JP4984568B2 - 波長変換方法、および波長変換装置。 - Google Patents

波長変換方法、および波長変換装置。 Download PDF

Info

Publication number
JP4984568B2
JP4984568B2 JP2006049536A JP2006049536A JP4984568B2 JP 4984568 B2 JP4984568 B2 JP 4984568B2 JP 2006049536 A JP2006049536 A JP 2006049536A JP 2006049536 A JP2006049536 A JP 2006049536A JP 4984568 B2 JP4984568 B2 JP 4984568B2
Authority
JP
Japan
Prior art keywords
light
port
wavelength
wavelength conversion
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006049536A
Other languages
English (en)
Other versions
JP2007226076A (ja
Inventor
孝二 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006049536A priority Critical patent/JP4984568B2/ja
Publication of JP2007226076A publication Critical patent/JP2007226076A/ja
Application granted granted Critical
Publication of JP4984568B2 publication Critical patent/JP4984568B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

波長変換方法、および波長変換装置に関する。
光通信の高速化と大容量化とに伴い、光信号を電気信号に変換せずに信号処理を行う全光信号処理技術が要求されている。
近年、この高速化と大容量化とを実現するひとつの技術として、波長分割多重技術(WavelengthDivision Multiplexing: WDM)が進展しており、このWDMでは、石英系光ファイバの数THzに及ぶ帯域を全て使い切ることが可能となっている。しかし、このような広帯域な信号処理が可能になるに伴い、光の波長1つ1つに異なる情報を与えて伝送するWDMをサブネットワーク間等で用いる場合には、波長衝突や波長ルーティングといった新しい問題が生じる。そこで、このような問題を解決するために波長変換が用いられており、全光信号処理において波長変換が必要不可欠な技術とされている。
このように波長変換を全光信号処理へ応用する場合には、半導体光増幅器(Semiconductor Optical Amplifier: SOA)といった、大きな非線形光学効果を得ることができる非線形媒質(Non‐linear Medium: NLM)を用いることで、システムの小型化が可能であるだけでなく、低消費電力での動作が可能である。そこで、このような非線形媒質の全光信号処理への応用が盛んに研究されている。
このSOAを用いた全光波長変換方式は、相互利得変調(CrossGain Modulation: XGM)や相互位相変調(Cross Phase Modulation:XPM)のような光スイッチ型のものと、差周波発生(Difference FrequencyGeneration: DFG)や四光波混合(Four Wave Mixing: FWM)を用いたコヒーレント型のものとに分けられる。このコヒーレント型の波長変換は、非線形応答の超高速性を活かした波長変換が行える。また、変換後も位相情報が保たれるので差分位相偏移変調(DifferentialPhase Shift Keying:DPSK)などのような変調フォーマットにも対応可能である。
ところで、入力信号光と波長変換光とが同一方向に出力されるような波長変換を進行波型波長変換とよび、対向型や非並行進行型といった他の波長変換と比較して、一般に変換効率が高い。ただし、この入力信号光全てが波長変換光に変換されることは、現実的には生じない。つまり、非線形媒質からは入力信号光と波長変換光とが同時に出射される。それゆえ、波長変換光だけを取り出したい場合には、非線形媒質から出射した後に波長変換光を選択的に取り出す手段が必要になる。
この波長変換光を選択的に取り出す手段として、分散性媒質と、光ファイバと光カプラとから構成されるサニャック干渉系とを用いた四光波混合発生回路、および前記四光波混合発生回路を用いた光回路が開示されている(例えば、特許文献1、非特許文献1を参照)。
また、波長変換光を選択的に取り出す手段として、分散性媒質による分散性とマッハツェンダー干渉系の干渉効果を用いた光パラメトリック回路が開示されている(例えば、特許文献2を参照)。
ここで、サニャック干渉系の動作原理について、図1乃至3を用いて説明する。
図1に、サニャック干渉系を構成する光カプラ12を示す。この光カプラ12は、2入力2出力の計4つのポートを有している。ポート1に光を入射した場合を例に、光カプラの動作原理を説明する。
この光カプラ12のポート1に光を入射すると、この光が、ポート3とポート4とに分岐される。このとき、ポート3に出射される光10に対して、ポート4に出射される光11は、位相がp/2だけ遅れる。これは、光カプラ12にて対角方向に分岐される光が、直進方向に分岐される光に対して位相がp/2だけ遅れるという性質を、光カプラが有するからである。
図2に、サニャック干渉系を示す。サニャック干渉系20は、光ファイバ21と、分岐比1対1の2入力2出力光カプラ(3dB)22と、光カプラ21のポート1とポート2とに接続された光ファイバ23とにより構成される。光ファイバ21の両端は、光カプラ22の片側のポート3および4に接続されてループを形成している。
この光カプラ22のポート1に光を入力すると、この光が位相差がp/2である2つの光に分岐されて、それぞれがポート3とポート4とから出射する。ここで、この2つの光が、図2に示すループ状の光ファイバ21内を伝送する例を用いて、サニャック干渉系のループミラーの性質について説明する。
光カプラ22のポート3からループ状の光ファイバ21を伝播してポート4へ達した光を右回り30とよび、光カプラ22のポート4からループ状の光ファイバ21を伝播してポート3へ達した光を左回り30と呼ぶことにする。また、両者の光は光ファイバを伝送中に線形や非線形の効果、および外乱などにより位相に影響を受けないものとする。つまり、光ファイバを伝送中の右回りの光と左回りの光との位相差は常にp/2であるとする。
ポート4に到達した右回り30の光は、ポート1とポート2とに分岐比1対1で分岐される。ここで、ポート1に分岐された光を右回り31とよび、ポート2に分岐された光を右回り32とよぶことにする。光カプラの性質により、右回り31の光は右回り32の光に対して位相がp/2だけ遅れる。
一方でポート3に到達した左回り30の光もポート1とポート2とに分岐比1対1で分岐される。ここで、ポート1に到達した光を左回り31とよび、ポート2に到達した光を左回り32とよぶことにする。光カプラの性質により、左回り32の光は左回り31の光に対して位相がp/2だけ遅れる。
図3に、最初にポート1に入力した光と、右回り31、右回り32、左回り31および左回り32の光との位相差を示す。そして、右回り31と左回り31、および右回り32と左回り32との位相関係に注目する。ここでは、ループ状の光ファイバ21内での位相変化を考慮していないから、右回り31と左回り31との位相差は0となる。さらに詳細を述べれば、ポート1から入射した光に対して、右回り31の光も左回り31の光も位相がp/2だけ遅れているので位相差が0となる。従って、ポート1からは、右回り31の光と左回り31との光が重ね合わされた光が出射する。一方で、右回り32と左回り32との位相関係はpとなる。さらに詳細を述べれば、ポート1から入射した光に対して、右回り32の光は同位相であり、左回り32の光は位相がpだけ遅れているので位相差がpとなる。従って、右回り32の光と左回り32との光は打ち消しあうように干渉し、ポート2からは光が出射しない。このような光信号間の干渉の結果により、サニャック干渉系は光信号のルート選択性を有する。そして、ポート1から入射した光がポート2へは出射せずにポート1のみに帰還するので、この光信号のルート選択性の性質をループミラーとも称する。
ここで、四光波混合を例に波長変換の原理を説明する。この四光波混合は、一般に3次の非線形光学効果を用いており、周波数w1、w2、w3の光から、例えば、w4= w2+ w3- w1を満たすw4の光を発生させることができる。ここでw2≠w3の場合を非縮退四光波混合とよび、一方でw2= w3の場合を縮退四光波混合とよぶ。そして、縮退四光波混合において、w4のスペクトルはw1のスペクトルが反転したものになっており、w4はw1の位相共役光となる。この四光波混合は、前述したSOAや光非線形光ファイバなどを用いることよって実現できる(例えば、非特許文献2を参照)。
さらに、信号光wsとポンプ光wpとを入力して位相共役光wcを発生させる縮退四光波混合を考える。前述した四光波混合の一般論との対応関係は、w1=ws、かつw2=w3=wpであり、各周波数成分は、wc=2wp−wsの周波数関係を満たしている。ここで、ポンプ光の周波数を固定して信号光の周波数を掃引するに伴い、前記周波数関係を満たしながら位相共役光の周波数が変化する。一方で、信号光の周波数を固定してポンプ光の周波数を掃引しても、前記周波数関係を満たしながら位相共役光の周波数が変化する。このように、信号光やポンプ光の周波数を調整することにより、位相共役光の周波数が可変となる。
このような縮退四光波混合の場合でも進行型波長変換の一般論と同じく、信号光とポンプ光とをカットするためのフィルタ等の手段が必要となる。つまり、位相共役光の周波数を可変とする場合には、掃引した信号光やポンプ光、そして、可変される位相共役光の周波数にも対応するような信号光とポンプ光とをカットするためのフィルタ等の手段が必要となる。そして、このようなフィルタ等の手段として、電気的な手段により透過周波数帯域を可変させる電圧印加式可変バンドパスフィルタが知られている。
特開平9−33967号広報。 特開2002−182256号広報。 K. Mori, T. Morita, and M. Saruwatari, "Optical parametric loop mirror," Opt. Lett., Vol.20, no.12, pp.1424‐1425(1995) G. P. Agrawal, "Populationpulsations and nondegeneratefour‐wave mixing in semiconductor lasers andamplifiers," J. Opt. Soc. Am.B, Vol.5, no.1, pp.147‐159 (1988)
以上に述べた、波長変換を用いた従来技術の全光信号処理において、電圧印加式可変バンドパスフィルタ等を用いて所望の光信号を選択的に取り出す場合に、フィルタの動作速度により信号処理の速度が律速されるという問題があり、分散性媒質と干渉系とを用いて光信号を選択的に取り出す場合には、周波数とその帯域幅とが制限されるという問題がある。
本発明は、光が分岐されるステップを含む波長変換方法であって、光カプラと、前記光カプラの第1のポートと第2のポートとに両端が接続されたループ状の光ファイバとから構成されるサニャック干渉系が、前記ループ状の光ファイバのループ内に、波長変換の基準となるポンプ光と波長変換の信号となる信号光とにより波長変換光を発生する非線形媒質と、前記ポンプ光の周波数帯域を透過し前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域を減衰させる手段とを含むサニャック干渉系であり、前記光カプラの所定のポートに、波長変換の基準となるポンプ光と波長変換の信号となる信号光とから構成された、第1の光群が入力される第1のステップと、前記ループ状の光ファイバを前記第1のポートから前記第2のポートへ伝播する第1のルートと、前記ループ状の光ファイバを前記第2のポートから前記第1のポートへ伝播する第2のルートとに、前記第1の光群が分岐される第2のステップと、前記非線形媒質と前記ポンプ光の周波数帯域を透過し前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域を減衰させる手段とによって、前記第1のルートを伝播する前記第1の光群から、第2の光群が構成される第3のステップと、前記非線形媒質と前記ポンプ光の周波数帯域を透過し前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域を減衰させる手段とによって、前記第2のルートを伝播する前記第1の光群から、第3の光群が構成される第4のステップと、前記光カプラの前記第2のポートに入力された前記第2の光群を構成する光と、前記光カプラの前記第1のポートに入力された前記第3の光群を構成する光とが、前記光カプラで干渉して所定のポートへ分岐される第5のステップとを有することを特徴とする。
本発明では、信号処理速度が外部装置の動作速度に律速されないため、高速な信号処理が可能となる。また、広帯域な全光信号処理が可能となる。
図4を用いて、本発明における第1の実施例の構成を説明する。図4に示す構成は、光ファイバ41と、分岐比1対1の2入力2出力光カプラ(3dB)42と、光カプラ42のポート1とポート2とに接続された光ファイバ45とからなるサニャック干渉系40であって、光ファイバ41のループ内に接続された、非線形媒質43と所定の周波数帯域を減衰させる手段44とを有するサニャック干渉系である。
なお、サニャック干渉系40に対する、非線形媒質43と所定の周波数帯域を減衰させる手段44との配置の態様は、図4に限定されず、非線形媒質43と所定の周波数帯域を減衰される手段44は、光ファイバ40のループ内にあればよい。
また、本発明ではサニャック干渉系以外に、マイケルソン干渉系やマッハツェンダー干渉系を用いることができる。しかし、サニャック干渉系は、他の干渉系と比較すると位相差調整等が容易である。従って、本発明を実施するための構成のひとつとして、サニャック干渉系を用いて説明をする。
図5を用いて、本発明における第1の実施例の構成、および周辺構成の一例を用いて説明する。図5には、偏波保持型方向性結合器52と、光ファイバ51とからなるサニャック干渉系50であって、ループ状の光ファイバ51内に、SOA54とフィルタ53とを有するサニャック干渉系50と、偏波コントローラ55と、同時入射用方向性結合器56と、光サーキュレータ57とを示す。ここで、偏波コントローラ55の光信号入力部に信号光wsとポンプ光wpとを入射することを基点として、図5を詳しく説明する。
はじめに、偏波コントローラ55において、信号光wsとポンプ光wpとの偏光状態を一致させる。この偏光状態は、波長変換の変換効率に影響を与える。偏光状態が一致している関係のときに最も変換効率が高い場合もあれば、偏光状態が一致しない関係のときに最も変換効率が高い場合もある。これは、波長変換に用いる非線形媒質の特性等によって決まる。また、波長変換光の出力値は、非線形媒質および非線形光学効果に対する信号光wsとポンプ光wpとの位相関係に依存する。従って、入力する信号光wsとポンプ光wp-との位相関係は、非線形媒質の特性と非線形光学効果とに合わせて決めることになる。
次いで、同時入射用方向性結合器56において、信号光wsとポンプ光wpとを合波させる。この合波は、サニャック干渉系50を構成する偏波保持型方向性結合器52のポート1に信号光wsとポンプ光wpとを入射するために行う。
次いで、合波した信号光wsとポンプ光wpとを光サーキュレータ57へ通過させる。この光サーキュレータ57は、偏波保持型方向性結合器52のポート1から光サーキュレータ57方向に進行する光を、同時入射用方向性結合器56へ進行させない役割を担う。これにより、サニャック干渉系へ入射する光とサニャック干渉系から出射した光とが、同時入射用方向性結合器56で干渉することを避けることができる。
次いで、信号光wsとポンプ光wpとを、サニャック干渉系50を構成する分岐比1対1の2入力2出力偏波保持型方向性結合器52のポート1に入力する。信号光wsとポンプ光wpとは、ポート3および4に分岐比1対1で分岐される。
なお、本発明の実施において、前記偏波保持型方向性結合器52以外に用いることができる光カプラには、多モード干渉カプラ等がある。
次いで、ポート3および4から出射される光信号が、ループ状の光ファイバ内を伝送する。このループ状の光ファイバ内には、所定の周波数帯域を減衰させる手段としてフィルタ53と、非線形媒質としてSOA54とが接続されている。
図6に、フィルタとSOAとをモジュール化したモジュール60を示す。このモジュール60では、光ファイバ61からモジュール60に入った光が、レンズ62により平行光となり、フィルタ63を通過し、レンズ64でSOA65に集光される。そして、SOA65を通過した光はレンズ66により平行光となり、レンズ67にて光ファイバ68に集光される。ここで、ループ内の光ファイバとモジュールの接続面にて反射が起こらないように、接続面は融着により接続されている。
なお、本発明において、所定の周波数帯域を減衰させる手段と非線形媒質との構成方法は図6の構成に限らず、例えばフィルタ63とSOA65とを別々のモジュールで構成することも可能である。
次いで、本発明の第1の実施例において、1555nmの信号光wsと1551nmのポンプ光wpとを入射し、縮退四光波混合により位相共役光を得る波長変換を考える。
図7を用いて、第1の実施例におけるフィルタ53を説明する。図7に示すグラフの縦軸は光信号の出力値であり、横軸は周波数である。このグラフにより、信号光ws、ポンプ光wp、および波長変換光wcの出力値を示す。斜線部70で示した周波数帯域が、フィルタ53の透過周波数帯域である。本発明を実施する上で、フィルタの仕様は、ポンプ光wpを透過させ、かつ高透過限界波長と吸収限界波長とにより決まる波長傾斜幅が、ポンプ光wpの周波数付近においてできるだけ小さいフィルタである。このフィルタを用いると、波長変換に使用可能な帯域が広くなる。第1の実施例において具体的には、透過率が5%以下で定義される吸収限界波長が1549.2nmであって、透過率が72%以上で定義される高透過限界波長が1550nmである、波長傾斜幅が0.8nmの誘電体多層膜ハイパスフィルタである。
しかし、本発明を実施する場合のフィルタの仕様は、前記誘電体多層膜ハイパスフィルタに限定されない。また、フィルタがどの周波数帯域を減衰させるかは、図10、12、13、14で説明する、信号光ws、ポンプ光wp、および波長変換光wcとの周波数の関係と実施方法とによって決まる。
図8に、インジウムガリウム砒素(以下、InGaAs)を用いた量子井戸SOA80の断面図を示す。量子井戸SOA80の構造は、InGaAsの量子井戸81がインジウムガリウム砒素リン(以下、InGaAsP)の分離閉じ込め構造(Separate confinement hetero‐structure、SCH)82にはさまれた構造と、p型インジウムガリウム砒素(p−InGaAs)83と、第1のp型インジウムリン(p−InP)84と、第2のp型インジウムリン(p−InP)85と、第1のn型インジウムリン(n‐InP)86と、第2のn型インジウムリン(n‐InP)87とで構成される。ここでは、第1の実施例の周波数帯域に対応して、量子井戸層81が、膜厚が5nmであって歪量が−0.70%であり組成比がIn0.43Ga0.57Asとなるバリア層と、膜厚が5nmであって歪量が+0.50%であり組成比がIn0.6Ga0.4Asとなる井戸層とを交互に6周期積層し、さらに膜厚が5nmであって歪量が−0.70%であり組成比がIn0.43Ga0.57Asとなるバリア層を1層だけ積層した構成とを用いる。また、SCH層のInGaAsPの発光波長は1.15μmであり、層幅が50nmである。ただし、この非線形媒質の構成は実施例1の周波数帯域に対応させたものであり、本発明はこれに限定されない。
なお、InとGaと併せて示した添え字は、InとGaとの組成比を示している。また、InGaAsは、一般にIII−V族化合物半導体とよばれる半導体である。ここで、InとGaとはIII族に属する。一方で、AsはV族に属する。InGaAsは、InとGaとを合わせたIII族の元素と、V族のAsとが1対1の組成比で構成されている。
なお、本発明で用いることができる非線形媒質として、2次の非線形光学効果を用いることができるLiTaO、LiNbO、KLiOPO(KTP)、KHPO(KDP)、KNbOといった酸化物強誘電体などがある。また、3次の非線形光学効果を用いることができる有機材料AANP結晶やMMAポリマやDAN結晶と、GaNやZnSSeやGaAs/GaAlAs量子井戸やAgGaSeやAgGaSなどの半導体増幅器と、高非線形光ファイバなどがある。
なお、本発明では、上記の非線形媒質の特性に合わせて四光波混合、差周波発生、およびカスケード2次非線形光学効果といった非線形光学効果を用いることができる。
次に、信号光とポンプ光の周波数の大小関係と、その大小関係に対応したフィルタの種類の組み合わせにより、第1の実施例において動作原理が異なる4つ実施例(a)、(b)、(c)、(d)を説明する。
なお、図9に、各実施例における周波数の大小関係と、使用する所定の周波数帯域を減衰させる手段の仕様とをまとめる。
図10および図11を用いて実施例(a)を説明する。
実施例(a)は、信号光wsの周波数がポンプ光wpの周波数よりも大きな場合である。また、所定の周波数帯域を減衰させる手段として、少なくともポンプ光wpの周波数以上の周波数帯域を透過させるハイパスフィルタ102を用いる。図10には、ループ状の光ファイバに接続された非線形媒質101と、ハイパスフィルタ102と、このループ状の光ファイバと分岐比1対1の光カプラから構成されるサニャック干渉系100と、信号光wsとポンプ光wpと波長変換光wcと、各周波数成分の光の伝播の様子を示す矢印とを図示する。また、このハイパスフィルタ102にあわせて図示するグラフの縦軸が光信号の出力値であり、横軸が周波数である。このグラフにより、信号光ws、ポンプ光wp、および波長変換光wcの出力値を示す。また、このグラフの斜線部分が、ハイパスフィルタ102の透過周波数帯域である。
図10および図11を用いて、実施例(a)をステップに分離して説明する。図11には、サニャック干渉系100のループ上の光ファイバを右回り、および左回りに伝播する、信号光ws、ポンプ光wp、および波長変換光wcの様子を示す。
信号光wsとポンプ光wpとを光カプラのポート1に入力し、ポート3および4に分岐する。ポート3から出た信号光wsとポンプ光wpとが、ハイパスフィルタ102を通過して非線形媒質101に入射され、生成された波長変換光wcと共にポート4に到達する。一方、ポート4から出た信号光wsとポンプ光wpとが非線形媒質101に入射され、生成された波長変換光wcと共にハイパスフィルタ102に入射される。このとき、ハイパスフィルタ102で波長変換光wcがカットされて、ハイパスフィルタ102を通過した信号光wsとポンプ光wpとがポート3に到達する。こうしてループ状の光ファイバを右回り、左回りに伝播したこれらの光が、光カプラのポート3、もしくはポート4に入射される。このとき、光カプラのポート3とポート4とに入射される信号光wsとポンプ光wpとはループミラーとなり、ポート1より出射する。他方で、波長変換光wcはポート4のみから光カプラに入射されるので、ポート1とポート2とに分岐される。すなわち、ポート2からは波長変換光wcのみが出射する。
なお、実施例(a)で用いる所定の周波数帯域を減衰させる手段102に要求される仕様を、光信号の点から言及すれば、信号光wsとポンプ光wpとを透過させて波長変換光wcを減衰させるという仕様である。さらに、信号光wsもしくはポンプ光wpの周波数を掃引して波長変換光wcを可変とする場合には、掃引する信号光wsもしくは掃引するポンプ光wpの周波数帯域を透過させて、可変となる波長変換光wcの周波数帯域を減衰させるという仕様である。
図12を用いて実施例(b)を説明する。基本構成は実施例(a)と同様であり、ここでは信号光wsの周波数がポンプ光wpの周波数よりも大きな場合である。ただし、所定の周波数帯域を減衰させる手段として、少なくともポンプ光wpの周波数以下の周波数帯域を透過させるローパスフィルタ122を用いる。図12には、ループ状の光ファイバに接続された非線形媒質121と、ローパスフィルタ122と、このループ状の光ファイバと分岐比1対1の光カプラから構成されるサニャック干渉系120と、信号光wsとポンプ光wpと波長変換光wcと、各周波数成分の光の伝播の様子を示す矢印とを図示する。また、このローパスフィルタ122にあわせて図示するグラフの縦軸が光信号の出力値であり、横軸が周波数である。このグラフにより、信号光ws、ポンプ光wp、および波長変換光wcの出力値を示す。また、このグラフの斜線部分が、ローフィルタ122の透過周波数帯域である。
信号光wsとポンプ光wpとを光カプラのポート1に入力し、ポート3および4に分岐する。ポート3から出た信号光wsとポンプ光wpとは、ローパスフィルタ122によって信号光wsがカットされ、ポンプ光wpのみが非線形媒質121を通過し、ポート4に到達する。一方、ポート4から出た信号光wsとポンプ光wpとが非線形媒質121に入射され、生成された波長変換光wcと共にローパスフィルタ122に入射される。このとき、ローパスフィルタ122で信号光wsがカットされ、ローパスフィルタ122を通過したポンプ光wpと波長変換光wcがポート3に到達する。こうしてループ状の光ファイバを右回り、左回りに伝播したこれらの光が、光カプラのポート3、もしくはポート4に入射される。このとき、光カプラのポート3とポート4とに入射されるポンプ光wpはループミラーとなり、ポート1より出射する。他方で、波長変換光wcはポート3のみから入射されるので光カプラのポート1とポート2とに分岐される。すなわち、ポート2からは波長変換光wcのみが出射する。
なお、実施例(b)で用いる所定の周波数帯域を減衰させる手段122に要求される仕様を、光信号の点から言及すれば、波長変換光wcとポンプ光wpとを透過させて信号光wsを減衰させるという仕様である。さらに、信号光wsもしくはポンプ光wpの周波数を掃引して波長変換光wcを可変とする場合には、掃引するポンプ光wpもしくは可変となる波長変換光wcの周波数帯域を透過させて、掃引するポンプ光wの周波数帯域を減衰させるという仕様である。
図13を用いて実施例(c)を説明する。基本構成は実施例(a)と同様であるが、ここでは信号光wsの周波数がポンプ光wpの周波数よりも小さい場合である。また、所定の周波数帯域を減衰させる手段として、少なくともポンプ光wpの周波数以上の周波数帯域を透過させるハイパスフィルタ132を用いる。図13には、ループ状の光ファイバに接続された非線形媒質131と、ハイパスフィルタ132、このループ状の光ファイバと分岐比1対1の光カプラから構成されるサニャック干渉系130と、信号光wsとポンプ光wpと波長変換光wcと、各周波数成分の光の伝播の様子を示す矢印とを図示する。また、このハイパスフィルタ132にあわせて図示するグラフの縦軸が光信号の出力値であり、横軸が周波数である。このグラフにより、信号光ws、ポンプ光wp、および波長変換光wcの出力値を示す。また、このグラフの斜線部分が、ハイパスフィルタ132の透過周波数帯域である。
信号光wsとポンプ光wpとを光カプラのポート1に入力し、ポート3および4に分岐する。ポート3から出た信号光wsとポンプ光wpとは、ハイパスフィルタ132によって信号光wsがカットされ、ポンプ光wpのみが非線形媒質131を通過し、ポート4に到達する。一方、ポート4から出た信号光wsとポンプ光wpは非線形媒質131に入射され、生成された波長変換光wcと共にハイパスフィルタ132に入射される。このとき、ハイパスフィルタ132で信号光wsがカットされ、ハイパスフィルタ132を通過したポンプ光wpと波長変換光wcがポート3に到達する。こうしてループ状の光ファイバを右回り、もしくは左回りに伝播したこれらの光が、光カプラのポート3、もしくはポート4から入射される。このとき、光カプラのポート3とポート4とに入射されるポンプ光wpはループミラーとなり、ポート1に出射する。他方で、波長変換光wcは光カプラのポート3のみから入射されるので、光カプラのポート1とポート2とに分岐される。すなわち、ポート2からは波長変換光wcのみが出射する。
なお、実施例(c)で用いる所定の周波数帯域を減衰させる手段132に要求される仕様を光信号の点から言及すれば、ポンプ光wpと波長変換光wcとを透過させて信号光wsを減衰させるという仕様である。さらに、信号光wsもしくはポンプ光wpの周波数を掃引して波長変換光wcを可変とする場合には、掃引するポンプ光wpと可変となる波長変換光wcとの周波数帯域を透過させて、掃引する信号光wsの周波数帯域を減衰させるという仕様である。
図14を用いて実施例(d)を説明する。基本構成は実施例(c)と同様であり、ここでは信号光wsの周波数がポンプ光wpの周波数よりも小さな場合である。ただし、所定の周波数帯域を減衰させる手段として、少なくともポンプ光wpの周波数以下の周波数帯域を透過させるローパスフィルタ142を用いる。図14には、ループ状の光ファイバに接続された非線形媒質141と、ローパスフィルタ142、このループ状の光ファイバと分岐比1対1の光カプラから構成されるサニャック干渉系140と、信号光wsとポンプ光wpと波長変換光wcと、各周波数成分の光の伝播の様子を示す矢印とを図示する。また、このローパスフィルタ142にあわせて図示するグラフの縦軸が光信号の出力値であり、横軸が周波数である。このグラフにより、信号光ws、ポンプ光wp、および波長変換光wcの出力値を示す。また、このグラフの斜線部分が、ローパスフィルタ142の透過周波数帯域である。
信号光wsとポンプ光wpとを光カプラのポート1に入力し、ポート3および4に分岐する。ポート3から出た信号光wsとポンプ光wpとは、ローパスフィルタ142を通過して非線形媒質141に入射され、生成された波長変換光wcと共にポート4に到達する。一方、ポート4から出た信号光wsとポンプ光wpとが非線形媒質141に入射され、生成された波長変換光wcと共にローパスフィルタ142に入射される。このとき、ローパスフィルタ142で波長変換光wcがカットされ、ローパスフィルタ142を通過した信号光wsとポンプ光wpとがポート3に到達する。こうしてループ状の光ファイバを右回り、もしくは左回りに伝播したこれらの光が、ポート3、もしくはポート4から入射される。このとき光カプラのポート3とポート4とから入射される信号光wsとポンプ光wpとはループミラーとなり、光カプラのポート1に出射する。他方で、波長変換光はポート4のみから入射されるので光カプラのポート1とポート2とに分岐される。すなわち、ポート2からは波長変換光のみが出射する。
なお、実施例(d)で用いる所定の周波数帯域を減衰させる手段142に要求される仕様を、光信号の点から言及すれば、信号光wsとポンプ光wpとを透過させて波長変換光wcを減衰させるという仕様である。さらに、信号光wsもしくはポンプ光wpの周波数を掃引して波長変換光wcを可変とする場合には、掃引するポンプ光wもしくは掃引するポンプ光wpの周波数帯域を透過させて、可変となる波長変換光wcの周波数帯域を減衰させるという仕様である。
以上が、実施例(a)、(b)、(c)、(d)の説明である。
本発明により、波長変換を用いた全光信号処理において、信号処理の速度が、フィルタの掃引速度といった外部装置の動作速度に律速されない。また、サニャック干渉系にてループミラーとなるのは信号光wsとポンプ光wpとであり、波長変換光の帯域がハイパスフィルタ、もしくはローパスフィルタの透過周波数帯域、および非線形媒質の特性によって決まる。従って、広帯域な波長変換が可能となる。
本発明は、波長変換を用いる光信号処理技術に適用可能である。
以下、本発明の諸態様を付記としてまとめて記載する。
(付記1)光が分岐されるステップを含む波長変換方法であって、
光カプラと、前記光カプラの第1のポートと第2のポートとに両端が接続されたループ状の光ファイバとから構成されるサニャック干渉系が、前記ループ状の光ファイバのループ内に、非線形媒質と所定の周波数帯域を減衰させる手段とを含むサニャック干渉系であり、前記光カプラの所定のポートに、波長変換の基準となるポンプ光と波長変換の信号となる信号光とから構成された、第1の光群が入力される第1のステップと、
前記ループ状の光ファイバを前記第1のポートから前記第2のポートへ伝播する第1のルートと、前記ループ状の光ファイバを前記第2のポートから前記第1のポートへ伝播する第2のルートとに、前記第1の光群が分岐される第2のステップと、
前記非線形媒質と前記所定の周波数帯域を減衰させる手段とによって、前記第1のルートを伝播する前記第1の光群から、第2の光群が構成される第3のステップと、
前記非線形媒質と前記所定の周波数帯域を減衰させる手段とによって、前記第2のルートを伝播する前記第1の光群から、第3の光群が構成される第4のステップと、
前記光カプラの前記第2のポートに入力された前記第2の光群を構成する光と、前記光カプラの前記第1のポートに入力された前記第3の光群を構成する光とが、前記光カプラで干渉して所定のポートへ分岐される第5のステップと
を有する波長変換方法。(1)
(付記2)付記1に記載の波長変換方法であって、
前記所定の周波数帯域が、前記ポンプ光の周波数よりも大きい周波数帯域であることを特徴とする波長変換方法。(2)
(付記3)付記1に記載の波長変換方法であって、
前記所定の周波数帯域が、前記ポンプ光の周波数よりも小さい周波数帯域であることを特徴とする波長変換方法。(3)
(付記4)付記1に記載の波長変換方法であって、
前記非線形媒質において、四光波混合を用いることを特徴とする波長変換方法。(4)
(付記5)付記1に記載の波長変換方法であって、
前記非線形媒質が、半導体光増幅器であることを特徴とする波長変換方法。
(付記6)光カプラと、前記光カプラの第1のポートと第2のポートとに両端が接続されたループ状の光ファイバから構成されるサニャック干渉系を備え、
前記ループ状の光ファイバのループ内に、所定の周波数帯域を減衰させる手段と非線形媒質とが配置されていることを特徴とする波長変換装置。(5)
(付記7)付記6に記載の波長変換装置であって、
前記所定の周波数帯域が、前記ポンプ光の周波数よりも大きい周波数帯域であることを特徴とする波長変換装置。
(付記8)付記6に記載の波長変換装置であって、
前記所定の周波数帯域が、前記ポンプ光の周波数よりも小さい周波数帯域であることを特徴とする波長変換装置。
(付記9)付記6に記載の波長変換装置であって、
前記非線形媒質において、四光波混合を用いることを特徴とする波長変換装置半導体増幅器であることを特徴とする波長変換装置。
(付記10)付記6に記載の波長変換装置であって、
前記非線形媒質が、半導体増幅器であることを特徴とする波長変換装置。
光カプラの原理を示す図である。 サニャック干渉系を示す図である。 サニャック干渉系の原理を示す図である。 本発明の第1の実施例を示す図である。 本発明の第1の実施例と周辺部を示す図である。 本発明の第1の実施例で用いるフィルタとSOAのモジュールを示す図である。 本発明の第1の実施例で用いるフィルタの仕様を示す図である。 本発明の第1の実施例で用いる量子井戸SOAを示す図である。 本発明の実施例(a)、(b)、(c)、(d)の仕様を示す図である。 本発明の実施例(a)を示す図である。 本発明の実施例(a)の動作ステップを示す図である。 本発明の実施例(b)を示す図である。 本発明の実施例(c)を示す図である。 本発明の実施例(d)を示す図である。
符号の説明
10:光カプラ内の第1のルート
11:光カプラ内の第2のルート
12:光カプラ
20:サニャック干渉系
21、23:光ファイバ
22:光カプラ
40、50、100、120、130、140:サニャック干渉系
41、45、51、55:光ファイバ
42:光カプラ
43:非線形媒質
44:所定の周波数帯域を減衰させる手段
52:偏波保持型方向性結合器
53:SOA
54:フィルタ
56:偏波コントローラ
57:同時入射用方向性結合器
58:光サーキュレータ
60:フィルタとSOAからなるモジュール
61、68:光ファイバ
62、64、66、67:レンズ
63:フィルタ
65:非線形媒質
70:フィルタの透過周波数領域(斜線部分)
80:量子井戸SOA
81:量子井戸層
82:SCH層
83:p−InGaAs

84:第1のp−InP
85:第2のp−InP
86:第1のn−InP
87:第2のn−InP
100、120、130、140:サニャック干渉系
101、121、131、141:非線形媒質
102:実施例(a)で用いるフィルタおよびフィルタの透過周波数帯域(斜線部分)
122:実施例(b)で用いるフィルタおよびフィルタの透過周波数帯域(斜線部分)
132:実施例(c)で用いるフィルタおよびフィルタの透過周波数帯域(斜線部分)
142:実施例(d)で用いるフィルタおよびフィルタの透過周波数帯域(斜線部分)

Claims (7)

  1. 光が分岐されるステップを含む波長変換方法であって、
    光カプラと、前記光カプラの第1のポートと第2のポートとに両端が接続されたループ状の光ファイバとから構成されるサニャック干渉系が、前記ループ状の光ファイバのループ内に、波長変換の基準となるポンプ光と波長変換の信号となる信号光とにより波長変換光を発生する非線形媒質と、前記ポンプ光の周波数帯域を透過し前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域を減衰させる手段とを含むサニャック干渉系であり、前記光カプラの所定のポートに、波長変換の基準となるポンプ光と波長変換の信号となる信号光とから構成された、第1の光群が入力される第1のステップと、
    前記ループ状の光ファイバを前記第1のポートから前記第2のポートへ伝播する第1のルートと、前記ループ状の光ファイバを前記第2のポートから前記第1のポートへ伝播する第2のルートとに、前記第1の光群が分岐される第2のステップと、
    前記非線形媒質と前記ポンプ光の周波数帯域を透過し前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域を減衰させる手段とによって、前記第1のルートを伝播する前記第1の光群から、第2の光群が構成される第3のステップと、
    前記非線形媒質と前記ポンプ光の周波数帯域を透過し前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域を減衰させる手段とによって、前記第2のルートを伝播する前記第1の光群から、第3の光群が構成される第4のステップと、
    前記光カプラの前記第2のポートに入力された前記第2の光群を構成する光と、前記光カプラの前記第1のポートに入力された前記第3の光群を構成する光とが、前記光カプラで干渉して所定のポートへ分岐される第5のステップと
    を有する波長変換方法。
  2. 請求項1に記載の波長変換方法であって、
    前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域が、前記ポンプ光の周波数よりも大きい周波数帯域であることを特徴とする波長変換方法。
  3. 請求項1に記載の波長変換方法であって、
    前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域が、前記ポンプ光の周波数よりも小さい周波数帯域であることを特徴とする波長変換方法。
  4. 請求項1に記載の波長変換方法であって、
    前記非線形媒質において、四光波混合を用いることを特徴とする波長変換方法。
  5. 請求項1に記載の波長変換方法であって、
    前記ポンプ光の周波数帯域を透過し前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域を減衰させる手段が、前記波長変換光を減衰させることを特徴とする波長変換方法。
  6. 光カプラと、前記光カプラの第1のポートと第2のポートとに両端が接続されたループ状の光ファイバから構成されるサニャック干渉系を備え、
    前記ループ状の光ファイバのループ内に、波長変換の基準となるポンプ光と波長変換の信号となる信号光とにより波長変換光を発生する非線形媒質と、前記ポンプ光の周波数帯域を透過し前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域を減衰させる手段とが配置されていることを特徴とする波長変換装置。
  7. 請求項6に記載の波長変換装置であって、
    前記ポンプ光の周波数帯域を透過し前記信号光及び前記波長変換光のうちいずれか一方の周波数帯域を減衰させる手段は、所定の周波数以上の周波数帯域を減衰させるハイパスフィルタ及び所定の周波数以下の周波数帯域を減衰させるローパスフィルタのうちいずれか一方であることを特徴とする波長変換装置。
JP2006049536A 2006-02-27 2006-02-27 波長変換方法、および波長変換装置。 Expired - Fee Related JP4984568B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049536A JP4984568B2 (ja) 2006-02-27 2006-02-27 波長変換方法、および波長変換装置。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049536A JP4984568B2 (ja) 2006-02-27 2006-02-27 波長変換方法、および波長変換装置。

Publications (2)

Publication Number Publication Date
JP2007226076A JP2007226076A (ja) 2007-09-06
JP4984568B2 true JP4984568B2 (ja) 2012-07-25

Family

ID=38547944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049536A Expired - Fee Related JP4984568B2 (ja) 2006-02-27 2006-02-27 波長変換方法、および波長変換装置。

Country Status (1)

Country Link
JP (1) JP4984568B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174502A (ja) * 1997-12-11 1999-07-02 Tera Tec:Kk 光分離装置
KR100354336B1 (ko) * 2000-10-17 2002-09-28 한국과학기술연구원 초고속 광신호처리용 파장변환장치

Also Published As

Publication number Publication date
JP2007226076A (ja) 2007-09-06

Similar Documents

Publication Publication Date Title
JP5883974B2 (ja) 光信号増幅装置
US11442228B2 (en) System for phase-based photonic computing
US6867903B2 (en) Optical parametric circuit
JP5542071B2 (ja) 光集積回路
JP4431099B2 (ja) 波長変換方式、光集積素子及び波長変換方法
JPH08213684A (ja) 同調可能なレーザ装置
JP7189470B2 (ja) 光信号処理装置
JP4719115B2 (ja) 光集積素子及び波長変換方式
WO2016180146A1 (en) Tunable wavelength-flattening element for switch carrying multiple wavelengths per lightpath
JP2014095780A (ja) 光増幅装置
US7064891B2 (en) Optical wavelength converter with a semiconductor optical amplifier
JP4984568B2 (ja) 波長変換方法、および波長変換装置。
US20050063040A1 (en) Wideband four-wave-mixing wavelength converter
JP2015161827A (ja) 光増幅装置
JP2014044256A (ja) 光増幅装置
Summers et al. Monolithically Integrated Multi-Stage All-Optical 10Gbps Push-Pull Wavelength Converter
JP6220314B2 (ja) 光増幅装置
WO2022024253A1 (ja) 光増幅装置
Kaur et al. Performance analysis of semiconductor optical amplifier using four wave mixing based wavelength Converter for all Optical networks
Singh et al. Multi-wavelength conversion based on FWM in SOA-MZI with 2nm spaced dual pump signals
Umeki et al. Phase sensitive degenerate parametric amplification using highly efficient PPLN ridge waveguides
JP6836477B2 (ja) 平面光導波路デバイス
Enbutsu et al. PPLN-Based Low-Noise In-Line Phase Sensitive Amplifier with Highly Sensitive Carrier-Recovery System
Enbutsu et al. PPLN-based low-noise in-line phase sensitive amplifier with highly sensitive carrier-recovery system
Kumar An optimal approach of bidirectional multiwavelength conversion based on XGM in MQW-SOA

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees