JP4971222B2 - Vehicle safety device - Google Patents

Vehicle safety device Download PDF

Info

Publication number
JP4971222B2
JP4971222B2 JP2008054834A JP2008054834A JP4971222B2 JP 4971222 B2 JP4971222 B2 JP 4971222B2 JP 2008054834 A JP2008054834 A JP 2008054834A JP 2008054834 A JP2008054834 A JP 2008054834A JP 4971222 B2 JP4971222 B2 JP 4971222B2
Authority
JP
Japan
Prior art keywords
vehicle
course
contact
estimated
oncoming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008054834A
Other languages
Japanese (ja)
Other versions
JP2009211497A (en
Inventor
弘之 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008054834A priority Critical patent/JP4971222B2/en
Publication of JP2009211497A publication Critical patent/JP2009211497A/en
Application granted granted Critical
Publication of JP4971222B2 publication Critical patent/JP4971222B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、車両用走行安全装置に関する。   The present invention relates to a vehicle travel safety device.

自車の進路および対象物の進路を推定し、自車および対象物が同一時刻に所定の範囲内にあるときにこれらが衝突すると判定する技術がある(例えば、特許文献1参照)。
特開平7−262497号公報
There is a technique for estimating the course of the own vehicle and the course of the object, and determining that they collide when the vehicle and the object are within a predetermined range at the same time (see, for example, Patent Document 1).
JP-A-7-262497

ところで、カーブの入口手前における自車の推定進路は直線に算出され、カーブの入口手前における対向車の推定進路も直線に算出されるため、このような状況で自車および対向車がカーブにさしかかると、自車と対向車とが接触すると予測され、自車が不必要な接触回避作動を行ってしまうことがある。   By the way, the estimated course of the vehicle ahead of the entrance of the curve is calculated in a straight line, and the estimated course of the oncoming vehicle in front of the entrance of the curve is also calculated in a straight line. Therefore, in this situation, the host vehicle and the oncoming vehicle approach the curve. Then, it is predicted that the host vehicle and the oncoming vehicle come into contact with each other, and the host vehicle may perform unnecessary contact avoidance operation.

したがって、本発明は、自車と対向車との接触の可能性を、より的確に判定することができる車両用走行安全装置の提供を目的とする。   Therefore, an object of the present invention is to provide a vehicle travel safety device that can more accurately determine the possibility of contact between the host vehicle and the oncoming vehicle.

上記目的を達成するために、請求項1に係る発明は、所定の時間間隔で自車周辺の物体を検知する物体検知手段(例えば実施形態におけるレーダ装置2)と、該物体検知手段の検知結果に基づいて自車と物体との相対関係を算出する相対関係算出手段(例えば実施形態における相対関係算出部10)と、自車の走行状態を検出する走行状態検出手段(例えば実施形態における自車各種センサ3)と、前記相対関係算出手段により算出された前記相対関係および前記走行状態検出手段により検出された前記走行状態に基づいて前記物体のうちの対向車の進路を推定する第1の進路推定手段(例えば実施形態における対向車進路推定部11)と、前記走行状態検出手段により検出された前記走行状態に基づいて自車の進路を推定する第2の進路推定手段(例えば実施形態における自車進路推定部)と、前記第1の進路推定手段により推定された前記対向車の推定進路および前記第2の進路推定手段により推定された自車の推定進路に基づいて前記対向車と自車との接触の可能性の有無を判定する接触可能性判定手段(例えば実施形態における接触可能性判定部15)と、該接触可能性判定手段により接触の可能性が有ると判定された場合に前記相対関係に基づいて前記対向車と自車とが接触するまでの時間である接触時間を算出する接触時間算出手段(例えば実施形態における接触時間算出部16)と、該接触時間算出手段で算出された前記接触時間が所定の閾値以下になった場合に自車に備えた接触回避手段(例えば実施形態における警報装置5、自動ブレーキ装置6)を作動させる回避支援手段(例えば実施形態における回避方法設定部17、車両制御部18)と、を備えた車両用走行安全装置(例えば実施形態における車両用走行安全装置1)であって、前記対向車以外且つ自車以外の他車の進路を算出する進路算出手段(例えば実施形態における前走車進路算出部13)と、該進路算出手段により算出された前記他車の進路に基づいて前記対向車の推定進路を補正する進路補正手段(例えば実施形態における進路補正部14)と、を備え、前記接触可能性判定手段は、前記進路補正手段で補正された補正進路に対する前記対向車の位置の偏差が所定の偏差閾値以上の場合に接触の可能性有りと判定することを特徴としている。   In order to achieve the above object, the invention according to claim 1 is directed to an object detection means (for example, the radar device 2 in the embodiment) for detecting an object around the own vehicle at predetermined time intervals, and a detection result of the object detection means. A relative relationship calculating means (for example, the relative relationship calculating unit 10 in the embodiment) for calculating the relative relationship between the own vehicle and the object based on the vehicle, and a traveling state detecting means for detecting the traveling state of the own vehicle (for example, the own vehicle in the embodiment). Various courses 3) and a first course for estimating the course of an oncoming vehicle among the objects based on the relative relation calculated by the relative relation calculating means and the running state detected by the running state detecting means. Second route estimation for estimating the route of the host vehicle based on the travel state detected by the estimation unit (for example, the oncoming vehicle route estimation unit 11 in the embodiment) and the travel state detection unit. Means (for example, the own vehicle course estimating unit in the embodiment), the estimated course of the oncoming vehicle estimated by the first course estimation means, and the estimated course of the host vehicle estimated by the second course estimation means. There is a possibility of contact by the contact possibility determination means (for example, the contact possibility determination section 15 in the embodiment) for determining the possibility of contact between the oncoming vehicle and the own vehicle and the contact possibility determination means. A contact time calculation means (for example, a contact time calculation unit 16 in the embodiment) that calculates a contact time that is a time until the oncoming vehicle and the host vehicle come into contact with each other based on the relative relationship. When the contact time calculated by the contact time calculation means becomes a predetermined threshold value or less, the contact avoidance means (for example, the alarm device 5 and the automatic brake device 6 in the embodiment) provided in the vehicle is activated. A vehicle travel safety device (for example, the vehicle travel safety device 1 in the embodiment) including avoidance support means (for example, the avoidance method setting unit 17 and the vehicle control unit 18 in the embodiment), and other than the oncoming vehicle and Route calculation means for calculating the route of a vehicle other than the own vehicle (for example, the preceding vehicle route calculation unit 13 in the embodiment), and estimation of the oncoming vehicle based on the route of the other vehicle calculated by the route calculation means A course correction means for correcting the course (for example, a course correction unit 14 in the embodiment), and the contact possibility determination means has a predetermined deviation of the position of the oncoming vehicle with respect to the corrected course corrected by the course correction means. It is characterized in that it is determined that there is a possibility of contact when the deviation threshold value is equal to or greater than.

請求項2に係る発明は、前記補正進路の曲率を算出する曲率算出手段(例えば実施形態における曲率算出部20)を備え、前記接触可能性判定手段は、前記曲率算出手段で算出された前記補正進路の曲率の増加に応じて前記偏差閾値を大きくすることを特徴としている。   The invention according to claim 2 includes curvature calculation means (for example, a curvature calculation unit 20 in the embodiment) for calculating the curvature of the correction course, and the contact possibility determination means is the correction calculated by the curvature calculation means. The deviation threshold is increased in accordance with an increase in the curvature of the course.

請求項1に係る発明によれば、相対関係算出手段が物体検知手段の検知結果に基づいて自車と物体との相対関係を算出し、走行状態検出手段が自車の走行状態を検出すると、これら自車と物体との相対関係および自車の走行状態に基づいて、第1の進路推定手段が、物体のうちの対向車の進路を推定することになり、走行状態に基づいて、第2の進路推定手段が自車の進路を推定することになる。そして、対向車の推定進路および自車の推定進路に基づいて、接触可能性判定手段が、対向車と自車との接触の可能性の有無を判定することになるが、その際に、進路補正手段が、進路算出手段により算出される、対向車以外且つ自車以外の他車の進路に基づいて対向車の推定進路を補正することになり、接触可能性判定手段が、進路補正手段で補正された補正進路に対する対向車の位置の偏差が偏差閾値以上の場合に接触の可能性有りと判定することになる。このように、対向車以外且つ自車以外の他車の進路に基づいて対向車の推定進路を補正し、補正した場合には、補正した推定進路に対する対向車の位置の偏差から接触の可能性を判定するため、対向車の推定進路を的確に推定でき、自車と対向車との接触の可能性を、より的確に判定することができる。   According to the first aspect of the present invention, when the relative relationship calculating means calculates the relative relationship between the vehicle and the object based on the detection result of the object detecting means, and the traveling state detecting means detects the traveling state of the own vehicle, Based on the relative relationship between the host vehicle and the object and the traveling state of the host vehicle, the first course estimating means estimates the course of the oncoming vehicle of the object, and based on the traveling state, The route estimating means estimates the route of the own vehicle. Then, based on the estimated course of the oncoming vehicle and the estimated course of the own vehicle, the contact possibility determining means determines whether or not there is a possibility of contact between the oncoming vehicle and the own vehicle. The correcting means corrects the estimated course of the oncoming vehicle based on the course of the vehicle other than the oncoming vehicle and other than the own vehicle calculated by the course calculating means, and the contact possibility determining means is the course correcting means. When the deviation of the position of the oncoming vehicle with respect to the corrected correction course is equal to or greater than the deviation threshold, it is determined that there is a possibility of contact. In this way, when the estimated course of the oncoming vehicle is corrected based on the course of the other vehicle other than the oncoming vehicle and the vehicle other than the own vehicle, the possibility of contact from the deviation of the position of the oncoming vehicle with respect to the corrected estimated course is corrected. Therefore, the estimated course of the oncoming vehicle can be accurately estimated, and the possibility of contact between the own vehicle and the oncoming vehicle can be more accurately determined.

請求項2に係る発明によれば、接触可能性判定手段が、曲率算出手段で算出された補正進路の曲率の増加に応じて偏差閾値を大きくするため、補正進路の曲率に応じて、自車と対向車との接触の可能性を、一層的確に判定することができる。   According to the second aspect of the invention, the contact possibility determination means increases the deviation threshold according to the increase in the curvature of the corrected course calculated by the curvature calculation means. The possibility of contact with the oncoming vehicle can be determined more accurately.

以下、本発明の一実施形態に係る車両用走行安全装置について添付図面を参照しながら説明する。   Hereinafter, a vehicle travel safety device according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1に示すように、本実施形態における車両用走行安全装置1は、レーダ装置(物体検知手段)2と、自車各種センサ(走行状態検出手段)3と、制御装置4と、警報装置(接触回避手段)5と、自動ブレーキ装置(接触回避手段)6と、で構成されている。また、制御装置4は、相対関係算出部(相対関係算出手段)10と、対向車進路推定部(第1の進路推定手段)11と、自車進路推定部(第2の進路推定手段)12と、前走車進路算出部(進路算出手段)13と、進路補正部(進路補正手段)14と、接触可能性判定部(接触可能性判定手段)15と、接触時間算出部(接触時間算出手段)16と、回避方法設定部(回避支援手段)17と、車両制御部(回避支援手段)18とで構成されている。   As shown in FIG. 1, a vehicular travel safety device 1 according to the present embodiment includes a radar device (object detection means) 2, various sensors (travel state detection means) 3, a control device 4, and an alarm device ( A contact avoiding means) 5 and an automatic brake device (contact avoiding means) 6 are included. In addition, the control device 4 includes a relative relationship calculation unit (relative relationship calculation unit) 10, an oncoming vehicle route estimation unit (first route estimation unit) 11, and a host vehicle route estimation unit (second route estimation unit) 12. A preceding vehicle course calculation section (course calculation means) 13, a course correction section (course correction means) 14, a contact possibility determination section (contact possibility determination means) 15, and a contact time calculation section (contact time calculation). (Means) 16, an avoidance method setting unit (avoidance support unit) 17, and a vehicle control unit (avoidance support unit) 18.

レーダ装置2は、所定の時間間隔(例えば、0.1秒間隔)で自車周辺の物体を検知するものであり、具体的には、交差車両、前走車、対向車や障害物等の物体の情報を取得する。レーダ装置2は、例えばレーザ光やミリ波等の電磁波によるビームスキャン型のレーダ30と、自車進行方向前方の検知領域に向けて電磁波を発信すると共に、この発信された電磁波が検知領域内に存在する物体によって反射されることで生じた反射波を受信して相対関係算出部10に出力する制御部31とを備えて構成されている。レーダ装置2の検知領域は、三次元での角度方向に対して設定された複数の走査領域に分割されており、制御部31は複数の走査領域に分割された検知領域を走査する。   The radar device 2 detects an object around the own vehicle at a predetermined time interval (for example, every 0.1 second). Specifically, the radar device 2 includes an intersection vehicle, a preceding vehicle, an oncoming vehicle, an obstacle, and the like. Get object information. The radar apparatus 2 transmits an electromagnetic wave toward a beam scanning radar 30 using, for example, an electromagnetic wave such as a laser beam or a millimeter wave, and a detection area in front of the traveling direction of the vehicle, and the transmitted electromagnetic wave is within the detection area. And a control unit 31 that receives a reflected wave generated by being reflected by an existing object and outputs the reflected wave to the relative relationship calculation unit 10. The detection area of the radar apparatus 2 is divided into a plurality of scanning areas set with respect to the three-dimensional angular direction, and the control unit 31 scans the detection area divided into the plurality of scanning areas.

ここで、図2に示すように、レーダ装置2は、自車VAの前端部における左右方向中央に取り付けられている。そして、レーダ装置2は、自車周辺の前方に前方ほど拡大する平面視形状の所定の検知領域Aに渡り電磁波を送信することになる。そして、レーダ装置2の制御部31は、取得した各情報を相対関係算出部10へ向けて出力する。   Here, as shown in FIG. 2, the radar apparatus 2 is attached to the center in the left-right direction at the front end of the host vehicle VA. The radar apparatus 2 transmits electromagnetic waves over a predetermined detection area A having a planar view shape that expands forward in front of the periphery of the vehicle. And the control part 31 of the radar apparatus 2 outputs each acquired information toward the relative relationship calculation part 10. FIG.

自車各種センサ3は、自車の走行状態の情報として、例えば自車の速度(車速)を検出する車速センサや、ヨー角(車両重心の上下方向軸回りの回転角度)やヨーレート(車両重心の上下方向軸回りの回転角速度)を検出するヨーレートセンサや、自車の横加速度(以下、横Gと略す)を検出する横Gセンサや、操舵角(運転者が入力した操舵角度の方向と大きさ)を検出する操舵角センサや、実舵角(操舵輪の転舵角の方向と大きさ)を検出する舵角センサや、操舵トルクを検出する操舵トルクセンサを備えている。また、人工衛星を利用して自車の位置や交差点情報等の道路データを測定するためのGPS(Global Positioning System)信号等の測位信号や自車の外部の情報発信装置から発信される位置信号等、さらには、適宜のジャイロセンサや加速度センサ等の検出結果に基づいて自車の現在位置および進行方向を検出する位置センサや、方向指示器やブレーキのオン/オフ状態を検知する各センサ等を備えて構成されている。これらのセンサからなる自車各種センサ3は、自車の走行状態を検出するものであり、上述した各センサで取得した情報を相対関係算出部10、自車進路推定部12、対向車進路推定部11および前走車進路算出部13へ向けて出力する。   The own vehicle various sensors 3 include, for example, a vehicle speed sensor that detects the speed (vehicle speed) of the own vehicle, a yaw angle (a rotation angle around the vertical axis of the vehicle center of gravity), and a yaw rate (vehicle center of gravity) as information on the traveling state of the own vehicle. A yaw rate sensor that detects a rotational angular velocity around the vertical axis of the vehicle, a lateral G sensor that detects a lateral acceleration of the vehicle (hereinafter abbreviated as lateral G), a steering angle (the direction of the steering angle input by the driver) A steering angle sensor for detecting the steering angle, a steering angle sensor for detecting the actual steering angle (direction and size of the steering wheel turning angle), and a steering torque sensor for detecting the steering torque. In addition, a positioning signal such as a GPS (Global Positioning System) signal for measuring road data such as the position of the own vehicle or intersection information using an artificial satellite, or a position signal transmitted from an information transmitting device outside the own vehicle Furthermore, a position sensor that detects the current position and traveling direction of the vehicle based on detection results of an appropriate gyro sensor, an acceleration sensor, etc., and each sensor that detects the on / off state of a direction indicator and a brake, etc. It is configured with. The own vehicle various sensors 3 comprising these sensors are for detecting the traveling state of the own vehicle, and the information acquired by each of the sensors described above is used to calculate the relative relationship calculation unit 10, the own vehicle route estimation unit 12, and the oncoming vehicle route estimation. It outputs toward the part 11 and the preceding vehicle course calculation part 13.

相対関係算出部10は、レーダ装置2および自車各種センサ3から出力された情報を受信し、これらの情報に基づいて自車と自車前方の物体(前走車および対向車等)との相対位置および相対速度よりなる相対関係を前記各時間間隔毎に算出するものである。相対関係算出部10は、算出した情報を対向車進路推定部11、前走車進路算出部13、接触可能性判定部15および接触時間算出部16へ向けて出力する。   The relative relationship calculation unit 10 receives information output from the radar device 2 and the various sensors 3 of the host vehicle, and based on these information, the vehicle and an object in front of the host vehicle (front vehicle, oncoming vehicle, etc.) A relative relationship consisting of a relative position and a relative speed is calculated for each time interval. The relative relationship calculation unit 10 outputs the calculated information to the oncoming vehicle route estimation unit 11, the preceding vehicle route calculation unit 13, the contact possibility determination unit 15, and the contact time calculation unit 16.

対向車進路推定部11は、相対関係算出部10により算出された自車と自車前方の物体との相対関係と、自車各種センサ3により検出された自車の走行状態とに基づいて、自車前方の物体のうちの対向車の将来の進路である対向車推定進路を推定する。つまり、相対関係算出部10により算出された自車と自車前方の物体との相対関係と、自車各種センサ3により検出された自車の走行状態とに基づいて自車の方向に走行する対向車を判定し、この対向車と自車との過去の相対関係から、対向車の将来の進路である対向車推定進路を推定する。対向車進路推定部11は、推定した対向車推定進路の情報を進路補正部14および接触可能性判定部15に出力する。   The oncoming vehicle course estimation unit 11 is based on the relative relationship between the host vehicle and the object ahead of the host vehicle calculated by the relative relationship calculation unit 10 and the traveling state of the host vehicle detected by the host vehicle various sensors 3. An oncoming vehicle estimated course that is a future course of an oncoming vehicle among objects ahead of the host vehicle is estimated. That is, the vehicle travels in the direction of the host vehicle based on the relative relationship between the host vehicle and the object ahead of the host vehicle calculated by the relative relationship calculation unit 10 and the traveling state of the host vehicle detected by the host vehicle various sensors 3. The oncoming vehicle is determined, and the oncoming vehicle estimated course, which is the future course of the oncoming vehicle, is estimated from the past relative relationship between the oncoming vehicle and the host vehicle. The oncoming vehicle route estimation unit 11 outputs information on the estimated oncoming vehicle estimated route to the route correction unit 14 and the contact possibility determination unit 15.

自車進路推定部12は、自車各種センサ3により検出された自車の過去の走行状態および現在の走行状態に基づいて自車の将来の進路である自車推定進路を推定する。自車進路推定部12は、推定した自車推定進路の情報を接触可能性判定部15に出力する。   The own vehicle course estimating unit 12 estimates the own car estimated course which is the future course of the own car based on the past running state and the current running state of the own vehicle detected by the own vehicle various sensors 3. The own vehicle course estimating unit 12 outputs information on the estimated own vehicle estimated course to the contact possibility determining unit 15.

前走車進路算出部13は、相対関係算出部10により算出された自車と自車前方の物体との相対関係と、自車各種センサ3により検出された自車の走行状態とに基づいて、自車前方の物体のうちの前走車(対向車以外且つ自車以外の他車)の進路を算出する。つまり、相対関係算出部10により算出された自車と自車前方の物体との相対関係と、自車各種センサ3により検出された自車の走行状態とに基づいて自車と同方向に進行する前走車を判定し、この前走車と自車との過去の相対関係から、前走車の進路軌跡である前走車進路を算出する。なお、この前走車と自車との過去の相対関係から、前走車進路に加えて、前走車の将来の進路である前走車推定進路を推定しても良い。前走車進路算出部13は、算出した前走車進路の情報を進路補正部14に出力する。   The preceding vehicle course calculation unit 13 is based on the relative relationship between the host vehicle and the object ahead of the host vehicle calculated by the relative relationship calculation unit 10 and the traveling state of the host vehicle detected by the various sensors 3 of the host vehicle. The course of the preceding vehicle (other than the oncoming vehicle and other vehicle than the host vehicle) among the objects ahead of the host vehicle is calculated. That is, the vehicle travels in the same direction as the vehicle based on the relative relationship between the vehicle calculated by the relative relationship calculation unit 10 and the object ahead of the vehicle and the traveling state of the vehicle detected by the various sensors 3 of the vehicle. The preceding vehicle is determined, and the preceding vehicle course, which is the course of the preceding vehicle, is calculated from the past relative relationship between the preceding vehicle and the host vehicle. In addition to the previous vehicle path, the previous vehicle estimated path that is the future path of the previous vehicle may be estimated from the past relative relationship between the previous vehicle and the host vehicle. The preceding vehicle course calculation unit 13 outputs information on the calculated preceding vehicle course to the course correction unit 14.

進路補正部14は、前走車進路算出部13により算出された前走車進路に基づいて、対向車進路推定部11で推定された対向車推定進路を補正して補正進路とする。例えば、前走車進路算出部13により算出された前走車進路がカーブである場合に、このカーブ直前およびこのカーブ内に位置する対向車の対向車推定進路を、この前走車進路から推定される推定進路に置き換えた補正進路とする。カーブが右曲がりであるか左曲がりであるかに応じて、自車から見て前走車に対し右側を走行する対向車の推定進路を算出する。また、進路補正部14は、前走車進路算出部13により算出された前走車進路が直線路である場合に、この直線路の直前およびこの直線路内に位置する対向車の対向車推定進路を、この前走車進路から推定される、自車から見てその右側に位置する直線状の推定進路に置き換えた補正進路とする。進路補正部14は、補正進路の情報を接触可能性判定部15に出力する。   The course correction unit 14 corrects the oncoming vehicle estimated path estimated by the oncoming vehicle path estimation unit 11 based on the preceding vehicle path calculated by the preceding vehicle path calculation unit 13 to obtain a corrected path. For example, when the preceding vehicle route calculated by the preceding vehicle route calculation unit 13 is a curve, the oncoming vehicle estimated route of the oncoming vehicle located immediately before and within this curve is estimated from the preceding vehicle route. The corrected course is replaced with the estimated course. Depending on whether the curve is a right turn or a left turn, an estimated course of an oncoming vehicle traveling on the right side of the preceding vehicle as viewed from the host vehicle is calculated. Further, when the preceding vehicle course calculated by the preceding vehicle course calculation unit 13 is a straight road, the course correction unit 14 estimates the oncoming vehicle immediately before this straight road and the oncoming vehicle located in the straight road. The course is a corrected course that is estimated from the preceding vehicle course and replaced with a linear estimated course located on the right side of the vehicle. The course correction unit 14 outputs the corrected course information to the contact possibility determination unit 15.

接触可能性判定部15は、対向車進路推定部11により推定された対向車推定進路と、自車進路推定部12により推定された自車推定進路と、相対関係算出部10により算出された対向車と自車との相対関係とに基づいて、対向車と自車との接触の可能性の有無を判定する。例えば、対向車推定進路と自車推定進路とが交差し、且つ対向車と自車とが同時刻に交差領域に存在する場合に、対向車と自車との接触の可能性があると判定し、対向車推定進路と自車推定進路とが交差しない場合および交差しても対向車と自車とが同時刻に交差領域に存在しない場合には、対向車と自車との接触の可能性がないと判定する。   The contact possibility determination unit 15 includes an oncoming vehicle estimated route estimated by the oncoming vehicle route estimation unit 11, an own vehicle estimated route estimated by the own vehicle route estimation unit 12, and the facing calculated by the relative relationship calculation unit 10. The possibility of contact between the oncoming vehicle and the host vehicle is determined based on the relative relationship between the vehicle and the host vehicle. For example, it is determined that there is a possibility of contact between the oncoming vehicle and the own vehicle when the estimated oncoming route intersects with the estimated own vehicle and the oncoming vehicle and the own vehicle exist in the intersection area at the same time. On the other hand, if the oncoming vehicle estimated route does not intersect with the own vehicle estimated route, and if the oncoming vehicle and the own vehicle do not exist in the intersection area at the same time, the oncoming vehicle and the own vehicle can contact each other. It is determined that there is no sex.

また、接触可能性判定部15は、進路補正部14によって、前走車進路に基づいて対向車推定進路が補正された場合、相対関係算出部10により算出された相対関係から割り出される対向車の位置の、補正された補正進路に対する偏差が、自車推定進路に向かう方向に所定の偏差閾値以上ずれた場合に接触の可能性有りと判定する。他方、補正進路に対する偏差が、自車推定進路に向かう方向に所定の偏差閾値以上ずれていない場合には、接触の可能性なしと判定する。   In addition, the contact possibility determination unit 15 determines the oncoming vehicle calculated from the relative relationship calculated by the relative relationship calculation unit 10 when the oncoming vehicle estimated route is corrected by the route correction unit 14 based on the preceding vehicle path. It is determined that there is a possibility of contact when the deviation of the position of the position of the position deviates by a predetermined deviation threshold or more in the direction toward the vehicle estimated course. On the other hand, when the deviation with respect to the correction course is not deviated by a predetermined deviation threshold or more in the direction toward the vehicle estimation path, it is determined that there is no possibility of contact.

接触時間算出部16は、接触可能性判定部15によって対向車と自車との接触の可能性が有ると判定された場合に、相対関係算出部10で算出した対向車と自車との相対関係に基づいて対向車および自車の接触までの時間である接触時間Trを算出する。この接触時間Trは、例えば、対向車と自車との相対距離を相対速度で除算することにより算出される。接触時間算出部16は、算出結果を回避方法設定部17へ向けて出力する。   When the contact possibility determination unit 15 determines that there is a possibility of contact between the oncoming vehicle and the host vehicle, the contact time calculation unit 16 compares the oncoming vehicle and the host vehicle calculated by the relative relationship calculation unit 10. Based on the relationship, a contact time Tr which is a time until the oncoming vehicle and the own vehicle contact is calculated. This contact time Tr is calculated, for example, by dividing the relative distance between the oncoming vehicle and the host vehicle by the relative speed. The contact time calculation unit 16 outputs the calculation result to the avoidance method setting unit 17.

回避方法設定部17は、接触可能性判定部15により接触の可能性が有ると判定され、接触時間算出部16で算出された接触時間Trが所定の閾値以下になった場合に、車両制御部18によって自車に備えた警報装置5および自動ブレーキ装置6の少なくともいずれか一方を作動させる。つまり、回避方法設定部17は、接触時間算出部16から出力された接触時間Trに基づいて、警報装置5および自動ブレーキ装置6による接触回避制御のうち取るべき手法を決定する。そして、回避方法設定部17は、この情報を車両制御部18へ向けて出力する。   The avoidance method setting unit 17 determines that there is a possibility of contact by the contact possibility determination unit 15 and the vehicle control unit when the contact time Tr calculated by the contact time calculation unit 16 is equal to or less than a predetermined threshold. 18 activates at least one of the alarm device 5 and the automatic brake device 6 provided in the own vehicle. That is, the avoidance method setting unit 17 determines a method to be taken in the contact avoidance control by the alarm device 5 and the automatic brake device 6 based on the contact time Tr output from the contact time calculation unit 16. Then, the avoidance method setting unit 17 outputs this information to the vehicle control unit 18.

車両制御部18は、回避方法設定部17から出力された情報を受信し、この情報に基づいて警報装置5および自動ブレーキ装置6を作動させる。   The vehicle control unit 18 receives the information output from the avoidance method setting unit 17 and activates the alarm device 5 and the automatic brake device 6 based on this information.

なお、警報装置5は、視覚的に警報を発生させる表示装置および聴覚的に警報を発生させる音声発生装置である。警報装置5は、車両制御部18から入力される制御信号に応じて、表示装置に所定の警報情報を表示したり、所定の警報灯を点滅させることによって、物体との接触発生の可能性があることを乗員に認識させたり、音声発生装置によって、車両制御部18から入力される制御信号に応じて所定の警報音や音声案内等を出力する。   Note that the alarm device 5 is a display device that visually generates an alarm and a sound generator that audibly generates an alarm. The alarm device 5 may cause contact with an object by displaying predetermined alarm information on a display device or blinking a predetermined alarm light in accordance with a control signal input from the vehicle control unit 18. An occupant is made to recognize that a certain alarm sound or voice guidance is output according to a control signal input from the vehicle control unit 18 by a voice generator.

自動ブレーキ装置6は、車両制御部18から入力される制御信号に応じて自車の制動装置を駆動するものであり、弱いブレーキをかけて自車に比較的小さい第1設定値(例えば0.25G)の減速度を発生させ、この減速度を体感させることによって物体との接触の可能性があることを乗員に認識させたり(警報ブレーキ作動)、強いブレーキをかけて自車に第1設定値よりも大きな第2設定値(例えば0.6G)の減速度を発生させ、物体と自車との接触を回避したりする(緊急ブレーキ作動)。   The automatic brake device 6 drives the braking device of the own vehicle in response to a control signal input from the vehicle control unit 18, and applies a weak brake to a relatively small first set value (for example, 0. 25G), and letting the occupant recognize that there is a possibility of contact with an object by experiencing this deceleration (alarm brake operation) or applying a strong brake to the vehicle's first setting A deceleration of a second set value (for example, 0.6 G) larger than the value is generated to avoid contact between the object and the vehicle (emergency brake operation).

次に、図3のフローチャートに基づいて、本実施形態に係る車両用走行安全装置1の制御内容を説明する。なお、図3のフローチャートの処理が所定の時間間隔で実行される。   Next, the control content of the vehicle travel safety device 1 according to the present embodiment will be described based on the flowchart of FIG. Note that the processing of the flowchart of FIG. 3 is executed at predetermined time intervals.

まず、ステップS1において、自車各種センサ3およびレーダ装置2の検知情報を取り込み、ステップS2において、相対関係算出部10が、レーダ装置2および自車各種センサ3から出力された情報に基づいて自車と自車前方の物体(前走車および対向車等)との相対位置および相対速度よりなる相対関係を算出し、この相対関係と、自車各種センサ3により検出された自車の走行状態とに基づいて対向車進路推定部11が図2に示す対向車VBの対向車推定進路XBを推定する。つまり、自車各種センサ3およびレーダ装置2の検知情報から、対向車VBのそれまでの走行軌跡Xbを算出し、この対向車VBの走行軌跡Xbから、将来の対向車推定進路XBを推定する。また、自車各種センサ3により検出された自車VAの走行状態に基づいて自車進路推定部12が自車推定進路XAを推定する。   First, in step S 1, detection information of the own vehicle various sensors 3 and the radar device 2 is fetched, and in step S 2, the relative relationship calculation unit 10 performs automatic detection based on information output from the radar device 2 and the own vehicle various sensors 3. The relative relationship between the relative position and relative speed between the vehicle and the object in front of the host vehicle (the preceding vehicle, the oncoming vehicle, etc.) is calculated, and this relative relationship and the traveling state of the host vehicle detected by the various sensors 3 of the host vehicle Based on the above, the oncoming vehicle route estimation unit 11 estimates the oncoming vehicle estimated route XB of the oncoming vehicle VB shown in FIG. In other words, the travel trajectory Xb of the oncoming vehicle VB up to that time is calculated from the detection information of the various sensors 3 of the host vehicle and the radar device 2, and the future oncoming vehicle estimated course XB is estimated from the travel trajectory Xb of the oncoming vehicle VB. . In addition, the own vehicle route estimating unit 12 estimates the own vehicle estimated route XA based on the traveling state of the own vehicle VA detected by the own vehicle various sensors 3.

ステップS3において、ステップS2で割り出した対向車推定進路XBおよび自車推定進路XAから、接触可能性判定部15が、対向車VBと自車VAとの接触の可能性の有無を判定する。ステップS3において対向車と自車との接触の可能性が有ると判定されると、ステップS4において、接触時間算出部16が、対向車と自車とが接触するまでの接触時間Trを算出する。なお、ステップS3において、対向車と自車との接触の可能性がないと判定されると、今回の処理を終了する。   In step S3, from the oncoming vehicle estimated route XB and the own vehicle estimated route XA determined in step S2, the contact possibility determination unit 15 determines whether or not there is a possibility of contact between the oncoming vehicle VB and the own vehicle VA. If it is determined in step S3 that there is a possibility of contact between the oncoming vehicle and the own vehicle, in step S4, the contact time calculating unit 16 calculates a contact time Tr until the oncoming vehicle contacts the own vehicle. . If it is determined in step S3 that there is no possibility of contact between the oncoming vehicle and the host vehicle, the current process is terminated.

ステップS4で接触時間Trが算出されると、ステップS5において、前走車進路算出部13が、相対関係算出部10により算出された自車と自車前方の物体との相対関係と、自車各種センサ3により検出された自車の走行状態とに基づいて前走車の有無を判定し、前走車がいなければ、ステップS6において、ステップS2で対向車進路推定部11が推定した対向車推定進路から、対向車がカーブを走行中であるか否かを判定する。カーブを走行中でなければ、ステップS7において、接触時間Trが警報作動しきい値Ta1(例えば1.5秒)以下であるか否か判定し、接触時間Trが警報作動しきい値Ta1以下である場合には、ステップS8において、回避方法設定部17が、警報装置5により警報を発生させる指令信号を車両制御部18へ向けて出力する。すると、車両制御部18が警報装置5を作動させ、第1段階の警報としてアラーム表示およびアラーム音声により警報を発生させることになる。他方、ステップS7において、接触時間Trが警報作動しきい値Ta1以下でない場合には、警報は不要と判断して今回の処理を終了する。   When the contact time Tr is calculated in step S4, in step S5, the preceding vehicle course calculation unit 13 calculates the relative relationship between the host vehicle and the object ahead of the host vehicle calculated by the relative relationship calculation unit 10, and the host vehicle. The presence or absence of a preceding vehicle is determined based on the traveling state of the vehicle detected by the various sensors 3. If there is no preceding vehicle, the oncoming vehicle estimated by the oncoming vehicle course estimation unit 11 in step S2 in step S6. It is determined from the estimated course whether the oncoming vehicle is traveling on a curve. If the vehicle is not traveling on the curve, it is determined in step S7 whether or not the contact time Tr is equal to or less than an alarm activation threshold value Ta1 (for example, 1.5 seconds). In some cases, the avoidance method setting unit 17 outputs a command signal for causing the alarm device 5 to generate an alarm toward the vehicle control unit 18 in step S8. Then, the vehicle control unit 18 activates the alarm device 5 and generates an alarm by an alarm display and an alarm sound as a first stage alarm. On the other hand, if the contact time Tr is not less than or equal to the alarm activation threshold Ta1 in step S7, it is determined that no alarm is required, and the current process is terminated.

ステップS8の後、回避方法設定部17は、ステップS9において、接触時間Trが警報作動しきい値Ta1よりも短い警報ブレーキ作動しきい値Tb1(例えば1.3秒)以下であるか否かを判定し、接触時間Trが警報ブレーキ作動しきい値Tb1以下である場合には、ステップS10において、自動ブレーキ装置6により警報ブレーキ作動を行う指令信号を車両制御部18へ向けて出力する。すると、車両制御部18が自動ブレーキ装置6を作動させ、警報ブレーキ作動を行う。つまり、ステップS8での警報装置5による警報に併せて、第2段階の警報として、自車を第1設定値(例えば0.25G)の減速度で減速させ、この減速度を体感させることによって対向車との接触発生の可能性があることを乗員に認識させる。他方、ステップS9において、接触時間Trが警報作動しきい値Tb1以下でない場合には、ステップS8における警報装置5のみの警報とし、警報ブレーキ作動は不要と判断して今回の処理を終了する。   After step S8, the avoidance method setting unit 17 determines in step S9 whether or not the contact time Tr is equal to or shorter than an alarm brake operation threshold Tb1 (eg, 1.3 seconds) shorter than the alarm operation threshold Ta1. If it is determined that the contact time Tr is equal to or shorter than the alarm brake operation threshold value Tb1, a command signal for performing the alarm brake operation by the automatic brake device 6 is output to the vehicle control unit 18 in step S10. Then, the vehicle control part 18 operates the automatic brake device 6, and performs an alarm brake operation. That is, in addition to the warning by the warning device 5 in step S8, as a second-stage warning, the host vehicle is decelerated at a deceleration of a first set value (for example, 0.25G), and this deceleration is experienced. Let the occupant recognize that there is a possibility of contact with the oncoming vehicle. On the other hand, if the contact time Tr is not less than or equal to the alarm activation threshold value Tb1 in step S9, only the alarm device 5 is alarmed in step S8, the alarm brake operation is determined to be unnecessary, and the current process is terminated.

ステップS10の後、回避方法設定部17は、ステップS11において、接触時間Trが警報ブレーキ作動しきい値Tb1よりも短い緊急ブレーキ作動しきい値Tc1(例えば1.0秒)以下であるか否かを判定し、接触時間Trが緊急ブレーキ作動しきい値Tc1以下である場合には、ステップS12において、回避方法設定部17が、自動ブレーキ装置6により緊急ブレーキ作動を行う指令信号を車両制御部18へ向けて出力する。すると、車両制御部18が自動ブレーキ装置6を作動させ、緊急ブレーキ作動を行う。つまり、自車を第1設定値よりも大きな第2設定値(例えば0.6G)の減速度で減速させて自車と対向車との接触を回避する。そして、回避方法設定部17は、ステップS13において、予め設定された作動時間T(例えば1秒)が経過した後に自動ブレーキ装置6による緊急ブレーキ作動を解除する指令信号を車両制御部18へ向けて出力する。すると、車両制御部18が自動ブレーキ装置6の作動を解除する。ステップS11において、接触時間Trが緊急ブレーキ作動しきい値Tc1以下でなければ、ステップS8における警報装置5の警報およびステップS10における自動ブレーキ装置6の警報ブレーキ作動のみとし、緊急ブレーキ作動は不要と判断して今回の処理を終了する。   After step S10, the avoidance method setting unit 17 determines whether or not the contact time Tr is equal to or shorter than the emergency brake operation threshold Tc1 (for example, 1.0 second) shorter than the alarm brake operation threshold Tb1 in step S11. If the contact time Tr is equal to or shorter than the emergency brake operation threshold value Tc1, the avoidance method setting unit 17 sends a command signal for performing the emergency brake operation by the automatic brake device 6 to the vehicle control unit 18 in step S12. Output to. Then, the vehicle control unit 18 activates the automatic brake device 6 to perform an emergency brake operation. That is, the host vehicle is decelerated at a deceleration of a second set value (for example, 0.6 G) larger than the first set value to avoid contact between the host vehicle and the oncoming vehicle. In step S13, the avoidance method setting unit 17 sends a command signal for releasing the emergency brake operation by the automatic brake device 6 to the vehicle control unit 18 after a preset operation time T (for example, 1 second) has elapsed. Output. Then, the vehicle control unit 18 releases the operation of the automatic brake device 6. In step S11, if the contact time Tr is not less than or equal to the emergency brake operation threshold value Tc1, it is determined that only the alarm of the alarm device 5 in step S8 and the alarm brake operation of the automatic brake device 6 in step S10 are unnecessary, and the emergency brake operation is unnecessary. And this process is complete | finished.

上記したステップS6において、対向車がカーブを走行中であれば、ステップS14において、接触時間Trが、上記した警報作動しきい値Ta1よりも所定時間t(例えば0.3秒)だけ短い警報作動しきい値Ta2(例えば1.2秒)以下であるか否か判定し、接触時間Trが警報作動しきい値Ta2以下である場合には、ステップS15において、回避方法設定部17が、警報装置5により警報を発生させる指令信号を車両制御部18へ向けて出力する。すると、車両制御部18が警報装置5を作動させ、第1段階の警報としてアラーム表示およびアラーム音声により警報を発生させることになる。他方、ステップS14において、接触時間Trが警報作動しきい値Ta2以下でない場合には、警報は不要と判断して今回の処理を終了する。   If the oncoming vehicle is running on the curve in step S6, the alarm operation is shorter in step S14 by a predetermined time t (for example, 0.3 seconds) than the alarm operation threshold Ta1 in step S14. It is determined whether or not the threshold value Ta2 (for example, 1.2 seconds) or less, and if the contact time Tr is equal to or less than the alarm activation threshold value Ta2, in step S15, the avoidance method setting unit 17 sets the warning device 5 outputs a command signal for generating an alarm to the vehicle control unit 18. Then, the vehicle control unit 18 activates the alarm device 5 and generates an alarm by an alarm display and an alarm sound as a first stage alarm. On the other hand, if the contact time Tr is not less than or equal to the alarm activation threshold Ta2 in step S14, it is determined that no alarm is required, and the current process is terminated.

ステップS15の後、回避方法設定部17は、ステップS16において、接触時間Trが、上記した警報ブレーキ作動しきい値Tb1よりも所定時間tだけ短い警報ブレーキ作動しきい値Tb2(例えば1.0秒)以下であるか否かを判定し、接触時間Trが警報ブレーキ作動しきい値Tb2以下である場合には、ステップS17において、自動ブレーキ装置6により警報ブレーキ作動を行う指令信号を車両制御部18へ向けて出力する。すると、車両制御部18が自動ブレーキ装置6を作動させ、警報ブレーキ作動を行う。つまり、ステップS15での警報装置5による警報に併せて、第2段階の警報として、自車を第1設定値(例えば0.25G)の減速度で減速させ、この減速度を体感させることによって対向車との接触発生の可能性があることを乗員に認識させる。他方、ステップS16において、接触時間Trが警報作動しきい値Tb2以下でない場合には、ステップS15における警報装置5のみの警報とし、警報ブレーキ作動は不要と判断して今回の処理を終了する。   After step S15, the avoidance method setting unit 17 in step S16, the alarm brake operation threshold value Tb2 (for example, 1.0 second) in which the contact time Tr is shorter than the above-described alarm brake operation threshold value Tb1 by a predetermined time t. ) If the contact time Tr is less than or equal to the alarm brake operation threshold value Tb2, a command signal for performing the alarm brake operation by the automatic brake device 6 is sent to the vehicle control unit 18 in step S17. Output to. Then, the vehicle control part 18 operates the automatic brake device 6, and performs an alarm brake operation. In other words, in addition to the alarm by the alarm device 5 in step S15, as a second-stage alarm, the host vehicle is decelerated at a deceleration of the first set value (for example, 0.25G), and this deceleration is experienced. Let the occupant recognize that there is a possibility of contact with the oncoming vehicle. On the other hand, if the contact time Tr is not less than or equal to the alarm activation threshold value Tb2 in step S16, only the alarm device 5 is alarmed in step S15, the alarm brake operation is determined to be unnecessary, and the current process is terminated.

ステップS17の後、回避方法設定部17は、ステップS18において、接触時間Trが上記した緊急ブレーキ作動しきい値Tc1よりも所定時間tだけ短い緊急ブレーキ作動しきい値Tc2(例えば0.7秒)以下であるか否かを判定し、接触時間Trが緊急ブレーキ作動しきい値Tc2以下である場合には、ステップS19において、回避方法設定部17が、自動ブレーキ装置6により緊急ブレーキ作動を行う指令信号を車両制御部18へ向けて出力する。すると、車両制御部18が自動ブレーキ装置6を作動させ、緊急ブレーキ作動を行う。つまり、自車を第1設定値よりも大きな第2設定値(例えば0.6G)の減速度で減速させて自車と物体との接触を回避する。そして、回避方法設定部17は、ステップS20において、予め設定された作動時間T(例えば1秒)が経過した後に自動ブレーキ装置6による緊急ブレーキ作動を解除する指令信号を車両制御部18へ向けて出力する。すると、車両制御部18が自動ブレーキ装置6の作動を解除する。ステップS18において、接触時間Trが緊急ブレーキ作動しきい値Tc2以下でなければ、ステップS15における警報装置5の警報およびステップS17における自動ブレーキ装置6の警報ブレーキ作動のみとし、緊急ブレーキ作動は不要と判断して今回の処理を終了する。   After step S17, the avoidance method setting unit 17 in step S18 has an emergency brake activation threshold Tc2 (for example, 0.7 seconds) in which the contact time Tr is shorter than the emergency brake activation threshold Tc1 by a predetermined time t. If the contact time Tr is equal to or shorter than the emergency brake operation threshold value Tc2, the avoidance method setting unit 17 instructs the automatic brake device 6 to perform the emergency brake operation in step S19. The signal is output to the vehicle control unit 18. Then, the vehicle control unit 18 activates the automatic brake device 6 to perform an emergency brake operation. That is, the vehicle is decelerated at a deceleration of a second setting value (for example, 0.6 G) larger than the first setting value to avoid contact between the vehicle and the object. In step S20, the avoidance method setting unit 17 sends a command signal for releasing the emergency brake operation by the automatic brake device 6 to the vehicle control unit 18 after a preset operation time T (for example, 1 second) has elapsed. Output. Then, the vehicle control unit 18 releases the operation of the automatic brake device 6. In step S18, if the contact time Tr is not less than or equal to the emergency brake operation threshold value Tc2, only the alarm of the alarm device 5 in step S15 and the alarm brake operation of the automatic brake device 6 in step S17 are determined, and it is determined that the emergency brake operation is unnecessary. And this process is complete | finished.

以上により、ステップS6において対向車がカーブを走行中でない場合つまり直進中である場合の、警報装置5の警報、自動ブレーキ装置6の警報ブレーキ作動および自動ブレーキ装置6の緊急ブレーキ作動のそれぞれの作動タイミングよりも、ステップS6において対向車がカーブを走行中である場合の、警報装置5の警報、自動ブレーキ装置6の警報ブレーキ作動および自動ブレーキ装置6の緊急ブレーキ作動のそれぞれの作動タイミングを所定時間tだけ遅くすることになる。これは、対向車がカーブ走行中の場合、通常走行と逸脱走行との区別がつかないため、過剰作動抑制のために作動タイミングを遅らせるものである。   As described above, each of the alarm of the alarm device 5, the alarm brake operation of the automatic brake device 6, and the emergency brake operation of the automatic brake device 6 when the oncoming vehicle is not traveling on the curve in step S6, that is, when traveling straight. Rather than the timing, when the oncoming vehicle is traveling on a curve in step S6, the respective operation timings of the alarm of the alarm device 5, the alarm brake operation of the automatic brake device 6, and the emergency brake operation of the automatic brake device 6 are determined for a predetermined time. It will be delayed by t. In this case, when the oncoming vehicle is traveling in a curve, it is impossible to distinguish between normal traveling and departure traveling, and therefore the operation timing is delayed to suppress excessive operation.

上記したステップS5において、前走車有りと判定した場合、前走車進路算出部13が、ステップS21において、相対関係算出部10により算出された自車と前走車との相対関係から、図2に示す前走車VCの進路軌跡である前走車進路XCを算出し、算出された前走車進路XCに基づいて、進路補正部14が、対向車進路推定部11で推定された対向車VBの対向車推定進路を前走車進路に倣う進路に置き換えた補正進路XB’とする。   When it is determined in step S5 described above that there is a preceding vehicle, the preceding vehicle course calculation unit 13 obtains the figure from the relative relationship between the host vehicle and the preceding vehicle calculated by the relative relationship calculation unit 10 in step S21. 2 is calculated, and based on the calculated preceding vehicle course XC, the course correction unit 14 detects the opposite direction estimated by the oncoming vehicle course estimation unit 11. It is assumed that a corrected course XB ′ is obtained by replacing the oncoming vehicle estimated path of the vehicle VB with a path that follows the path of the preceding vehicle.

そして、ステップS22において、進路補正部14が補正した補正進路XB’から、対向車VBがカーブを走行中であるか否かを判定する。カーブを走行中であれば、ステップS23において、偏差閾値を初期値dt1(例えば0.5m)から、これより大きいdt2(例えば1.0m)に置き換えてステップS24に移行する一方、カーブを走行中でなければ、偏差閾値を初期値dt1のままとしてステップS24に移行する。   In step S22, it is determined from the corrected route XB 'corrected by the route correction unit 14 whether the oncoming vehicle VB is traveling on a curve. If the vehicle is traveling on the curve, the deviation threshold value is replaced with an initial value dt1 (for example, 0.5 m) in step S23 and dt2 (for example, 1.0 m) larger than this is shifted to step S24, while the vehicle is traveling on the curve. Otherwise, the deviation threshold value remains at the initial value dt1, and the process proceeds to step S24.

ステップS24において、接触可能性判定部15が、相対関係算出部10により算出された自車と対向車との相対関係から、対向車の実際の位置を割り出し、図2に示すこの対向車VBの実際の位置と補正進路XB’との偏差を算出して、この偏差が自車推定進路XAに向かう側への偏差であり且つ設定された偏差閾値(dt1またはdt2)以上であるか否かを判定する。そして、偏差が自車推定進路XA側への偏差でない場合と、自車推定進路XA側への偏差であって設定された偏差閾値以上でない場合とについては、接触可能性判定部15が、対向車と自車との接触の可能性がないと判定して、今回の処理を終了する。つまり、図2に対向車VBで示すように、対向車推定進路で判定してしまうと、自車との接触有りと判定されてしまう場合であっても、偏差が偏差閾値以上でない場合には、接触の可能性が有ると判定しないのである。   In step S24, the contact possibility determination unit 15 determines the actual position of the oncoming vehicle from the relative relationship between the host vehicle and the oncoming vehicle calculated by the relative relationship calculating unit 10, and the oncoming vehicle VB shown in FIG. A deviation between the actual position and the corrected course XB ′ is calculated, and whether or not this deviation is a deviation toward the vehicle estimated course XA and is equal to or larger than a set deviation threshold (dt1 or dt2). judge. Then, the contact possibility determination unit 15 determines whether the deviation is not a deviation toward the own vehicle estimated route XA side or a deviation toward the own vehicle estimated route XA side and not more than the set deviation threshold value. It is determined that there is no possibility of contact between the vehicle and the vehicle, and the current process is terminated. That is, as shown by the oncoming vehicle VB in FIG. 2, if the deviation is not equal to or greater than the deviation threshold even if it is determined that there is contact with the own vehicle if it is determined on the oncoming vehicle estimated course. It is not determined that there is a possibility of contact.

他方、ステップS24において、対向車の実際の位置と補正進路との偏差が、自車推定進路XA側への偏差であり且つ設定された偏差閾値以上であれば、対向車と自車との接触の可能性があると判定する。そして、ステップS7に進み、対向車がカーブを走行中でない場合と同様のタイミングで警報等を行う。これにより、対向車がカーブを走行中であっても、警報等の作動タイミングを遅らせる必要がなく、高い接触回避効果を得ることができる。   On the other hand, in step S24, if the deviation between the actual position of the oncoming vehicle and the correction course is a deviation toward the own car estimated course XA and is equal to or greater than the set deviation threshold, the contact between the oncoming car and the own car. It is determined that there is a possibility. Then, the process proceeds to step S7, where an alarm or the like is given at the same timing as when the oncoming vehicle is not traveling on the curve. Thereby, even if the oncoming vehicle is traveling on a curve, it is not necessary to delay the operation timing such as an alarm, and a high contact avoidance effect can be obtained.

以上により、前走車があって、その前走車進路から対向車推定進路を補正進路に補正した場合に、この補正進路は、より正確であることから、この補正進路からの対向車の実際の位置と補正進路との偏差を算出し、この偏差が、自車側への偏差であり且つ設定された偏差閾値以上であれば、対向車と自車との接触の可能性があると判定する。しかも、偏差閾値は、補正進路が偏差を生じにくい直線路である場合の方が、偏差を比較的生じ易いカーブである場合より小さくなるように設定されている。   As described above, when there is a preceding vehicle, and the oncoming vehicle estimated route is corrected to the corrected route from the preceding vehicle route, the corrected route is more accurate. The deviation between the position of the vehicle and the correction course is calculated, and if this deviation is a deviation to the own vehicle side and is equal to or greater than the set deviation threshold, it is determined that there is a possibility of contact between the oncoming vehicle and the own vehicle. To do. In addition, the deviation threshold is set to be smaller when the correction course is a straight road that is less likely to cause a deviation than when the curve is relatively easy to cause a deviation.

以上に述べた本実施形態に係る車両用走行安全装置1によれば、相対関係算出部10がレーダ装置2の検知結果に基づいて自車と物体との相対関係を算出し、自車各種センサ3が自車の走行状態を検出すると、これら自車と物体との相対関係および自車の走行状態に基づいて、対向車進路推定部11が、物体のうちの対向車の進路を推定することになり、走行状態に基づいて、自車進路推定部12が自車の進路を推定することになる。そして、対向車の推定進路および自車の推定進路に基づいて、接触可能性判定部15が、対向車と自車との接触の可能性の有無を判定することになるが、その際に、進路補正部14が、前走車進路算出部12により算出される、対向車以外且つ自車以外の前走車の進路に基づいて対向車の推定進路を補正することになり、接触可能性判定部15が、進路補正部14で補正された補正進路に対する対向車の位置の偏差が所定の偏差閾値以上の場合に接触の可能性有りと判定することになる。このように、対向車以外且つ自車以外の他車の進路に基づいて対向車の推定進路を補正し、補正した場合には、補正した推定進路に対する対向車の位置の偏差から接触の可能性を判定するため、対向車の推定進路を的確に推定でき、自車と対向車との接触の可能性を、より的確に判定することができる。   According to the vehicle travel safety device 1 according to the present embodiment described above, the relative relationship calculation unit 10 calculates the relative relationship between the own vehicle and the object based on the detection result of the radar device 2, and various sensors of the own vehicle. When 3 detects the traveling state of the host vehicle, the oncoming vehicle path estimation unit 11 estimates the path of the oncoming vehicle among the objects based on the relative relationship between the host vehicle and the object and the traveling state of the host vehicle. Thus, based on the traveling state, the own vehicle route estimation unit 12 estimates the route of the own vehicle. Then, based on the estimated course of the oncoming vehicle and the estimated course of the own vehicle, the contact possibility determination unit 15 determines whether or not there is a possibility of contact between the oncoming vehicle and the own vehicle. The course correcting unit 14 corrects the estimated course of the oncoming vehicle based on the course of the preceding vehicle other than the oncoming vehicle and other than the own vehicle, which is calculated by the preceding vehicle course calculating unit 12, and determines the possibility of contact. The unit 15 determines that there is a possibility of contact when the deviation of the position of the oncoming vehicle with respect to the corrected course corrected by the course correcting unit 14 is equal to or greater than a predetermined deviation threshold. In this way, when the estimated course of the oncoming vehicle is corrected based on the course of the other vehicle other than the oncoming vehicle and the vehicle other than the own vehicle, the possibility of contact from the deviation of the position of the oncoming vehicle with respect to the corrected estimated course is corrected. Therefore, the estimated course of the oncoming vehicle can be accurately estimated, and the possibility of contact between the own vehicle and the oncoming vehicle can be more accurately determined.

なお、進路補正部14で補正された補正進路の曲率(1/R)を算出する曲率算出部(曲率算出手段)20を設け、接触可能性判定部15が、上記ステップS23で設定するカーブ走行時の偏差閾値dt2を、図5に示すように曲率算出部20で判定された補正進路の曲率の増加に応じて大きくするマップにしたがって変更するようにしても良い。   In addition, the curvature calculation part (curvature calculation means) 20 which calculates the curvature (1 / R) of the correction course corrected by the course correction part 14 is provided, and the curve possibility set by the contact possibility determination unit 15 in the above step S23. The time deviation threshold value dt2 may be changed according to a map that increases as the curvature of the correction course determined by the curvature calculation unit 20 increases as shown in FIG.

このように構成すれば、接触可能性判定部15が、曲率算出部20で算出された補正進路の曲率の増加に応じて所定の偏差閾値dt2を大きくするため、補正進路の曲率に応じて、自車と対向車との接触の可能性を、一層的確に判定することができる。   With this configuration, the contact possibility determination unit 15 increases the predetermined deviation threshold value dt2 in accordance with the increase in the curvature of the correction path calculated by the curvature calculation unit 20, and accordingly, according to the curvature of the correction path. The possibility of contact between the own vehicle and the oncoming vehicle can be determined more accurately.

本発明の一実施形態に係る車両用走行安全装置を示すブロック図である。1 is a block diagram showing a vehicle travel safety device according to an embodiment of the present invention. 本発明の一実施形態に係る車両用走行安全装置の制御内容を説明するための図である。It is a figure for demonstrating the control content of the vehicle travel safety apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る車両用走行安全装置の制御内容の一部を示すフローチャートである。It is a flowchart which shows a part of control content of the vehicle travel safety device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る車両用走行安全装置の制御内容の残りの一部を示すフローチャートである。It is a flowchart which shows a part of remaining control content of the vehicle travel safety device which concerns on one Embodiment of this invention. 偏差閾値をカーブの曲率に応じて設定するためのマップである。It is a map for setting a deviation threshold according to the curvature of a curve.

符号の説明Explanation of symbols

1 車両用走行安全装置
2 レーダ装置(物体検知手段)
3 自車各種センサ(走行状態検出手段)
4 制御装置
5 警報装置(接触回避手段)
6 自動ブレーキ装置(接触回避手段)
10 相対関係算出部(相対関係算出手段)
11 対向車進路推定部(第1の進路推定手段)
12 自車進路推定部(第2の進路推定手段)
13 前走車進路算出部(進路算出手段)
14 進路補正部(進路補正手段)
15 接触可能性判定部(接触可能性判定手段)
16 接触時間算出部(接触時間算出手段)
17 回避方法設定部(回避支援手段)
18 車両制御部(回避支援手段)
20 曲率算出部(曲率算出手段)
VA 自車
VB 対向車
VC 前走車(他車)
1 Vehicle safety device 2 Radar device (object detection means)
3 Various sensors (traveling state detection means)
4 Control device 5 Alarm device (contact avoidance means)
6 Automatic brake device (contact avoidance means)
10 Relative relationship calculation unit (relative relationship calculation means)
11 Oncoming vehicle course estimation unit (first course estimation means)
12 Self-vehicle course estimation unit (second course estimation means)
13 Previous vehicle course calculation unit (course calculation means)
14 Course correction unit (Course correction means)
15 Contact possibility determination part (contact possibility determination means)
16 Contact time calculation part (contact time calculation means)
17 Avoidance method setting unit (evasion support means)
18 Vehicle control unit (avoidance support means)
20 Curvature calculator (curvature calculator)
VA Own car VB Oncoming car VC Previous car (other car)

Claims (2)

所定の時間間隔で自車周辺の物体を検知する物体検知手段と、
該物体検知手段の検知結果に基づいて自車と物体との相対関係を算出する相対関係算出手段と、
自車の走行状態を検出する走行状態検出手段と、
前記相対関係算出手段により算出された前記相対関係および前記走行状態検出手段により検出された前記走行状態に基づいて前記物体のうちの対向車の進路を推定する第1の進路推定手段と、
前記走行状態検出手段により検出された前記走行状態に基づいて自車の進路を推定する第2の進路推定手段と、
前記第1の進路推定手段により推定された前記対向車の推定進路および前記第2の進路推定手段により推定された自車の推定進路に基づいて前記対向車と自車との接触の可能性の有無を判定する接触可能性判定手段と、
該接触可能性判定手段により接触の可能性が有ると判定された場合に前記相対関係に基づいて前記対向車と自車とが接触するまでの時間である接触時間を算出する接触時間算出手段と、
該接触時間算出手段で算出された前記接触時間が所定の閾値以下になった場合に自車に備えた接触回避手段を作動させる回避支援手段と、
を備えた車両用走行安全装置であって、
前記対向車以外且つ自車以外の他車の進路を算出する進路算出手段と、
該進路算出手段により算出された前記他車の進路に基づいて前記対向車の推定進路を補正する進路補正手段と、
を備え、
前記接触可能性判定手段は、前記進路補正手段で補正された補正進路に対する前記対向車の位置の偏差が所定の偏差閾値以上の場合に接触の可能性有りと判定することを特徴とする車両用走行安全装置。
Object detection means for detecting objects around the vehicle at a predetermined time interval;
A relative relationship calculating means for calculating a relative relationship between the vehicle and the object based on the detection result of the object detecting means;
Traveling state detection means for detecting the traveling state of the vehicle;
First course estimating means for estimating the course of an oncoming vehicle of the object based on the relative relation calculated by the relative relation calculating means and the running state detected by the running state detecting means;
Second course estimating means for estimating the course of the host vehicle based on the running condition detected by the running condition detecting means;
Based on the estimated course of the oncoming vehicle estimated by the first course estimation means and the estimated course of the own vehicle estimated by the second course estimation means, there is a possibility of contact between the oncoming vehicle and the own vehicle. Contact possibility determination means for determining presence or absence;
A contact time calculating means for calculating a contact time, which is a time until the oncoming vehicle comes into contact with the host vehicle, based on the relative relationship when the contact possibility determining means determines that there is a possibility of contact; ,
Avoidance support means for operating the contact avoidance means provided in the host vehicle when the contact time calculated by the contact time calculation means falls below a predetermined threshold;
A vehicle travel safety device comprising:
Course calculation means for calculating the course of a vehicle other than the oncoming vehicle and other than the own vehicle;
Course correction means for correcting the estimated course of the oncoming vehicle based on the course of the other vehicle calculated by the course calculation means;
With
The contact possibility determination means determines that there is a possibility of contact when the deviation of the position of the oncoming vehicle with respect to the corrected course corrected by the course correction means is equal to or greater than a predetermined deviation threshold value. Travel safety device.
前記補正進路の曲率を算出する曲率算出手段を備え、
前記接触可能性判定手段は、前記曲率算出手段で算出された前記補正進路の曲率の増加に応じて前記偏差閾値を大きくすることを特徴とする請求項1に記載の車両用走行安全装置。
Curvature calculation means for calculating the curvature of the correction course,
The vehicle travel safety device according to claim 1, wherein the contact possibility determination unit increases the deviation threshold according to an increase in the curvature of the correction path calculated by the curvature calculation unit.
JP2008054834A 2008-03-05 2008-03-05 Vehicle safety device Expired - Fee Related JP4971222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054834A JP4971222B2 (en) 2008-03-05 2008-03-05 Vehicle safety device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054834A JP4971222B2 (en) 2008-03-05 2008-03-05 Vehicle safety device

Publications (2)

Publication Number Publication Date
JP2009211497A JP2009211497A (en) 2009-09-17
JP4971222B2 true JP4971222B2 (en) 2012-07-11

Family

ID=41184564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054834A Expired - Fee Related JP4971222B2 (en) 2008-03-05 2008-03-05 Vehicle safety device

Country Status (1)

Country Link
JP (1) JP4971222B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139756A (en) * 2013-01-21 2014-07-31 Toyota Motor Corp Drive assist device
JP5878491B2 (en) * 2013-03-27 2016-03-08 株式会社日本自動車部品総合研究所 Driving assistance device
JP5852036B2 (en) * 2013-03-27 2016-02-03 株式会社日本自動車部品総合研究所 In-vehicle device
JP7433091B2 (en) 2020-03-10 2024-02-19 日産自動車株式会社 Travel route setting method and travel route setting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137261A (en) * 2004-11-10 2006-06-01 Honda Motor Co Ltd Travel safety device for vehicle
JP4421450B2 (en) * 2004-11-22 2010-02-24 本田技研工業株式会社 Vehicle departure determination device
JP4555699B2 (en) * 2005-02-01 2010-10-06 本田技研工業株式会社 Leading vehicle recognition device
JP2006273000A (en) * 2005-03-28 2006-10-12 Advics:Kk Travel support device for vehicle
JP4531621B2 (en) * 2005-04-25 2010-08-25 本田技研工業株式会社 Vehicle travel safety device

Also Published As

Publication number Publication date
JP2009211497A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
US10864911B2 (en) Automated detection of hazardous drifting vehicles by vehicle sensors
US9527441B2 (en) Vehicle control apparatus
JP6555067B2 (en) Lane change support device
JP6269606B2 (en) Vehicle control device
JP6380920B2 (en) Vehicle control device
CN109841088B (en) Vehicle driving assistance system and method
KR20180009527A (en) Apparatus and Method for vehicle driving assistance
JPWO2013051083A1 (en) Vehicle driving support system
JP2009059082A (en) Object detection device for vehicle
JP6551866B2 (en) Driving support control device
JP2019043195A (en) Vehicle control device
JP6354090B2 (en) Contact avoidance control device and contact avoidance control method
JP4767930B2 (en) Vehicle travel safety device
JP2007128227A (en) Driver's mental state determination device and driver's mental state determination system
JP2017189989A (en) Lane keep apparatus
JP5055169B2 (en) Vehicle safety device
JP4956504B2 (en) Vehicle travel safety device
JP4971222B2 (en) Vehicle safety device
JP4235090B2 (en) Vehicle travel support device
JP5038192B2 (en) Vehicle safety device
JP4976998B2 (en) Vehicle travel safety device
JP2006024106A (en) Contact avoidance controller of vehicle
JP5178652B2 (en) Vehicle travel safety device
KR20230089780A (en) Method and apparatus for collision avoidance
JP4956321B2 (en) Vehicle object detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees