JP4967375B2 - Current control device and current control method for synchronous machine - Google Patents

Current control device and current control method for synchronous machine Download PDF

Info

Publication number
JP4967375B2
JP4967375B2 JP2006052798A JP2006052798A JP4967375B2 JP 4967375 B2 JP4967375 B2 JP 4967375B2 JP 2006052798 A JP2006052798 A JP 2006052798A JP 2006052798 A JP2006052798 A JP 2006052798A JP 4967375 B2 JP4967375 B2 JP 4967375B2
Authority
JP
Japan
Prior art keywords
coefficient
current
synchronous machine
correction coefficient
coefficients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006052798A
Other languages
Japanese (ja)
Other versions
JP2007236070A (en
Inventor
春樹 屋代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006052798A priority Critical patent/JP4967375B2/en
Publication of JP2007236070A publication Critical patent/JP2007236070A/en
Application granted granted Critical
Publication of JP4967375B2 publication Critical patent/JP4967375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、同期機の電流制御装置及び電流制御方法に関し、特に、同期機の振動の主要因であるトルク変動と騒音の主要因である半径方向節点力を共に低減可能な同期機の電流制御装置及び電流制御方法に関する。   The present invention relates to a current control device and a current control method for a synchronous machine, and in particular, current control for a synchronous machine that can reduce both torque fluctuations, which are main causes of synchronous machine vibration, and radial nodal forces, which are main causes of noise. The present invention relates to a device and a current control method.

従来、同期電動機の印加電流を制御して同期電動機のトルク変動を低減するようにした同期電動機の制御装置及び電流制御方法が提案されている(例えば、特許文献1参照)。
このものは、n相交流により駆動する同期電動機の各相に印加する印加電流として、基本電流(1次周波数電流)をK=1+Σi=12in・cos{2in(ωt+χ2in)}の式で得られる補正係数Kで補正した電流を与えて駆動する。この際、係数k2inに関して、同期電動機を正弦波電流で制御したときのトルク変動波形をフーリエ変換することにより算出される2in次成分の平均トルクに対する割合の極性を反転したものとしている。言い換えれば、この電流制御は、各相の基本電流をI=Acos(ωt)+Bsin(ωt)としたときに、2in次成分を低減する高次周波数電流を重畳した電流I′を、I′={Acos(ωt)+Bsin(ωt)}*{1+qcos(2inωt)+rsin(2inωt)}として与え、qを同期電動機を正弦波電流で制御したときのトルク変動波形をフーリエ変換することにより算出される2in次成分実部の平均トルクに対する割合の極性を反転したものとし、rを同期電動機を正弦波電流で制御したときのトルク変動波形をフーリエ変換することにより算出される2in次成分虚部の平均トルクに対する割合の極性を反転したものとすることと等価であり、基本電流を印加したときに発生するトルク変動の大きい高次周波数電流成分を打ち消すような高次周波数電流を基本電流に重畳してトルク変動を低減しようとするものである。
特開2001−352791号公報
Conventionally, a synchronous motor control device and a current control method have been proposed in which the applied current of the synchronous motor is controlled to reduce the torque fluctuation of the synchronous motor (see, for example, Patent Document 1).
This applies the basic current (primary frequency current) as an applied current applied to each phase of a synchronous motor driven by n-phase alternating current as follows: K = 1 + Σ i = 1 k 2in · cos {2in (ωt + χ 2in )} Driving is performed by applying a current corrected by the correction coefficient K obtained in step (1). At this time, with respect to the coefficient k2in , the polarity of the ratio of the 2-in order component to the average torque calculated by Fourier transforming the torque fluctuation waveform when the synchronous motor is controlled with a sine wave current is inverted. In other words, in this current control, when the basic current of each phase is I = Acos (ωt) + Bsin (ωt), the current I ′ superimposed with the high-order frequency current that reduces the 2 in-order component is expressed as I ′ = {Acos (ωt) + Bsin (ωt)} * {1 + qcos (2inωt) + rsin (2inωt)} is given by 2in calculated by Fourier transforming the torque fluctuation waveform when q is controlled by a sine wave current. The average torque of the 2-in-order component imaginary part calculated by Fourier transforming the torque fluctuation waveform when the synchronous motor is controlled by a sine wave current, assuming that the polarity of the ratio of the real component of the second-order component is inverted. This is equivalent to reversing the polarity of the ratio of the high-order frequency current that cancels out the high-order frequency current component with large torque fluctuation that occurs when the basic current is applied. It is intended to reduce torque fluctuations superimposed on the flow.
JP 2001-352791 A

しかしながら、トルク変動を低減する高次周波数電流成分と半径方向節点力を低減する高次周波数電流成分は異なるため、従来の上述した特許文献1のように、トルク変動を低減対象とした高次周波数電流成分に基づいて設定された補正係数で基本電流を補正する電流制御では、トルク変動の低減には効果があっても半径方向節点力を低減することはできないという問題がある。   However, since the high-order frequency current component that reduces the torque fluctuation is different from the high-order frequency current component that reduces the radial nodal force, the high-order frequency intended to reduce the torque fluctuation as in the above-described Patent Literature 1 is different. In current control in which the basic current is corrected with a correction coefficient set based on the current component, there is a problem that the radial nodal force cannot be reduced even if it is effective in reducing torque fluctuation.

本発明は、この問題に着目してなされたもので、トルク変動と半径方向節点力の両方の低減効果を有し、同期機の振動及び騒音を低減可能な同期機の電流制御装置及び電流制御方法を提供することを目的とする。   The present invention has been made paying attention to this problem, and has an effect of reducing both torque fluctuation and radial nodal force, and a synchronous machine current control device and current control capable of reducing vibration and noise of the synchronous machine. It aims to provide a method.

このため、本発明の同期機の電流制御装置は、同期機の各相コイルに基本電流を印加したときに現れるトルク変動及び半径方向節点力のp次成分を低減するために、前記基本電流を前記p次の高次周波数電流成分に基づいて設定した補正係数を乗算して補正するようにした同期機の電流制御装置であって、K=[1+qcos(pωt)+rsin(pωt)]の式により得られるKを前記補正係数として与え、前記p次の高次周波数電流成分の振幅値に関連する前記補正係数K内の係数q、r、トルク変動低減用の第1の係数と半径方向節点力低減用の第2の係数に基づいて設定して補正係数Kを設定する補正係数設定手段と、該補正係数設定手段で設定された補正係数Kを基本電流に乗算して得られる印加電流を前記各相コイルに印加制御して同期機を駆動制御する駆動制御手段とを備えて構成したことを特徴とする。 For this reason, the current control device for a synchronous machine of the present invention reduces the torque fluctuation and the p-order component of the radial nodal force that appear when a basic current is applied to each phase coil of the synchronous machine. A current controller for a synchronous machine that performs correction by multiplying a correction coefficient that is set based on the p-order high-order frequency current component, wherein K = [1 + qcos (pωt) + rsin (pωt)] the resulting K given as the correction coefficient, the coefficient q of said correction factor K related to the amplitude value of the p-th order higher frequency current components, the r, first coefficient and radial nodes torque variation reduction Correction coefficient setting means for setting the correction coefficient K by setting based on the second coefficient for force reduction, and an applied current obtained by multiplying the basic current by the correction coefficient K set by the correction coefficient setting means. Driving the synchronous machine by controlling the application to each phase coil Characterized by being configured with a Gosuru drive control means.

また、本発明の同期機の電流制御方法は、同期機の各相コイルに基本電流を印加したときに現れるトルク変動及び半径方向節点力のp次成分を低減するために、前記基本電流を前記p次の高次周波数電流成分に基づいて設定した補正係数を乗算して補正するようにした同期機の電流制御方法であって、K=[1+qcos(pωt)+rsin(pωt)]の式により得られるKを前記補正係数として与え、前記p次の高次周波数電流成分の振幅値に関連する前記補正係数K内の係数q、r、トルク変動低減用の第1の係数と半径方向節点力低減用の第2の係数に基づいて設定して補正係数Kを設定し、該設定された補正係数Kを基本電流に乗算して得られる印加電流を各相コイルに印加制御して同期機を駆動制御することを特徴とする。 Further, the current control method for a synchronous machine according to the present invention is configured to reduce the torque fluctuation and the p-order component of the radial nodal force that appear when a basic current is applied to each phase coil of the synchronous machine, This is a current control method for a synchronous machine which is corrected by multiplying a correction coefficient set based on a p-order high-order frequency current component, and is obtained by an equation of K = [1 + qcos (pωt) + rsin (pωt)]. Is given as the correction coefficient, and the coefficients q and r in the correction coefficient K related to the amplitude value of the p-th order higher-order frequency current component are expressed as the first coefficient for reducing torque fluctuation and the radial nodal force. A correction coefficient K is set based on the second coefficient for reduction, and an application current obtained by multiplying the set correction coefficient K by the basic current is applied to each phase coil to control the synchronous machine. It is characterized by drive control.

本発明の同期機の電流制御装置及び電流制御方法によれば、同期機のトルク変動を低減したいときはトルク変動低減用の第1の係数による補正係数を選択し、半径方向節点力を低減したいときは半径方向節点力低減用の第2の係数による補正係数を選択して、基本電流を補正できるので、同期機の振動の主要因であるトルク変動と騒音の主要因である半径方向節点力を共に低減でき、同期機の振動及び騒音を低減できる。   According to the current control device and current control method for a synchronous machine of the present invention, when it is desired to reduce the torque fluctuation of the synchronous machine, the correction coefficient by the first coefficient for torque fluctuation reduction is selected to reduce the radial nodal force. In some cases, the basic current can be corrected by selecting a correction coefficient based on the second coefficient for reducing the radial nodal force, so that the radial nodal force that is the main factor of torque fluctuation and noise is the main factor of vibration of the synchronous machine. Both the vibration and noise of the synchronous machine can be reduced.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係る同期機の電流制御装置の一実施形態を示す構成図で、3相同期モータの駆動システムに適用した例を示す。
図1において、本実施形態の電流制御装置10は、図示しないコントローラからのトルク指令値と回転センサ1で検出されるモータ30の回転速度に基づいて各相の正弦波基本電流の電流値と位相を演算すると共に、基本電流(1次周波数電流)を印加したときに現れるトルク変動や半径方向節点力を低減するための補正係数Kを後述するようにして設定し、この設定した補正係数Kを前記基本電流に乗じて基本電流を補正する補正係数設定手段としての電流補正係数設定部11と、該電流補正係数設定部11から出力される補正電流値と電流センサ2で検出された各相の実際の電流値との比較結果が3相/2相変換部12を介して入力し比較結果に基づいたフィードバック制御による電圧指令値を2相/3相変換部14を介してモータドライバ20に出力する駆動制御手段としてのPI制御部13を備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of a current controller for a synchronous machine according to the present invention, and shows an example applied to a drive system for a three-phase synchronous motor.
In FIG. 1, the current control device 10 according to the present embodiment includes a current value and a phase of a sine wave basic current of each phase based on a torque command value from a controller (not shown) and the rotation speed of the motor 30 detected by the rotation sensor 1. And a correction coefficient K for reducing torque fluctuation and radial nodal force appearing when a basic current (primary frequency current) is applied is set as described later, and the set correction coefficient K is set as follows. A current correction coefficient setting unit 11 serving as a correction coefficient setting unit that corrects the basic current by multiplying the basic current, a correction current value output from the current correction coefficient setting unit 11, and each phase detected by the current sensor 2 The comparison result with the actual current value is input via the three-phase / two-phase converter 12 and the voltage command value by feedback control based on the comparison result is input to the motor driver via the two-phase / 3-phase converter 14. It comprises a PI controller 13 as a drive control means for outputting to the bus 20.

前記モータドライバ20は、入力する電圧指令値に基づいてPWM制御部21とインバータ22を介して各相のコイルに対して位相が120度ずつ異なる所定周波数の交流電圧を印加し、これにより、モータ30がその周波数に対応した回転数で駆動する。
図2及び図3に、前記モータ30として、高出力と低振動性という特性を備えるために多用される傾向にある4極対48ティースの分布巻きによる3相同期モータの構造を示す。
The motor driver 20 applies an AC voltage having a predetermined frequency different in phase by 120 degrees to the coils of each phase via the PWM control unit 21 and the inverter 22 based on the input voltage command value. 30 is driven at a rotational speed corresponding to the frequency.
FIG. 2 and FIG. 3 show the structure of a three-phase synchronous motor with distributed winding of four pole pairs and 48 teeth, which tend to be frequently used to provide the characteristics of high output and low vibration as the motor 30.

このモータ30は、固定子40と、回転子50と、これらを収納するモータケース60とを備える。
前記回転子50は、その軸中心に設けた回転軸70がモータケース60に設けられた軸受61,62により回転可能に支持されている。また、回転軸70に対し圧入により固定された積層鋼鈑等をベース材とし、該ベース材の外周部に8個の永久磁石51〜58が図3に示すように周方向に略等間隔に且つ図2に示すように軸方向に貫通して固定されている。前記永久磁石51〜58は、厚み方向に磁化されており、図3のように隣接する磁石のN極とS極が逆向きとなるよう配置されている。この永久磁石51〜58は、回転子50をモータケース60に組み付けると、回転子50の永久磁石51〜58と固定子40の電磁石との関係により磁路を形成する。
The motor 30 includes a stator 40, a rotor 50, and a motor case 60 that houses them.
The rotor 50 is rotatably supported by bearings 61 and 62 provided on a motor case 60 with a rotary shaft 70 provided at the center of the rotor 50. Further, a laminated steel plate fixed by press-fitting with respect to the rotary shaft 70 is used as a base material, and eight permanent magnets 51 to 58 are arranged at substantially equal intervals in the circumferential direction as shown in FIG. And as shown in FIG. 2, it penetrates and is fixed to the axial direction. The permanent magnets 51 to 58 are magnetized in the thickness direction, and are arranged so that the N pole and S pole of adjacent magnets are opposite to each other as shown in FIG. When the rotor 50 is assembled to the motor case 60, the permanent magnets 51 to 58 form a magnetic path due to the relationship between the permanent magnets 51 to 58 of the rotor 50 and the electromagnet of the stator 40.

前記固定子40は、モータケース60に対し圧入やボルト止め等により固定された積層鋼鈑をベース材とし、該ベース材の回転子50と対向する内周部に、計48個のティース(1)〜(48)を備える。各ティース(1)〜(48)間に形成されたスロットには、前記モータドライバ20に接続されたコイル42が巻き付けられている。前記コイル42は、図3に示すように、U相のコイルとV相のコイルとW相のコイルの3相に分けられており、前記モータドライバ20からの位相が120度ずつ異なる所定周波数の交流電圧の印加により固定子40に回転磁界を発生させる。   The stator 40 uses a laminated steel plate fixed to the motor case 60 by press-fitting, bolting, or the like as a base material, and a total of 48 teeth (1 ) To (48). A coil 42 connected to the motor driver 20 is wound around a slot formed between the teeth (1) to (48). As shown in FIG. 3, the coil 42 is divided into three phases of a U-phase coil, a V-phase coil, and a W-phase coil, and the phases from the motor driver 20 are different from each other by a predetermined frequency of 120 degrees. A rotating magnetic field is generated in the stator 40 by applying an AC voltage.

前記電流補正係数設定部11では、補正係数Kを下記の(1)式により与え、補正係数K内の係数q、rの値として、トルク変動低減用の第1の係数q1、r1と半径方向節点力低減用の第2の係数q2、r2のいずれかを選択して補正係数Kを設定する。
K=[1+qcos(pωt)+rsin(pωt)] ・・・(1)
尚、pは、トルク変動や半径方向節点力を低減するために1次周波数電流に重畳する高次周波数電流の次数を示す。
In the current correction coefficient setting unit 11, the correction coefficient K is given by the following equation (1), and the values of the coefficients q and r in the correction coefficient K are used as the first coefficients q1 and r1 for torque fluctuation reduction and the radial direction. The correction coefficient K is set by selecting one of the second coefficients q2 and r2 for reducing the nodal force.
K = [1 + qcos (pωt) + rsin (pωt)] (1)
In addition, p shows the order of the high-order frequency current superimposed on the primary frequency current in order to reduce torque fluctuation and radial nodal force.

補正係数K内の係数q、rは、前記重畳するp次の高次周波数電流成分の振幅値に関連して定まる値であり、F1 0、F2 0、F3 0を、各相電流の直流(DC)成分のトルク変動(又は半径方向節点力)とし、低減したいトルク変動(又は半径方向節点力)のp次成分の実部をFp real、虚部をFp imagとしたときに、前記係数q、rは、例えば、次の(2)式により与えられる。 The coefficients q and r in the correction coefficient K are values determined in relation to the amplitude value of the superposed p-order high-order frequency current component, and F 1 0 , F 2 0 , and F 3 0 are set as the phase currents. When the torque fluctuation (or radial nodal force) of the direct current (DC) component is set to F p real and the real part of the p-order component of the torque fluctuation (or radial nodal force) to be reduced is F p real and the imaginary part is F p imag The coefficients q and r are given by the following equation (2), for example.

q=−Fp real/(F1 0+2F2 0+3F3 0)、r=−Fp imag/(F1 0+2F2 0+3F3 0) ・・・(2)
ここで、トルク及び半径方向節点力がモータの回転速度によらず印加電流値のみに依存することを示し、また、トルク変動を低減する高次周波数電流と半径方向節点力を低減する高次周波数電流が異なることを示す。言い換えれば、トルク変動及び半径方向節点力を低減するために重畳する高次周波数電流成分が電流値に依存し、また、この重畳する高次周波数電流成分の振幅値に関連する補正係数K内の係数q、rが、トルク変動低減用の第1の係数q1、r1と半径方向節点力低減用の第2の係数q2、r2で異なることを示す。
q = −F p real / (F 1 0 + 2F 2 0 + 3F 3 0 ), r = −F p imag / (F 1 0 + 2F 2 0 + 3F 3 0 ) (2)
Here, it is shown that the torque and the radial nodal force depend only on the applied current value regardless of the rotational speed of the motor, and the higher order frequency current that reduces the torque fluctuation and the higher order frequency that reduces the radial nodal force. Indicates that the current is different. In other words, the higher-order frequency current component superimposed to reduce torque fluctuations and radial nodal forces depends on the current value, and the correction factor K in the correction coefficient K related to the amplitude value of this superimposed higher-order frequency current component It is shown that the coefficients q and r are different between the first coefficients q1 and r1 for reducing torque fluctuation and the second coefficients q2 and r2 for reducing the radial nodal force.

トルクと半径方向節点力に関して、前述の4極対48ティースの分布巻きによる3相同期モータについて電磁界解析ソフト(JMAG:株式会社日本総合研究所製)を用いて計算した。図4は計算の際の2次元モデルの1/4を表示したものである。印加電流を900Aとして、回転子50の回転速度が1500rpm、3000rpmの場合のトルク波形を図5に、ティ−ス(1)の半径方向節点力波形を図6に示す(固定子40の外向きを正とした)。図5、図6からわかるように、トルク波形も半径方向節点力波形も1500rpm、3000rpmの結果は一致しており、トルク及び半径方向節点力が略印加電流値に依存していることがわかる。   The torque and radial nodal force were calculated using electromagnetic field analysis software (JMAG: manufactured by Japan Research Institute, Ltd.) for the above-described three-phase synchronous motor with distributed winding of 4 pole pairs and 48 teeth. FIG. 4 shows 1/4 of the two-dimensional model at the time of calculation. FIG. 5 shows the torque waveform when the applied current is 900 A and the rotational speed of the rotor 50 is 1500 rpm and 3000 rpm, and FIG. 6 shows the radial nodal force waveform of the tooth (1) (the outward direction of the stator 40). Was positive). As can be seen from FIGS. 5 and 6, the torque waveform and the radial nodal force waveform have the same results of 1500 rpm and 3000 rpm, and it can be seen that the torque and the radial nodal force substantially depend on the applied current value.

また、図5、図6の3000rpmの各波形のフ−リエ変換した結果をデシベル表示したものを図7、図8に示す。図7からトルク変動は偶数次数、特に6の倍数次数が大きく、図8から半径方向節点力は偶数次数が大きいことがそれぞれわかる。図9は、トルク変動及び半径方向節点力の12次成分を複素平面にプロットしたものである。図9からトルク変動の12次成分と半径方向節点力の12次成分は、位相が約90°異なり、その結果、同一の高次周波数電流ではトルク変動の12次成分と半径方向節点力の12次成分を低減することができないことがわかる。   Moreover, what carried out the Fourier conversion of the result of carrying out the Fourier transform of each waveform of 3000 rpm of FIG. 5, FIG. 6 is shown in FIG. 7, FIG. It can be seen from FIG. 7 that the torque fluctuation has an even order, particularly a multiple order of 6, and from FIG. 8, the radial nodal force has a large even order. FIG. 9 is a plot of 12th order components of torque fluctuation and radial nodal force on a complex plane. From FIG. 9, the 12th order component of torque fluctuation and the 12th order component of radial nodal force differ in phase by about 90 °. As a result, at the same high order frequency current, the 12th order component of torque fluctuation and the 12th order of radial nodal force. It can be seen that the next component cannot be reduced.

図10に、基本電流値900AにおけるU相電流値について、半径方向節点力の12次成分を低減対象とした高次周波数電流値に基づいて(2)式から計算した係数q、rを用いた補正係数Kで補正した電流値(図中破線)とオリジナル(補正なし)の電流値(図中実線)を示す。オリジナルのU相電流に対して、その山、谷で補正係数Kによる高次周波数電流成分を認識できる。   FIG. 10 uses the coefficients q and r calculated from the equation (2) based on the high-order frequency current value with the 12th-order component of the radial nodal force as the reduction target for the U-phase current value at the basic current value 900A. The current value corrected by the correction coefficient K (broken line in the figure) and the original (uncorrected) current value (solid line in the figure) are shown. For the original U-phase current, higher-order frequency current components due to the correction coefficient K can be recognized at the peaks and valleys.

図11に、図10の高次周波数電流成分を重畳して補正した電流をモータ30の各相に印加した場合のティース(1)における半径方向節点力(図中破線)を示し、図12に、そのフ−リエ変換した結果をデシベルで表示したもの(図中破線)を示す。尚、図11の実線は、図6に示すオリジナル(補正なし)の波形を示し、図12の実線は、図6のオリジナル(補正なし)のフ−リエ変換した結果をデシベルで表示した図8に示すものである。図12には補正による12次成分の低減効果が10dB強であることが示されている。   FIG. 11 shows a radial nodal force (broken line in the figure) in the tooth (1) when the current corrected by superimposing the higher-order frequency current component of FIG. 10 is applied to each phase of the motor 30. The result of the Fourier transform is shown in decibels (dashed line in the figure). The solid line in FIG. 11 shows the original (uncorrected) waveform shown in FIG. 6, and the solid line in FIG. 12 shows the result of Fourier transform of the original (uncorrected) in FIG. 6 displayed in decibels. It is shown in FIG. 12 shows that the effect of reducing the 12th-order component by correction is just over 10 dB.

一方、図13に、同じ補正係数Kで補正した場合のトルク波形(図中破線)を示し、図14に、そのフ−リエ変換した結果をデシベル表示したもの(図中破線)を示す。尚、図13の実線は、図5に示すオリジナル(補正なし)の波形を示し、図14の実線は、図5のオリジナル(補正なし)のフ−リエ変換した結果をデシベルで表示した図7に示すものである。図14から半径方向節点力について低減効果があった12次成分は若干悪化している。このことから、トルク変動を低減する高次周波数電流値と半径方向節点力を低減する高次周波数電流値が異なり、重畳する高次周波数電流成分の振幅値に関連する補正係数K内の係数q、rは、トルク変動低減用の第1の係数q1、r1と半径方向節点力低減用の第2の係数q2、r2で異なることがわかる。   On the other hand, FIG. 13 shows a torque waveform (broken line in the figure) when it is corrected with the same correction coefficient K, and FIG. 14 shows a result of the Fourier transform obtained by decibel display (broken line in the figure). The solid line in FIG. 13 shows the original (uncorrected) waveform shown in FIG. 5, and the solid line in FIG. 14 shows the result of Fourier transform of the original (uncorrected) in FIG. 5 displayed in decibels. It is shown in From FIG. 14, the twelfth order component having a reduction effect on the radial nodal force is slightly deteriorated. Therefore, the high-order frequency current value that reduces the torque fluctuation is different from the high-order frequency current value that reduces the radial nodal force, and the coefficient q in the correction coefficient K related to the amplitude value of the superposed high-order frequency current component is different. , R is different between the first coefficient q1, r1 for torque fluctuation reduction and the second coefficient q2, r2 for radial nodal force reduction.

図15に、p次のトルク変動を低減するp次周波数電流成分に基づいて計算されたトルク低減用の第1の係数q1、r1(図中実線)の値及びp次の半径方向節点力を低減するp次周波数電流成分に基づいて計算された半径方向低減用の第2の係数q2、r2(図中破線)の値と、基本電流値との関係を示し、これら第1の係数q1、r1と第2の係数q2、r2が、基本電流値に対応して変化することがわかる。   FIG. 15 shows the values of the first coefficient q1, r1 (solid line in the figure) for torque reduction and the p-order radial nodal force calculated based on the p-order frequency current component that reduces the p-order torque fluctuation. The relationship between the value of the second coefficient q2, r2 (the broken line in the figure) for radial reduction calculated based on the p-order frequency current component to be reduced and the basic current value is shown, and these first coefficients q1, It can be seen that r1 and the second coefficients q2 and r2 change corresponding to the basic current value.

以下に、図1に示す電流制御装置10の電流補正係数設定部11による補正係数Kの設定例について説明する。
入力するトルク指令値やモータ30の回転速度に基づいて、第1の係数q1、r1と第2の係数q2、r2を選択して補正係数Kを設定する。
まず、トルク指令値の場合について説明する。
Hereinafter, a setting example of the correction coefficient K by the current correction coefficient setting unit 11 of the current control device 10 illustrated in FIG. 1 will be described.
Based on the input torque command value and the rotational speed of the motor 30, the first coefficient q1, r1 and the second coefficient q2, r2 are selected and the correction coefficient K is set.
First, the case of the torque command value will be described.

例えば、入力するトルク指令値に比例する基本電流値に応じて第1の係数q1、r1と第2の係数q2、r2を切替えて補正係数Kを設定する。この場合、図16に示すように、
切替え電流値として予め所定の基本電流値(例えば1600A)を定め、この電流値以下で負荷が低い領域では、トルク変動の低減を重視して第1の係数q1、r1を選択し、Ka=[1+q1cos(pωt)+r1sin(pωt)]としてトルク変動低減用の補正係数Kaを設定し、この補正係数Kaを基本電流に乗じて補正した電流値をモータ30に印加するようにする。また、トルク指令値が大きく電流値が前記切替え電流値より大きく負荷が高い領域では、半径方向節点力の低減を重視して第2の係数q2、r2を選択し、Kb=[1+q1cos(pωt)+r1sin(pωt)]として半径方向節点力低減用の補正係数Kbを設定し、この補正係数Kbを基本電流に乗じて補正した印加電流をモータ30に印加するようにする。尚、図16に、低電流側から高電流側へ負荷が増大した場合に、選択する係数q、rが第1の係数q1、r1から第2の係数q2、r2へ切替わる様子を矢印で示してある。
For example, the correction coefficient K is set by switching the first coefficient q1, r1 and the second coefficient q2, r2 according to the basic current value proportional to the input torque command value. In this case, as shown in FIG.
A predetermined basic current value (for example, 1600 A) is set in advance as the switching current value, and in a region where the load is low below this current value, the first coefficients q1 and r1 are selected with emphasis on reducing torque fluctuations, and Ka = [ 1 + q1cos (pωt) + r1sin (pωt)] is set as a correction coefficient Ka for torque fluctuation reduction, and a current value corrected by multiplying the correction coefficient Ka by the basic current is applied to the motor 30. In the region where the torque command value is large and the current value is larger than the switching current value and the load is high, the second coefficients q2 and r2 are selected with emphasis on reducing the radial nodal force, and Kb = [1 + q1cos ( The correction coefficient Kb for reducing the radial nodal force is set as pωt) + r1sin (pωt)], and an application current corrected by multiplying the correction coefficient Kb by the basic current is applied to the motor 30. In FIG. 16, when the load increases from the low current side to the high current side, the state where the selected coefficients q and r are switched from the first coefficient q1 and r1 to the second coefficient q2 and r2 is indicated by an arrow. It is shown.

また、補正係数Kの切替え時にモータ30の振動、騒音上の不連続が問題となる場合、補正係数Kの切替えをスムーズに行うようにするとよい。
例えば、第1の係数q1、r1と第2の係数q2、r2を切替える場合に、前記切替え電流値近傍の予め定めた所定の切替え領域において、係数q、rを下記の(3)式の線形和で表すようにする。
In addition, when the vibration of the motor 30 and noise discontinuity become a problem when the correction coefficient K is switched, the correction coefficient K may be switched smoothly.
For example, when switching between the first coefficients q1 and r1 and the second coefficients q2 and r2, the coefficients q and r are expressed by the following linear expression (3) in a predetermined switching region in the vicinity of the switching current value. Use the sum.

q=s*q1+t*q2
r=s*r1+t*r2 ・・・(3)
(ただし、係数s、tはs+t=1)
そして、係数s、tの一方を漸増し、他方を漸減させて、補正係数K内の係数q、rの値を設定し補正係数Kを決定する。
q = s * q1 + t * q2
r = s * r1 + t * r2 (3)
(However, the coefficients s and t are s + t = 1)
Then, one of the coefficients s and t is gradually increased and the other is gradually decreased, and the values of the coefficients q and r in the correction coefficient K are set to determine the correction coefficient K.

例えば、図17の矢印で示すように、低電流側から高電流側に移行する場合、1600A〜2000Aを切替え領域とし、(3)式において、係数sを漸減し係数tを漸増することにより、係数q、rの値を、切替え前の第1の係数q1、r1の値(図中実線)から切替え後の第2の係数q2、r2の値(図中破線)へ徐々に変化させる。これにより、補正係数Kの切替えがスムーズに行え、モータ30の振動、騒音上の不連続を抑制できる。   For example, as shown by the arrow in FIG. 17, when shifting from the low current side to the high current side, 1600A to 2000A is used as the switching region, and in equation (3), by gradually decreasing the coefficient s and gradually increasing the coefficient t, The values of the coefficients q and r are gradually changed from the values of the first coefficients q1 and r1 before switching (solid lines in the figure) to the values of the second coefficients q2 and r2 after switching (broken lines in the figure). Thereby, the correction coefficient K can be switched smoothly, and the discontinuity in vibration and noise of the motor 30 can be suppressed.

図17では、1600A〜2000Aを切替え領域とし所定電流値(1600A)を係数q、rの切替え開始点としたが、所定電流値以前の電流値で切替えを開始し所定電流値(1600A)で切替えが終了するよう切替え領域を設定してもよく、また、所定電流値を跨いで切替え領域を設定し所定電流値の前後で切替えを開始し終了するようにしてもよい。   In FIG. 17, 1600A to 2000A is the switching region, and the predetermined current value (1600A) is the switching start point of the coefficients q and r. However, switching is started at the current value before the predetermined current value and switched at the predetermined current value (1600A). The switching region may be set so as to end, or the switching region may be set across the predetermined current value, and the switching may be started and ended before and after the predetermined current value.

尚、高負荷域でモータ30の磁束が略飽和状態になると、基本電流に対する高次周波数電流重畳分で引き起こすべき磁束のプラス分の発生量が少なく補正による低減効果が大きく下がる。このため、モータ30の磁束が略飽和状態となる電流値以上では、係数q、rをq=r=0として基本電流を補正せず、高次周波数電流を重畳しないようにするとよい。これにより、高次周波数電流重畳による電力消費を抑制できる。   When the magnetic flux of the motor 30 is substantially saturated in the high load region, the amount of plus magnetic flux that should be caused by the superposition of the high-order frequency current with respect to the basic current is small, and the reduction effect by correction is greatly reduced. Therefore, above the current value at which the magnetic flux of the motor 30 is substantially saturated, the coefficients q and r should be set to q = r = 0 so that the basic current is not corrected and the high-order frequency current is not superimposed. Thereby, the power consumption by high-order frequency current superposition can be suppressed.

次に、モータ回転速度の場合について説明する。
上述した電流値の場合と同様に、予め所定の回転速度を定め、この回転速度以下の低回転領域では、トルク変動の低減を重視して第1の係数q1、r1を選択してトルク変動低減用の上述した補正係数Kaを設定し、この補正係数Kaを基本電流に乗じて補正する。また、回転速度が前記所定回転速度より高回転領域では、半径方向節点力の低減を重視して第2の係数q2、r2を選択して半径方向節点力低減用の補正係数Kbを設定し、この補正係数Kbを基本電流に乗じて補正する。ここで、前記所定回転速度が第1の所定回転速度に相当する。
Next, the case of the motor rotation speed will be described.
As in the case of the current value described above, a predetermined rotational speed is determined in advance, and in the low rotational speed region below this rotational speed, the first coefficient q1, r1 is selected with emphasis on the reduction of torque fluctuation, and the torque fluctuation is reduced. The correction coefficient Ka described above is set, and the correction coefficient Ka is multiplied by the basic current for correction. Further, in a region where the rotational speed is higher than the predetermined rotational speed, the second coefficient q2 and r2 are selected with emphasis on the reduction of the radial nodal force, and the correction coefficient Kb for reducing the radial nodal force is set. The correction factor Kb is corrected by multiplying the basic current. Here, the predetermined rotation speed corresponds to a first predetermined rotation speed.

補正係数Kの切替えをスムーズに行うためには、前記所定回転速度を含んで予め定めた切替え領域で係数q、rを(3)式の線形和で表すようにし、係数s、tの一方を漸増し、他方を漸減させて、補正係数K内の係数q、rの値を設定して補正係数Kを決定する。例えば、図18に破線で示す切替え領域で、係数q、rを(3)式のようにしたとき、言い換えれば、補正係数Kを、K=s*Ka+t*Kbとしたときに、低回転速度側で係数s、tをs=1、t=0としてトルク変動の低減を重視し、高回転速度側でs=0、t=1として半径方向節点力の低減を重視し、低回転側から高回転側に移行する場合に図中点線で示す切替え領域で、係数sを漸減し、係数tを漸増して補正係数Kの切替えをスムーズに行う。高回転側から低回転側に移行する場合には切替え領域で、係数sを漸増し、係数tを漸減して補正係数Kの切替えをスムーズに行う。   In order to smoothly switch the correction coefficient K, the coefficients q and r are expressed by a linear sum of the expression (3) in a predetermined switching region including the predetermined rotation speed, and one of the coefficients s and t is expressed. The correction coefficient K is determined by gradually increasing and decreasing the other, and setting the values of the coefficients q and r in the correction coefficient K. For example, in the switching region indicated by the broken line in FIG. 18, when the coefficients q and r are represented by the expression (3), in other words, when the correction coefficient K is K = s * Ka + t * Kb, the low rotational speed With the coefficients s and t set to s = 1 and t = 0, the reduction in torque fluctuation is emphasized. On the high rotation speed side, the reduction in radial nodal force is emphasized with s = 0 and t = 1. When shifting to the high rotation side, the coefficient s is gradually decreased and the coefficient t is gradually increased in the switching region indicated by the dotted line in the figure, so that the correction coefficient K is smoothly switched. When shifting from the high rotation side to the low rotation side, the coefficient s is gradually increased and the coefficient t is gradually decreased in the switching region to smoothly switch the correction coefficient K.

尚、図18は、所定回転速度を跨いで切替えを開始し終了する例を示すが、所定回転速度を補正係数Kの切替え開始点や終了点としてもよいことは言うまでもない。
上述の例では、低回転側でトルク変動の低減を重視し、高回転側で半径方向節点力の低減を重視する例を説明したが、これに限るものではなく、低回転側で半径方向節点力の低減を重視し、高回転側でトルク変動の低減を重視するような設定でもよい。
FIG. 18 shows an example in which switching is started and ended across a predetermined rotational speed, but it goes without saying that the predetermined rotational speed may be used as the switching start point and end point of the correction coefficient K.
In the above-described example, an example has been described in which reduction of torque fluctuation is emphasized on the low rotation side, and reduction of radial nodal force is emphasized on the high rotation side. It may be set so that reduction of force is emphasized and reduction of torque fluctuation is emphasized on the high rotation side.

また、第2の所定回転速度を略中心とした予め定めた所定回転速度領域で、トルク変動と半径方向節点力のいずれか一方を低減し、前記所定回転速度領域以外では他方を低減するように補正係数Kを切替えて設定するようにしてもよい。
例えば、図19に示すように、第2の所定回転速度としての所定回転速度Nを略中心として予め定めた図中点線で示す所定回転速度領域Aで、K=s*Ka+t*Kbにおいて係数s=1、t=0として補正係数KをK=Kaに設定してトルク変動を低減し、所定回転速度領域A以外の回転速度領域では係数s=0、t=1として補正係数KをK=Kbに設定して半径方向節点力を低減する。
Further, either one of the torque fluctuation and the radial nodal force is reduced in a predetermined rotation speed region approximately centered on the second predetermined rotation speed, and the other is reduced outside the predetermined rotation speed region. The correction coefficient K may be switched and set.
For example, as shown in FIG. 19, in a predetermined rotational speed region A indicated by a dotted line in the figure which is predetermined with the predetermined rotational speed N as the second predetermined rotational speed approximately as a center, the coefficient s at K = s * Ka + t * Kb = 1, t = 0, the correction coefficient K is set to K = Ka to reduce the torque fluctuation, and in a rotational speed region other than the predetermined rotational speed region A, the coefficient s = 0, t = 1, and the correction coefficient K is set to K = Set to Kb to reduce radial nodal force.

補正係数Kの切替えは、回転速度が所定回転速度領域外から所定回転速度領域Aに入った時に係数s、tをs=0→1、t=1→0に切替えるようにしてもよし、補正係数Kの切替えをスムーズに行うため、所定回転速度領域Aの端(図中点線)から所定回転速度Nへ近づく場合は係数sを漸増し係数tを漸減し、所定回転速度Nから所定回転速度領域Aの端(図中点線)へ近づく場合は逆に係数sを漸減し係数tを漸増し、補正係数KのKaからKbへ、KbからKaへの各切替えを徐々に行うようにしてもよい。   The correction coefficient K may be switched by changing the coefficients s and t from s = 0 → 1 and t = 1 → 0 when the rotation speed enters the predetermined rotation speed area A from outside the predetermined rotation speed area. In order to smoothly switch the coefficient K, when approaching the predetermined rotational speed N from the end of the predetermined rotational speed region A (dotted line in the figure), the coefficient s is gradually increased and the coefficient t is gradually decreased. When approaching the end of the region A (dotted line in the figure), the coefficient s is gradually decreased and the coefficient t is gradually increased, and the correction coefficient K is gradually switched from Ka to Kb and from Kb to Ka. Good.

この場合の前記第2の所定回転速度としては、モータ30の駆動系の回転方向(ねじり)共振周波数から決定する。例えば、4極対モータの場合、駆動系共振周波数をfnとすると、前記所定回転速度NはN=(60*fn)/(4*p)=(15*fn)/pとなる。
また、所定回転速度領域Aで、K=s*Ka+t*Kbにおいて係数s=0、t=1として補正係数Kbで半径方向節点力を低減し、所定回転速度領域A以外で係数s=1、t=0として補正係数Kaでトルク変動を低減するようにしてもよい。補正係数Kの切替えは、前述した所定回転速度領域Aでトルク変動を低減する場合と同様に行うことができる。この場合の第2の所定回転速度N′としては、モータのケ−スを含めて構造体の共振周波数から決定する。例えば、4極対モータの場合、構造体共振周波数をfmとすると、所定回転速度N′はN′=(60*fm)/(4*p)=(15*fm)/pとなる。
The second predetermined rotational speed in this case is determined from the rotational direction (torsion) resonance frequency of the drive system of the motor 30. For example, in the case of a 4-pole motor, if the drive system resonance frequency is fn, the predetermined rotational speed N is N = (60 * fn) / (4 * p) = (15 * fn) / p.
Further, in the predetermined rotational speed region A, the radial nodal force is reduced by the correction coefficient Kb with the coefficient s = 0 and t = 1 at K = s * Ka + t * Kb, and the coefficient s = 1 at other than the predetermined rotational speed region A. The torque fluctuation may be reduced with the correction coefficient Ka at t = 0. Switching of the correction coefficient K can be performed in the same manner as when the torque fluctuation is reduced in the predetermined rotation speed region A described above. The second predetermined rotational speed N ′ in this case is determined from the resonance frequency of the structure including the motor case. For example, in the case of a four-pole motor, if the structure resonance frequency is fm, the predetermined rotational speed N ′ is N ′ = (60 * fm) / (4 * p) = (15 * fm) / p.

駆動系共振と構造体共振が混在している場合は、それぞれの共振周波数により決まる各所定回転速度NやN′を含むそれぞれの所定回転速度領域で、上述のように補正係数KとしてK=Ka或いはK=Kbを用いて電流補正を行えばよい。
上述したような、駆動系共振や構造体共振に基づいて設定された所定回転速度領域Aでトルク変動や半径方向節点力を低減するような場合に、所定回転速度領域A以外では補正係数Kによる電流補正を行わないようにしてもよい。これにより、不必要に電力を消費することを避けることができる。
When the drive system resonance and the structure resonance are mixed, the correction coefficient K is K = Ka as described above in each predetermined rotation speed region including each predetermined rotation speed N and N ′ determined by the respective resonance frequencies. Alternatively, current correction may be performed using K = Kb.
When the torque fluctuation and the nodal force in the radial direction are reduced in the predetermined rotational speed region A set based on the drive system resonance and the structure resonance as described above, the correction coefficient K is used except in the predetermined rotational speed region A. Current correction may not be performed. This can avoid unnecessary power consumption.

また、モータの回転速度が高くなると、p次に関するPWM制御部21のインバ−タ22への指令信号を形成することが困難になる。このため、PWM制御に支障をきたす回転速度以上では高次周波数電流の重畳による電流補正を行わないようにするとよい。これにより、無駄な電力消費を減らすことができる。
尚、基本電流値に応じて第1の係数と第2の係数を切替えて補正係数Kを設定する上述の実施形態では、補正係数K内の係数q、rに関して、図15に示すような、基本電流値と第1の係数q1、r1と第2の係数q2、r2の対応関係を示すマップから、基本電流値に応じて第1の係数q1、r1と第2の係数q2、r2のいずれかを選択するようにしたが、第1の係数q1、r1と第2の係数q2、r2の選択されない領域のデータは不要である。従って、第1の係数q1、r1と第2の係数q2、r2のそれぞれ選択される必要領域のデータのみを互いに結合し、1つの係数q′、r′データを基本電流値と対応させてマップ化して記憶させるとよい。
Further, when the rotational speed of the motor becomes high, it becomes difficult to form a command signal to the inverter 22 of the PWM control unit 21 regarding the pth order. For this reason, it is preferable not to perform current correction by superimposing higher-order frequency currents at a rotational speed or more that hinders PWM control. Thereby, useless power consumption can be reduced.
In the above-described embodiment in which the correction coefficient K is set by switching the first coefficient and the second coefficient according to the basic current value, the coefficients q and r in the correction coefficient K are as shown in FIG. From the map showing the correspondence between the basic current value and the first coefficient q1, r1 and the second coefficient q2, r2, any one of the first coefficient q1, r1 and the second coefficient q2, r2 according to the basic current value. However, the data of the area where the first coefficients q1 and r1 and the second coefficients q2 and r2 are not selected is not necessary. Therefore, only the data of the necessary areas selected from the first coefficient q1, r1 and the second coefficient q2, r2 are combined with each other, and one coefficient q ′, r ′ data is associated with the basic current value and mapped. It is good to memorize and memorize.

例えば、図16を例にとれば、切替え電流(1600A)以下の低負荷領域では第1の係数q1、r1を選択し、切替え電流(1600A)より大きい高負荷領域では第2の係数q1、r1を選択するような場合、図16の切替え電流(1600A)を境に図中右側の高電流領域では、第1の係数q1、r1データは不要であり、図中左側の低電流領域では、第2の係数q2、r2データは不要である。従って、前記各不要領域のデータは削除し、図16の切替え電流(1600A)を境に図中左側の低電流領域において選択される第1の係数q1、r1データと図中右側の高電流領域において選択される第2の係数q2、r2データの係数q1とq2及び係数r1とr2をそれぞれ互いに結合し、結合したものを係数q′、r′とし、図20に示すような、q′(図中破線)とr′(図中実線)の係数データを基本電流値に対応させたマップを作成するようにする。   For example, taking FIG. 16 as an example, the first coefficients q1 and r1 are selected in a low load region where the switching current (1600A) is lower, and the second coefficients q1 and r1 are selected in a high load region where the switching current (1600A) is higher. In the high current region on the right side of the diagram with the switching current (1600 A) in FIG. 16 as the boundary, the first coefficient q1 and r1 data are not necessary, and in the low current region on the left side of the diagram, The coefficient q2 and r2 data of 2 is not necessary. Accordingly, the data of each unnecessary area is deleted, and the first coefficient q1 and r1 data selected in the low current area on the left side in the figure and the high current area on the right side in the figure with the switching current (1600A) in FIG. The coefficients q1 and q2 and the coefficients r1 and r2 of the second coefficient q2 and r2 data selected in the above are combined with each other, and the combined coefficients are the coefficients q ′ and r ′, and q ′ ( A map in which the coefficient data of the broken line in the figure and r ′ (solid line in the figure) is associated with the basic current value is created.

これにより、第1の係数q1、r1と第2の係数q2、r2を選択する必要がなくなり、基本電流値に対応して係数q′、r′の値を直接読み出せばよく、補正係数Kの設定処理が容易且つ素早くできるようになる。
上述の実施形態では、高次周波数成分のp次を1つに絞って説明したが、低減対象の次数が複数ある場合には、補正係数Kを、
K=[1+{q1cos(p1ωt)+r1sin(p1ωt)}+{q2cos(p2ωt)+r2sin(p2ωt)}
+{q3cos(p3ωt)+r3sin(p3ωt)}+・・・]
と考え、p1、p2、p3、・・・ぞれぞれに対してトルク変動低減用の第1の係数q1、r2値と、半径方向低減用の第2の係数q2、r2を持たせて重畳するようにすればよい。
As a result, it is not necessary to select the first coefficients q1, r1 and the second coefficients q2, r2, and the values of the coefficients q ′ and r ′ can be directly read corresponding to the basic current value, and the correction coefficient K The setting process can be performed easily and quickly.
In the above-described embodiment, the p-order of the high-order frequency component has been narrowed down to one. However, when there are a plurality of orders to be reduced, the correction coefficient K is set to
K = [1+ {q 1 cos (p 1 ωt) + r 1 sin (p 1 ωt)} + {q 2 cos (p 2 ωt) + r 2 sin (p 2 ωt)}
+ {Q 3 cos (p 3 ωt) + r 3 sin (p 3 ωt)} +.
, P 1 , p 2 , p 3 ,... For each of the first coefficient q1, r2 value for torque fluctuation reduction and the second coefficient q2, r2 for radial direction reduction. It is only necessary to superimpose them.

尚、本実施形態は、同期機の一例として4極対48ティースの分布巻き3相同期モータの例を示したが、極対数やティース数が異なる同期モータにも同様に適用することができる。更に、同期ジェネレータや同期モータジェネレータにも適用することができる。
また、本実施形態は、回転子と固定子とが径方向に対向配置されるラジアルタイプの同期機への適用例を示したが、例えば、回転子と固定子とが軸方向に対向配置されるアキシャルタイプの同期機にも適用することができる。
In addition, although this embodiment showed the example of the distributed winding 3 phase synchronous motor of 4 pole pairs 48 teeth as an example of a synchronous machine, it can apply similarly to the synchronous motor from which the number of pole pairs and the number of teeth differ. Furthermore, the present invention can be applied to a synchronous generator and a synchronous motor generator.
Moreover, although this embodiment showed the application example to the radial type synchronous machine with which a rotor and a stator are opposingly arranged to radial direction, for example, a rotor and a stator are opposingly arranged to an axial direction. It can also be applied to an axial type synchronous machine.

本発明の同期機の電流制御装置の一実施形態を適用した同期モータの駆動システムの概略を示す構成図The block diagram which shows the outline of the drive system of the synchronous motor to which one Embodiment of the current control apparatus of the synchronous machine of this invention is applied. 同期型3相モータの構造を示す断面図Sectional view showing the structure of a synchronous three-phase motor 図2に示すモータの回転子と固定子を示す全体図Overall view showing rotor and stator of motor shown in FIG. 電磁解析ソフトによる計算モデル図Calculation model diagram using electromagnetic analysis software 同一電流値で回転速度を異ならせたときのトルク波形図Torque waveform diagram when the rotational speed is varied with the same current value 同一電流値で回転速度を異ならせたときの半径方向節点力波形図Radial nodal force waveform diagram with different rotational speeds at the same current value 図5のトルク波形のフーリエ変換結果を示す図The figure which shows the Fourier-transform result of the torque waveform of FIG. 図6の半径方向節点力波形のフーリエ変換結果を示す図The figure which shows the Fourier-transform result of the radial nodal force waveform of FIG. 複素平面上にトルクと半径方向節点力の各12次成分をプロットした図A plot of the 12th order components of torque and radial nodal force on a complex plane 半径方向節点力低減のための高次周波数電流を重畳した場合と重畳しない場合のU相電流波形図U-phase current waveform diagram with and without superposition of higher-order frequency current for radial nodal force reduction 半径方向節点力低減のための高次周波数電流を重畳した場合と重畳しない場合の各半径方向節点力波形図Radial nodal force waveform diagram with and without superposition of high-order frequency current for radial nodal force reduction 図11の各半径方向節点力波形のフーリエ変換結果を示す図The figure which shows the Fourier-transform result of each radial direction nodal force waveform of FIG. 半径方向節点力低減のための高次周波数電流を重畳した場合と重畳しない場合の各トルク波形図Each torque waveform diagram with and without superposition of high-order frequency current for radial nodal force reduction 図13の各トルク波形のフーリエ変換結果を示す図The figure which shows the Fourier-transform result of each torque waveform of FIG. 第1及び第2の係数と基本電流値との対応関係を示すマップ図A map showing the correspondence between the first and second coefficients and the basic current value 基本電流値により第1の係数と第2の係数を切替える場合の例示図Example when switching the first coefficient and the second coefficient according to the basic current value 基本電流値により第1の係数と第2の係数を切替える場合の別の例示図Another example of switching between the first coefficient and the second coefficient according to the basic current value 回転速度により第1の係数と第2の係数を切替える場合の例示図Example diagram when switching between the first coefficient and the second coefficient depending on the rotation speed 回転速度により第1の係数と第2の係数を切替える場合の別の例示図Another example of switching between the first coefficient and the second coefficient depending on the rotation speed 第1の係数と第2の係数の選択される必要領域のデータだけを結合した係数データのマップ図Map diagram of coefficient data obtained by combining only data of necessary areas selected for the first coefficient and the second coefficient

符号の説明Explanation of symbols

10 電流制御装置
11 電流補正係数設定部
13 PI制御部
20 モータドライバ
21 PWM制御部
22 インバータ
30 三相同期モータ
40 固定子
42 コイル
50 回転子
60 モータケース
70 回転軸
DESCRIPTION OF SYMBOLS 10 Current control apparatus 11 Current correction coefficient setting part 13 PI control part 20 Motor driver 21 PWM control part 22 Inverter 30 Three-phase synchronous motor 40 Stator 42 Coil 50 Rotor 60 Motor case 70 Rotating shaft

Claims (11)

同期機の各相コイルに基本電流を印加したときに現れるトルク変動及び半径方向節点力のp次成分を低減するために、前記基本電流を前記p次の高次周波数電流成分に基づいて設定した補正係数を乗算して補正するようにした同期機の電流制御装置であって、
K=[1+qcos(pωt)+rsin(pωt)]の式により得られるKを前記補正係数として与え、前記p次の高次周波数電流成分の振幅値に関連する前記補正係数K内の係数q、r、トルク変動低減用の第1の係数と半径方向節点力低減用の第2の係数に基づいて設定して補正係数Kを設定する補正係数設定手段と、
該補正係数設定手段で設定された補正係数Kを基本電流に乗算して得られる印加電流を前記各相コイルに印加制御して同期機を駆動制御する駆動制御手段と、
を備えて構成したことを特徴とする同期機の電流制御装置。
In order to reduce the p-order component of torque fluctuation and radial nodal force appearing when a basic current is applied to each phase coil of the synchronous machine, the basic current is set based on the p-order high-order frequency current component. A current controller for a synchronous machine that corrects by multiplying by a correction coefficient,
K = [1 + qcos (pωt) + rsin (pωt)] is obtained as the correction coefficient, and the coefficients q and r in the correction coefficient K related to the amplitude value of the p-order high-order frequency current component are given. and a correction factor setting means for setting a correction coefficient K to set based on the first coefficient and the second coefficient of the radial nodal force for reducing the torque variation reduction,
Drive control means for driving and controlling the synchronous machine by applying an application current obtained by multiplying the basic current by the correction coefficient K set by the correction coefficient setting means to each phase coil;
A current control device for a synchronous machine, comprising:
前記補正係数設定手段は、同期機の動作に関する状態量に応じて、前記第1の係数と前記第2の係数とを切替える構成とした請求項1に記載の同期機の電流制御装置。2. The current control device for a synchronous machine according to claim 1, wherein the correction coefficient setting means is configured to switch between the first coefficient and the second coefficient in accordance with a state quantity relating to the operation of the synchronous machine. 前記補正係数設定手段は、予め定めた所定の基本電流値で前記第1の係数と第2の係数を切替える構成とした請求項1または2に記載の同期機の電流制御装置。 3. The current control device for a synchronous machine according to claim 1, wherein the correction coefficient setting means is configured to switch between the first coefficient and the second coefficient at a predetermined basic current value. 基本電流値に対応して変化する前記第1及び第2の各係数データのそれぞれ選択される各必要領域のデータのみを互いに結合し、該結合した1つの係数q、rのデータを前記基本電流値に対応させて記憶する構成とした請求項に記載の同期機の電流制御装置。 Only the data of the respective necessary areas selected from the first and second coefficient data that change corresponding to the basic current value are combined with each other, and the combined data of the coefficients q and r are combined with the basic current. The current control device for a synchronous machine according to claim 3 , wherein the current control device is configured to store the values in correspondence with values. 前記補正係数設定手段は、前記同期機の予め定めた第1の所定回転速度で前記第1の係数と第2の係数を切替える構成とした請求項1または2に記載の同期機の電流制御装置。 The current control device for a synchronous machine according to claim 1 or 2 , wherein the correction coefficient setting means is configured to switch the first coefficient and the second coefficient at a predetermined first predetermined rotation speed of the synchronous machine. . 前記補正係数設定手段は、前記第1の係数をq1、r1とし、前記第2の係数をq2、r2としたときに、第1の係数と第2の係数の予め定めた切替え領域において、
q=s*q1+t*q2
r=s*r1+t*r2
(ただし、係数s、tはs+t=1)
の式を用い、係数s、tのいずれか一方を漸増し、他方を漸減させて、前記補正係数K内の係数q、rを設定する構成とした請求項1に記載の同期機の電流制御装置。
When the first coefficient is q1, r1 and the second coefficient is q2, r2, the correction coefficient setting means has a predetermined switching region between the first coefficient and the second coefficient,
q = s * q1 + t * q2
r = s * r1 + t * r2
(However, the coefficients s and t are s + t = 1)
The current control of the synchronous machine according to claim 1, wherein one of the coefficients s and t is gradually increased and the other is gradually decreased to set the coefficients q and r in the correction coefficient K. apparatus.
前記補正係数設定手段は、前記第1の係数をq1、r1とし、前記第2の係数をq2、r2としたときに、予め定めた第2の所定回転速度を略中心とした所定回転速度領域において、
q=s*q1+t*q2
r=s*r1+t*r2
(ただし、係数s、tはs+t=1)
の式を用い、前記所定回転速度領域端から前記第2の所定回転速度までの間で、係数s、tのいずれか一方を漸増し、他方を漸減させて前記補正係数K内の係数q、rを設定する構成とした請求項1に記載の同期機の電流制御装置。
The correction coefficient setting means has a predetermined rotation speed region about a predetermined second predetermined rotation speed as a center when the first coefficient is q1, r1 and the second coefficient is q2, r2. In
q = s * q1 + t * q2
r = s * r1 + t * r2
(However, the coefficients s and t are s + t = 1)
The coefficient q in the correction coefficient K is gradually increased by gradually increasing one of the coefficients s and t between the predetermined rotational speed region end and the second predetermined rotational speed. The current control device for a synchronous machine according to claim 1, wherein r is set.
前記第2の所定回転速度は、駆動系の回転方向共振周波数に基づいて決定する構成とした請求項に記載の同期機の電流制御装置。 The current control device for a synchronous machine according to claim 7 , wherein the second predetermined rotation speed is determined based on a rotation direction resonance frequency of a drive system. 前記第2の所定回転速度は、前記同期機の構造体の共振周波数に基づいて決定する構成とした請求項に記載の同期機の電流制御装置。 The current control device for a synchronous machine according to claim 7 , wherein the second predetermined rotation speed is determined based on a resonance frequency of the structure of the synchronous machine. 前記補正係数設定手段は、前記第2の所定回転速度を略中心とした前記所定回転速度領域以外の回転速度領域で、前記係数s、tを、s=0、t=0として基本電流を補正しない構成とした請求項7〜9のいずれか1つに記載の同期機の電流制御装置。 The correction coefficient setting means corrects the basic current by setting the coefficients s and t to s = 0 and t = 0 in a rotation speed region other than the predetermined rotation speed region having the second predetermined rotation speed as a center. The current control device for a synchronous machine according to any one of claims 7 to 9 , wherein the current control device is not configured. 同期機の各相コイルに基本電流を印加したときに現れるトルク変動及び半径方向節点力のp次成分を低減するために、前記基本電流を前記p次の高次周波数電流成分に基づいて設定した補正係数を乗算して補正するようにした同期機の電流制御方法であって、
K=[1+qcos(pωt)+rsin(pωt)]の式により得られるKを前記補正係数として与え、前記p次の高次周波数電流成分の振幅値に関連する前記補正係数K内の係数q、r、トルク変動低減用の第1の係数と半径方向節点力低減用の第2の係数に基づいて設定して補正係数Kを設定し、
該設定された補正係数Kを基本電流に乗算して得られる印加電流を各相コイルに印加制御して同期機を駆動制御することを特徴とする同期機の電流制御方法。
In order to reduce the p-order component of torque fluctuation and radial nodal force appearing when a basic current is applied to each phase coil of the synchronous machine, the basic current is set based on the p-order high-order frequency current component. A current control method for a synchronous machine that corrects by multiplying a correction coefficient,
K = [1 + qcos (pωt) + rsin (pωt)] is obtained as the correction coefficient, and the coefficients q and r in the correction coefficient K related to the amplitude value of the p-order high-order frequency current component are given. and sets the correction coefficient K set based on the first coefficient and the second coefficient of the radial nodal force for reducing the torque variation reduction,
A synchronous machine current control method, wherein the synchronous machine is driven and controlled by applying an application current obtained by multiplying the basic current by the set correction coefficient K to each phase coil.
JP2006052798A 2006-02-28 2006-02-28 Current control device and current control method for synchronous machine Active JP4967375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006052798A JP4967375B2 (en) 2006-02-28 2006-02-28 Current control device and current control method for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006052798A JP4967375B2 (en) 2006-02-28 2006-02-28 Current control device and current control method for synchronous machine

Publications (2)

Publication Number Publication Date
JP2007236070A JP2007236070A (en) 2007-09-13
JP4967375B2 true JP4967375B2 (en) 2012-07-04

Family

ID=38556092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006052798A Active JP4967375B2 (en) 2006-02-28 2006-02-28 Current control device and current control method for synchronous machine

Country Status (1)

Country Link
JP (1) JP4967375B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5440845B2 (en) * 2009-10-30 2014-03-12 株式会社ジェイテクト Motor control device and vehicle steering device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352791A (en) * 2000-06-08 2001-12-21 Toyota Motor Corp Control unit of synchronous motor and current control method thereof
JP2002223582A (en) * 2001-01-26 2002-08-09 Hitachi Ltd Apparatus and method for controlling permanent magnet type synchronous motor
JP3627683B2 (en) * 2001-06-29 2005-03-09 日産自動車株式会社 Motor control device
JP3951830B2 (en) * 2002-06-26 2007-08-01 日産自動車株式会社 Motor control device
JP4117554B2 (en) * 2003-08-06 2008-07-16 株式会社デンソー Motor control device

Also Published As

Publication number Publication date
JP2007236070A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5576145B2 (en) Motor control device
JP5835450B2 (en) Rotating machine control device
JP2013106496A (en) Electric rotary machine
EP2006999B1 (en) Axial gap type motor/generator
JP2008141803A (en) Brushless motor
JP4239886B2 (en) Magnetic sound control method for AC rotating electric machine
JP2013126272A (en) Motor
JP2005304237A (en) Magnetic sound control method of ac rotary electric machine
JP6833100B2 (en) Rotating machine control method, rotating machine control device, and drive system
JP4309325B2 (en) Composite three-phase hybrid electric rotating machine and driving method thereof
JP2005117875A (en) Method for reducing magnetic noise of ac rotary electric machine and motor controller employing it
US11594944B2 (en) Method for controlling a synchronous double stator electric machine
JP4967375B2 (en) Current control device and current control method for synchronous machine
JP4984643B2 (en) Synchronous motor and control device thereof
JP4155152B2 (en) AC rotating electrical equipment
JP4742658B2 (en) Current control device and current control method for synchronous machine
JP2008043175A (en) Control unit for motor
JP6872293B2 (en) Rotating machine control method, rotating machine control device, and drive system
JP7267487B1 (en) Control device for rotating electrical machine and method for controlling rotating electrical machine
JPH11103588A (en) Control method for torque pulsation of permanent magnet embedded-type motor, and controller
WO2021079577A1 (en) Motor and control device thereof
JP2004064968A (en) Compound three-phase stepping motor
JP2005057939A (en) Rotary electric machine
JP6622586B2 (en) Rotating electrical machine control device, construction machine, and rotating electrical machine control method
JP5493423B2 (en) Motor control device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4967375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150