JP5001705B2 - Hard and brittle plate - Google Patents

Hard and brittle plate Download PDF

Info

Publication number
JP5001705B2
JP5001705B2 JP2007107146A JP2007107146A JP5001705B2 JP 5001705 B2 JP5001705 B2 JP 5001705B2 JP 2007107146 A JP2007107146 A JP 2007107146A JP 2007107146 A JP2007107146 A JP 2007107146A JP 5001705 B2 JP5001705 B2 JP 5001705B2
Authority
JP
Japan
Prior art keywords
hard
hole
brittle material
grinding
plate glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007107146A
Other languages
Japanese (ja)
Other versions
JP2008266036A (en
Inventor
俊彦 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOKUEIKENMA KAKO CO., LTD.
Original Assignee
KYOKUEIKENMA KAKO CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOKUEIKENMA KAKO CO., LTD. filed Critical KYOKUEIKENMA KAKO CO., LTD.
Priority to JP2007107146A priority Critical patent/JP5001705B2/en
Publication of JP2008266036A publication Critical patent/JP2008266036A/en
Application granted granted Critical
Publication of JP5001705B2 publication Critical patent/JP5001705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、表裏面に貫通して形成された貫通孔を備えた硬脆材料板に関する。   The present invention relates to a hard and brittle material plate provided with a through hole formed so as to penetrate through the front and back surfaces.

従来の貫通孔を備えた硬脆材料板は、鋼製のシャンクの先端にダイヤモンド等からなる砥石を取り付けた砥石部を回転させることで、貫通孔が形成されている(例えば、特許文献1参照)。   A hard and brittle material plate provided with a conventional through hole has a through hole formed by rotating a grindstone portion in which a grindstone made of diamond or the like is attached to the tip of a steel shank (see, for example, Patent Document 1). ).

特開2005−199619号公報(第6頁、第12図)Japanese Patent Laying-Open No. 2005-199619 (page 6, FIG. 12)

しかしながら、特許文献1にあっては、硬脆材料板に形成された貫通孔の内周面が、貫通孔の貫通方向に直線状に形成されているため、貫通孔が形成された硬脆材料板の移動等の取扱い時に、貫通孔の内周面におけるこの段差部分に曲げ荷重などの負荷が集中して、硬脆材料板が破損してしまい易く、硬脆材料板の取扱いが困難であった。   However, in Patent Document 1, since the inner peripheral surface of the through hole formed in the hard and brittle material plate is formed linearly in the through direction of the through hole, the hard and brittle material in which the through hole is formed. During handling such as moving the plate, loads such as bending loads concentrate on this step on the inner peripheral surface of the through hole, and the hard and brittle material plate is likely to break, making it difficult to handle the hard and brittle material plate. It was.

例えば、貫通孔を有する硬脆材料板を、移動機能を備えた把持手段により、板面を床面に対し略平行に配置して把持した場合に、硬脆材料板全体に、その自重による曲げ荷重が生じることになる。この曲げ荷重による応力は、平面方向に拡がる硬脆材料板の所定箇所にて板面の表裏面を貫通する貫通孔において作用しやすく、例えば、前記把持手段により硬脆材料板を把持した状態で移動しようとした場合に、わずかな衝撃によっても、貫通孔の内周面において亀裂が生じ硬脆材料板が破損する虞があった。   For example, when a hard and brittle material plate having a through hole is gripped by gripping means having a moving function and the plate surface is arranged substantially parallel to the floor surface, the entire hard and brittle material plate is bent by its own weight. A load will be generated. The stress due to the bending load is likely to act in a through-hole penetrating the front and rear surfaces of the plate surface at a predetermined position of the hard and brittle material plate spreading in the plane direction. For example, in a state where the hard and brittle material plate is gripped by the gripping means. When attempting to move, even a slight impact may cause a crack in the inner peripheral surface of the through hole, resulting in damage to the hard and brittle material plate.

本発明は、このような問題点に着目してなされたもので、把持して移動する等の取扱いによっても破損し難い貫通孔を備えた硬脆材料板を提供することを目的とする。   The present invention has been made paying attention to such problems, and an object of the present invention is to provide a hard and brittle material plate having a through-hole that is not easily damaged by handling such as gripping and moving.

上記課題を解決するために、本発明の請求項1に記載の硬脆材料板は、
ドリルを用いて内周面が研削された貫通孔を備えた硬脆材料板であって、
該貫通孔の内周面は、前記ドリルを該ドリルの軸心周りに軸回転させるとともに、前記ドリルと硬脆材料板との間に相対的な偏心運動を与え、硬脆材料板の表面に平行の仮想の基準面に対する接線の傾き角度が硬脆材料板の表面から裏面に向かって連続して増加する曲面のみから形成されている曲面部であり、該曲面部は、硬脆材料板の表裏面の両面に形成された貫通孔の開口部よりも大径に形成されていることを特徴としている。
この特徴によれば、貫通孔の内周面が、貫通方向に沿って接線の傾きが連続する曲面部であるため、貫通方向に沿う直線状の内周面に比べて貫通孔の内周面積が大きく、硬脆材料板に掛る曲げ荷重が集中しやすい貫通孔において、貫通孔の内周面に作用する応力を小さく抑えることができるばかりか、曲面部においては角部が存在せずに、曲げ荷重による応力が局部的に加わらず分散されることで、硬脆材料板が曲げ荷重に対し割れ難い。
また、貫通孔の曲面部は、硬脆材料板の表裏面の両面に形成された貫通孔の開口部よりも大径に形成されているため、硬脆材料板に掛る曲げ荷重が最も大きく作用する硬脆材料板の表面及び裏面において、曲げ荷重に対し割れ難さを向上させることができる。また、硬脆材料板に掛る曲げ荷重による応力が、貫通孔から径方向に離間する方向に分散されるため、貫通孔に集中する曲げ荷重を、硬脆材料板における貫通孔の径方向周辺部分で受け持たせることができる。
In order to solve the above problems, the hard and brittle material plate according to claim 1 of the present invention is
A hard and brittle material plate having a through hole whose inner peripheral surface is ground using a drill,
The inner peripheral surface of the through-hole rotates the drill around the axis of the drill and gives a relative eccentric motion between the drill and the hard and brittle material plate. a curved portion which is formed only from a curved surface increases in continuous from the surface of the tangent slope angle hard and brittle materials plate toward the back side with respect to the reference plane parallel virtual, curved surface portion is hard and brittle materials plate It is characterized by being formed in a diameter larger than the opening portions of the through holes formed on both the front and back surfaces.
According to this feature, since the inner peripheral surface of the through hole is a curved surface portion in which the inclination of the tangent continues along the penetrating direction, the inner peripheral area of the through hole compared to the linear inner peripheral surface along the penetrating direction. In the through hole where the bending load applied to the hard and brittle material plate is likely to concentrate, the stress acting on the inner peripheral surface of the through hole can be kept small, and the curved surface has no corners, Since the stress due to the bending load is dispersed without being locally applied, the hard and brittle material plate is difficult to break against the bending load.
In addition, the curved portion of the through hole is formed to have a larger diameter than the opening of the through hole formed on both the front and back surfaces of the hard and brittle material plate, so that the bending load applied to the hard and brittle material plate has the largest effect. It is possible to improve the cracking resistance against bending load on the front and back surfaces of the hard and brittle material plate. In addition, since the stress due to the bending load applied to the hard and brittle material plate is dispersed in the direction away from the through hole in the radial direction, the bending load concentrated on the through hole is subjected to the radial peripheral portion of the through hole in the hard and brittle material plate. You can take care of it.

本発明の請求項に記載の硬脆材料板は、請求項に記載の硬脆材料板であって、
前記曲面部は、硬脆材料板の表裏面の中間に位置する中心面を中心として、貫通方向に略対称に形成されていることを特徴としている。
この特徴によれば、硬脆材料板に作用する引張り力と圧縮力の何れもが略0に成る仮想の中心の面を、硬脆材料板の表裏面の中間に位置させることができるため、曲げ荷重に対する硬脆材料板の割れ難さを向上させることができる。
The hard and brittle material plate according to claim 2 of the present invention is the hard and brittle material plate according to claim 1 ,
The curved surface portion is characterized in that it is formed substantially symmetrically in the penetrating direction with a central plane located in the middle between the front and back surfaces of the hard and brittle material plate.
According to this feature, the virtual center surface where both the tensile force and the compressive force acting on the hard and brittle material plate are substantially 0 can be positioned between the front and back surfaces of the hard and brittle material plate. The difficulty of cracking the hard and brittle material plate against bending load can be improved.

本発明の請求項に記載の硬脆材料板は、請求項に記載の硬脆材料板であって、
前記曲面部は、貫通方向に沿って均一の曲率のみを有していることを特徴としている。
この特徴によれば、貫通孔の内周面に、貫通方向に沿って均一の曲率のみを有する曲面部が形成されており、貫通孔の内周面において接線の傾きが均一に連続しているため、曲げ荷重による応力を均等に分散させることができる。
The hard and brittle material plate according to claim 3 of the present invention is the hard and brittle material plate according to claim 2 ,
The curved surface portion has only a uniform curvature along the penetrating direction.
According to this feature, a curved surface portion having only a uniform curvature along the penetrating direction is formed on the inner peripheral surface of the through hole, and the tangential slope is continuously uniform on the inner peripheral surface of the through hole. Therefore, the stress due to the bending load can be evenly dispersed.

本発明の請求項に記載の硬脆材料板は、請求項1ないしのいずれかに記載の硬脆材料板であって、
前記貫通孔の開口部に、前記曲面部と硬脆材料板の表裏面の少なくとも何れか一面とを連続する面取り部が形成されていることを特徴としている。
この特徴によれば、貫通孔の開口部に、曲面部と硬脆材料板の表裏面の少なくとも何れか一面とを連続する面取り部が形成されているため、硬脆材料板の取扱い時に欠損が生じ難い。
The hard and brittle material plate according to claim 4 of the present invention is the hard and brittle material plate according to any one of claims 1 to 3 ,
A chamfered portion is formed in the opening portion of the through-hole so as to continue the curved surface portion and at least one of the front and back surfaces of the hard and brittle material plate.
According to this feature, a chamfered portion that is continuous with at least one of the curved surface portion and the front and back surfaces of the hard and brittle material plate is formed in the opening of the through hole. Not likely to occur.

本発明の実施例を以下に説明する。   Examples of the present invention will be described below.

本発明の実施例1を図1〜図9及び図13に基づいて説明する。先ず図1は、本発明に係る硬脆材料板の適用例を示す概略斜視図である。図2は、本発明の実施例1における孔形成用ドリルを示す斜視図である。図3は、図2と同じく正面図である。図4は、図2と同じく側面図である。図5は、図2と同じく断側面図である。図6は、図2と同じく板ガラスを穿孔する状況を示す断面図である。図7は、図6のA−A断面図である。図8(a)は、図2と同じく板ガラスを貫通した状況を示す断面図であり、(b)は、中間砥石部で研削する状況を示す断面図である。図9(a)は、図2と同じく研削後の板ガラスの研削孔を示す断面図であり、(b)は、板ガラスに曲げ荷重が掛った状況を示す断面図である。図13(a)は、実施例1において研削孔の貫通方向の位置における接線の傾き角度を例示した図であり、(b)は、研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic perspective view showing an application example of a hard and brittle material plate according to the present invention. FIG. 2 is a perspective view showing the hole forming drill in Example 1 of the present invention. FIG. 3 is a front view similar to FIG. FIG. 4 is a side view similar to FIG. FIG. 5 is a cross-sectional side view similar to FIG. FIG. 6 is a cross-sectional view showing a situation where a plate glass is perforated as in FIG. FIG. 7 is a cross-sectional view taken along the line AA of FIG. FIG. 8A is a cross-sectional view showing a situation where the plate glass is penetrated similarly to FIG. 2, and FIG. 8B is a cross-sectional view showing a situation where grinding is performed by the intermediate grindstone portion. FIG. 9A is a cross-sectional view showing a ground hole of a plate glass after grinding, as in FIG. 2, and FIG. 9B is a cross-sectional view showing a state in which a bending load is applied to the plate glass. FIG. 13A is a diagram illustrating an inclination angle of a tangent at a position in the grinding hole penetration direction in Example 1, and FIG. 13B is a graph showing an inclination angle of the tangent at a position in the penetration direction of the grinding hole. It is.

まず、図1に示されるように、表裏面に貫通した貫通孔を備えた硬脆材料板の適用例を説明する。プラズマディスプレイパネル1は、互いに組み合わされてケースを構成するフロントケース部2及びバックケース部8と、該ケース内に収容される内部ユニット10と、を備えている。   First, as shown in FIG. 1, an application example of a hard and brittle material plate provided with through holes penetrating the front and back surfaces will be described. The plasma display panel 1 includes a front case portion 2 and a back case portion 8 which are combined with each other to form a case, and an internal unit 10 accommodated in the case.

内部ユニット10は、放熱用保持板としてのシャーシ部材7と、該シャーシ部材7の前面に支持される表示パネル9と、シャーシ部材7と表示パネル9との間に介在させた接着部材としての熱伝導シート6と、帯電防止、色調・輝度補正、電磁波遮蔽等の機能を有し、表示パネル9の前面に配置される光学機能フィルタ3と、からなる。   The internal unit 10 includes a chassis member 7 as a heat dissipation holding plate, a display panel 9 supported on the front surface of the chassis member 7, and heat as an adhesive member interposed between the chassis member 7 and the display panel 9. The conductive sheet 6 and the optical function filter 3 having functions such as antistatic, color tone / brightness correction, electromagnetic wave shielding, etc., are disposed on the front surface of the display panel 9.

表示パネル9は、前面側に設けた板ガラス4と、背面側に設けた硬脆材料板としての板ガラス5とから構成されており、板ガラス4は板ガラス5に比べて長辺方向が長く、短辺方向が短く形成されている。これにより板ガラス4と板ガラス5とは互いに重合しない領域が存在し、その非重合領域には表示パネル9内に設けられた電極(図示略)に接続された端子(図示略)が形成されている。この端子には、先端にコネクタ(図示略)を有する複数のフィルム状配線(図示略)が圧着され、前記コネクタがシャーシ部材7の背面に配置される回路基板(図示略)に設けられたコネクタ(図示略)と連結されることにより、該回路基板と表示パネル9とが電気的に接続されている。   The display panel 9 is composed of a plate glass 4 provided on the front side and a plate glass 5 as a hard and brittle material plate provided on the back side. The plate glass 4 has a long side direction longer than the plate glass 5 and a short side. The direction is short. Accordingly, there is a region where the plate glass 4 and the plate glass 5 do not overlap each other, and terminals (not shown) connected to electrodes (not shown) provided in the display panel 9 are formed in the non-polymerized region. . A plurality of film-like wiring (not shown) having a connector (not shown) at the tip is crimped to this terminal, and the connector is provided on a circuit board (not shown) arranged on the back surface of the chassis member 7. By being coupled to (not shown), the circuit board and the display panel 9 are electrically connected.

前面側の板ガラス4と背面側の板ガラス5との周縁部は、ガス放電用空間を形成するために低融点ガラスからなるシール材(図示略)により接着されてシールされ、密封されたガス放電用空間内には所定圧の希ガス(ネオン及びキセノンの混合ガス等)が封入されている。   The peripheral portions of the front side glass plate 4 and the rear side glass plate 5 are bonded and sealed with a sealing material (not shown) made of low melting point glass to form a gas discharge space, and the gas discharge is sealed. A rare gas (such as a mixed gas of neon and xenon) having a predetermined pressure is sealed in the space.

そして、板ガラス5の角部近傍の所定箇所に、前記したガス放電用空間の内部に封入する希ガスを流通させるための貫通孔が、板ガラス5の表裏面を貫通して形成されている。以下に、孔形成用ドリルによる貫通孔の形成工程について説明する。   And the through-hole for distribute | circulating the noble gas enclosed in the inside of the above-mentioned gas discharge space is formed in the predetermined location near the corner | angular part of the plate glass 5 so that the front and back of the plate glass 5 may be penetrated. Below, the formation process of the through-hole by the drill for hole formation is demonstrated.

図2の符号11は、本実施例における孔形成用ドリルとしてのダイヤモンドドリルであり、このダイヤモンドドリル11は、先端面と外周面にダイヤモンドを着装した砥石部としてのダイヤモンド砥石部12と、回転軸として作用する鋼製のシャンク13とで構成されている。尚、ダイヤモンド砥石部12は、ダイヤモンド砥粒を用いてメタルボンド砥石あるいは電着砥石として製作される。   Reference numeral 11 in FIG. 2 is a diamond drill as a hole forming drill in the present embodiment. The diamond drill 11 includes a diamond grindstone portion 12 as a grindstone portion in which diamond is mounted on a front end surface and an outer peripheral surface, and a rotating shaft. It is comprised with the steel shank 13 which acts as. The diamond grindstone portion 12 is manufactured as a metal bond grindstone or an electrodeposition grindstone using diamond abrasive grains.

また、図2ないし図4に示されるように、ダイヤモンド砥石部12は、先端側に形成された小径をなす貫通砥石部としての先端砥石部14と、中間部に形成されて先端砥石部14よりも大径をなす曲面研削部としての後方砥石部15と、で構成されている。   Further, as shown in FIGS. 2 to 4, the diamond grindstone portion 12 includes a tip grindstone portion 14 as a small-diameter penetrating grindstone portion formed on the tip side and an intermediate portion formed from the tip grindstone portion 14. And a rear grinding wheel portion 15 as a curved grinding portion having a large diameter.

先端砥石部14には、粒径が大きな粗いダイヤモンド砥粒が付着されるとともに、後方砥石部15には、先端砥石部14に付着されたダイヤモンド砥粒よりも粒径が小さい細かいダイヤモンド砥粒が付着されている。   Coarse diamond abrasive grains having a large particle size are attached to the tip grindstone portion 14, and fine diamond abrasive grains having a particle size smaller than that of the diamond abrasive grains adhered to the tip grindstone portion 14 are attached to the rear grindstone portion 15. It is attached.

また、先端砥石部14は、軸方向に沿って略同径に形成された略円筒形状をなし、先端砥石部14の側周には、円筒面14aが形成されるとともに、先端砥石部14の先端側には、先端に向かって直径が小さくなるように形成された円錐面14bが形成されている。尚、図2の部分拡大斜視図に示すように、先端砥石部14の先端部には、円錐面14bによって形成される円錐体の先端が切り欠かれて平坦面に形成された先端面14cが設けられ、すなわち先端砥石部14の先端部の形状が切頭円錐形状となっている。   Further, the tip grindstone portion 14 has a substantially cylindrical shape formed with substantially the same diameter along the axial direction, and a cylindrical surface 14 a is formed on the side periphery of the tip grindstone portion 14. On the distal end side, a conical surface 14b is formed so that the diameter decreases toward the distal end. As shown in the partial enlarged perspective view of FIG. 2, the tip of the tip grindstone 14 has a tip surface 14c formed by flattening the tip of the cone formed by the cone surface 14b. In other words, the shape of the tip portion of the tip grindstone portion 14 is a truncated cone shape.

また、後方砥石部15は、先端砥石部14よりもダイヤモンドドリル11の軸方向後方側において設けられているとともに、回転軸の径方向に膨出した曲面を備えている。より具体的には、後方砥石部15は、回転軸の軸方向に沿って接線の傾きが連続する曲面であって、硬脆材料板の表面における開口部を研削する開口部研削面15aと、同様に硬脆材料板の裏面における開口部を研削する開口部研削面15cと、この開口部研削面15a、15cよりも漸次拡径して形成され硬脆材料板の軸方向に内方側を研削する内方部研削面15bと、から成る曲面を有している。また、後方砥石部15は、回転軸の軸方向において内方部研削面15bの中間に位置する中心部を中心として、軸方向に略対称の連続した曲面を備えている。   The rear grindstone 15 is provided on the rear side in the axial direction of the diamond drill 11 with respect to the tip grindstone 14, and has a curved surface that bulges in the radial direction of the rotating shaft. More specifically, the rear grindstone 15 is a curved surface in which the tangential inclination continues along the axial direction of the rotation axis, and an opening grinding surface 15a for grinding the opening on the surface of the hard and brittle material plate; Similarly, an opening grinding surface 15c that grinds the opening on the back surface of the hard and brittle material plate, and the diameter of the opening grinding surface 15a and 15c is gradually increased from that of the hard and brittle material plate. It has a curved surface comprising an inner grinding surface 15b to be ground. Further, the rear grindstone portion 15 includes a continuous curved surface that is substantially symmetrical in the axial direction with a central portion located in the middle of the inner grinding surface 15b in the axial direction of the rotating shaft.

先端砥石部14の先端面14cの中央部には、略半球形状に刳り貫かれて形成された微小な凹部14dが形成されている。また、図3に示すように、先端砥石部14の先端面14cは、ダイヤモンドドリル11の正面視において略円形状をなすとともに、先端面14cに形成された凹部14dは、先端面14cの同心円として形成されている。   At the center portion of the tip surface 14c of the tip grindstone portion 14 is formed a minute recess 14d that is formed in a substantially hemispherical shape. Further, as shown in FIG. 3, the tip surface 14c of the tip grindstone portion 14 has a substantially circular shape when viewed from the front of the diamond drill 11, and the recess 14d formed on the tip surface 14c is a concentric circle of the tip surface 14c. Is formed.

次に、ダイヤモンドドリル11を用いて硬脆材料板としての板ガラス5が研削される工程について図5から図8を用いて詳述する。図5に示すように、ダイヤモンドドリル11を用いて硬脆材料板である板ガラス5を研削する際には、先ずダイヤモンドドリル11をシャンク13の軸心αを中心に軸回転させつつ、先端砥石部14の先端面14cを板ガラス5の表面に当接させる。このとき先端砥石部14の先端が切頭円錐形状をなしていることで、押圧力が先端面14cに集中するようになり、板ガラス5が研削され易くなっている。   Next, the process of grinding the plate glass 5 as a hard and brittle material plate using the diamond drill 11 will be described in detail with reference to FIGS. As shown in FIG. 5, when grinding the plate glass 5, which is a hard and brittle material plate, using the diamond drill 11, first the diamond drill 11 is rotated about the axis α of the shank 13, and the tip grindstone portion 14 is brought into contact with the surface of the plate glass 5. At this time, since the tip of the tip grindstone portion 14 has a truncated cone shape, the pressing force is concentrated on the tip surface 14c, and the plate glass 5 is easily ground.

また、図6に示すように、ダイヤモンドドリル11のダイヤモンド砥石部12が、シャンク13の軸心αを中心に軸回転しつつ、ダイヤモンド砥石部12と板ガラス5との間に相対的な偏心運動が与えられるようになっている。   Further, as shown in FIG. 6, the diamond wheel 12 of the diamond drill 11 rotates about the axis α of the shank 13, and a relative eccentric motion occurs between the diamond wheel 12 and the plate glass 5. It has come to be given.

ダイヤモンドドリル11の偏心運動について詳述すると、図7に示すように、ダイヤモンドドリル11の先端砥石部14の円筒面14aを、板ガラス5に形成された被研削面である略円形状の研削孔17の内周面に当接させ、ダイヤモンドドリル11を軸心α周りにa方向に軸回転させながら、先端砥石部14の円筒面14aが研削孔17の内周面の全周に渡って当接するように、ダイヤモンドドリル11の軸回転の軸心αを偏心軸βの周りにb方向に回転させ、すなわちダイヤモンドドリル11を偏心軸βを中心として遊星回転運動させる。尚、偏心軸βが円形状をなす研削孔17の中心軸となっている。   The eccentric motion of the diamond drill 11 will be described in detail. As shown in FIG. 7, the cylindrical surface 14 a of the tip grindstone portion 14 of the diamond drill 11 has a substantially circular grinding hole 17 that is a surface to be ground formed on the plate glass 5. The cylindrical surface 14a of the tip grindstone 14 abuts over the entire circumference of the inner peripheral surface of the grinding hole 17 while rotating the diamond drill 11 about the axis α in the direction a. As described above, the axis α of the shaft rotation of the diamond drill 11 is rotated in the b direction around the eccentric shaft β, that is, the diamond drill 11 is rotated on the planetary axis about the eccentric shaft β. The eccentric shaft β is the central axis of the circular grinding hole 17.

ダイヤモンドドリル11と板ガラス5との間に相対的な偏心運動を与える手段としては、板ガラス5を静止させた状態で固定し、ダイヤモンドドリル11を軸心α周りに軸回転させる第1モータ(図示略)を設けるとともに、ダイヤモンドドリル11及び前記第1モータを研削孔17の中心軸である偏心軸β周りに回転させるための第2モータ(図示略)を設け、これら第1モータ及び第2モータの両方を駆動させることで、ダイヤモンドドリル11と板ガラス5との間に相対的な偏心運動を与える方法がある。   As a means for giving a relative eccentric motion between the diamond drill 11 and the plate glass 5, a first motor (not shown) that fixes the plate glass 5 in a stationary state and rotates the diamond drill 11 about the axis α. ) And a second motor (not shown) for rotating the diamond drill 11 and the first motor around an eccentric shaft β that is the central axis of the grinding hole 17. There is a method of giving a relative eccentric motion between the diamond drill 11 and the plate glass 5 by driving both.

