon nanotube 2 having both ends opened was obtained. This temperature was set in advance where TG-DTA measurement was performed in advance and mass reduction started suddenly (single-walled carbon nanotubes started to burn).

(2)チューブ内部への他分子の導入(C60ピーポッド)
両端を開口した中空の単層カーボンナノチューブ2の試料と、市販のC60フラーレン2aの粉末試料とを石英ガラス管に真空封入し、これらを600°Cまでゆっくりと加熱した後、同温度で24時間処理した。こうして、図1(C)に示すように、C60ピーポッド3の試料を得た。このC60ピーポッド3が実施例のリチウムイオン貯蔵体である。
(2) Introduction of other molecules into the tube (C 60 peapod)
A sample of a hollow single-walled carbon nanotube 2 having both ends opened and a powder sample of a commercially available C 60 fullerene 2a are vacuum-sealed in a quartz glass tube, heated slowly to 600 ° C., and then heated at the same temperature. Time processed. Thus, a sample of C 60 peapod 3 was obtained as shown in FIG. This C 60 peapod 3 is the lithium ion storage body of the embodiment.

60ピーポッド3の生成の確認は、TEM、XRD及びRamanにより行った。C60フラーレンの分子の充填率は、TEM観察及びXRDの100回折線強度の減少量から、80%以上であると見積もられる。 The production of C 60 peapod 3 was confirmed by TEM, XRD, and Raman. The filling factor of C 60 fullerene molecules is estimated to be 80% or more from the TEM observation and the amount of decrease in 100 diffraction line intensity of XRD.

(3)チューブ間結合の導入(高温高圧処理)
マルチアンビル型プレスを用い、5〜13GPa、300〜1000Kの温度圧力領域で単層カーボンナノチューブを高温高圧処理した。また、高温高圧下での構造変化については、つくば・高エネルギー加速器研究機構のBL−NE5Cに設置されているMAX80システムを用いて、放射光X線回折実験により調べた。また、より高い圧力下での構造変化を調べるため、兵庫・SPring−8のBL−10XUにて、ダイヤモンドアンビルセルを用いた放射光X線回折実験も行った。高温高圧処理試料については、脱圧後、TEM、Raman測定等により、構造変化を詳細に調べるとともに、ナノインデンターを用いて硬度測定を行った。
(3) Introduction of coupling between tubes (high temperature and high pressure treatment)
Single-walled carbon nanotubes were subjected to high-temperature and high-pressure treatment in a temperature-pressure region of 5 to 13 GPa and 300 to 1000 K using a multi-anvil press. The structural changes under high temperature and high pressure were examined by synchrotron radiation X-ray diffraction experiments using the MAX80 system installed in BL-NE5C of Tsukuba / High Energy Accelerator Research Organization. Moreover, in order to investigate the structural change under higher pressure, a synchrotron radiation X-ray diffraction experiment using a diamond anvil cell was conducted at BL-10XU of SPring-8, Hyogo. Regarding the high-temperature and high-pressure treated sample, after depressurization, the structural change was examined in detail by TEM, Raman measurement, etc., and the hardness was measured using a nanoindenter.

「化学修飾」
化学処理の他、フッ素化反応を利用した直径別分取を試みた。
"Chemical modification"
In addition to chemical treatment, we tried to sort by diameter using a fluorination reaction.

「実験結果」
(1)チューブ端構造
両端が閉口している単層カーボンナノチューブ1及び両端が開口した中空の単層カーボンナノチューブ2の試料について、N2ガス吸着測定を行い、開口処理の確認を行った。
"Experimental result"
(1) Tube end structure N 2 gas adsorption measurement was performed on the single-walled carbon nanotubes 1 whose both ends were closed and the hollow single-walled carbon nanotubes 2 whose both ends were opened, and the opening process was confirmed.

(2)C60ピーポッド3のリチウム貯蔵特性
図2に示すように、両端が開口した中空の単層カーボンナノチューブ2及びC60ピーポッド3をそれぞれNiメッシュで固定し、これらを作用極10とした。そして、金属Liを対極11及び参照極12とするテストセルを構築した。電解液13には、キシダ化学製の1MのLiClO4を含むエチレンカーボネート(EC)/ジエチルカーボネート(DEC)=1/1(体積比)の混合溶液を用いた。両端が開口した中空の単層カーボンナノチューブ2の結果を図3に示し、C60ピーポッド3の結果を図4に示す。
(2) Lithium Storage Characteristics of C 60 Peapod 3 As shown in FIG. 2, hollow single-walled carbon nanotubes 2 and C 60 peapods 3 having both ends opened were fixed with Ni mesh, and these were used as working electrode 10. And the test cell which uses the metal Li as the counter electrode 11 and the reference electrode 12 was constructed. As the electrolytic solution 13, a mixed solution of ethylene carbonate (EC) / diethyl carbonate (DEC) = 1/1 (volume ratio) containing 1 M LiClO 4 manufactured by Kishida Chemical was used. The result of the hollow single-walled carbon nanotube 2 having both ends opened is shown in FIG. 3, and the result of the C 60 peapod 3 is shown in FIG.

上記非特許文献1により、開口処理によって可逆容量が変わらないことは知られている。しかし、図3及び図4に示すように、同一条件(電流密度;250mA/g、カットオフ電圧;0−2.5V)では、両端が開口した中空の単層カーボンナノチューブ2の可逆容量が160〜170mAh/gであるのに対し、C60ピーポッド3は200〜220mAh/gと、約1.3倍の可逆容量を有することが明らかになった。 According to Non-Patent Document 1, it is known that the reversible capacity is not changed by the opening process. However, as shown in FIGS. 3 and 4, under the same conditions (current density: 250 mA / g, cut-off voltage: 0-2.5 V), the reversible capacity of the hollow single-walled carbon nanotube 2 having both ends opened is 160. It was revealed that the C 60 peapod 3 has a reversible capacity of about 1.3 times as much as 200 to 220 mAh / g, whereas it is ˜170 mAh / g.

次に、C60ピーポッド3の1本当りのリチウム貯蔵量が中空の単層カーボンナノチューブ2に比べ、何倍になっているかについて考察する。まず、C60ピーポッド3のC60の充填率を80%と仮定する。つまり、5本中、4本はC60が入ったC60ピーポッド3であり、1本は中空の単層カーボンナノチューブ2である。 Next, it will be considered how many times the amount of lithium stored per C 60 peapod 3 is larger than that of the hollow single-walled carbon nanotube 2. First, it is assumed that the C 60 filling rate of the C 60 peapod 3 is 80%. In other words, in five, four are C 60 peapod 3 containing the C 60, 1 This is a hollow single-walled carbon nanotubes 2.

中空の単層カーボンナノチューブ2及びC60ピーポッド3の軸方向の長さ当りの質量をxg/nm及びyg/nmとし、それぞれに貯蔵されるリチウム量も長さ当り、Lxg/nm及びLyg/nmとする。可逆容量が1.3倍という結果から、 The mass per axial length of the hollow single-walled carbon nanotube 2 and C 60 peapod 3 is xg / nm and yg / nm, and the amount of lithium stored in each is also Lxg / nm and Lyg / nm. And From the result that the reversible capacity is 1.3 times,

(数1)
(0.2Lx+0.8Ly)/(0.2x+0.8y)=1.3Lx/x
(Equation 1)
(0.2Lx + 0.8Ly) / (0.2x + 0.8y) = 1.3Lx / x

となる。 It becomes.

さて、x、yの見積もりについては、実際に使用した単層カーボンナノチューブ1の径を考慮し、(10、10)ナノチューブを仮定すると、   Now, regarding the estimation of x and y, assuming the diameter of the actually used single-walled carbon nanotube 1 and assuming (10, 10) nanotubes,

(数2)
x=40Mc/31/2c-c
である(Mcは炭素原子1個の質量、ac-cは炭素−炭素結合距離)。
(Equation 2)
x = 40Mc / 3 1/2 a cc
Where Mc is the mass of one carbon atom and a cc is the carbon-carbon bond distance.

60ピーポッド3内のC60分子間距離は、XRDより0.96nmと見積もられるので、 Since the C 60 intermolecular distance in the C 60 peapod 3 is estimated to be 0.96 nm from XRD,

(数3)
y=x+60Mc/0.96
(Equation 3)
y = x + 60 Mc / 0.96

となる。これらの関係を整理すると、LyはLxのおよそ2倍となることがわかる。つまり、C60ピーポッド3の1本は、両端が閉口している単層カーボンナノチューブ1及び両端が開口している中空の単層カーボンナノチューブ2の1本に対し、2倍のリチウムイオンを貯蔵していることになる。 It becomes. Arranging these relationships, it can be seen that Ly is approximately twice as large as Lx. That is, one C 60 peapod 3 stores twice as many lithium ions as one single-walled carbon nanotube 1 closed at both ends and one hollow single-walled carbon nanotube 2 open at both ends. Will be.

したがって、実施例のリチウムイオン貯蔵体及びこれを用いたリチウムイオン貯蔵方法によれば、中空の単層カーボンナノチューブ2及びそれを用いた場合に比べ、単位重量当りのリチウムイオン貯蔵量、単位体積当りのリチウムイオン貯蔵量を増加させ得ることがわかる。   Therefore, according to the lithium ion storage body of the example and the lithium ion storage method using the same, compared with the case of using the hollow single-walled carbon nanotube 2 and the same, the lithium ion storage amount per unit weight, It can be seen that the lithium ion storage amount of can be increased.

以上において、本発明を実施例に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。   While the present invention has been described with reference to the embodiments, it is needless to say that the present invention is not limited to the above-described embodiments and can be appropriately modified and applied without departing from the spirit thereof.

本発明は、リチウムイオン二次電池の負極材料、スーパーキャパシタ、センサの検出素子等に利用可能である。   The present invention can be used for a negative electrode material of a lithium ion secondary battery, a super capacitor, a detection element of a sensor, and the like.

実施例のリチウムイオン貯蔵体の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the lithium ion storage body of an Example. 充放電測定を行うためのテストセルの模式断面図である。It is a schematic cross section of the test cell for performing charge / discharge measurement. 両端が開口している中空の単層カーボンナノチューブの充放電結果を示すグラフである。It is a graph which shows the charging / discharging result of the hollow single-walled carbon nanotube which has both ends opened. 実施例のリチウムイオン貯蔵体(C60ピーポッド3)の充放電結果を示すグラフである。Is a graph showing the charge-discharge results of the lithium-ion storage of Example (C 60 peapod 3).

符号の説明Explanation of symbols

1、2…単層カーボンナノチューブ
2a…フラーレン
3…C60ピーポッド、リチウムイオン貯蔵体
1, 2 ... single-walled carbon nanotube 2a ... fullerene 3 ... C 60 peapod, lithium ion storage

Claims (2)

カーボンナノチューブと、該カーボンナノチュ−ブ内に導入されたフラーレンとからなることを特徴とするリチウムイオン貯蔵体。   A lithium ion storage body comprising a carbon nanotube and fullerene introduced into the carbon nanotube. カーボンナノチューブと、該カーボンナノチュ−ブ内に導入されたフラーレンとからなるピーポッドによりリチウムイオンを貯蔵することを特徴とするリチウムイオン貯蔵方法。   A method for storing lithium ions, characterized in that lithium ions are stored by a peapod comprising carbon nanotubes and fullerenes introduced into the carbon nanotubes.
JP2005351808A 2005-12-06 2005-12-06 Lithium ion storage body and lithium ion storage method Expired - Fee Related JP5004070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005351808A JP5004070B2 (en) 2005-12-06 2005-12-06 Lithium ion storage body and lithium ion storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005351808A JP5004070B2 (en) 2005-12-06 2005-12-06 Lithium ion storage body and lithium ion storage method

Publications (2)

Publication Number Publication Date
JP2007153682A JP2007153682A (en) 2007-06-21
JP5004070B2 true JP5004070B2 (en) 2012-08-22

Family

ID=38238497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005351808A Expired - Fee Related JP5004070B2 (en) 2005-12-06 2005-12-06 Lithium ion storage body and lithium ion storage method

Country Status (1)

Country Link
JP (1) JP5004070B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099299B2 (en) * 2006-02-28 2012-12-19 株式会社エクォス・リサーチ Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5046156B2 (en) * 2007-06-01 2012-10-10 Jx日鉱日石エネルギー株式会社 Lithium ion storage body and lithium ion storage method
US20100151318A1 (en) * 2008-12-12 2010-06-17 Applied Materials, Inc. Three-dimensional battery with hybrid nano-carbon layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518280A (en) * 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク Aligned free-standing carbon nanotubes and their synthesis
JP2003160320A (en) * 2001-09-11 2003-06-03 Sony Corp Substance occluding material and electrochemical device using it and method for producing substance occluding material

Also Published As

Publication number Publication date
JP2007153682A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
Züttel et al. Hydrogen sorption by carbon nanotubes and other carbon nanostructures
Rao et al. Nanotubes
Liu et al. Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior
Ritschel et al. Hydrogen storage in different carbon nanostructures
Liu et al. Properties of 4 Å carbon nanotubes from first-principles calculations
Brown et al. Quantum rotation of hydrogen in single-wall carbon nanotubes
Ströbel et al. Hydrogen storage by carbon materials
US6596055B2 (en) Hydrogen storage using carbon-metal hybrid compositions
Hirscher et al. Hydrogen storage in carbon nanotubes
Udomvech et al. First principles study of Li and Li+ adsorbed on carbon nanotube: Variation of tubule diameter and length
Wang et al. Electrochemical hydrogen storage properties of ball-milled multi-wall carbon nanotubes
Zhao et al. Diffusion and condensation of lithium atoms in single-walled carbon nanotubes
Zhang et al. The electrochemical hydrogen storage of multi-walled carbon nanotubes synthesized by chemical vapor deposition using a lanthanum nickel hydrogen storage alloy as catalyst
Lu et al. Hydrogen-induced unzipping of single-walled carbon nanotubes
Bulyarskiy et al. Nitrogen in carbon nanotubes
Du et al. One-step detonation-assisted synthesis of Fe 3 O 4-Fe@ BCNT composite towards high performance lithium-ion batteries
JP5004070B2 (en) Lithium ion storage body and lithium ion storage method
Saito et al. Diameters of single-wall carbon nanotubes depending on helium gas pressure in an arc discharge
Pandey et al. Investigations on hydrogenation behaviour of CNT admixed Mg2Ni
Liu et al. Carbon nanotubes-zeolite complex: A Li-intercalated compound with high storage capacity
Youn et al. Purity enhancement and electrochemical hydrogen storage property of carbon nanofibers grown at low temperature
Yi et al. The electrochemical hydrogen storage of CNTs synthesized by CVD using LaNi5 alloy particles as catalyst and treated with different temperature in nitrogen
Rajesh et al. Lanthanum nickel alloy catalyzed growth of nitrogen-doped carbon nanotubes by chemical vapor deposition
Yi et al. The study of the electrochemical properties of CNTs–LaNi5 electrodes
Kim et al. Sensitive G-band raman features for the electrical conductivity of multi-walled carbon nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees