JP4979178B2 - Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same - Google Patents

Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same Download PDF

Info

Publication number
JP4979178B2
JP4979178B2 JP2003271110A JP2003271110A JP4979178B2 JP 4979178 B2 JP4979178 B2 JP 4979178B2 JP 2003271110 A JP2003271110 A JP 2003271110A JP 2003271110 A JP2003271110 A JP 2003271110A JP 4979178 B2 JP4979178 B2 JP 4979178B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
storage alloy
hydrogen
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003271110A
Other languages
Japanese (ja)
Other versions
JP2005032573A (en
Inventor
正夫 武江
雅雄 井上
達也 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003271110A priority Critical patent/JP4979178B2/en
Publication of JP2005032573A publication Critical patent/JP2005032573A/en
Application granted granted Critical
Publication of JP4979178B2 publication Critical patent/JP4979178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は密閉型アルカリ蓄電池用水素吸蔵合金粉末及びそれを用いた密閉型アルカリ蓄電池に関する。   The present invention relates to a hydrogen storage alloy powder for a sealed alkaline storage battery and a sealed alkaline storage battery using the same.

近年、水素吸蔵合金粉末を含む密閉型アルカリ蓄電池は、電動工具や家庭用電動クリーナ等の電源に適用されているが、この種のアルカリ蓄電池には、通信機やPC(パーソナルコンピュータ)等の電源に用いられるアルカリ蓄電池に比べて高い放電特性が要求されている。
水素吸蔵合金を負極材料として用いたアルカリ蓄電池においては、放電特性に与える負極の影響が大きいことが分かっており、これまで放電性を高める方法として平衡電位の上昇、もしくは反応過電圧の低減といった方法が行われてきた。
In recent years, sealed alkaline storage batteries containing hydrogen storage alloy powder have been applied to power supplies such as electric tools and household electric cleaners, but this type of alkaline storage battery includes power supplies such as communication devices and PCs (personal computers). High discharge characteristics are required as compared with the alkaline storage batteries used in the above.
In alkaline storage batteries using hydrogen storage alloys as negative electrode materials, it has been found that the influence of the negative electrode on the discharge characteristics is large, and as a method for improving the discharge performance, there has been a method of increasing the equilibrium potential or reducing the reaction overvoltage. Has been done.

前者の平衡電位の上昇は、水素吸蔵合金の水素平衡圧と関係しており、水素平衡圧が高いほどこれを用いた電池の放電時の作動電圧が向上し、水素平衡圧を10倍高めると放電電流に依存することなく平衡電位が約29mV上昇し、この分作動電圧が上昇することが知られている。
例えば、平衡電位は水素吸蔵合金の成分を調整して水素平衡圧を高めることにより上昇させることができ、水素吸蔵合金の成分として含まれるLa量とMn量を調整して水素平衡圧を0.03MPaから0.10MPaに上昇させると、30Aの放電電流で放電する場合、作動電圧が0.95Vから0.97Vに上昇することが確認されている。
The increase in the former equilibrium potential is related to the hydrogen equilibrium pressure of the hydrogen storage alloy, and the higher the hydrogen equilibrium pressure, the higher the operating voltage during discharge of the battery using this, and the higher the hydrogen equilibrium pressure 10 times. It is known that the equilibrium potential rises by about 29 mV without depending on the discharge current, and the operating voltage rises by this amount.
For example, the equilibrium potential can be increased by adjusting the components of the hydrogen storage alloy to increase the hydrogen equilibrium pressure, and adjusting the amounts of La and Mn contained as components of the hydrogen storage alloy to adjust the hydrogen equilibrium pressure to 0. It has been confirmed that when the voltage is increased from 03 MPa to 0.10 MPa, the operating voltage increases from 0.95 V to 0.97 V when discharging with a discharge current of 30 A.

一方、後者の反応過電圧の低減は、負極に過電圧を生じさせる要因によって効果に違い生じるが、要因の一つとして反応面積を挙げることができ、水素吸蔵合金を低粒径化(小粒径化)することによってこれを増大させて低減することができる。
例えば、水素吸蔵合金の平均粒径を60μmから30μmに低減した場合、作動電圧が0.95Vから0.96Vとわずかながら向上することが確認されている。
On the other hand, the latter reduction in reaction overvoltage has a difference in effect depending on factors that cause overvoltage in the negative electrode, but one of the factors is the reaction area, and the hydrogen storage alloy has a reduced particle size (small particle size). it can be reduced by increasing this by reduction).
For example, it has been confirmed that when the average particle size of the hydrogen storage alloy is reduced from 60 μm to 30 μm, the operating voltage is slightly improved from 0.95 V to 0.96 V.

しかしながら、水素吸蔵合金の高平衡圧化あるいは小粒径化により、密閉型アルカリ蓄電池の高率放電特性を改善した場合、以下のような問題が生ずる。
まず、負極に含まれる水素吸蔵合金の水素平衡圧が高い電池においては、高温雰囲気下での電池充電時に、電池内圧が上昇してその電池容器に設けられた安全弁が作動しやすい。安全弁が作動した場合、アルカリ電解液がガスとともに電池外部に噴出して減少することから、高温雰囲気下での電池の充放電サイクル寿命が短くなるという問題がある。
However, when the high rate discharge characteristics of the sealed alkaline storage battery are improved by increasing the equilibrium pressure or reducing the particle size of the hydrogen storage alloy, the following problems arise.
First, in a battery having a high hydrogen equilibrium pressure of the hydrogen storage alloy contained in the negative electrode, when the battery is charged in a high-temperature atmosphere, the internal pressure of the battery rises and the safety valve provided in the battery container is likely to operate. When the safety valve is activated, the alkaline electrolyte is jetted out of the battery together with the gas to decrease, so that there is a problem that the charge / discharge cycle life of the battery in a high temperature atmosphere is shortened.

また、負極に含まれる水素吸蔵合金粉末の粒径が小さい電池においては、粉末粒子の表面積が大きく、粒子とアルカリ電解液とが接触しやすいことから、高温下では水素吸蔵合金の酸化が進行しやすい。このような水素吸蔵合金の酸化のためにアルカリ電解液が消費されて減少すると、電池の内部抵抗が上昇することから、高温雰囲気下での電池の充放電サイクル寿命が短くなるという問題がある。   In addition, in a battery with a small particle size of the hydrogen storage alloy powder contained in the negative electrode, the surface area of the powder particles is large, and the particles and the alkaline electrolyte easily come into contact with each other, so that the oxidation of the hydrogen storage alloy proceeds at high temperatures. Cheap. When the alkaline electrolyte is consumed and reduced due to the oxidation of such a hydrogen storage alloy, the internal resistance of the battery increases, so that there is a problem that the charge / discharge cycle life of the battery under a high temperature atmosphere is shortened.

本発明は、上記した問題を解決するためになされたものであって、密閉型アルカリ蓄電池における高率放電特性及び高温雰囲気下での充放電サイクル寿命を改良可能な密閉型アルカリ蓄電池用水素吸蔵合金粉末と、それを用いた密閉型アルカリ蓄電池の提供を目的とする。   The present invention has been made to solve the above-described problems, and is a hydrogen storage alloy for a sealed alkaline storage battery that can improve the high rate discharge characteristics and the charge / discharge cycle life under a high temperature atmosphere in the sealed alkaline storage battery. The object is to provide a powder and a sealed alkaline storage battery using the powder.

発明者らは、水素吸蔵合金粉末の高平衡圧化あるいは小粒径化により生じる高温雰囲気下での密閉型アルカリ蓄電池における充放電サイクルの短寿命化の問題を解決すべく種々検討を重ねた。その結果、所定の組成を有する水素吸蔵合金粉末の平均粒径を25μm以上30μm以下とするとともに40℃におけるH/M=0.5の時の水素平衡圧が0.06MPa以上となるようにすることにより、それを用いた密閉型アルカリ蓄電池における高率放電特性及び高温雰囲気下での充放電サイクル寿命を改善できることを見出し、本発明の密閉型アルカリ蓄電池用水素吸蔵合金粉末及びそれを用いた密閉型アルカリ蓄電池を開発するに至った。

The inventors have made various studies to solve the problem of shortening the life of the charge / discharge cycle in a sealed alkaline storage battery in a high temperature atmosphere caused by increasing the equilibrium pressure or reducing the particle size of the hydrogen storage alloy powder. As a result, the hydrogen storage alloy powder having a predetermined composition has an average particle size of 25 μm or more and 30 μm or less, and a hydrogen equilibrium pressure at 40 ° C. when H / M = 0.5 is 0.06 MPa or more. It has been found that the high-rate discharge characteristics and the charge / discharge cycle life under high temperature atmosphere in a sealed alkaline storage battery using the same can be improved, and the hydrogen storage alloy powder for sealed alkaline storage battery of the present invention and the sealed using the same Led to the development of a type alkaline storage battery.

すなわち、上記目的を達成するために、本発明によれば、Aサイトを占めるAサイト成分と、Bサイトを占めるBサイト成分とを含むAB型の水素吸蔵合金からなる密閉型アルカリ蓄電池用水素吸蔵合金粉末であって、前記水素吸蔵合金は、25μm以上30μm以下の平均粒径を有するとともに40℃におけるH/M=0.5の時の水素平衡圧が0.06MPa以上であり、前記Aサイト成分は、La元素、Ce元素、Pr元素およびNd元素のみからなり、前記Aサイト成分における前記La元素の質量濃度は30〜50質量%であり、前記Bサイト成分は、Ni元素、Mn元素、Co元素およびAl元素のみからなり、前記Mn元素は、前記Aサイト成分1モルに対し0.2〜0.4モル含まれており、前記Co元素及びAl元素は、前記Aサイト成分1モルに対し両元素の総和で0.3〜1.0モル含まれていることを特徴とする密閉型アルカリ蓄電池用水素吸蔵合金粉末が提供される(請求項1)。 That is, in order to achieve the above object, according to the present invention, the A-site component occupying the A-site, sealed alkaline storage battery of hydrogen consisting of AB 5 type hydrogen storage alloy containing a B site component occupying the B site The hydrogen-absorbing alloy powder has an average particle diameter of 25 μm or more and 30 μm or less and a hydrogen equilibrium pressure at 40 ° C. when H / M = 0.5 is 0.06 MPa or more, The site component consists only of La element, Ce element, Pr element and Nd element, the mass concentration of La element in the A site component is 30-50% by mass, and the B site component is Ni element, Mn element Co element and Al element, and the Mn element is contained in an amount of 0.2 to 0.4 mol with respect to 1 mol of the A site component, and the Co element and Al element are The A site component 1 mole hydrogen-absorbing alloy powder for sealed alkaline storage battery characterized in that it contains 0.3 to 1.0 moles in total of both elements is provided (claim 1).

また、本発明によれば、電池缶内に負極及び正極がアルカリ電解液とともに収容された密閉型アルカリ蓄電池において、前記負極は請求項1記載のアルカリ蓄電池用水素吸蔵合金粉末を含有していることを特徴とする密閉型アルカリ蓄電池が提供される(請求項2)。
上記した構成において、前記負極が保液可能な前記アルカリ電解液の質量を、前記負極の乾燥質量で除した値を百分率で示した負極含液率は7%以上であることが好ましい(請求項3)。
According to the present invention, in a sealed alkaline storage battery in which a negative electrode and a positive electrode are accommodated together with an alkaline electrolyte in a battery can, the negative electrode contains the hydrogen storage alloy powder for an alkaline storage battery according to claim 1. A sealed alkaline storage battery is provided (claim 2).
In the configuration described above, the negative electrode liquid content, expressed as a percentage of the mass of the alkaline electrolyte that can be retained by the negative electrode divided by the dry mass of the negative electrode, is preferably 7% or more. 3).

そして、上記した構成において、前記アルカリ電解液の濃度が7N以上であることが好ましい(請求項4)。   And in the above-mentioned structure, it is preferable that the density | concentration of the said alkaline electrolyte is 7N or more (Claim 4).

本発明の密閉型アルカリ蓄電池用水素吸蔵合金粉末は、水素平衡圧が高く、アルカリ電解液に対する耐腐蝕性が優れている。
また、本発明の密閉型アルカリ蓄電池用水素吸蔵合金粉末を用いた密閉型アルカリ蓄電池は、高率放電特性及び高温雰囲気下での充放電サイクル寿命がともに優れており、その工業的価値は極めて大である。
The hydrogen storage alloy powder for a sealed alkaline storage battery of the present invention has a high hydrogen equilibrium pressure and excellent corrosion resistance against an alkaline electrolyte.
In addition, the sealed alkaline storage battery using the hydrogen storage alloy powder for the sealed alkaline storage battery of the present invention has both high rate discharge characteristics and excellent charge / discharge cycle life under a high temperature atmosphere, and its industrial value is extremely large. It is.

以下に本発明の一実施形態例の密閉型ニッケル水素二次電池(以下、電池Aという)について詳述する。
電池Aは、後述する負極を備えている外は、通常の密閉型アルカリ蓄電池と同じ構成を有し、本実施形態例においては、電池Aは、一端が開口した有底円筒状の電池容器10を備え、電池容器10は負極端子として機能する。
Hereinafter, a sealed nickel-metal hydride secondary battery (hereinafter referred to as battery A) according to an embodiment of the present invention will be described in detail.
The battery A has the same configuration as that of a normal sealed alkaline storage battery except that it includes a negative electrode to be described later. In this embodiment, the battery A has a bottomed cylindrical battery container 10 having one end opened. The battery container 10 functions as a negative electrode terminal.

電池容器10の開口内には絶縁パッキン12を介して蓋板14が配置され、蓋板14は中央にガス抜き孔15を有する。蓋板14の外面上には、ガス抜き孔15を塞ぐように円盤状の弁体16が配置され、弁体16上には同じく円盤状のばね座17が重ね合わされている。そして更に、蓋板14の外面上には、弁体16及びばね座17を囲むように正極外部端子18が固定され、ばね座17と正極外部端子18との間には、ばね座17を介して弁体16を蓋板14に押圧するコイルスプリング20が配置されている。   A lid plate 14 is disposed in the opening of the battery container 10 via an insulating packing 12, and the lid plate 14 has a gas vent hole 15 in the center. A disc-shaped valve body 16 is disposed on the outer surface of the cover plate 14 so as to close the gas vent hole 15, and a disc-shaped spring seat 17 is also superimposed on the valve body 16. Further, a positive external terminal 18 is fixed on the outer surface of the cover plate 14 so as to surround the valve body 16 and the spring seat 17, and the spring seat 17 is interposed between the spring seat 17 and the positive external terminal 18. A coil spring 20 that presses the valve body 16 against the cover plate 14 is disposed.

従って、通常時、電池容器10の開口は絶縁パッキン12、蓋板14及び弁体16によって密封されている。そして、電池容器10内でガスが発生して内圧が高まった場合には、弁体16及びばね座17を介してコイルスプリング20が圧縮されて、蓋板14のガス抜き孔15を介してガスが放出される。つまり、ガス抜き孔15、弁体16、ばね座17及びコイルスプリング20は、安全弁を形成している。   Therefore, normally, the opening of the battery container 10 is sealed by the insulating packing 12, the cover plate 14, and the valve body 16. When the gas is generated in the battery container 10 and the internal pressure is increased, the coil spring 20 is compressed through the valve body 16 and the spring seat 17, and the gas is discharged through the gas vent hole 15 of the cover plate 14. Is released. That is, the vent hole 15, the valve body 16, the spring seat 17, and the coil spring 20 form a safety valve.

電池容器10内には、アルカリ電解液(図示せず)とともに略円柱状の電極群21が収容されている。より詳しくは、電極群21は、それぞれ板状の正極22及び負極24を、セパレータ26を介して巻回して形成され、正極22及び負極24はセパレータ26を間に挟んだ状態で互いに重ね合わされている。
電極群21と蓋板14との間には正極リード28が配置され、正極リード28の両端は、正極22及び蓋板14に接続されている。従って、正極外部端子18と正極22との間は、正極リード28及び蓋板14を介して電気的に接続されている。
A substantially cylindrical electrode group 21 is accommodated in the battery container 10 together with an alkaline electrolyte (not shown). More specifically, the electrode group 21 is formed by winding a plate-like positive electrode 22 and a negative electrode 24 through a separator 26, and the positive electrode 22 and the negative electrode 24 are overlapped with each other with the separator 26 interposed therebetween. Yes.
A positive electrode lead 28 is disposed between the electrode group 21 and the lid plate 14, and both ends of the positive electrode lead 28 are connected to the positive electrode 22 and the lid plate 14. Accordingly, the positive external terminal 18 and the positive electrode 22 are electrically connected via the positive electrode lead 28 and the cover plate 14.

また、電池容器10の底部と電極群21との間には円盤状の集電板29が配置される一方、集電板29と正対する電極群21の一端部からは、負極24の負極芯体30が突出している。この負極芯体30と集電板29との間、及び、集電板29と電池容器10の底部との間は、それぞれ溶接されており、負極24と電池容器10との間は、集電板29を介して電気的に接続されている。   A disc-shaped current collecting plate 29 is disposed between the bottom of the battery container 10 and the electrode group 21, while a negative electrode core of the negative electrode 24 is formed from one end of the electrode group 21 facing the current collecting plate 29. The body 30 protrudes. Between the negative electrode core 30 and the current collector plate 29 and between the current collector plate 29 and the bottom of the battery container 10 are welded, respectively, and between the negative electrode 24 and the battery container 10 are current collectors. It is electrically connected via the plate 29.

なお、セパレータ26としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものをあげることができる。また、アルカリ電解液としては、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液等をあげることができる。   Examples of the separator 26 include polyamide fiber nonwoven fabrics, and polyolefin fiber nonwoven fabrics such as polyethylene and polypropylene that are provided with hydrophilic functional groups. Examples of the alkaline electrolyte include sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, potassium hydroxide aqueous solution, and an aqueous solution obtained by mixing two or more of these.

正極22は、正極用芯体を有し、この芯体には正極用合剤が担持されている。例えば、正極用芯体としては、多孔質構造を有する発泡ニッケル基材等をあげることができる。
正極用合剤は、例えば、正極活物質、添加剤、および、結着剤からなる。正極活物質としては、水酸化ニッケル粒子、あるいは、コバルト、亜鉛、カドミウム等を固溶した水酸化ニッケル粒子をあげることができる。また、添加剤としてはコバルト化合物からなる導電剤を、結着剤としては親水性若しくは疎水性のポリマー等をそれぞれあげることができる。
The positive electrode 22 has a positive electrode core, and a positive electrode mixture is supported on the core. For example, examples of the positive electrode core include a foamed nickel base material having a porous structure.
The positive electrode mixture is composed of, for example, a positive electrode active material, an additive, and a binder. Examples of the positive electrode active material include nickel hydroxide particles or nickel hydroxide particles in which cobalt, zinc, cadmium or the like is dissolved. Examples of the additive include a conductive agent made of a cobalt compound, and examples of the binder include a hydrophilic or hydrophobic polymer.

負極24は、負極用芯体30を有し、上述した突出部を除いて、この芯体30には負極用合剤が担持されている。ここで、負極用芯体30としては、通常のものを使用することができ、例えば、パンチングメタル等を使用することができる。なお、図1中、作図上の都合により、突出部を除いて負極用芯体30を省略した。
負極用合剤は、負極活物質である水素を吸蔵及び放出可能な水素吸蔵合金粉末および結着剤からなり、結着剤としては親水性若しくは疎水性のポリマー等をあげることができる。
The negative electrode 24 has a negative electrode core 30, and a negative electrode mixture is supported on the core 30 except for the protrusions described above. Here, a normal thing can be used as the core 30 for negative electrodes, for example, a punching metal etc. can be used. In FIG. 1, the negative electrode core 30 is omitted except for the protruding portion for convenience of drawing.
The negative electrode mixture includes a hydrogen storage alloy powder capable of occluding and releasing hydrogen as a negative electrode active material and a binder, and examples of the binder include hydrophilic or hydrophobic polymers.

負極24の水素吸蔵合金粉末は所定の組成を有するAB5型の水素吸蔵合金からなり、且つ、平均粒径が30μm以下の粒子からなるとともに40℃におけるH/M=0.5の時の水素平衡圧が0.06MPa以上である。
ただし、平均粒径が30μmを超える水素吸蔵合金粉末を用いて負極を作製し、この負極を用いて電池を組立てた後、電池に活性化処理を施して負極に含まれる水素吸蔵合金粉末を微粉化し、その平均粒径を30μm以下としてもよい。
The hydrogen storage alloy powder of the negative electrode 24 is made of an AB 5 type hydrogen storage alloy having a predetermined composition, is made of particles having an average particle size of 30 μm or less, and hydrogen at 40 ° C. when H / M = 0.5. The equilibrium pressure is 0.06 MPa or more.
However, after preparing a negative electrode using a hydrogen storage alloy powder having an average particle size exceeding 30 μm and assembling a battery using this negative electrode, the battery was subjected to an activation treatment to finely charge the hydrogen storage alloy powder contained in the negative electrode. The average particle size may be 30 μm or less.

この水素吸蔵合金は、Aサイトを占めるAサイト成分として、La(ランタン)元素と、La元素以外の希土類元素よりなる群(例えばNd,Pr,Ce)から選択される少なくとも1種の元素とを含んでいる。ここにおいて、Aサイト成分におけるLa元素の割合、すなわち、水素吸蔵合金に含まれるLa元素の質量を、Aサイト成分の全質量で除した質量濃度は、30〜50質量%の範囲に含まれている。   In this hydrogen storage alloy, as an A site component occupying the A site, an La (lanthanum) element and at least one element selected from the group consisting of rare earth elements other than the La element (for example, Nd, Pr, Ce) are included. Contains. Here, the ratio of the La element in the A site component, that is, the mass concentration obtained by dividing the mass of the La element contained in the hydrogen storage alloy by the total mass of the A site component is included in the range of 30 to 50% by mass. Yes.

一方、水素吸蔵合金のBサイトを占めるBサイト成分には、Ni元素及びMn元素が少なくとも含まれており、水素吸蔵合金は、1モルのAサイト成分に対して、0.2〜0.4モルのMn元素を含有している。
なお、Bサイト成分のNi元素については、AlおよびCoで適当な量だけ置換する。Ni元素の一部をCo元素及びAl元素で適当量置換すると、水素吸蔵合金における水素吸蔵放出特性の低下を抑制しながら、アルカリ電解液に対する耐腐蝕性を高めることができるので好ましい。具体的には、1モルのAサイト成分に対して、Coは0.3〜1.0、Alは0.1〜0.5モルを含有していることが好ましい。
On the other hand, the B site component occupying the B site of the hydrogen storage alloy contains at least Ni element and Mn element, and the hydrogen storage alloy is 0.2 to 0.4 relative to 1 mol of the A site component. It contains Mn element of mol.
The Ni element of the B site component is replaced with Al and Co by an appropriate amount . When a part of the Ni element is suitable amount replaced by Co element and Al elemental, while suppressing a decrease in the hydrogen absorption-desorption properties of the hydrogen storage alloy, it is possible to enhance the corrosion resistance against alkaline electrolyte preferably. Specifically, it is preferable that Co contains 0.3 to 1.0 and Al contains 0.1 to 0.5 mol with respect to 1 mol of the A site component.

上記した水素吸蔵合金の組成は、一般式:
La(M1)1−xNiy−z−wMn(M2)…(1)
(ただし、M1は、La元素以外の希土類元素よりなる群から選択される少なくとも1種の元素を表し、M2はAlおよびCoの元素を表し、xはAサイト成分におけるLa元素の質量濃度が30〜50質量%となるように選択される数であり、y,z及びwは、それぞれ、4.8≦y≦5.4、0.2≦z≦0.4、及び0.3≦w≦1.0の関係を満足する数である)
で表すことができる。
The composition of the above hydrogen storage alloy has the general formula:
La x (M1) 1-x Ni yzw Mn z (M2) w (1)
(However, M1 represents at least one element selected from the group consisting of rare earth elements other than La elements, M2 represents the elemental Al and Co, x is the mass concentration of La element in the A site component Y, z and w are 4.8 ≦ y ≦ 5.4, 0.2 ≦ z ≦ 0.4, and 0.3 ≦, respectively, which are numbers selected to be 30 to 50% by mass. It is a number that satisfies the relationship of w ≦ 1.0)
Can be expressed as

上記した構成を有する電池Aは、高温雰囲気下で優れた充放電サイクル寿命を有するとともに、優れた高率放電特性を有している。
高率放電特性が向上する理由としては以下のようなことが考えられる。即ち、水素吸蔵合金の平均粒径が小さく反応面積が大きい場合に水素平衡圧を高めると、水素吸蔵合金表面における水素濃度が増加し、放電反応が効果的に促進される。これにより放電時の反応過電圧が低減されるからであると考える。
The battery A having the above-described configuration has an excellent charge / discharge cycle life in a high-temperature atmosphere and also has excellent high rate discharge characteristics.
The reason why the high rate discharge characteristic is improved is as follows. That is, when the hydrogen storage pressure is increased when the average particle size of the hydrogen storage alloy is small and the reaction area is large, the hydrogen concentration on the surface of the hydrogen storage alloy increases and the discharge reaction is effectively promoted. This is considered to be because the reaction overvoltage at the time of discharge is reduced.

一方、高温雰囲気下での充放電サイクル寿命特性が向上する理由としては以下のようなことが考えられる。即ち、水素吸蔵合金の平均粒径が小さく反応面積が大きい場合に水素平衡圧を高めると、小粒化によって水素吸蔵合金の表面積が増大しているので、充電時にその表面から水素が解離するのが抑制されるとともに、水素平衡圧を高めたことによって水素吸蔵合金の表面の水素濃度が増加する。これにより小粒径化による酸化の促進が抑制されるからであると考える。 Meanwhile, it is contemplated that the following reasons for the charge-discharge cycle life characteristics under a high temperature atmosphere is above improvement. That is, when increasing the average particle size is small reaction area is hydrogen equilibrium pressure is greater of the hydrogen storage alloy, the surface area of the hydrogen storage alloy by particle size reduction is increased, the hydrogen from the surface thereof during charge dissociate Is suppressed, and the hydrogen concentration on the surface of the hydrogen storage alloy is increased by increasing the hydrogen equilibrium pressure. This is considered to be because the promotion of oxidation due to the reduction in particle size is suppressed.

尚、上述したように水素吸蔵合金の高平衡圧化および小粒径化は、高率放電特性を高める方法としては有効であるが、夫々単独で適用した場合は、高温雰囲気下での充放電サイクル寿命特性を低下させる因子であることがこれまで知られていた。したがって上述した本願発明の効果は、高温雰囲気下での充放電サイクル寿命特性にとってさらに不利となると認識されていた複数の操作を敢えて同時に行い、しかもごく限られた範囲の組成に適正化した水素吸蔵合金に前記操作を適用した場合にのみ効果が見出された点において、特異的な効果であると言える。 As described above, increasing the equilibrium pressure and reducing the particle size of the hydrogen storage alloy is effective as a method for improving the high rate discharge characteristics. However, when applied independently, charging and discharging in a high temperature atmosphere. It has been known so far that it is a factor that deteriorates cycle life characteristics. Thus hydrogen effects of the present invention described above, dare performed simultaneously further plurality of operations has been recognized as a disadvantage for the charge-discharge cycle life characteristics under a high temperature atmosphere, yet which is optimized to the composition of the very limited range It can be said that this is a specific effect in that the effect is found only when the above operation is applied to the storage alloy.

なお、水素吸蔵合金粉末の平均粒径が10μm未満であるときには、その耐腐蝕性が低下することから、平均粒径が10μm以上であることが好ましい。
また、電池Aのアルカリ電解液の濃度は7〜9Nであることが好ましい。上記した水素吸蔵合金は優れた耐腐蝕性を示すことから、電池Aにおいては、7〜9Nの範囲の高濃度のアルカリ電解液を使用可能であり、電解液の電気伝導度を高めて更に高率放電特性を高めることができる。
In addition, when the average particle diameter of the hydrogen storage alloy powder is less than 10 μm, the corrosion resistance is lowered, so that the average particle diameter is preferably 10 μm or more.
Moreover, it is preferable that the density | concentration of the alkaline electrolyte of the battery A is 7-9N. Since the hydrogen storage alloy described above exhibits excellent corrosion resistance, it is possible to use a high-concentration alkaline electrolyte in the range of 7 to 9 N in the battery A, and further increase the electrical conductivity of the electrolyte. The rate discharge characteristic can be improved.

また、上記した電池Aの負極(水素吸蔵合金負極)にあっては、負極自身が保液可能なアルカリ電解液の質量を、負極の乾燥質量で除した値を百分率で示した負極含液率が7%以上であることが好ましい。
含液率は、電池から負極を取り出し、電解液を含む状態の負極の湿質量、及び水洗、乾燥した後の負極の乾燥質量を測定する方法によって行った。このとき、前記負極の湿質量から乾燥質量を差し引いた値を負極が含有する電解液量とし、前記電解液量を負極の乾燥質量で除し、百分率で表した値を負極含液率とした。
Moreover, in the negative electrode (hydrogen storage alloy negative electrode) of the battery A described above, the negative electrode liquid content expressed as a percentage obtained by dividing the mass of the alkaline electrolyte that can be retained by the negative electrode itself by the dry mass of the negative electrode. Is preferably 7% or more.
The liquid content was measured by a method in which the negative electrode was taken out from the battery, and the wet mass of the negative electrode containing the electrolyte solution and the dry mass of the negative electrode after washing and drying were measured. At this time, the value obtained by subtracting the dry mass from the wet mass of the negative electrode was defined as the amount of electrolyte contained in the negative electrode, the amount of the electrolyte was divided by the dry mass of the negative electrode, and the value expressed as a percentage was defined as the negative electrode liquid content. .

実施例1〜5,比較例1〜10
1.正極の作製
水酸化ニッケル粉末90重量部、水酸化コバルト粉末10重量部、および酸化亜鉛粉末3重量部からなる混合粉末に、濃度0.2重量%のHPC(ヒドロキシプロピルセルロース)水溶液50重量部を添加・混練して、正極活物質スラリーを得た。この活物質スラリーを、約600g/m2の目付と95%の多孔度を有する発泡ニッケル基材に充填・乾燥した後、この発泡ニッケル基板をロール圧延してから裁断し、4/5SCサイズのニッケル水素二次電池用であって、帯状の非焼結式正極を作製した。
Examples 1-5, Comparative Examples 1-10
1. Preparation of positive electrode 50 parts by weight of a 0.2 wt% aqueous HPC (hydroxypropylcellulose) solution was added to a mixed powder comprising 90 parts by weight of nickel hydroxide powder, 10 parts by weight of cobalt hydroxide powder, and 3 parts by weight of zinc oxide powder. Addition and kneading were performed to obtain a positive electrode active material slurry. This active material slurry is filled and dried in a foamed nickel base material having a basis weight of about 600 g / m 2 and a porosity of 95%, and then the foamed nickel substrate is rolled and then cut. A band-shaped non-sintered positive electrode was produced for a nickel metal hydride secondary battery.

2.負極の作製
Mm(ミッシュメタル)等の金属粉末を所定の組成比となるよう秤量・混合して得られた原料粉末を、高周波溶解炉にて溶解して水素吸蔵合金インゴットを鋳造した。次に、このインゴットに温度1000℃で10時間の熱処理を施した後、インゴットを機械粉砕してから篩い分けして、それぞれ表1に示した組成及び平均粒径を有する複数の水素吸蔵合金粉末を作製した。
2. Production of Negative Electrode A raw material powder obtained by weighing and mixing metal powder such as Mm (Misch Metal) so as to have a predetermined composition ratio was melted in a high-frequency melting furnace to cast a hydrogen storage alloy ingot. Next, the ingot was subjected to a heat treatment at a temperature of 1000 ° C. for 10 hours, and then the ingot was mechanically pulverized and sieved to obtain a plurality of hydrogen storage alloy powders having the compositions and average particle sizes shown in Table 1, respectively. Was made.

それから、各合金粉末99重量部に対して、PVP(ポリビニルピロリドン)0.5重量部及びPEO(ポリエチレンオキシド)0.5重量部を、適量の水とともに添加して混練し、負極活物質スラリーを作製した。そして、この負極活物質スラリーを、負極芯体としてのパンチングメタル基板の両面に塗着・乾燥した後、このパンチングメタル基板をロール圧延してから所定寸法の帯状に裁断した。ついで、裁断したパンチングメタル基板における一側縁部の負極合剤を掻き落として負極芯体の突出部(リード部)を形成し、4/5SCサイズのニッケル水素二次電池用であって、実施例1〜5及び比較例1〜10の水素吸蔵合金負極を作製した。 Then, with respect to 99 parts by weight of each alloy powder, 0.5 parts by weight of PVP (polyvinylpyrrolidone) and 0.5 parts by weight of PEO (polyethylene oxide) are added together with an appropriate amount of water and kneaded to prepare a negative electrode active material slurry. Produced. And after apply | coating and drying this negative electrode active material slurry on both surfaces of the punching metal board | substrate as a negative electrode core, this punching metal board | substrate was roll-rolled and cut | judged to the strip | belt shape of a predetermined dimension. Next, the negative electrode mixture on one side edge of the cut punching metal substrate is scraped off to form a protruding portion (lead portion) of the negative electrode core, for a 4/5 SC size nickel-hydrogen secondary battery, The hydrogen storage alloy negative electrodes of Examples 1 to 5 and Comparative Examples 1 to 10 were produced.

3.ニッケル水素二次電池の組立て及び活性化
上記のようにして作製した正極と、実施例1〜5及び比較例1〜10のうちいずれか1つの負極とを、ポリプロピレン及びポリエチレンを主成分とするポリオレフィン系の不織布からなるセパレータを介して巻回して電極群を作製し、電極群を電池容器内に収納して所定の取付工程を行った。この後、電池容器内に、水酸化カリウムを主成分とする7Nのアルカリ水溶液を電解液として注入してから、電池容器を蓋板等により密封して、公称容量2000mAhの4/5SCサイズである、実施例1〜5及び比較例1〜10のニッケル水素二次電池を作製した。
3. Assembly and activation of nickel-metal hydride secondary battery A positive electrode produced as described above, and any one negative electrode of Examples 1 to 5 and Comparative Examples 1 to 10 , and a polyolefin mainly composed of polypropylene and polyethylene The electrode group was produced by winding it through a separator made of a non-woven fabric, and the electrode group was housed in a battery container and subjected to a predetermined attachment process. Thereafter, a 7N alkaline aqueous solution mainly composed of potassium hydroxide is injected into the battery container as an electrolytic solution, and then the battery container is sealed with a lid plate or the like, so that the capacity is 4/5 SC size with a nominal capacity of 2000 mAh. The nickel hydride secondary batteries of Examples 1 to 5 and Comparative Examples 1 to 10 were produced.

そして、得られた実施例1〜5及び比較例1〜10の各ニッケル水素二次電池に、200mAの電流で16時間充電した後、1時間休止してから、400mAの電流で終止電圧1.0Vまで放電させる充放電サイクルを3回行う活性化処理を施した。
4.水素吸蔵合金及び電池の評価試験
(1)得られた実施例1〜5及び比較例1〜10の各水素吸蔵合金粉末について、温度40℃の雰囲気下で、水素吸蔵量(H/M)が0.5のときの解離圧を水素平衡圧として測定し、この結果を表1に示した。
The nickel hydride secondary batteries obtained in Examples 1 to 5 and Comparative Examples 1 to 10 were charged with a current of 200 mA for 16 hours, rested for 1 hour, and then terminated with a current of 400 mA. The activation process which performs the charge / discharge cycle which discharges to 0V 3 times was performed.
4). Hydrogen Storage Alloy and Battery Evaluation Test (1) For each of the obtained hydrogen storage alloy powders of Examples 1 to 5 and Comparative Examples 1 to 10, the hydrogen storage amount (H / M) is 40 ° C. in an atmosphere. The dissociation pressure at 0.5 was measured as the hydrogen equilibrium pressure, and the results are shown in Table 1.

各水素吸蔵合金粉末の水素平衡圧は、JIS H7201(1991)「水素吸蔵合金の圧力−組成等温線(PTC線)の測定方法」に基づき測定した。尚、測定温度は一般的な使用環境において電池が示す実使用温度の平均値である40℃とした。
また、実施例1〜5及び比較例1〜10の各ニッケル水素二次電池について、以下の評価試験を行い、これらの結果を表1に示した。そして、実施例1〜3及び比較例1〜8の試験結果(1)及び(2)をまとめて図2に示し、同じくそれらの試験結果(1)及び(3)をまとめて図3に示した。
The hydrogen equilibrium pressure of each hydrogen storage alloy powder was measured based on JIS H7201 (1991) “Method of measuring pressure-composition isotherm (PTC line) of hydrogen storage alloy”. The measurement temperature was 40 ° C., which is an average value of the actual use temperature exhibited by the battery in a general use environment.
Moreover, the following evaluation tests were done about each nickel hydride secondary battery of Examples 1-5 and Comparative Examples 1-10, and these results were shown in Table 1. And the test results (1) and (2) of Examples 1 to 3 and Comparative Examples 1 to 8 are collectively shown in FIG. 2, and the test results (1) and (3) are also shown in FIG. It was.

(2)高率放電試験
200mAの電流で16時間充電した後、1時間休止してから、30Aの電流で終止電圧0.6Vまで放電させ、放電電圧の時間変化を測定した。そして、この測定結果に基づき、放電容量の略半分を放電した時点での放電電圧(放電中間電圧)を電池の作動電圧として求めた。
(2) High-rate discharge test After charging for 16 hours at a current of 200 mA, after resting for 1 hour, it was discharged to a final voltage of 0.6 V with a current of 30 A, and the change over time in the discharge voltage was measured. And based on this measurement result, the discharge voltage (discharge intermediate voltage) at the time of discharging about half of the discharge capacity was determined as the operating voltage of the battery.

(3)高温充放電サイクル寿命試験
温度40℃の雰囲気下で、2Aの電流で−ΔV制御方式により、満充電となるまで充電した後、1時間休止してから、15Aの電流で終止電圧0.6Vまで放電させる電池容量測定を、測定された電池容量が最初に測定された電池容量の60%以下になるまで、測定間に1時間の休止をおいて繰り返し行ない、その繰り返した数を充放電サイクル寿命として計数した。
(3) High-temperature charge / discharge cycle life test In an atmosphere at a temperature of 40 ° C., the battery was charged to full charge with a current of 2 A by a −ΔV control method, paused for 1 hour, and then terminated at 0 A with a current of 15 A. Repeat the battery capacity measurement to discharge to 6 V with a one-hour pause between measurements until the measured battery capacity is 60% or less of the initially measured battery capacity. Counted as discharge cycle life.

Figure 0004979178
Figure 0004979178

表1、図2及び図3からは以下のことが明らかである。
水素吸蔵合金の水素平衡圧が0.03〜0.10MPaになるようにLa量を質量比で30〜50%、Mn量をモル比で0.50〜0.20とし、さらに平均粒径を60μmの水素吸蔵合金を用いた比較例1〜5は、いずれも高率放電特性(作動電圧)が水素平衡圧の上昇とともに若干の増大傾向を示すものの、いずれも1.000V未満であり、また充電サイクル寿命特性についても300サイクル以下であった。特に水素平衡圧の高い水素吸蔵合金を用いた比較例3〜5は大幅な充放電サイクル寿命の低下を招いた。この原因として以下のようなことが分かっている。即ち、電池を高温で充放電を繰り返すことにより、合金の水素平衡圧が高いほど充電時の負極からの水素解離が起こりやすくなり、電池内の内圧上昇を招き、電解液が電池外へ漏液して、枯渇が進むことにより内部抵抗の上昇を生じさせていることが分かった。
From Table 1, FIG. 2 and FIG. 3, the following is clear.
The amount of La is 30 to 50% by mass ratio, the amount of Mn is 0.50 to 0.20 by mole ratio so that the hydrogen equilibrium pressure of the hydrogen storage alloy is 0.03 to 0.10 MPa, and the average particle size is In Comparative Examples 1 to 5 using a 60 μm hydrogen storage alloy, all of the high-rate discharge characteristics (operating voltage) showed a slight increasing tendency as the hydrogen equilibrium pressure increased, but all were less than 1.000 V. The charge cycle life characteristics were also 300 cycles or less. In particular, Comparative Examples 3 to 5 using a hydrogen storage alloy having a high hydrogen equilibrium pressure caused a significant decrease in charge / discharge cycle life. The following are known as the cause of this. That is, by repeatedly charging and discharging the battery at a high temperature, the higher the hydrogen equilibrium pressure of the alloy, the easier the hydrogen dissociates from the negative electrode during charging, leading to an increase in the internal pressure of the battery, and the electrolyte leaks out of the battery. As a result, it was found that the internal resistance was increased by the depletion.

次に、比較例1で用いた水素吸蔵合金の平均粒径を40μm、30μmまでそれぞれ低減したものを用いた比較例6及び7は、高率放電特性がいずれも1.000V未満で、小粒径化による大きな向上は見られなった。また、充放電サイクル寿命特性も280サイクル未満となり、比較例1より低下した。ここで充放電サイクル試験終了後電池を解体し、負極から水素吸蔵合金を取り出して、これに含まれる酸素濃度を測定したところ、平均粒径がより小さいものほど酸素濃度が上昇していることが分かった。即ち、水素吸蔵合金の平均粒径が小さいものほど、水素吸蔵合金の酸化による電解液の消費が増大し、枯渇が進んで高温サイクル寿命特性の低下を招いていることがわかった。   Next, Comparative Examples 6 and 7 using the hydrogen storage alloy used in Comparative Example 1 with the average particle size reduced to 40 μm and 30 μm, respectively, have high rate discharge characteristics of less than 1.000 V, There has been no significant improvement due to diameter. Moreover, the charge / discharge cycle life characteristics were less than 280 cycles, which was lower than that of Comparative Example 1. Here, after completion of the charge / discharge cycle test, the battery was disassembled, the hydrogen storage alloy was taken out of the negative electrode, and the oxygen concentration contained therein was measured. The smaller the average particle size, the higher the oxygen concentration. I understood. That is, it was found that the smaller the average particle size of the hydrogen storage alloy, the more the electrolyte was consumed due to the oxidation of the hydrogen storage alloy, and the depletion progressed, leading to a decrease in high-temperature cycle life characteristics.

次に、比較例7及び8は高率放電特性が1.000V未満であるのに対し、La量質量比が30〜50%、Mn量のモル比が0.20〜0.40、水素平衡圧が0.06MPa以上、平均粒径が30μm以下の水素吸蔵合金を用いた実施例1〜4は、高率放電特性が1.000Vを大きく上回った。これは水素平衡圧の上昇に伴い、水素吸蔵合金表面の水素濃度が増大するとともに、小粒径化によって反応面積が増加した結果、これらの相乗効果によって放電性がより高められたからであると考える。また、充放電サイクル寿命特性についても比較例7及び8が250サイクル未満であるのに対し、実施例1〜4はいずれも340サイクル以上である。これは、水素吸蔵合金を小粒径化しても、水素平衡圧を高めたことにより、合金表面において水素がより多く存在する雰囲気が形成され、合金酸化が抑制されたためであると考えられる。 Next, while the Comparative Examples 7 and 8 is less than the high-rate discharge characteristics is 1.000V, La amount mass ratio of 30-50%, the molar ratio of Mn content 0.20 to 0.40, hydrogen In Examples 1 to 4 using a hydrogen storage alloy having an equilibrium pressure of 0.06 MPa or more and an average particle size of 30 μm or less, the high rate discharge characteristics greatly exceeded 1.000V. This is because the hydrogen concentration on the surface of the hydrogen storage alloy increases with the increase of the hydrogen equilibrium pressure, and the reaction area increases as a result of the reduction in particle size. . Moreover, as for the charge / discharge cycle life characteristics, Comparative Examples 7 and 8 have less than 250 cycles, whereas Examples 1 to 4 all have 340 cycles or more. This is presumably because, even when the hydrogen storage alloy was made smaller in size, an atmosphere in which more hydrogen was present was formed on the alloy surface due to the increased hydrogen equilibrium pressure, and the alloy oxidation was suppressed.

次に、Mn量のモル比が0.50の水素吸蔵合金を用いた比較例9及び10は、高率放電特性が1.000V未満で、充電サイクル寿命特性についても200サイクル前後と短寿命である。また、Alによって水素平衡圧を高めた場合においても、これら特性の改善は見られなかった。一方、Mn量のモル比を0.40まで低減し、平均粒径を30μmとした水素吸蔵合金を用いた実施例5は、高率放電特性が1.000V以上で、かつ充電サイクル寿命特性も300サイクル以上と良好な結果が得られた。これは、Mn量が0.50と多い場合は、Mnの電解液への溶解と酸化による腐食が顕著なため、水素平衡圧を高めたとしても、腐食を抑制するまでには至らないが、Mn量を0.40まで低減した場合では、このようなことが起こらなかったためであると考える。   Next, Comparative Examples 9 and 10 using a hydrogen storage alloy having a molar ratio of Mn of 0.50 have a high rate discharge characteristic of less than 1.000 V, and a charge cycle life characteristic of about 200 cycles and a short life. is there. Further, even when the hydrogen equilibrium pressure was increased with Al, these characteristics were not improved. On the other hand, Example 5 using a hydrogen storage alloy in which the molar ratio of the amount of Mn was reduced to 0.40 and the average particle size was 30 μm had a high rate discharge characteristic of 1.000 V or more and a charge cycle life characteristic. Good results of 300 cycles or more were obtained. This is because, when the amount of Mn is as large as 0.50, corrosion due to dissolution and oxidation of Mn in the electrolytic solution is remarkable, so even if the hydrogen equilibrium pressure is increased, corrosion is not suppressed. It is considered that this did not occur when the amount of Mn was reduced to 0.40.

以上のように、Aサイト成分中のLa量を質量比で30〜50%、かつBサイト成分中のMn量をモル比で0.20〜0.40の範囲で、水素平衡圧を0.06MPaとなるように水素吸蔵合金の組成を選択し、平均粒径を30μm以下とすることが好ましいと言える。
更に、比較例5と実施例3について、それぞれ負極含液率を評価したところ、いずれも約7%であったが、比較例5に対し負極含液率が約8%になるように電池内に注入する電解液を増量すると、内圧上昇に伴う漏液が増大し、充放電サイクル寿命が約30サイクル低下した。これに対し、実施例3に対し負極含液率が8%となる液量まで増量を行った場合は、寿命が約20サイクル向上した。
As described above, the hydrogen equilibrium pressure is set at 0. 0 in the range of La content in the A site component of 30 to 50% by mass and Mn content in the B site component of 0.20 to 0.40 in molar ratio. It can be said that the composition of the hydrogen storage alloy is selected so as to be 06 MPa, and the average particle size is preferably 30 μm or less.
Further, when the negative electrode liquid content was evaluated for each of Comparative Example 5 and Example 3, both were about 7%, but in comparison with Comparative Example 5, the negative electrode liquid content was about 8%. When the amount of electrolyte injected into the battery was increased, the leakage due to the increase in internal pressure increased, and the charge / discharge cycle life decreased by about 30 cycles. On the other hand, when the amount of the negative electrode liquid content was increased to 8% with respect to Example 3, the life was improved by about 20 cycles.

また、比較例5と実施例3について、電池内に注入する電解液濃度を7Nから8Nに増加した場合も上記と同様の傾向が見られ、比較例5においては約20サイクルの寿命低下し、実施例3については約20サイクル向上した。したがって、負極含液率は7%以上、電解液濃度は7N以上とすることが望ましい。
なお、本発明は上述した一実施形態例及び実施例に限定されることはなく、種々変形が可能であって、例えば、電池容器、安全弁等の構造は格段限定されることはなく、また、負極に芯体突出部を設ける代わりに、負極の最外周面と電池容器の内周壁とを直接接触させてもよい。
Further, for Comparative Example 5 and Example 3, when the concentration of the electrolyte injected into the battery was increased from 7N to 8N, a tendency similar to the above was observed, and in Comparative Example 5, the life decreased by about 20 cycles, About Example 3, it improved about 20 cycles. Therefore, it is desirable that the negative electrode liquid content is 7% or more and the electrolyte concentration is 7N or more.
The present invention is not limited to the above-described embodiment and examples, and various modifications are possible. For example, the structure of the battery container, the safety valve, etc. is not particularly limited, Instead of providing the core protrusion on the negative electrode, the outermost peripheral surface of the negative electrode and the inner peripheral wall of the battery container may be brought into direct contact.

本発明の一実施形態例のニッケル水素二次電池を一部断面にて示した斜視図。The perspective view which showed the nickel hydride secondary battery of one embodiment of this invention in the partial cross section. 水素平衡圧と高温充放電サイクル寿命との関係を示したグラフである。It is the graph which showed the relationship between hydrogen equilibrium pressure and high temperature charge / discharge cycle life. 水素平衡圧と高率放電特性との関係を示したグラフである。It is the graph which showed the relationship between hydrogen equilibrium pressure and a high rate discharge characteristic.

符号の説明Explanation of symbols

10 電池容器
21 電極群
22 正極
24 負極
26 セパレータ
DESCRIPTION OF SYMBOLS 10 Battery container 21 Electrode group 22 Positive electrode 24 Negative electrode 26 Separator

Claims (4)

Aサイトを占めるAサイト成分と、Bサイトを占めるBサイト成分とを含むAB型の水素吸蔵合金からなる密閉型アルカリ蓄電池用水素吸蔵合金粉末であって、
前記水素吸蔵合金は、25μm以上30μm以下の平均粒径を有するとともに40℃におけるH/M=0.5の時の水素平衡圧が0.06MPa以上であり、
前記Aサイト成分は、La元素、Ce元素、Pr元素およびNd元素のみからなり、前記Aサイト成分における前記La元素の質量濃度は30〜50質量%であり、
前記Bサイト成分は、Ni元素、Mn元素、Co元素およびAl元素のみからなり、前記Mn元素は、前記Aサイト成分1モルに対し0.2〜0.4モル含まれており、
前記Co元素及びAl元素は、前記Aサイト成分1モルに対し両元素の総和で0.3〜1.0モル含まれていることを特徴とする密閉型アルカリ蓄電池用水素吸蔵合金粉末。
A hydrogen storage alloy powder for a sealed alkaline storage battery comprising an AB 5 type hydrogen storage alloy containing an A site component occupying an A site and a B site component occupying a B site,
The hydrogen storage alloy has an average particle diameter of 25 μm or more and 30 μm or less and a hydrogen equilibrium pressure at 40 ° C. when H / M = 0.5 is 0.06 MPa or more,
The A site component consists of only La element, Ce element, Pr element and Nd element, and the mass concentration of the La element in the A site component is 30 to 50% by mass,
The B site component consists of only Ni element, Mn element, Co element and Al element, and the Mn element is contained in an amount of 0.2 to 0.4 mol per mol of the A site component,
The hydrogen storage alloy powder for a sealed alkaline storage battery, wherein the Co element and the Al element are contained in an amount of 0.3 to 1.0 mol in total with respect to 1 mol of the A site component.
電池缶内に負極及び正極がアルカリ電解液とともに収容された密閉型アルカリ蓄電池において、
前記負極は請求項1記載のアルカリ蓄電池用水素吸蔵合金粉末を含有していることを特徴とする密閉型アルカリ蓄電池。
In a sealed alkaline storage battery in which a negative electrode and a positive electrode are housed together with an alkaline electrolyte in a battery can,
The said negative electrode contains the hydrogen storage alloy powder for alkaline storage batteries of Claim 1, The sealed alkaline storage battery characterized by the above-mentioned.
前記負極が保液可能な前記アルカリ電解液の質量を、前記負極の乾燥質量で除した値を百分率で示した負極含液率が7%以上であることを特徴とする請求項2記載の密閉型アルカリ蓄電池。   3. The hermetically sealed structure according to claim 2, wherein the negative electrode liquid content, expressed as a percentage of the mass of the alkaline electrolyte that can be retained by the negative electrode divided by the dry mass of the negative electrode, is 7% or more. Type alkaline storage battery. 前記アルカリ電解液の濃度が7N以上であることを特徴とする請求項2または3記載の密閉型アルカリ蓄電池。   4. The sealed alkaline storage battery according to claim 2, wherein the concentration of the alkaline electrolyte is 7N or more.
JP2003271110A 2003-07-04 2003-07-04 Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same Expired - Fee Related JP4979178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271110A JP4979178B2 (en) 2003-07-04 2003-07-04 Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271110A JP4979178B2 (en) 2003-07-04 2003-07-04 Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same

Publications (2)

Publication Number Publication Date
JP2005032573A JP2005032573A (en) 2005-02-03
JP4979178B2 true JP4979178B2 (en) 2012-07-18

Family

ID=34209085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271110A Expired - Fee Related JP4979178B2 (en) 2003-07-04 2003-07-04 Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same

Country Status (1)

Country Link
JP (1) JP4979178B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886462B1 (en) * 2005-05-26 2007-07-20 Accumulateurs Fixes ACTIVE MATERIAL COMPOSITION AND ALKALINE ELECTROLYTE BATTERY
JP5119578B2 (en) * 2005-07-04 2013-01-16 株式会社Gsユアサ Nickel metal hydride battery and manufacturing method thereof
JP5252920B2 (en) * 2005-09-21 2013-07-31 三洋電機株式会社 Alkaline storage battery
JP5241188B2 (en) 2007-09-28 2013-07-17 三洋電機株式会社 Alkaline storage battery system
JP6736065B2 (en) 2018-11-15 2020-08-05 日本重化学工業株式会社 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery using the same
US20220190327A1 (en) 2019-03-26 2022-06-16 Japan Metals And Chemicals Co., Ltd. Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using the same as negative electrode, and vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3343413B2 (en) * 1993-09-21 2002-11-11 東芝電池株式会社 Alkaline secondary battery
JP2965475B2 (en) * 1994-02-28 1999-10-18 松下電器産業株式会社 Hydrogen storage alloy
JP3369824B2 (en) * 1995-12-07 2003-01-20 三洋電機株式会社 Hydrogen storage alloy electrode
JP3245072B2 (en) * 1996-09-25 2002-01-07 松下電器産業株式会社 Hydrogen storage alloy electrode and method for producing the same
JPH10228902A (en) * 1996-12-11 1998-08-25 Shin Etsu Chem Co Ltd Negative electrode for nickel-hydrogen storage battery
JP3966607B2 (en) * 1997-05-01 2007-08-29 日立マクセル株式会社 Sealed hydride secondary battery
JPH1140189A (en) * 1997-07-22 1999-02-12 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JPH10326614A (en) * 1998-05-28 1998-12-08 Toshiba Corp Metal oxide-hydrogen battery
JP2000090921A (en) * 1998-09-14 2000-03-31 Toshiba Battery Co Ltd Alkaline secondary battery
JP2001266864A (en) * 2000-03-15 2001-09-28 Santoku Corp Hydrogen-storing alloy, alloy powder for nickel hydrogen secondary battery negative electrode and negative electrode for the same
JP4743997B2 (en) * 2001-05-17 2011-08-10 パナソニック株式会社 Hydrogen storage alloy electrode
EP1324407A1 (en) * 2001-12-17 2003-07-02 Mitsui Mining & Smelting Co., Ltd Hydrogen storage material
JP2003317712A (en) * 2002-04-19 2003-11-07 Sanyo Electric Co Ltd Nickel - hydrogen storage battery

Also Published As

Publication number Publication date
JP2005032573A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JPH0528992A (en) Nickel positive pole for alkali storage battery and nickel-hydrogen storage battery using nickel positive pole
JP5959003B2 (en) Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery
JP4309494B2 (en) Nickel metal hydride secondary battery
CN106463786B (en) Nickel-hydrogen secondary battery
JP4979178B2 (en) Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same
JP6057369B2 (en) Nickel metal hydride secondary battery
JP3925963B2 (en) Alkaline secondary battery
JP3557063B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2004235088A (en) Nickel-hydrogen storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
US6924062B2 (en) Nickel-metal hydride storage battery
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JPH11135112A (en) Positive electrode for alkaline storage battery
JP4236399B2 (en) Alkaline storage battery
JP3547980B2 (en) Nickel-hydrogen storage battery
JPH0690922B2 (en) Sealed alkaline storage battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3561597B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS6332856A (en) Closed nickel-hydrogen storage battery
JP2005129382A (en) Nickel-hydrogen storage battery and hybrid electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350