また、ダイヤモンドドリル11に偏心運動を与えることによって、板ガラス5に形成される研削孔17の直径は、先端砥石部14の外径よりも大きく、更に後述するように、後方砥石部15の外径よりも大きくなるように形成される。尚、研削孔17の直径は、ダイヤモンドドリル11の回転軸の軸心αと偏心運動の偏心軸βとの離間距離eによって変化するようになっており、軸心αと偏心軸βとの離間距離eが大きければ研削孔17の直径が大きく形成される。   Further, by giving an eccentric motion to the diamond drill 11, the diameter of the grinding hole 17 formed in the plate glass 5 is larger than the outer diameter of the tip grindstone portion 14, and as will be described later, the outer diameter of the rear grindstone portion 15. It is formed to be larger. The diameter of the grinding hole 17 changes depending on the separation distance e between the axis α of the rotation axis of the diamond drill 11 and the eccentric shaft β of the eccentric motion, and the separation between the axis α and the eccentric shaft β. If the distance e is large, the diameter of the grinding hole 17 is formed large.

更に、本実施例におけるダイヤモンドドリル11では、ダイヤモンド砥石部12をシャンク13の軸心αを中心として軸回転させるとともに、少なくとも研削孔17の中心点(偏心軸β)を先端面14cが通過するように、ダイヤモンド砥石部12と板ガラス5との間に偏心運動を与えて板ガラス5の研削を行うようになっている。そのためダイヤモンド砥石部12が軸回転されたときに、凹部14dに対応した位置や研削孔17の中心点(偏心軸β)に生じる板ガラス5の残存部位を、偏心運動されるダイヤモンド砥石部12の先端面14cによって研削して無くすことができる。   Furthermore, in the diamond drill 11 in the present embodiment, the diamond grindstone 12 is rotated about the axis α of the shank 13, and the tip surface 14c passes through at least the center point (eccentric axis β) of the grinding hole 17. Further, the plate glass 5 is ground by giving an eccentric motion between the diamond grindstone portion 12 and the plate glass 5. Therefore, when the diamond grindstone 12 is axially rotated, the tip of the diamond grindstone 12 that is eccentrically moved at the position corresponding to the recess 14d and the remaining portion of the plate glass 5 generated at the center point of the grinding hole 17 (eccentric axis β). The surface 14c can be ground away.

また、凹部14dが、板ガラス5が研削されることで発生する切粉を一時的に収容できるようになっている。そのため切粉がダイヤモンド砥石部12の先端面14cと板ガラス5との間に介在することで生じるダイヤモンドドリル11の研削効率の低下を防止できる。尚、ダイヤモンドドリル11を用いた研削の際に、研削孔17と先端砥石部14との間隙に洗浄水を流し込むこともでき、研削によって生じた切粉等をこの洗浄水で洗い流しながら研削できるようになっている。   Moreover, the recessed part 14d can accommodate temporarily the chip generate | occur | produced when the plate glass 5 is ground. Therefore, it is possible to prevent a reduction in the grinding efficiency of the diamond drill 11 caused by the chips being interposed between the tip surface 14 c of the diamond grindstone 12 and the plate glass 5. In the grinding using the diamond drill 11, cleaning water can be poured into the gap between the grinding hole 17 and the tip grindstone portion 14, so that chips and the like generated by grinding can be ground while washing with this cleaning water. It has become.

また、凹部14dは、その奥部に行く従って狭くなる形状となっており、このようにすることで、板ガラス5の研削の際に発生する切粉等が凹部14d内から排除され易くなり、切粉等が凹部14d内に詰まり難くなるため、使用後のダイヤモンドドリル11の手入れが容易になる。   Further, the concave portion 14d has a shape that becomes narrower as it goes to the inner portion thereof. By doing so, chips and the like generated during grinding of the glass sheet 5 can be easily removed from the concave portion 14d. Since powder or the like is less likely to be clogged in the recess 14d, the diamond drill 11 can be easily maintained after use.

先端砥石部14が板ガラス5を貫通した後、ダイヤモンドドリル11の軸回転の軸心αと偏心運動の偏心軸βとの離間距離eを徐々に大きくすることで、先端砥石部14の円筒面14aにより研削孔17の内周面を研削して研削孔17の直径が大きくなるように研削孔17を拡大させる。   After the tip grindstone portion 14 penetrates the plate glass 5, the cylindrical surface 14a of the tip grindstone portion 14 is gradually increased by increasing the separation distance e between the shaft rotation axis α of the diamond drill 11 and the eccentric shaft β of the eccentric motion. By grinding the inner peripheral surface of the grinding hole 17, the grinding hole 17 is enlarged so that the diameter of the grinding hole 17 is increased.

そして、図8(a)に示されるように、先端砥石部14による上述した偏心運動で、研削孔17の直径L2を後方砥石部15の内方部研削面15bの外径L1よりも大きく形成した後に、ダイヤモンド砥石部12を軸方向に研削孔17に更に挿入させ、後方砥石部15を研削孔17の内周面に当接させる。そして、図8(b)に示されるように、ダイヤモンドドリル11を軸心α周りに軸回転させつつ、後方砥石部15の周面が研削孔17の内周面の全周に及ぶように、ダイヤモンドドリル11を偏心運動させる。   8A, the diameter L2 of the grinding hole 17 is formed to be larger than the outer diameter L1 of the inner grinding surface 15b of the rear grinding wheel portion 15 by the above-described eccentric motion by the tip grinding wheel portion 14. After that, the diamond grindstone 12 is further inserted into the grinding hole 17 in the axial direction, and the rear grindstone 15 is brought into contact with the inner peripheral surface of the grinding hole 17. Then, as shown in FIG. 8B, while rotating the diamond drill 11 around the axis α, the peripheral surface of the rear grindstone 15 extends over the entire inner peripheral surface of the grinding hole 17. The diamond drill 11 is moved eccentrically.

また、このように、先端砥石部14により板ガラス5を貫通した研削孔17を形成した後に、ダイヤモンドドリル11の軸方向にダイヤモンド砥石部12と板ガラス5との相対位置を移動させ、先端砥石部14よりも後方側において形成された回転軸の径方向に膨出した曲面である後方砥石部15と、板ガラス5との間に偏心運動を与えることにより、板ガラス5に、この後方砥石部15に沿った形状の曲面部を有する研削孔17を形成できる。すなわち、図9(a)に示されるように、貫通孔としての研削孔17の内周面は、後方砥石部15の径方向外方に膨出した曲面に沿って、貫通方向に沿って接線の傾きが連続して径方向外方に拡径した曲面部である。この曲面部は、具体的には板ガラス5の表面5a開口部と裏面5b開口部においては直径L2に形成されるとともに、中間面5cに向けて漸次拡径し、中間面5cにおいては直径L2よりも大径の直径L3に形成される。また、この曲面部は、板ガラス5の表面5a及び裏面5bの中間に位置する中心面5cを中心として、貫通方向に略対称に形成されている。尚、後方砥石部15は、先端砥石部14よりも大径に形成されているため、本実施例のダイヤモンドドリル11は、比較的大径の研削孔17を形成する用途に適している。   Further, after forming the grinding hole 17 penetrating the plate glass 5 by the tip grindstone portion 14 in this way, the relative position between the diamond grindstone portion 12 and the plate glass 5 is moved in the axial direction of the diamond drill 11, and the tip grindstone portion 14 is moved. By providing an eccentric motion between the rear glass wheel 15 that is a curved surface that bulges in the radial direction of the rotating shaft formed on the rear side, and the glass sheet 5, the glass sheet 5 is provided along the rear wheel part 15. A grinding hole 17 having a curved surface with a different shape can be formed. That is, as shown in FIG. 9A, the inner peripheral surface of the grinding hole 17 as a through hole is tangent along the penetration direction along the curved surface bulging outward in the radial direction of the rear grinding wheel portion 15. Is a curved surface portion whose diameter is continuously expanded radially outward. Specifically, the curved surface portion is formed to have a diameter L2 in the opening portion of the front surface 5a and the back surface 5b of the plate glass 5, and gradually increases in diameter toward the intermediate surface 5c, and from the diameter L2 in the intermediate surface 5c. Is also formed to have a large diameter L3. In addition, the curved surface portion is formed substantially symmetrically in the penetrating direction with the center surface 5c located in the middle between the front surface 5a and the back surface 5b of the plate glass 5 as a center. In addition, since the back grindstone part 15 is formed in a larger diameter than the front-end grindstone part 14, the diamond drill 11 of a present Example is suitable for the use which forms the comparatively large diameter grinding hole 17. FIG.

また、後方砥石部15には、先端砥石部14に付着されたダイヤモンド砥粒よりも細かいダイヤモンド砥粒が付着されているため、後方砥石部15によって研削孔17の内周面の面取りができるようになっている。尚、ダイヤモンド砥石部12に別段に円錐面を設け、該円錐面を用いて研削孔17周縁の面取りを行うこともできる。   In addition, since diamond abrasive grains finer than diamond abrasive grains attached to the tip grindstone portion 14 are adhered to the rear grindstone portion 15, the rear grindstone portion 15 can chamfer the inner peripheral surface of the grinding hole 17. It has become. It is also possible to provide a conical surface in the diamond grindstone 12 and chamfer the periphery of the grinding hole 17 using the conical surface.

このように、始めに粗いダイヤモンド砥粒が付着された先端砥石部14を用いて板ガラス5を貫通させて研削孔17を形成した後、細かいダイヤモンド砥粒が付着された後方砥石部15により研削孔17の面取りを行うことで、板ガラス5に研削孔17を形成する研削時間を短縮できるばかりか、貫通用のドリルとその他の面取り用の器具との交換作業が必要なくなり、研削孔17形成のための作業時間を短縮できるようになっている。   In this way, after forming the grinding hole 17 by penetrating the plate glass 5 using the tip grinding wheel portion 14 to which coarse diamond abrasive grains are first attached, the grinding hole is formed by the rear grinding stone portion 15 to which fine diamond abrasive grains are adhered. By chamfering 17, not only the grinding time for forming the grinding hole 17 in the plate glass 5 can be shortened, but also the replacement work between the drill for penetration and other chamfering tools is not required, and the grinding hole 17 is formed. The work time can be shortened.

次に、図13(a)に示されるように、本実施例の板ガラス5に形成された研削孔17における曲面部の接線の傾きについて説明すると、板ガラス5の表面5aに平行の仮想の基準面Kに対する接線の傾き角度θは、図13(a)で例示されるθ1ないしθ6のように連続して変化している。図13(b)に示されるように、板ガラス5に形成された研削孔17の貫通方向の位置t(横軸)における接線の傾き角度θ(縦軸)は、板ガラス5の表面5a(t=0)から裏面5b(t=T)に向かって連続して増加している。具体的には、板ガラス5の表面5aと裏面5bとの仮想の中間面5c(t=T/2)において、傾き角度θ4はπ/2を示し、この中間面5cを中心として板ガラス5の表裏面に向かって、傾き角度θは略対称に変化している。   Next, as shown in FIG. 13A, the inclination of the tangent of the curved surface portion in the grinding hole 17 formed in the glass sheet 5 of the present embodiment will be described. A virtual reference plane parallel to the surface 5a of the glass sheet 5 The inclination angle θ of the tangent to K continuously changes as θ1 to θ6 illustrated in FIG. As shown in FIG. 13B, the inclination angle θ (vertical axis) of the tangential line at the position t (horizontal axis) in the penetration direction of the grinding hole 17 formed in the plate glass 5 is the surface 5a (t = 0) continuously increases toward the back surface 5b (t = T). Specifically, in the virtual intermediate surface 5c (t = T / 2) between the front surface 5a and the back surface 5b of the plate glass 5, the inclination angle θ4 indicates π / 2, and the surface of the plate glass 5 is centered on the intermediate surface 5c. The inclination angle θ changes substantially symmetrically toward the back surface.

次に、図9(b)に示されるように、上述したようにダイヤモンドドリル11により形成された研削孔17を有する板ガラス5に作用する曲げ荷重について説明すると、例えば板ガラス5の表面5aを上面として図示しない把持手段により把持すると、図示白抜き矢印方向に曲げ荷重が掛る。具体的には板ガラス5の中間面5cを中心として、表面5a側に引張り力が発生し、この引張り力は、表面5aにおいて最も大きい力として作用する。同様に、中間面5cの裏面5b側に圧縮力が発生し、この圧縮力は、裏面5bにおいて最も大きい力として作用する。   Next, as shown in FIG. 9B, the bending load acting on the plate glass 5 having the grinding holes 17 formed by the diamond drill 11 as described above will be described. For example, the surface 5a of the plate glass 5 is used as the upper surface. When gripped by a gripping means (not shown), a bending load is applied in the direction of the outlined arrow. Specifically, a tensile force is generated on the surface 5a side around the intermediate surface 5c of the plate glass 5, and this tensile force acts as the largest force on the surface 5a. Similarly, a compressive force is generated on the back surface 5b side of the intermediate surface 5c, and this compressive force acts as the largest force on the back surface 5b.

次に、板ガラス5の表裏面に貫通した研削孔17の内周面において作用する曲げ荷重について説明すると、曲げ荷重による応力は、研削孔17の内周面の貫通方向における接線方向に向けて作用する。上述したように、ダイヤモンドドリル11のダイヤモンド砥石部12に形成された後方砥石部15により、研削孔17の内周面に、貫通方向に沿って接線の傾きが連続した曲面部が形成されているため、貫通方向に沿う直線状の内周面に比べて研削孔17の内周面積が大きく、板ガラス5に掛る曲げ荷重が集中しやすい研削孔17において、研削孔17の内周面に作用する応力を小さく抑えることができるばかりか、曲面部においては角部が存在せずに、曲げ荷重による応力が局部的に加わらず分散されることで、板ガラス5が曲げ荷重に対し割れ難い。   Next, the bending load acting on the inner peripheral surface of the grinding hole 17 penetrating the front and back surfaces of the plate glass 5 will be described. The stress due to the bending load acts toward the tangential direction in the penetrating direction of the inner peripheral surface of the grinding hole 17. To do. As described above, a curved portion having a continuous tangential slope along the penetration direction is formed on the inner peripheral surface of the grinding hole 17 by the rear grinding wheel portion 15 formed on the diamond grinding wheel portion 12 of the diamond drill 11. Therefore, the inner peripheral area of the grinding hole 17 is larger than the linear inner peripheral surface along the penetrating direction, and the grinding hole 17 on which the bending load applied to the plate glass 5 tends to concentrate acts on the inner peripheral surface of the grinding hole 17. Not only can the stress be kept small, but there is no corner portion in the curved surface portion, and the stress due to the bending load is dispersed without being locally applied, so that the plate glass 5 is difficult to break against the bending load.

特に、本実施例のように、ダイヤモンドドリル11の後方砥石部15が、板ガラス5の表面5a及び裏面5bにおける開口部を研削する開口部研削面15a、15cから、板ガラス5の開口部よりも内方側を研削する内方部研削面15bに向かって漸次拡径する曲面を有していることで、図9(a)に示されるように、開口部研削面15a、15cにより研削される開口部の孔径L2を、内方部研削面15bにより研削される孔径L3と比べて小径に形成できるため、すなわち、研削孔17の内周面に、開口部から貫通方向内方部に向かって、孔径が漸次拡径する曲面部が形成されているため、板ガラス5に掛る曲げ荷重が最も大きく作用する板ガラス5の表面5a若しくは裏面5bにおいて、曲げ荷重に対し割れ難さを向上させることができる。また、板ガラス5に掛る曲げ荷重による応力が、研削孔17から径方向に離間する方向に分散されるため、研削孔17に集中する曲げ荷重を、板ガラス5における研削孔17の径方向周辺部分で受け持たせることができる。   In particular, as in this embodiment, the rear grindstone portion 15 of the diamond drill 11 is located on the inner side of the opening portion of the plate glass 5 from the opening grinding surfaces 15a and 15c for grinding the openings on the front surface 5a and the back surface 5b of the plate glass 5. As shown in FIG. 9 (a), openings that are ground by the opening grinding surfaces 15a and 15c have a curved surface that gradually increases in diameter toward the inner grinding surface 15b that grinds the side. Since the hole diameter L2 of the part can be formed smaller than the hole diameter L3 ground by the inner part grinding surface 15b, that is, on the inner peripheral surface of the grinding hole 17, from the opening part toward the inner part in the penetration direction, Since the curved surface portion in which the hole diameter gradually increases is formed, it is possible to improve the cracking resistance against the bending load on the front surface 5a or the back surface 5b of the glass plate 5 where the bending load applied to the glass plate 5 acts most greatly. That. Further, since the stress due to the bending load applied to the plate glass 5 is dispersed in the direction away from the grinding hole 17 in the radial direction, the bending load concentrated on the grinding hole 17 is applied to the peripheral portion in the radial direction of the grinding hole 17 in the plate glass 5. Can be held.

また、内方部研削面15bの中心部を中心として軸方向に略対称の連続した曲面を有した後方砥石部15により、板ガラス5に、この後方砥石部15に沿った曲面を形成できるため、板ガラス5に作用する引張り力と圧縮力の何れもが略0に成る仮想の中心の面を、板ガラス5の表裏面の中間に位置させることができるため、曲げ荷重に対する板ガラス5の割れ難さを向上させることができる。また、板ガラス5の表面5aを上方に向けて把持した場合に生じる、板ガラス5の表面5aに引張り力が掛り裏面5bに圧縮力が掛る方向の曲げ荷重と、この方向と反対に、板ガラス5の裏面5bを上方に向けて把持した場合等に生じる、板ガラス5の裏面5bに引張り力が掛り表面5aに引張り力が掛る曲げ荷重とに対し、同様の割れ難さを生じさせることができる。   Further, since the rear grinding wheel portion 15 having a continuous curved surface that is substantially symmetrical in the axial direction around the center portion of the inner grinding surface 15b, a curved surface along the rear grinding wheel portion 15 can be formed on the plate glass 5, Since the imaginary center plane where both the tensile force and the compressive force acting on the plate glass 5 are substantially zero can be positioned in the middle of the front and back surfaces of the plate glass 5, it is difficult to break the plate glass 5 against bending load. Can be improved. Further, a bending load in a direction in which a tensile force is applied to the surface 5a of the plate glass 5 and a compression force is applied to the back surface 5b, which occurs when the surface 5a of the plate glass 5 is held upward, The same difficulty of cracking can be generated against a bending load in which a tensile force is applied to the back surface 5b of the plate glass 5 and a tensile force is applied to the surface 5a, which occurs when the back surface 5b is gripped upward.

更に、研削孔17の内周面に、貫通方向に沿って均一の曲率のみを有する曲面部が形成されており、研削孔17の内周面において接線の傾きが均一に連続しているため、曲げ荷重による応力を均等に分散させることができる。   Furthermore, a curved surface portion having only a uniform curvature along the penetrating direction is formed on the inner peripheral surface of the grinding hole 17, and the inclination of the tangent line is continuously uniform on the inner peripheral surface of the grinding hole 17, Stress due to bending load can be evenly dispersed.

次に、実施例2に係る貫通孔を備えた硬脆材料板につき、図10に基づいて説明する。図10は、本発明の実施例2における板ガラスの研削孔を示す断面図である。なお、上記実施例と同一構成で重複する構成を省略する。   Next, a hard and brittle material plate having a through hole according to Example 2 will be described with reference to FIG. FIG. 10 is a cross-sectional view showing a plate glass grinding hole in Example 2 of the present invention. In addition, the same structure as the said Example is abbreviate | omitted.

図10に示されるように、板ガラス5に形成された貫通孔としての研削孔27の内周面は、板ガラス5の表裏面に形成された研削孔27の開口部よりも大径に形成されている曲面部27cに加えて、この曲面部27cと板ガラス5の表面5aとを連続する面取り部27a、及び曲面部27cと板ガラス5の裏面5bとを連続する面取り部27bを有することとなるため、曲げ荷重による応力を面取り部27a、27bの接線方向に逃がすことができるばかりか、面取りがされているため、板ガラス5の取扱い時に欠損が生じ難い。また、この研削孔27は、板ガラス5の表面5a及び裏面5bの中間に位置する中心面5cを中心として、貫通方向に略対称に形成されている。尚、面取部は、必ずしも板ガラス5の表面5a及び裏面5b両方に形成される必要はなく、板ガラス5の表面5a若しくは裏面5b何れか一方のみに形成されていてもよい。   As shown in FIG. 10, the inner peripheral surface of the grinding hole 27 as a through hole formed in the plate glass 5 is formed to have a larger diameter than the opening of the grinding hole 27 formed on the front and back surfaces of the plate glass 5. In addition to the curved surface portion 27c, the curved surface portion 27c and the front surface 5a of the plate glass 5 have a chamfered portion 27a, and the curved surface portion 27c and the back surface 5b of the plate glass 5 have a chamfered portion 27b. Not only can the stress due to the bending load be released in the tangential direction of the chamfered portions 27a and 27b, but chamfering makes it difficult to cause defects when the plate glass 5 is handled. Further, the grinding hole 27 is formed substantially symmetrically in the penetrating direction with the center surface 5c located in the middle between the front surface 5a and the back surface 5b of the plate glass 5 as a center. The chamfered portion is not necessarily formed on both the front surface 5a and the back surface 5b of the plate glass 5, and may be formed only on either the front surface 5a or the back surface 5b of the plate glass 5.

次に、実施例3に係る貫通孔を備えた硬脆材料板につき、図11及び図14に基づいて説明する。図11は、本発明の実施例3における板ガラスの研削孔を示す断面図である。図14は、実施例3において研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。なお、上記実施例と同一構成で重複する構成を省略する。   Next, a hard and brittle material plate having a through hole according to Example 3 will be described with reference to FIGS. 11 and 14. FIG. 11: is sectional drawing which shows the grinding hole of the plate glass in Example 3 of this invention. FIG. 14 is a graph showing the inclination angle of the tangent line at the position in the penetration direction of the grinding hole in Example 3. In addition, the same structure as the said Example is abbreviate | omitted.

図11に示されるように、板ガラス5に形成された貫通孔としての研削孔57の内周面は、板ガラス5の表面5a側から内方に向かって表面5aと裏面5bとの略中間まで貫通方向に直線状に延びる内周面57aと、この内周面57aに連続して貫通方向先方に向かって漸次縮径した曲面部57bと、この曲面部57bの最も縮径した縮径箇所57b’に連続して板ガラス5の裏面5bまで貫通方向に直線状に延びる内周面57cと、から形成されている。   As shown in FIG. 11, the inner peripheral surface of the grinding hole 57 as a through-hole formed in the plate glass 5 penetrates from the surface 5a side of the plate glass 5 to the middle between the front surface 5a and the back surface 5b. An inner peripheral surface 57a that extends linearly in the direction, a curved surface portion 57b that is continuous with the inner peripheral surface 57a and gradually reduces in diameter in the penetrating direction, and a reduced diameter portion 57b ′ that is the most reduced diameter of the curved surface portion 57b. And an inner peripheral surface 57c extending linearly in the penetrating direction to the back surface 5b of the plate glass 5.

図14に示されるように、本実施例の板ガラス5に形成された研削孔57の接線の傾きについて説明すると、接線の傾き角度θは、内周面57aで形成される板ガラス5の表面5a(t=0)から中間面5c(t=T/2)に向かって、一定のπ/2であり、傾き角度θは、内周面57bが形成される板ガラス5の裏面5b(t=T)側に向かって連続して増加する。更に、接線の傾き角度θは、縮径箇所57b’(t=T1)において不連続に変化し、この被研削部(t=T1)から裏面5b(t=T)まで一定のπ/2である。   As shown in FIG. 14, the inclination of the tangential line of the grinding hole 57 formed in the glass sheet 5 of the present embodiment will be described. The inclination angle θ of the tangential line is the surface 5a of the glass sheet 5 formed by the inner peripheral surface 57a ( From t = 0) toward the intermediate surface 5c (t = T / 2), it is constant π / 2, and the inclination angle θ is the back surface 5b (t = T) of the plate glass 5 on which the inner peripheral surface 57b is formed. It increases continuously toward the side. Further, the inclination angle θ of the tangent line changes discontinuously at the reduced diameter portion 57b ′ (t = T1), and is constant π / 2 from the portion to be ground (t = T1) to the back surface 5b (t = T). is there.

次に、実施例4に係る貫通孔を備えた硬脆材料板につき、図12及び図15に基づいて説明する。図12は、本発明の実施例4における板ガラスの研削孔を示す断面図である。図15(a)は、実施例4において研削孔の貫通方向の位置における接線の傾き角度を例示した図であり、(b)は、研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。なお、上記実施例と同一構成で重複する構成を省略する。   Next, a hard and brittle material plate having a through hole according to Example 4 will be described with reference to FIGS. FIG. 12 is a cross-sectional view showing a plate glass grinding hole in Example 4 of the present invention. FIG. 15A is a diagram illustrating the inclination angle of the tangent at the position in the grinding hole penetration direction in Example 4, and FIG. 15B is a graph showing the inclination angle of the tangent at the position in the penetration direction of the grinding hole. It is. In addition, the same structure as the said Example is abbreviate | omitted.

図12に示されるように、板ガラス5に形成された貫通孔としての研削孔67の内周面に形成された曲面部は、板ガラス5の表面5a及び裏面5bの両面に形成された研削孔67の開口部よりも小径に形成され、すなわち、開口部から貫通方向内方部に向かって、孔径が漸次縮径して形成されており、また、板ガラス5の表面5a及び裏面5bの両面の中間に位置する中心面5cを中心として、貫通方向に略対称に形成されている。このようにすることで、この曲面部を、板ガラス5の表面5a若しくは裏面5bに連続した面取り面として利用できるばかりか、板ガラス5に作用する引張り力と圧縮力の何れもが略0に成る仮想の中心の面を、板ガラス5の表裏面の中間に位置させることができるため、曲げ荷重に対する板ガラス5の割れ難さを向上させることができる。また、板ガラス5の表面5aに引張り力が掛る方向の曲げ荷重と、この方向と反対に、板ガラス5の裏面5bに引張り力が掛る曲げ荷重とに対し、同様の割れ難さを生じさせることができる。   As shown in FIG. 12, the curved surface portion formed on the inner peripheral surface of the grinding hole 67 as a through-hole formed in the plate glass 5 is a grinding hole 67 formed on both the front surface 5 a and the back surface 5 b of the plate glass 5. In other words, the hole diameter is gradually reduced from the opening toward the inner part in the penetration direction, and the intermediate between both the front surface 5a and the back surface 5b of the plate glass 5 is formed. It is formed substantially symmetrically in the penetrating direction with the center plane 5c located at the center. By doing so, the curved surface portion can be used as a chamfered surface continuous with the front surface 5a or the back surface 5b of the plate glass 5, and a virtual force in which both the tensile force and the compressive force acting on the plate glass 5 become substantially zero. Since the center surface of can be positioned in the middle of the front and back surfaces of the plate glass 5, it is possible to improve the difficulty of breaking the plate glass 5 against bending load. Moreover, the same cracking difficulty may be produced with respect to the bending load in the direction in which the tensile force is applied to the front surface 5a of the plate glass 5 and the bending load in which the tensile force is applied to the back surface 5b of the plate glass 5 in the opposite direction. it can.

次に、図15(a)に示されるように、本実施例の板ガラス5に形成された貫通孔としての研削孔67における曲面部の接線の傾きについて説明すると、板ガラス5の表面5aに平行の仮想の基準面Kに対する接線の傾き角度θは、図15(a)で例示されるθ1ないしθ6のように連続して変化している。図15(b)に示されるように、板ガラス5に形成された研削孔67の貫通方向の位置t(横軸)における接線の傾き角度θ(縦軸)は、板ガラス5の表面5a(t=0)から裏面5b(t=T)に向かって連続して減少している。具体的には、板ガラス5の表面5aと裏面5bとの仮想の中間面5c(t=T/2)において、傾き角度θ4はπ/2を示し、この中間面5cを中心として板ガラス5の表裏面に向かって、傾き角度θは略対称に変化している。   Next, as shown in FIG. 15A, the inclination of the tangent of the curved surface portion in the grinding hole 67 as the through hole formed in the plate glass 5 of this embodiment will be described. The inclination is parallel to the surface 5 a of the plate glass 5. The inclination angle θ of the tangent to the virtual reference plane K changes continuously as θ1 to θ6 exemplified in FIG. As shown in FIG. 15 (b), the inclination angle θ (vertical axis) of the tangent line at the position t (horizontal axis) in the penetrating direction of the grinding hole 67 formed in the plate glass 5 is the surface 5a (t = 0) continuously decreases from the back surface 5b (t = T). Specifically, in the virtual intermediate surface 5c (t = T / 2) between the front surface 5a and the back surface 5b of the plate glass 5, the inclination angle θ4 indicates π / 2, and the surface of the plate glass 5 is centered on the intermediate surface 5c. The inclination angle θ changes substantially symmetrically toward the back surface.

更に、研削孔67の内周面に、貫通方向に沿って均一の曲率のみを有する曲面部が形成されており、研削孔67の内周面において接線の傾きが均一に連続しているため、曲げ荷重による応力を均等に分散させることができる。   Further, a curved surface portion having only a uniform curvature along the penetrating direction is formed on the inner peripheral surface of the grinding hole 67, and the inclination of the tangent line is continuously uniform on the inner peripheral surface of the grinding hole 67. Stress due to bending load can be evenly dispersed.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.

例えば、上記実施例では、内周面に、貫通方向に沿って接線の傾きが連続する曲面部が形成されている貫通孔が示されているが、接線の傾きが連続するとは、実施例1における図13(a)、(b)若しくは実施例4における図15(a)、(b)に示されるように、硬脆材料板の貫通方向に亘って連続して変化するものであってもよいし、実施例3における図11、図14に示されるように、硬脆材料板の貫通方向に沿った一部のみに、連続して変化する部分を有するものであってもよい。また、貫通孔の内周面の断面視形状については、必ずしも本実施例に限られず、例えば断面視略正弦曲線であってもよいし、また例えば曲面部の形状が断面視略二次曲線であって、図16に示されるように、接線の傾きが直線状に増減する、すなわち接線の傾きが一次式で表せるものであってもよい。すなわち、接線の傾きが連続する曲面部とは、接線の傾きが一定である面を除外した面のことである。ここで接線の傾きが一定である面とは、例えば、図17(a)に示されるように、板ガラス5の貫通孔としての研削孔87の内周面が、板ガラス5の表裏面に直交する方向に形成された内周面87bと、この内周面87bの板ガラス表面5a側に形成された面取り部87aと、内周面87bの板ガラス裏面5b側に形成された面取り部87cと、から成る断面視連続した直線状に形成されており、図17(b)に示されるように、接線の傾き角度θ(縦軸)が、研削孔87の貫通方向の位置t(横軸)に対し、平行に示される。   For example, in the above-described embodiment, a through-hole in which a curved surface portion in which the tangential slope is continuous along the penetration direction is formed on the inner peripheral surface is shown. 13 (a) and (b) in FIG. 15 or FIGS. 15 (a) and 15 (b) in Example 4, even if it changes continuously over the penetration direction of the hard and brittle material plate Alternatively, as shown in FIGS. 11 and 14 in the third embodiment, only a portion along the penetration direction of the hard and brittle material plate may have a continuously changing portion. In addition, the cross-sectional view shape of the inner peripheral surface of the through hole is not necessarily limited to the present embodiment, and may be, for example, a substantially sinusoidal cross-sectional view, or the curved surface shape is a substantially quadratic curve in cross-sectional view, for example. Then, as shown in FIG. 16, the tangent slope may increase or decrease linearly, that is, the tangent slope may be expressed by a linear expression. That is, the curved surface portion where the tangent gradient is continuous is a surface excluding a surface where the tangent gradient is constant. Here, for example, as shown in FIG. 17A, the surface where the inclination of the tangent is constant is such that the inner peripheral surface of the grinding hole 87 as a through hole of the plate glass 5 is orthogonal to the front and back surfaces of the plate glass 5. An inner peripheral surface 87b formed in the direction, a chamfered portion 87a formed on the plate glass surface 5a side of the inner peripheral surface 87b, and a chamfered portion 87c formed on the plate glass back surface 5b side of the inner peripheral surface 87b. As shown in FIG. 17B, the tangential inclination angle θ (vertical axis) is relative to the position t (horizontal axis) in the penetrating direction of the grinding hole 87, as shown in FIG. Shown in parallel.

また、上記実施例では、貫通孔を備えた硬脆材料板の適用例としてプラズマディスプレイパネル1における板ガラス5が示され、前記貫通孔として内部に封入する希ガスを流通させるための研削孔が示されているが、例えば、硬脆材料板の材料は樹脂材等であってもよいし、また例えば、硬脆材料板に備えた貫通孔の用途はネジ部材挿通用の挿通孔等であってもよい。   Moreover, in the said Example, the plate glass 5 in the plasma display panel 1 is shown as an application example of the hard-brittle material board provided with the through-hole, and the grinding hole for distribute | circulating the noble gas enclosed inside as the said through-hole is shown. However, for example, the material of the hard and brittle material plate may be a resin material or the like, and for example, the use of the through hole provided in the hard and brittle material plate is an insertion hole or the like for inserting a screw member. Also good.

本発明に係る硬脆材料板の適用例を示す概略斜視図である。It is a schematic perspective view which shows the example of application of the hard-brittle material board which concerns on this invention. 本発明の実施例1における孔形成用ドリルを示す斜視図である。It is a perspective view which shows the drill for hole formation in Example 1 of this invention. 図2と同じく正面図である。FIG. 3 is a front view similar to FIG. 2. 図2と同じく側面図である。FIG. 3 is a side view similar to FIG. 2. 図2と同じく断側面図である。FIG. 3 is a sectional side view similar to FIG. 2. 図2と同じく板ガラスを穿孔する状況を示す断面図である。It is sectional drawing which shows the condition which perforates plate glass similarly to FIG. 図6のA−A断面図である。It is AA sectional drawing of FIG. (a)は、図2と同じく板ガラスを貫通した状況を示す断面図であり、(b)は、中間砥石部で研削する状況を示す断面図である。(A) is sectional drawing which shows the condition which penetrated the plate glass similarly to FIG. 2, (b) is sectional drawing which shows the condition ground with an intermediate grindstone part. (a)は、図2と同じく研削後の板ガラスの研削孔を示す断面図であり、(b)は、板ガラスに曲げ荷重が掛った状況を示す断面図である。(A) is sectional drawing which shows the grinding hole of the plate glass after grinding similarly to FIG. 2, (b) is sectional drawing which shows the condition where the bending load was applied to plate glass. 本発明の実施例2における板ガラスの研削孔を示す断面図である。It is sectional drawing which shows the grinding hole of the plate glass in Example 2 of this invention. 本発明の実施例3における板ガラスの研削孔を示す断面図である。It is sectional drawing which shows the grinding hole of the plate glass in Example 3 of this invention. 本発明の実施例4における板ガラスの研削孔を示す断面図である。It is sectional drawing which shows the grinding hole of the plate glass in Example 4 of this invention. (a)は、実施例1において研削孔の貫通方向の位置における接線の傾き角度を例示した図であり、(b)は、研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。(A) is the figure which illustrated the inclination angle of the tangent in the position of the penetration direction of a grinding hole in Example 1, (b) is a graph which shows the inclination angle of the tangent in the position of the penetration direction of a grinding hole. . 実施例3において研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。It is a graph which shows the inclination angle of the tangent in the position of the penetration direction of a grinding hole in Example 3. FIG. (a)は、実施例4において研削孔の貫通方向の位置における接線の傾き角度を例示した図であり、(b)は、研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。(A) is the figure which illustrated the inclination angle of the tangent in the position of the penetration direction of a grinding hole in Example 4, (b) is a graph which shows the inclination angle of the tangent in the position of the penetration direction of a grinding hole. . 断面視略二次曲線に形成される研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。It is a graph which shows the inclination angle of the tangent in the position of the penetration direction of the grinding hole formed in a cross sectional view substantially quadratic curve. (a)は、板ガラスの断面視連続した直線状に形成された研削孔を示す断面図である。(b)は、研削孔の貫通方向の位置における接線の傾き角度を示すグラフである。(A) is sectional drawing which shows the grinding hole formed in the linear form which cross-sectional view of plate glass continued. (B) is a graph which shows the inclination angle of the tangent in the position of the penetration direction of a grinding hole.

符号の説明Explanation of symbols

1 プラズマディスプレイパネル
5 板ガラス(硬脆材料板)
5a 表面
5b 裏面
5c 中間面
11 ダイヤモンドドリル
12 ダイヤモンド砥石部
13 シャンク
14 先端砥石部
15 後方砥石部
17 研削孔(貫通孔)
27 研削孔(貫通孔)
27a 面取り部
27b 面取り部
27c 曲面部
57 研削孔(貫通孔)
57a 内周面
57b 曲面部
57b’ 縮径箇所
57c 内周面
67 研削孔(貫通孔)
87 研削孔
87a 面取り部
87b 内周面
87c 面取り部
1 Plasma display panel 5 Flat glass (hard brittle material plate)
5a Front surface 5b Back surface 5c Intermediate surface 11 Diamond drill 12 Diamond grindstone portion 13 Shank 14 Tip grindstone portion 15 Rear grindstone portion 17 Grinding hole (through hole)
27 Grinding hole (through hole)
27a Chamfered portion 27b Chamfered portion 27c Curved surface portion 57 Grinding hole (through hole)
57a Inner peripheral surface 57b Curved surface portion 57b 'Reduced diameter portion 57c Inner peripheral surface 67 Grinding hole (through hole)
87 Grinding hole 87a Chamfer 87b Inner peripheral surface 87c Chamfer

Claims (4)

ドリルを用いて内周面が研削された貫通孔を備えた硬脆材料板であって、
該貫通孔の内周面は、前記ドリルを該ドリルの軸心周りに軸回転させるとともに、前記ドリルと硬脆材料板との間に相対的な偏心運動を与え、硬脆材料板の表面に平行の仮想の基準面に対する接線の傾き角度が硬脆材料板の表面から裏面に向かって連続して増加する曲面のみから形成されている曲面部であり、該曲面部は、硬脆材料板の表裏面の両面に形成された貫通孔の開口部よりも大径に形成されていることを特徴とする硬脆材料板。
A hard and brittle material plate having a through hole whose inner peripheral surface is ground using a drill,
The inner peripheral surface of the through-hole rotates the drill around the axis of the drill and gives a relative eccentric motion between the drill and the hard and brittle material plate. a curved portion which is formed only from a curved surface increases in continuous from the surface of the tangent slope angle hard and brittle materials plate toward the back side with respect to the reference plane parallel virtual, curved surface portion is hard and brittle materials plate A hard and brittle material plate, characterized in that it is formed to have a diameter larger than the opening portions of the through holes formed on both the front and back surfaces.
前記曲面部は、硬脆材料板の表裏面の中間に位置する中心面を中心として、貫通方向に略対称に形成されていることを特徴とする請求項1に記載の硬脆材料板。   2. The hard and brittle material plate according to claim 1, wherein the curved portion is formed substantially symmetrically in a penetrating direction around a center plane located between the front and back surfaces of the hard and brittle material plate. 前記曲面部は、貫通方向に沿って均一の曲率のみを有していることを特徴とする請求項2に記載の硬脆材料板。   The hard and brittle material plate according to claim 2, wherein the curved portion has only a uniform curvature along the penetrating direction. 前記貫通孔の開口部に、前記曲面部と硬脆材料板の表裏面の少なくとも何れか一面とを連続する面取り部が形成されていることを特徴とする請求項1ないし3のいずれかに記載の硬脆材料板。   The chamfered part which continues the at least any one surface of the said curved surface part and the hard-brittle material board in the opening part of the said through-hole is formed in any one of Claim 1 thru | or 3 characterized by the above-mentioned. Hard and brittle material plate.
JP2007107146A 2007-04-16 2007-04-16 Hard and brittle plate Expired - Fee Related JP5001705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107146A JP5001705B2 (en) 2007-04-16 2007-04-16 Hard and brittle plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107146A JP5001705B2 (en) 2007-04-16 2007-04-16 Hard and brittle plate

Publications (2)

Publication Number Publication Date
JP2008266036A JP2008266036A (en) 2008-11-06
JP5001705B2 true JP5001705B2 (en) 2012-08-15

Family

ID=40046065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107146A Expired - Fee Related JP5001705B2 (en) 2007-04-16 2007-04-16 Hard and brittle plate

Country Status (1)

Country Link
JP (1) JP5001705B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201704177A (en) * 2015-06-10 2017-02-01 康寧公司 Methods of etching glass substrates and glass substrates
WO2019068448A1 (en) * 2017-10-04 2019-04-11 Saint-Gobain Glass France Composite glass pane having chamfered through-hole

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186023A (en) * 1993-12-27 1995-07-25 Central Glass Co Ltd Laminated glass hole part chamfering drill
JP2003226551A (en) * 2002-02-05 2003-08-12 Nippon Sheet Glass Co Ltd Glass substrate having fine pore and production method therefor
JP2005191134A (en) * 2003-12-24 2005-07-14 Ngk Spark Plug Co Ltd Ceramic wiring board, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008266036A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP3765778B2 (en) Capillary for wire bonding and wire bonding method using the same
JP4838188B2 (en) Drill for hole formation
JPWO2010150350A1 (en) Ultrasonic bonding tool, method for manufacturing ultrasonic bonding tool, ultrasonic bonding method, and ultrasonic bonding apparatus
CN107530792A (en) Cutting tool
CN1781635A (en) Drill
CN1582486A (en) Semiconductor device and method for fabricating same
JP5001705B2 (en) Hard and brittle plate
JP2007031200A (en) Cutter wheel
CN101594961A (en) Discoid cutting element and topping machanism
CN205852567U (en) Chip removal emery wheel
JP2011183532A (en) Ball end mill
CN1801415A (en) Chip part manufacturing method and chip parts
US20140205811A1 (en) Micro-channel structure for micro-wires
JP6740606B2 (en) Cutter wheel
JP2008155310A (en) Non-core drill, and grinding method using the same
JP5174118B2 (en) Scribing wheel and manufacturing method thereof
CN1396031A (en) Changable blade and drilling tool with changable blade used in drilling work
JPWO2012029666A1 (en) Glass drill bits
JP2007015025A (en) Taper neck end mill
JP2008108837A (en) Grinding apparatus of semiconductor wafer and method for manufacturing semiconductor device
TWI236408B (en) Apparatus for cutting liquid crystal display panel
KR100811751B1 (en) Polishing wheel
KR101103146B1 (en) Multi grinding wheel for oled substrate and method for grinding oled substrate using the multi grinding wheel
JP2009256113A (en) Method and apparatus for perforating glass plate, and bonded member used for them
CN1720119A (en) Cutting tool for soft material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees