JP4965363B2 - VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE - Google Patents

VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE Download PDF

Info

Publication number
JP4965363B2
JP4965363B2 JP2007182798A JP2007182798A JP4965363B2 JP 4965363 B2 JP4965363 B2 JP 4965363B2 JP 2007182798 A JP2007182798 A JP 2007182798A JP 2007182798 A JP2007182798 A JP 2007182798A JP 4965363 B2 JP4965363 B2 JP 4965363B2
Authority
JP
Japan
Prior art keywords
power
inverter circuit
driving force
motor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007182798A
Other languages
Japanese (ja)
Other versions
JP2009018693A (en
Inventor
典丈 光谷
潜 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Toyota Motor Corp
Original Assignee
Aisin AW Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Toyota Motor Corp filed Critical Aisin AW Co Ltd
Priority to JP2007182798A priority Critical patent/JP4965363B2/en
Priority to EP08778086.2A priority patent/EP2165903A4/en
Priority to PCT/JP2008/062571 priority patent/WO2009008501A1/en
Priority to US12/667,786 priority patent/US8335603B2/en
Priority to CN2008800244210A priority patent/CN101687503B/en
Publication of JP2009018693A publication Critical patent/JP2009018693A/en
Application granted granted Critical
Publication of JP4965363B2 publication Critical patent/JP4965363B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

本発明は、車両およびその制御方法並びに駆動装置に関し、詳しくは、車両およびその制御方法並びに内燃機関および充放電可能な蓄電手段と共に駆動軸に動力を出力可能な動力出力装置に組み込まれる駆動装置に関する。   The present invention relates to a vehicle, a control method thereof, and a drive device, and more particularly to a vehicle, a control method thereof, and a drive device incorporated in a power output device capable of outputting power to a drive shaft together with an internal combustion engine and chargeable / dischargeable power storage means. .

従来、この種の車両としては、エンジンと、第1モータと、エンジンの出力軸と第1モータの回転軸と車軸側とに接続された遊星歯車機構と、車軸側に接続された同期発電電動機としての第2モータとを備え、第2モータを駆動するインバータの異常に対処するものが提案されている(例えば、特許文献1参照)。この車両では、前輪に接続された第2モータを駆動するインバータが過熱する異常が発生したときには、第2モータからのトルクを小さくすると共に後輪に接続された第3モータからのトルクを大きくすることにより、車両に要求される要求トルクを出力しつつインバータの過熱を抑制しようとしている。
特開2006−197717号公報
Conventionally, this type of vehicle includes an engine, a first motor, an output shaft of the engine, a planetary gear mechanism connected to the rotating shaft of the first motor and the axle side, and a synchronous generator motor connected to the axle side. And a second motor that copes with an abnormality of an inverter that drives the second motor has been proposed (for example, see Patent Document 1). In this vehicle, when an abnormality occurs in which the inverter driving the second motor connected to the front wheels overheats, the torque from the second motor is reduced and the torque from the third motor connected to the rear wheels is increased. Thus, the inverter is overheated while outputting the required torque required for the vehicle.
JP 2006-197717 A

上述の車両に生じる異常として、第2モータを駆動するインバータのスイッチング素子がオン固定する異常が考えられる。この場合、第2モータを駆動することができないため、少なくとも退避走行として、エンジンと第1モータとを駆動することにより、走行用に必要な駆動力を確保することが考えられる。このとき、第2モータとして例えばPM型の同期発電電動機を用いると、三相コイルのうちの一相に閉回路が形成され、第2モータのロータの回転に伴って生じる逆起電圧により車両に制動力が作用し、運転者のアクセルワークに応じた駆動力により走行できなくなってしまう。   As an abnormality that occurs in the above-described vehicle, an abnormality in which the switching element of the inverter that drives the second motor is fixed on can be considered. In this case, since the second motor cannot be driven, it is conceivable to secure a driving force necessary for traveling by driving the engine and the first motor at least as retreating traveling. At this time, if, for example, a PM type synchronous generator motor is used as the second motor, a closed circuit is formed in one phase of the three-phase coil, and the vehicle is caused by the back electromotive force generated as the rotor of the second motor rotates. The braking force is applied, and the vehicle cannot travel due to the driving force according to the driver's accelerator work.

本発明の車両およびその制御方法並びに駆動装置は、電動機を駆動するインバータに閉回路が形成される閉回路形成異常が発生したときでも要求に応じた駆動力を出力することを主目的とする。   A vehicle, a control method thereof, and a drive device of the present invention are mainly intended to output a driving force according to a request even when a closed circuit formation abnormality in which a closed circuit is formed in an inverter that drives an electric motor occurs.

本発明の車両およびその制御方法並びに駆動装置は、上述の主目的を達成するために以下の手段を採った。   The vehicle, the control method thereof, and the drive device of the present invention employ the following means in order to achieve the above-described main object.

本発明の車両は、
内燃機関と、
動力を入出力可能な発電機を有し、車軸側に接続されると共に該車軸側とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記車軸側と前記出力軸とに動力を入出力可能な電力動力入出力手段と、
前記車軸または該車軸とは異なる車軸に動力を入出力可能で回転に伴って逆起電圧を生じる電動機と、
前記発電機を駆動するための第1インバータ回路と、
前記電動機を駆動するための第2インバータ回路と、
前記第1インバータ回路および前記第2インバータ回路を介して前記発電機および前記電動機と電力のやり取りが可能な蓄電手段と、
前記第2インバータ回路の一部の相に閉回路が形成される閉回路形成異常を検出する閉回路形成異常検出手段と、
走行に要求される要求駆動力を設定する要求駆動力設定手段と、
前記閉回路形成異常検出手段により閉回路形成異常が検出されたときには、前記第2インバータ回路のスイッチング素子が所定のスイッチ状態で停止するよう該第2インバータ回路を制御すると共に前記電動機の回転に伴って生じる逆起電圧によって車両に作用する制動力の少なくとも一部をキャンセルするためのキャンセル用駆動力と前記設定された要求駆動力との和の駆動力に基づく実行用駆動力により走行するよう前記内燃機関と前記第1インバータ回路とを制御する制御手段と、
を備えることを要旨とする。
The vehicle of the present invention
An internal combustion engine;
A power generator capable of inputting / outputting power, connected to the axle side and connected to the output shaft of the internal combustion engine so as to be rotatable independently of the axle side; Power power input / output means capable of inputting and outputting power to the side and the output shaft;
An electric motor capable of inputting and outputting power to the axle or an axle different from the axle and generating a back electromotive force with rotation;
A first inverter circuit for driving the generator;
A second inverter circuit for driving the electric motor;
Power storage means capable of exchanging electric power with the generator and the motor via the first inverter circuit and the second inverter circuit;
Closed circuit formation abnormality detection means for detecting a closed circuit formation abnormality in which a closed circuit is formed in a part of the phase of the second inverter circuit;
Required driving force setting means for setting required driving force required for traveling;
When the closed circuit formation abnormality detecting means detects the closed circuit formation abnormality, the second inverter circuit is controlled so that the switching element of the second inverter circuit stops in a predetermined switch state, and the motor is rotated. The vehicle is driven by the driving force for execution based on the sum of the driving force for cancellation and the set required driving force for canceling at least a part of the braking force acting on the vehicle by the counter electromotive voltage generated by Control means for controlling the internal combustion engine and the first inverter circuit;
It is a summary to provide.

この本発明の車両では、電動機を駆動するための第2インバータ回路の一部の相に閉回路が形成される閉回路形成異常が生じたときには、第2インバータ回路のスイッチング素子が所定のスイッチ状態で停止するよう第2インバータ回路を制御すると共に電動機の回転に伴って生じる逆起電圧によって車両に作用する制動力の少なくとも一部をキャンセルするためのキャンセル用駆動力と走行に要求される要求駆動力との和の駆動力に基づく実行用駆動力により走行するよう内燃機関と第1インバータ回路とを制御する。これにより、内燃機関と電力動力入出力手段とにより出力される駆動力を要求駆動力に応じたものとすることができ、要求駆動力に応じた駆動力により走行することができる。   In the vehicle according to the present invention, when a closed circuit formation abnormality in which a closed circuit is formed in a part of the phase of the second inverter circuit for driving the electric motor occurs, the switching element of the second inverter circuit is in a predetermined switch state. The second inverter circuit is controlled so as to stop at the same time, and at the same time, a canceling driving force for canceling at least a part of the braking force acting on the vehicle by the counter electromotive voltage generated with the rotation of the electric motor and the required driving required for traveling The internal combustion engine and the first inverter circuit are controlled so as to travel with the driving force for execution based on the driving force summed with the force. As a result, the driving force output by the internal combustion engine and the power drive input / output means can be made to correspond to the required driving force, and the vehicle can travel with the driving force corresponding to the required driving force.

こうした本発明の車両において、前記所定のスイッチ状態は、前記第2インバータ回路の全ての相に閉回路が形成されるスイッチ状態であるものとすることもできる。こうすれば、電動機の回転に伴って生じる逆起電圧によって車両に作用する制動力を小さくすることができる。   In the vehicle according to the present invention, the predetermined switch state may be a switch state in which a closed circuit is formed in all phases of the second inverter circuit. If it carries out like this, the braking force which acts on a vehicle by the counter electromotive voltage which arises with rotation of an electric motor can be made small.

また、本発明の車両において、前記制御手段は、前記電動機の回転数と前記キャンセル用駆動力との関係として予め定めた回転数駆動力関係を用いて得られる前記キャンセル用駆動力を用いて前記内燃機関と前記第1インバータ回路とを制御する手段であるものとすることもできる。こうすれば、容易にキャンセル用駆動力を得ることができる。   In the vehicle of the present invention, the control means uses the cancel driving force obtained by using a predetermined rotational speed driving force relationship as a relationship between the rotational speed of the electric motor and the canceling driving force. It may be a means for controlling the internal combustion engine and the first inverter circuit. In this way, a canceling driving force can be easily obtained.

さらに、本発明の車両において、前記制御手段は、車両の操舵角が大きいほど大きくなる傾向に操舵角用駆動力を設定すると共に該設定した操舵角用駆動力と前記キャンセル用駆動力と前記設定された要求駆動力との和の駆動力を前記実行用駆動力として前記内燃機関と前記第1インバータ回路とを制御する手段であるものとすることもできる。こうすれば、実行用駆動力を操舵角に応じた駆動力とすることができ、操舵角に応じた駆動力により走行することができる。   Further, in the vehicle of the present invention, the control means sets the steering angle driving force so as to increase as the steering angle of the vehicle increases, and sets the steering angle driving force, the cancellation driving force, and the setting. The internal driving engine and the first inverter circuit may be controlled by using the driving force that is the sum of the required driving force as the execution driving force. In this way, the execution driving force can be set to a driving force corresponding to the steering angle, and the vehicle can travel with the driving force corresponding to the steering angle.

あるいは、本発明の車両において、前記制御手段は、前記実行用駆動力を前記蓄電手段を充放電してもよい最大許容電力である入出力制限の範囲内で出力して走行するよう前記内燃機関と前記第1インバータ回路とを制御する手段であるものとすることもできる。こうすれば、過大な電力による蓄電手段の充放電を抑止することができる。   Alternatively, in the vehicle of the present invention, the control means outputs the execution driving force within an input / output limit range that is a maximum allowable power that may charge / discharge the power storage means, and the internal combustion engine travels. And means for controlling the first inverter circuit. If it carries out like this, charging / discharging of the electrical storage means by excessive electric power can be suppressed.

また、本発明の車両において、前記蓄電手段と電力のやり取りが可能で前記車軸側または該車軸とは異なる車軸に動力を入出力可能な前記電動機とは異なる第2電動機と、前記第2電動機を駆動するための第3インバータ回路と、を備え、前記制御手段は、前記第2電動機から駆動力が出力されて前記実行用駆動力により走行するよう前記内燃機関と前記第1インバータ回路と前記第3インバータ回路とを制御する手段である、ものとすることもできる。   In the vehicle of the present invention, a second electric motor different from the electric motor capable of exchanging electric power with the power storage means and capable of inputting and outputting power to the axle side or an axle different from the axle, and the second electric motor A third inverter circuit for driving, wherein the control means outputs a driving force from the second electric motor and travels by the driving force for execution, and the internal combustion engine, the first inverter circuit, and the first It can also be a means for controlling the 3 inverter circuit.

本発明の車両において、前記電力動力入出力手段は、前記車軸に連結された駆動軸と前記内燃機関の出力軸と前記発電機の回転軸との3軸に接続され該3軸のうちいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段を有する手段であるものとすることもできる。   In the vehicle of the present invention, the electric power drive input / output means is connected to three shafts of a drive shaft coupled to the axle, an output shaft of the internal combustion engine, and a rotating shaft of the generator, and one of the three shafts. It can also be a means having a three-axis power input / output means for inputting / outputting power to / from the remaining shafts based on power input / output to / from the two axes.

本発明の駆動装置は、
内燃機関および充放電可能な蓄電手段と共に駆動軸に動力を出力可能な動力出力装置に組み込まれる駆動装置であって、
前記蓄電手段と電力のやり取りが可能で、動力を入出力可能な発電機を有し、前記駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記駆動軸と前記出力軸とに動力を入出力可能な電力動力入出力手段と、
前記駆動軸に動力を入出力可能で回転に伴って逆起電圧を生じる電動機と、
前記発電機を駆動するための第1インバータ回路と、
前記電動機を駆動するための第2インバータ回路と、
前記第1インバータ回路および前記第2インバータ回路を介して前記発電機および前記電動機と電力のやり取りが可能な蓄電手段と、
前記第2インバータ回路の一部の相に閉回路が形成される閉回路形成異常を検出する閉回路形成異常検出手段と、
前記駆動軸に要求される要求駆動力を設定する要求駆動力設定手段と、
前記閉回路形成異常検出手段により閉回路形成異常が検出されたときには、前記第2インバータ回路のスイッチング素子が所定のスイッチ状態で停止するよう該第2インバータ回路を制御すると共に前記電動機の回転に伴って生じる逆起電圧によって前記駆動軸に作用する制動力の少なくとも一部をキャンセルするためのキャンセル用駆動力と前記設定された要求駆動力との和の駆動力に基づく実行用駆動力が前記駆動軸に出力されるよう前記内燃機関の制御と共に前記第1インバータ回路を制御する制御手段と、
を備えることを要旨とする。
The drive device of the present invention is
A drive device incorporated in a power output device capable of outputting power to a drive shaft together with an internal combustion engine and chargeable / dischargeable power storage means,
A power generator capable of exchanging electric power with the power storage means and capable of inputting and outputting power is connected to the drive shaft and connected to the output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft. Power power input / output means capable of inputting / outputting power to / from the drive shaft and the output shaft together with power / power input / output;
An electric motor capable of inputting and outputting power to the drive shaft and generating a counter electromotive voltage with rotation;
A first inverter circuit for driving the generator;
A second inverter circuit for driving the electric motor;
Power storage means capable of exchanging electric power with the generator and the motor via the first inverter circuit and the second inverter circuit;
Closed circuit formation abnormality detection means for detecting a closed circuit formation abnormality in which a closed circuit is formed in a part of the phase of the second inverter circuit;
Required driving force setting means for setting required driving force required for the drive shaft;
When the closed circuit formation abnormality detecting means detects the closed circuit formation abnormality, the second inverter circuit is controlled so that the switching element of the second inverter circuit stops in a predetermined switch state, and the motor is rotated. The driving force for execution based on the sum of the canceling driving force for canceling at least a part of the braking force acting on the driving shaft by the counter electromotive voltage generated and the set required driving force is the driving. Control means for controlling the first inverter circuit together with the control of the internal combustion engine to be output to a shaft;
It is a summary to provide.

この本発明の駆動装置では、電動機を駆動するための第2インバータ回路の一部の相に閉回路が形成される閉回路形成異常が生じたときには、第2インバータ回路のスイッチング素子が所定のスイッチ状態で停止するよう第2インバータ回路を制御すると共に電動機の回転に伴って生じる逆起電圧によって駆動軸に作用する制動力の少なくとも一部をキャンセルするためのキャンセル用駆動力と駆動軸に要求される要求駆動力との和の駆動力に基づく実行用駆動力が駆動軸に出力されるよう内燃機関と第1インバータ回路とを制御する。これにより、内燃機関と電力動力入出力手段とにより出力される駆動力を要求駆動力に応じたものとすることができ、要求駆動力に応じた駆動力を駆動軸に出力することができる。   In the drive device of the present invention, when a closed circuit formation abnormality occurs in which a closed circuit is formed in a part of the phase of the second inverter circuit for driving the electric motor, the switching element of the second inverter circuit is a predetermined switch. The second inverter circuit is controlled so as to stop in a state, and the driving force for cancellation and the driving shaft for canceling at least a part of the braking force acting on the driving shaft by the counter electromotive voltage generated with the rotation of the electric motor are required. The internal combustion engine and the first inverter circuit are controlled such that the execution driving force based on the sum of the required driving force and the required driving force is output to the drive shaft. Thereby, the driving force output by the internal combustion engine and the power drive input / output means can be made to correspond to the required driving force, and the driving force corresponding to the required driving force can be outputted to the drive shaft.

本発明の車両の制御方法は、
内燃機関と、動力を入出力可能な発電機を有し車軸側に接続されると共に該車軸側とは独立に回転可能に前記内燃機関の出力軸に接続され電力と動力の入出力を伴って前記車軸側と前記出力軸とに動力を入出力可能な電力動力入出力手段と、前記車軸または該車軸とは異なる車軸に動力を入出力可能で回転に伴って逆起電圧を生じる電動機と、前記発電機を駆動するための第1インバータ回路と、前記電動機を駆動するための第2インバータ回路と、前記第1インバータ回路および前記第2インバータ回路を介して前記発電機および前記電動機と電力のやり取りが可能な蓄電手段と、を備える車両の制御方法であって、
前記第2インバータ回路の一部の相に閉回路が形成される閉回路形成異常が生じたときには、前記第2インバータ回路のスイッチング素子が所定のスイッチ状態で停止するよう該第2インバータ回路を制御すると共に前記電動機の回転に伴って生じる逆起電圧によって前記駆動軸に作用する制動力の少なくとも一部をキャンセルするためのキャンセル用駆動力と走行に要求される要求駆動力との和の駆動力に基づく実行用駆動力により走行するよう前記内燃機関と前記第1インバータ回路とを制御する、
ことを特徴とする。
The vehicle control method of the present invention includes:
An internal combustion engine and a generator capable of inputting / outputting power are connected to the axle side and connected to the output shaft of the internal combustion engine so as to be rotatable independently of the axle side, with input / output of electric power and power Power power input / output means capable of inputting / outputting power to / from the axle side and the output shaft, an electric motor capable of inputting / outputting power to / from the axle or an axle different from the axle, and generating a back electromotive force with rotation; A first inverter circuit for driving the generator, a second inverter circuit for driving the electric motor, and the generator, the electric motor and the electric power through the first inverter circuit and the second inverter circuit. A vehicle control method comprising a storage means capable of exchange,
Controls the second inverter circuit so that the switching element of the second inverter circuit stops in a predetermined switch state when a closed circuit formation abnormality occurs in which a closed circuit is formed in a part of the phase of the second inverter circuit In addition, a driving force that is a sum of a canceling driving force for canceling at least a part of the braking force that acts on the drive shaft by a counter electromotive voltage that occurs as the motor rotates and a required driving force required for traveling Controlling the internal combustion engine and the first inverter circuit to travel with an execution driving force based on
It is characterized by that.

この本発明の車両の制御方法では、電動機を駆動するための第2インバータ回路の一部の相に閉回路が形成される閉回路形成異常が生じたときには、第2インバータ回路のスイッチング素子が所定のスイッチ状態で停止するよう第2インバータ回路を制御すると共に電動機の回転に伴って生じる逆起電圧によって車両に作用する制動力の少なくとも一部をキャンセルするためのキャンセル用駆動力と走行に要求される要求駆動力との和の駆動力に基づく実行用駆動力により走行するよう内燃機関と第1インバータ回路とを制御する。これにより、内燃機関と電力動力入出力手段とにより出力される駆動力を要求駆動力に応じたものとすることができ、要求駆動力に応じた駆動力により走行することができる。   In this vehicle control method of the present invention, when a closed circuit formation abnormality occurs in which a closed circuit is formed in a part of the phase of the second inverter circuit for driving the electric motor, the switching element of the second inverter circuit is The second inverter circuit is controlled so as to stop in the switch state, and at the same time, driving force for cancellation and traveling are required for canceling at least part of the braking force acting on the vehicle by the counter electromotive voltage generated with the rotation of the electric motor. The internal combustion engine and the first inverter circuit are controlled so as to travel with the driving force for execution based on the driving force that is the sum of the required driving force. As a result, the driving force output by the internal combustion engine and the power drive input / output means can be made to correspond to the required driving force, and the vehicle can travel with the driving force corresponding to the required driving force.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の出力軸としてのクランクシャフト26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された駆動軸としてのリングギヤ軸32aに取り付けられた減速ギヤ35と、この減速ギヤ35に接続されたモータMG2と、動力出力装置全体をコントロールするハイブリッド用電子制御ユニット70とを備える。   FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 as an embodiment of the present invention. As shown in the figure, the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution / integration mechanism 30 connected to a crankshaft 26 as an output shaft of the engine 22 via a damper 28, and power distribution / integration. A motor MG1 capable of generating electricity connected to the mechanism 30, a reduction gear 35 attached to a ring gear shaft 32a as a drive shaft connected to the power distribution and integration mechanism 30, a motor MG2 connected to the reduction gear 35, And a hybrid electronic control unit 70 for controlling the entire power output apparatus.

エンジン22は、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関であり、エンジン22の運転状態を検出する各種センサから信号を入力するエンジン用電子制御ユニット(以下、エンジンECUという)24により燃料噴射制御や点火制御,吸入空気量調節制御などの運転制御を受けている。エンジンECU24は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、エンジンECU24は、図示しないクランクポジションセンサからのクランクポジションに基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。   The engine 22 is an internal combustion engine that outputs power using a hydrocarbon-based fuel such as gasoline or light oil, and an engine electronic control unit (hereinafter referred to as an engine ECU) that receives signals from various sensors that detect the operating state of the engine 22. ) 24 is subjected to operation control such as fuel injection control, ignition control, intake air amount adjustment control and the like. The engine ECU 24 is in communication with the hybrid electronic control unit 70, controls the operation of the engine 22 by a control signal from the hybrid electronic control unit 70, and, if necessary, transmits data related to the operating state of the engine 22 to the hybrid electronic control. Output to unit 70. The engine ECU 24 also calculates the rotational speed of the crankshaft 26, that is, the rotational speed Ne of the engine 22, based on a crank position from a crank position sensor (not shown).

動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構30は、キャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、リングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側にそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構60およびデファレンシャルギヤ62を介して、最終的には車両の駆動輪63a,63bに出力される。   The power distribution and integration mechanism 30 includes an external gear sun gear 31, an internal gear ring gear 32 arranged concentrically with the sun gear 31, a plurality of pinion gears 33 that mesh with the sun gear 31 and mesh with the ring gear 32, A planetary gear mechanism is provided that includes a carrier 34 that holds a plurality of pinion gears 33 so as to rotate and revolve, and that performs differential action using the sun gear 31, the ring gear 32, and the carrier 34 as rotational elements. In the power distribution and integration mechanism 30, the crankshaft 26 of the engine 22 is connected to the carrier 34, the motor MG1 is connected to the sun gear 31, and the reduction gear 35 is connected to the ring gear 32 via the ring gear shaft 32a. When functioning as a generator, power from the engine 22 input from the carrier 34 is distributed according to the gear ratio between the sun gear 31 side and the ring gear 32 side, and when the motor MG1 functions as an electric motor, the engine input from the carrier 34 The power from 22 and the power from the motor MG1 input from the sun gear 31 are integrated and output to the ring gear 32 side. The power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 63a and 63b of the vehicle via the gear mechanism 60 and the differential gear 62.

図2は、モータMG1,MG2を中心とした電気駆動系の構成の概略を示す構成図である。モータMG1,MG2は、いずれも外表面に永久磁石が貼り付けられたロータと、三相コイルが巻回されたステータとを備える周知のPM型の同期発電電動機として構成されており、インバータ41,42を介してバッテリ50と電力のやりとりを行なう。インバータ41,42とバッテリ50とを接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成されており、モータMG1,MG2のいずれかで発電される電力を他のモータで消費することができるようになっている。したがって、バッテリ50は、モータMG1,MG2のいずれかから生じた電力や不足する電力により充放電されることになる。なお、モータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されない。インバータ41は、6個のトランジスタT1〜T6とトランジスタT1〜T6の各々に逆方向に並列接続された6個のダイオードD1〜D6とにより構成されている。トランジスタT1〜T6は、電力ライン54の正極母線と負極母線とに対してソース側とシンク側とになるよう2個ずつペアで配置されており、対となるトランジスタ同士の接続点の各々に三相コイル(U相,V相,W相)の各々が接続されている。したがって、電力ライン54の正極母線と負極母線との間に電圧が作用している状態で対をなすトランジスタT1〜T6のオン時間の割合を制御することにより三相コイルに回転磁界を形成でき、モータMG1を回転駆動することができる。インバータ42も、6個のトランジスタT7〜T12と6個のダイオードD7〜D12とによりインバータ41と同様に構成されており、トランジスタT7〜T12のオン時間の割合を制御することによりモータMG2を回転駆動することができる。モータMG1,MG2は、いずれもモータ用電子制御ユニット(以下、モータECUという)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や、モータMG1,MG2の三相コイルの各相に流れる相電流を検出する電流センサ45U,45V,45W,46U,46V,46Wからの相電流などが入力されており、モータECU40からは、インバータ41,42のトランジスタT1〜T6,T7〜T12へのスイッチング制御信号が出力されている。モータECU40は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、モータECU40は、回転位置検出センサ43,44からの信号に基づいてモータMG1,MG2の回転数Nm1,Nm2も演算している。   FIG. 2 is a configuration diagram showing an outline of the configuration of the electric drive system centered on the motors MG1 and MG2. Each of the motors MG1 and MG2 is configured as a well-known PM-type synchronous generator motor including a rotor having a permanent magnet attached to the outer surface and a stator around which a three-phase coil is wound. Power is exchanged with the battery 50 via 42. The power line 54 connecting the inverters 41 and 42 and the battery 50 is configured as a positive electrode bus and a negative electrode bus shared by the inverters 41 and 42, and the electric power generated by one of the motors MG1 and MG2 It can be consumed by a motor. Therefore, battery 50 is charged / discharged by electric power generated from one of motors MG1 and MG2 or insufficient electric power. If the balance of electric power is balanced by the motors MG1 and MG2, the battery 50 is not charged / discharged. The inverter 41 includes six transistors T1 to T6 and six diodes D1 to D6 connected in parallel to each of the transistors T1 to T6 in the reverse direction. Two transistors T1 to T6 are arranged in pairs so as to be on the source side and the sink side with respect to the positive and negative buses of the power line 54. Three transistors T1 to T6 are provided at each of the connection points of the paired transistors. Each of the phase coils (U phase, V phase, W phase) is connected. Therefore, a rotating magnetic field can be formed in the three-phase coil by controlling the ratio of the on-time of the transistors T1 to T6 that make a pair while the voltage is acting between the positive electrode bus and the negative electrode bus of the power line 54, The motor MG1 can be rotationally driven. The inverter 42 is configured in the same manner as the inverter 41 by six transistors T7 to T12 and six diodes D7 to D12. The motor MG2 is rotationally driven by controlling the ratio of the on-time of the transistors T7 to T12. can do. The motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as a motor ECU) 40. The motor ECU 40 receives signals necessary for driving and controlling the motors MG1 and MG2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and the motors MG1 and MG2. Phase currents from current sensors 45U, 45V, 45W, 46U, 46V, and 46W that detect phase currents flowing in the respective phases of the three-phase coil are input. From the motor ECU 40, transistors T1 to T1 of the inverters 41 and 42 are input. Switching control signals to T6, T7 to T12 are output. The motor ECU 40 is in communication with the hybrid electronic control unit 70, controls the driving of the motors MG1 and MG2 by a control signal from the hybrid electronic control unit 70, and, if necessary, data on the operating state of the motors MG1 and MG2. Output to the hybrid electronic control unit 70. The motor ECU 40 also calculates the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 based on signals from the rotational position detection sensors 43 and 44.

バッテリ50は、バッテリ用電子制御ユニット(以下、バッテリECUという)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧,バッテリ50の出力端子に接続された電力ライン54に取り付けられた図示しない電流センサからの充放電電流,バッテリ50に取り付けられた温度センサ51からの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッド用電子制御ユニット70に出力する。また、バッテリECU52は、バッテリ50を管理するために電流センサにより検出された充放電電流の積算値に基づいて残容量(SOC)を演算したり、演算した残容量(SOC)と電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算している。   The battery 50 is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52. The battery ECU 52 receives signals necessary for managing the battery 50, for example, a voltage between terminals from a voltage sensor (not shown) installed between terminals of the battery 50, and a power line 54 connected to the output terminal of the battery 50. The charging / discharging current from the attached current sensor (not shown), the battery temperature Tb from the temperature sensor 51 attached to the battery 50, and the like are input. Output to the control unit 70. Further, the battery ECU 52 calculates the remaining capacity (SOC) based on the integrated value of the charging / discharging current detected by the current sensor in order to manage the battery 50, and calculates the remaining capacity (SOC) and the battery temperature Tb. The input / output limits Win and Wout, which are the maximum allowable power that may charge / discharge the battery 50, are calculated based on the above.

ハイブリッド用電子制御ユニット70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッド用電子制御ユニット70には、イグニッションスイッチ80からのイグニッション信号,シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速V,図示しないステアリングの操舵角を検出する操舵角センサ89からの操舵角θなどが入力ポートを介して入力されている。ハイブリッド用電子制御ユニット70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。   The hybrid electronic control unit 70 is configured as a microprocessor centered on the CPU 72, and in addition to the CPU 72, a ROM 74 for storing processing programs, a RAM 76 for temporarily storing data, an input / output port and communication not shown. And a port. The hybrid electronic control unit 70 includes an ignition signal from an ignition switch 80, a shift position SP from a shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator pedal position sensor 84 that detects the amount of depression of the accelerator pedal 83. From the accelerator pedal position Acc, the brake pedal position BP from the brake pedal position sensor 86 that detects the depression amount of the brake pedal 85, the vehicle speed V from the vehicle speed sensor 88, and the steering angle sensor 89 that detects the steering angle of the steering (not shown). Is input through the input port. As described above, the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 40, and the battery ECU 52. ing.

こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸としてのリングギヤ軸32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求動力がリングギヤ軸32aに出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2からの要求動力に見合う動力をリングギヤ軸32aに出力するよう運転制御するモータ運転モードなどがある。また、モータMG2やインバータ42に異常が生じてモータMG2を駆動できなくなったときでも走行を確保する退避走行用のモードとして、モータMG2の運転を停止してエンジン22で反力を受け止めながらモータMG1からの負のトルクを動力分配統合機構30で反転させて正のトルクとしてリングギヤ軸32aに出力するよう運転制御して走行する直行走行モードも用意されている。   The hybrid vehicle 20 of the embodiment thus configured calculates the required torque to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver. Then, the operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a. As operation control of the engine 22, the motor MG1, and the motor MG2, the operation of the engine 22 is controlled so that power corresponding to the required power is output from the engine 22, and all of the power output from the engine 22 is the power distribution and integration mechanism 30. Torque conversion operation mode for driving and controlling the motor MG1 and the motor MG2 so that the torque is converted by the motor MG1 and the motor MG2 and output to the ring gear shaft 32a, and the required power and the power required for charging and discharging the battery 50. The engine 22 is operated and controlled so that suitable power is output from the engine 22, and all or part of the power output from the engine 22 with charging / discharging of the battery 50 is the power distribution and integration mechanism 30, the motor MG1, and the motor. The required power is converted to the ring gear shaft 32 with torque conversion by MG2. Charge / discharge operation mode in which the motor MG1 and the motor MG2 are driven and controlled to be output to each other, and a motor operation mode in which the operation of the engine 22 is stopped and the power corresponding to the required power from the motor MG2 is output to the ring gear shaft 32a. and so on. Further, the motor MG1 is stopped while receiving the reaction force by stopping the operation of the motor MG2 as a mode for evacuation traveling to ensure traveling even when the motor MG2 and the inverter 42 become abnormal and cannot drive the motor MG2. A straight traveling mode is also prepared in which the negative torque from the engine is reversed by the power distribution and integration mechanism 30 and is operated so as to be output as a positive torque to the ring gear shaft 32a.

次に、こうして構成された実施例のハイブリッド自動車20の動作、特にモータMG2やインバータ42に異常が生じてモータMG2を駆動できなくなって直行走行モードで走行する際の動作について説明する。図3はハイブリッド用電子制御ユニット70により実行される直行走行モード時駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、実施例では、モータECU40により実行される図示しない短絡異常検出ルーチンによって電流センサ46U,46V,46Wからの相電流に基づいてインバータ42のトランジスタT7〜T12の一つがオン固定する異常、即ち、モータMG2の三相コイルの一相が短絡する異常が検出されたときに実行される。   Next, the operation of the hybrid vehicle 20 of the embodiment configured as described above, particularly the operation when the motor MG2 and the inverter 42 become abnormal and the motor MG2 cannot be driven and travels in the straight traveling mode will be described. FIG. 3 is a flowchart showing an example of the drive control routine in the straight traveling mode executed by the hybrid electronic control unit 70. In this embodiment, this routine is an abnormality in which one of the transistors T7 to T12 of the inverter 42 is fixed on based on the phase current from the current sensors 46U, 46V, 46W by a short-circuit abnormality detection routine (not shown) executed by the motor ECU 40. That is, it is executed when an abnormality in which one phase of the three-phase coil of the motor MG2 is short-circuited is detected.

直行走行モード時駆動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、モータMG2の三相コイルの三相全てが短絡した状態になるるようモータECU40に指示する制御信号を出力する処理を実行する(ステップS100)。この制御信号を受信したモータECU40は、インバータ42のトランジスタT7〜T12のうちオン固定している一つのトランジスタと同じ側(図2のトランジスタT7,T8,T9側またはトランジスタT10,T11,T12側)の残り二つのトランジスタもオンとした状態で停止するようスイッチング制御を行なう。こうしてインバータ42を三相短絡の状態で停止するのは、モータMG2の回転に伴う逆起電圧によって生じる相電流を一相短絡の状態に比して全体として小さくするためである。   When the drive control routine in the straight traveling mode is executed, the CPU 72 of the hybrid electronic control unit 70 first instructs the motor ECU 40 to put all three phases of the three-phase coils of the motor MG2 into a short-circuited state. Is executed (step S100). The motor ECU 40 that has received this control signal is on the same side as one of the transistors T7 to T12 of the inverter 42 that is fixed on (the transistor T7, T8, T9 side in FIG. 2 or the transistor T10, T11, T12 side). Switching control is performed so that the other two transistors are stopped in the on state. The reason why the inverter 42 is stopped in the three-phase short circuit state is that the phase current generated by the counter electromotive voltage accompanying the rotation of the motor MG2 is reduced as a whole compared to the one-phase short circuit state.

続いて、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ88からの車速V,操舵角センサ89からの操舵角θ,モータMG1,MG2の回転数Nm1,Nm2,バッテリ50の入出力制限Win,Woutなどのデータを入力し(ステップS110)、入力したアクセル開度Accと車速Vとに基づいて車両に要求されるトルクとして駆動輪63a,63bに連結された駆動軸としてのリングギヤ軸32aに出力すべき要求トルクT*を設定する(ステップS120)。ここで、モータMG1,MG2の回転数Nm1,Nm2は、回転位置検出センサ43,44により検出されたモータMG1,MG2の回転子の回転位置に基づいて演算されたものをモータECU40から通信により入力するものとした。また、バッテリ50の入出力制限Win,Woutは、バッテリ50の電池温度Tbとバッテリ50の残容量(SOC)とに基づいて設定されたものをバッテリECU52から通信により入力するものとした。要求トルクT*は、実施例では、アクセル開度Accと車速Vと要求トルクT*との関係を予め定めて要求トルク設定用マップとしてROM74に記憶しておき、アクセル開度Accと車速Vとが与えられると記憶したマップから対応する要求トルクT*を導出して設定するものとした。図4に要求トルク設定用マップの一例を示す。   Subsequently, the accelerator opening degree Acc from the accelerator pedal position sensor 84, the vehicle speed V from the vehicle speed sensor 88, the steering angle θ from the steering angle sensor 89, the rotational speeds Nm1, Nm2 of the motors MG1, MG2, and the input / output limits of the battery 50 Data such as Win and Wout are input (step S110), and a ring gear shaft 32a as a drive shaft connected to the drive wheels 63a and 63b as torque required for the vehicle based on the accelerator opening Acc and the vehicle speed V input. Is set to the required torque T * to be output (step S120). Here, the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 are input from the motor ECU 40 by communication from those calculated based on the rotational positions of the rotors of the motors MG1 and MG2 detected by the rotational position detection sensors 43 and 44. To do. Further, the input / output limits Win and Wout of the battery 50 are set based on the battery temperature Tb of the battery 50 and the remaining capacity (SOC) of the battery 50 and are input from the battery ECU 52 by communication. In the embodiment, the required torque T * is determined in advance by storing the relationship between the accelerator opening Acc, the vehicle speed V, and the required torque T * in the ROM 74 as a required torque setting map. , The corresponding required torque T * is derived from the stored map and set. FIG. 4 shows an example of the required torque setting map.

こうしてデータを入力して要求トルクT*を設定すると、モータMG2の回転に応じて生じる逆起電圧により駆動軸としてのリングギヤ軸32aに作用する負のトルクとしての逆起電圧作用トルクTbを導出すると共に(ステップS130)、操舵角θに応じて車両に作用する制動力をリングギヤ軸32aに作用するトルクに変換して得られる負のトルクとしての操舵角作用トルクTsを導出し(ステップS140)、設定した要求トルクT*から導出した逆起電圧作用トルクTbと操舵角作用トルクTsとを減ずることにより駆動軸としてのリングギヤ軸32aに制御上出力すべき実行用トルクTr*を設定する(ステップS150)。ここで、逆起電圧作用トルクTbは、実施例では、モータMG2の回転数Nm2と逆起電圧作用トルクTbとの関係を予め実験等により求めて逆起電圧作用トルク導出用マップとしてROM74に記憶しておき、回転数Nm2が与えられると記憶したマップから対応する逆起電圧作用トルクTbを導出するものとした。図5に逆起電圧作用トルク導出用マップの一例を実線で示す。図中、破線は、インバータ42を三相短絡の状態にすることなく一相短絡の異常が生じたままの状態としたときにリングギヤ軸32aに作用するブレーキトルクを比較のために示したものである。このように、インバータ42を三相短絡にすることにより、モータMG2の回転数Nm2が値N1より大きくなる領域で一相短絡の状態のときに比して逆起電圧作用トルクTbの絶対値を小さくすることができる。また、操舵角作用トルクTsは、実施例では、操舵角θと操舵角作用トルクTsとの関係を予め実験等により求めて操舵角作用トルク導出用マップとしてROM74に記憶しておき、操舵角θが与えられると記憶したマップから対応する操舵角作用トルクTsを導出するものとした。図6に操舵角作用トルク導出用マップの一例を示す。図示するように、操舵角θの絶対値が大きいほど操舵角作用トルクTsが絶対値として大きくなる傾向に定められているのは、操舵角θの絶対値が大きいほど車両に作用する制動力が大きくなることに基づく。   When data is thus input and the required torque T * is set, the counter electromotive force acting torque Tb as a negative torque acting on the ring gear shaft 32a as the drive shaft is derived by the counter electromotive voltage generated according to the rotation of the motor MG2. At the same time (step S130), a steering angle action torque Ts as a negative torque obtained by converting the braking force acting on the vehicle according to the steering angle θ into torque acting on the ring gear shaft 32a is derived (step S140). The execution torque Tr * to be output for control is set to the ring gear shaft 32a as the drive shaft by reducing the back electromotive force applied torque Tb and the steering angle applied torque Ts derived from the set required torque T * (step S150). ). Here, the counter electromotive force acting torque Tb is stored in the ROM 74 as a counter electromotive force acting torque derivation map by previously obtaining the relationship between the rotational speed Nm2 of the motor MG2 and the counter electromotive force acting torque Tb in advance in the embodiment. In addition, when the rotational speed Nm2 is given, the corresponding counter electromotive force applied torque Tb is derived from the stored map. FIG. 5 shows an example of the back electromotive force applied torque derivation map by a solid line. In the figure, the broken line shows, for comparison, the brake torque that acts on the ring gear shaft 32a when the inverter 42 is left in a state in which a one-phase short-circuit abnormality has occurred without being in a three-phase short-circuit state. is there. In this way, by making the inverter 42 a three-phase short circuit, the absolute value of the counter electromotive force acting torque Tb can be reduced as compared with the case where the rotation speed Nm2 of the motor MG2 is larger than the value N1 compared to the one-phase short circuit state. Can be small. Further, in the embodiment, the steering angle acting torque Ts is obtained in advance by experiments or the like as a relationship between the steering angle θ and the steering angle acting torque Ts and stored in the ROM 74 as a steering angle acting torque derivation map. , The corresponding steering angle operating torque Ts is derived from the stored map. FIG. 6 shows an example of a steering angle action torque derivation map. As shown in the figure, the larger the absolute value of the steering angle θ, the larger the steering angle acting torque Ts tends to increase as an absolute value. The larger the absolute value of the steering angle θ, the more the braking force that acts on the vehicle. Based on growing.

こうして実行用トルクTr*を設定すると、エンジン22の目標回転数Ne*に所定回転数Nesetを設定すると共に設定したエンジン22の目標回転数Ne*と入力したエンジン22の回転数Neとに基づいて次式(1)によりエンジン22の目標トルクTe*を設定する(ステップS160)。ここで、所定回転数Nesetは、エンジン22を安定して運転することができる回転数範囲の下限よりも若干大きな回転数としてエンジン22の特性等により予め定められた回転数(例えば900rpmや1000rpmなど)である。また、式(1)は、エンジン22を目標回転数Ne*で運転するためのフィードバック制御における関係式であり、式(1)中、右辺第1項の「k1」は比例項のゲインであり、右辺第2項の「k2」は積分項のゲインである。   When the execution torque Tr * is set in this way, the predetermined rotational speed Neset is set as the target rotational speed Ne * of the engine 22, and the set target rotational speed Ne * of the engine 22 and the input rotational speed Ne of the engine 22 are set. The target torque Te * of the engine 22 is set by the following equation (1) (step S160). Here, the predetermined rotational speed Neset is a rotational speed that is slightly larger than the lower limit of the rotational speed range in which the engine 22 can be stably operated, and is determined in advance according to the characteristics of the engine 22 (for example, 900 rpm, 1000 rpm, etc.) ). Expression (1) is a relational expression in feedback control for operating the engine 22 at the target rotational speed Ne *. In Expression (1), “k1” in the first term on the right side is a gain of the proportional term. “K2” in the second term on the right side is the gain of the integral term.

Te*=k1(Ne*-Ne)+k2∫(Ne*-Ne)dt (1)   Te * = k1 (Ne * -Ne) + k2∫ (Ne * -Ne) dt (1)

続いて、設定した実行用トルクTr*に動力分配統合機構30のギヤ比ρ(サンギヤ31の歯数/リングギヤ32の歯数)を乗じて符号を反転させる次式(2)によりモータMG1から出力すべきトルクの仮の値である仮トルクTm1tmpを計算し(ステップS170)、バッテリ50の入出力制限Win,WoutをモータMG1の回転数Nm1で除する式(3)および式(4)によりモータMG1から出力してもよいトルクの上下限としてのトルク制限Tm1min,Tm1maxを計算し(ステップS180)、計算した仮トルクTm1tmpを式(5)によりトルク制限Tm1min,Tm1maxで制限してモータMG1のトルク指令Tm1*を設定する(ステップS190)。   Subsequently, the set torque for execution Tr * is multiplied by the gear ratio ρ of the power distribution and integration mechanism 30 (the number of teeth of the sun gear 31 / the number of teeth of the ring gear 32) and output from the motor MG1 by the following equation (2) that reverses the sign. A temporary torque Tm1tmp, which is a temporary value of the torque to be calculated, is calculated (step S170), and the motor 50 is divided by equations (3) and (4) that divide the input / output limits Win and Wout of the battery 50 by the rotational speed Nm1 of the motor MG1 Torque limits Tm1min and Tm1max as upper and lower limits of the torque that may be output from MG1 are calculated (step S180), and the calculated temporary torque Tm1tmp is limited by torque limit Tm1min and Tm1max according to equation (5). Command Tm1 * is set (step S190).

Tm1tmp=-ρ・Tr* (2)
Tm1min=Win/Nm1 (3)
Tm1max=Wout/Nm1 (4)
Tm1*=max(min(Tm1tmp,Tm1max),Tm1min) (5)
Tm1tmp = -ρ ・ Tr * (2)
Tm1min = Win / Nm1 (3)
Tm1max = Wout / Nm1 (4)
Tm1 * = max (min (Tm1tmp, Tm1max), Tm1min) (5)

こうしてエンジン22の目標回転数Ne*や目標トルクTe*,モータMG1のトルク指令Tm1*を設定すると、エンジン22の目標回転数Ne*と目標トルクTe*についてはエンジンECU24に、モータMG1のトルク指令Tm1*についてはモータECU40にそれぞれ送信し(ステップS200)、退避走行を終了してシフトポジションSPが変更されるなどの直行走行モードによる走行を終了する条件が成立しているか否かを判定し(ステップS210)、終了条件が成立していないときにはステップS110に戻ってステップS110〜S210の処理を繰り返し、終了条件が成立したときには直行走行モード時駆動制御ルーチンを終了する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、エンジン22が目標回転数Ne*と目標トルクTe*とによって示される運転ポイントで運転されるようにエンジン22における吸入空気量制御や燃料噴射制御,点火制御などの制御を行なう。また、トルク指令Tm1*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されるようインバータ41のトランジスタT1〜T6のスイッチング制御を行なう。   When the target rotational speed Ne * and target torque Te * of the engine 22 and the torque command Tm1 * of the motor MG1 are thus set, the target rotational speed Ne * and the target torque Te * of the engine 22 are sent to the engine ECU 24 and the torque command of the motor MG1. Each Tm1 * is transmitted to the motor ECU 40 (step S200), and it is determined whether or not a condition for ending the traveling in the straight traveling mode, such as ending the retreat traveling and changing the shift position SP, is satisfied ( In step S210), when the end condition is not satisfied, the process returns to step S110 and the processes of steps S110 to S210 are repeated, and when the end condition is satisfied, the drive control routine in the straight traveling mode is ended. The engine ECU 24 that has received the target rotational speed Ne * and the target torque Te * controls the intake air amount in the engine 22 so that the engine 22 is operated at the operating point indicated by the target rotational speed Ne * and the target torque Te *. Controls such as fuel injection control and ignition control. The motor ECU 40 that has received the torque command Tm1 * performs switching control of the transistors T1 to T6 of the inverter 41 so that the motor MG1 is driven by the torque command Tm1 *.

図7に、直行走行モードで走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図を示す。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤ31の回転数を示し、C軸はエンジン22の回転数Neであるキャリア34の回転数を示し、R軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。図中、R軸上の2つの下向き矢印はリングギヤ軸32aに作用する逆起電圧作用トルクTbと操舵角作用トルクTsとを示し、R軸上の上向き矢印はモータMG1から出力されて駆動軸としてのリングギヤ軸32aに作用するトルクを示す。インバータ42が一相短絡の状態となる異常が生じると、車両の走行によるモータMG2の回転に伴って生じる逆起電圧によりリングギヤ軸32aにはブレーキトルクが作用するが、このブレーキトルクを考慮することなくアクセルペダル83の踏み込みに応じた要求トルクT*をそのまま用いてモータMG1を制御すると、駆動軸としてのリングギヤ軸32aには要求トルクT*よりもブレーキトルク分だけ小さなトルクしか出力されず、運転者のアクセルワークに応じた駆動力により走行することができなくなってしまう。このため、実施例では、逆起電圧作用トルクTbがキャンセルされるよう実行用トルクTr*を設定してモータMG1を制御するのである。さらに、インバータ42を三相短絡の状態で停止すると共に操舵角θに応じた操舵角作用トルクTsに対応するトルクを実行用トルクTr*に含めてモータMG1を制御するものとしたから、逆起電圧作用トルクTbの絶対値を小さくすると共に実行用トルクTr*を操舵角θに応じた駆動力とすることができ、これらの結果、要求トルクT*に応じた駆動力により走行することができる。   FIG. 7 is a collinear diagram showing a dynamic relationship between the rotational speed and torque in the rotating elements of the power distribution and integration mechanism 30 when traveling in the straight traveling mode. In the figure, the left S-axis indicates the rotation speed of the sun gear 31 that is the rotation speed Nm1 of the motor MG1, the C-axis indicates the rotation speed of the carrier 34 that is the rotation speed Ne of the engine 22, and the R-axis indicates the rotation speed of the motor MG2. The rotational speed Nr of the ring gear 32 obtained by dividing the number Nm2 by the gear ratio Gr of the reduction gear 35 is shown. In the figure, the two downward arrows on the R axis indicate the counter electromotive force acting torque Tb and the steering angle acting torque Ts acting on the ring gear shaft 32a, and the upward arrow on the R axis is output from the motor MG1 as a drive shaft. This shows the torque acting on the ring gear shaft 32a. When an abnormality occurs in which the inverter 42 is in a one-phase short circuit state, a brake torque is applied to the ring gear shaft 32a due to a counter electromotive voltage generated in association with the rotation of the motor MG2 due to traveling of the vehicle. If the motor MG1 is controlled using the required torque T * corresponding to the depression of the accelerator pedal 83 as it is, only a torque smaller than the required torque T * is output to the ring gear shaft 32a as the drive shaft. It becomes impossible to run with the driving force according to the person's accelerator work. Therefore, in the embodiment, the motor MG1 is controlled by setting the execution torque Tr * so that the counter electromotive force applied torque Tb is canceled. Further, the inverter 42 is stopped in a three-phase short circuit state, and the torque corresponding to the steering angle action torque Ts corresponding to the steering angle θ is included in the execution torque Tr * to control the motor MG1. The absolute value of the voltage acting torque Tb can be reduced and the execution torque Tr * can be set to a driving force corresponding to the steering angle θ. As a result, the vehicle can travel with the driving force corresponding to the required torque T *. .

以上説明した実施例のハイブリッド自動車20によれば、モータMG2を駆動するインバータ42が一相短絡の状態となる異常が生じたときには、モータMG2の回転に伴って生じる逆起電圧によって作用する逆起電圧作用トルクTbをキャンセルするトルク(−Tb)とアクセルペダル83の踏み込みに応じた要求トルクT*との和のトルクに基づく実行用トルクTr*により走行するようエンジン22とモータMG1を駆動するインバータ41とを制御するから、エンジン22とモータMG1とにより駆動軸としてのリングギヤ軸32aに出力される駆動力を要求トルクT*に応じたものとすることができ、要求トルクT*に応じた駆動力により退避走行を行なうことができる。また、インバータ42を三相短絡の状態とするから、リングギヤ軸32aに作用する逆起電圧作用トルクTbを小さくすることができる。しかも、操舵角θに応じた操舵角作用トルクTsに対応するトルクを実行用トルクTr*とするから、操舵角θに応じた駆動力により走行することができる。さらに、モータMG2の回転数Nm2と逆起電圧作用トルクTbとの関係を予め定めたブレーキトルク導出用マップを用いて逆起電圧作用トルクTbを導出するから、逆起電圧作用トルクTbを容易に得ることができる。また、バッテリ50の入出力制限Win,Woutの範囲内で設定したモータMG1のトルク指令Tm1*でモータMG1を制御するから過大な電力によるバッテリ50の充放電を抑止することができる。   According to the hybrid vehicle 20 of the embodiment described above, when an abnormality occurs in which the inverter 42 that drives the motor MG2 is in a one-phase short-circuit state, the counter electromotive force that is acted on by the counter electromotive voltage that occurs as the motor MG2 rotates. An inverter that drives the engine 22 and the motor MG1 to run with an execution torque Tr * based on a sum of a torque (-Tb) for canceling the voltage acting torque Tb and a required torque T * corresponding to depression of the accelerator pedal 83 41, the driving force output to the ring gear shaft 32a as the drive shaft by the engine 22 and the motor MG1 can be made to correspond to the required torque T *, and the drive corresponding to the required torque T * can be made. Retreating can be performed by force. Further, since the inverter 42 is in a three-phase short-circuit state, the counter electromotive voltage acting torque Tb acting on the ring gear shaft 32a can be reduced. In addition, since the torque corresponding to the steering angle action torque Ts corresponding to the steering angle θ is the execution torque Tr *, the vehicle can travel with the driving force corresponding to the steering angle θ. Further, since the counter electromotive force acting torque Tb is derived using a brake torque deriving map in which the relationship between the rotational speed Nm2 of the motor MG2 and the counter electromotive force acting torque Tb is determined in advance, the counter electromotive force acting torque Tb can be easily obtained. Obtainable. Further, since the motor MG1 is controlled by the torque command Tm1 * of the motor MG1 set within the range of the input / output limits Win and Wout of the battery 50, charging / discharging of the battery 50 due to excessive electric power can be suppressed.

実施例のハイブリッド自動車20では、操舵角θに応じた操舵角作用トルクTs*に対応するトルクを含めて実行用トルクTr*を設定するものとしたが、操舵角作用トルクTs*を考慮することなく実行用トルクTr*を設定するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the execution torque Tr * is set including the torque corresponding to the steering angle action torque Ts * corresponding to the steering angle θ, but the steering angle action torque Ts * is considered. Alternatively, the execution torque Tr * may be set.

実施例のハイブリッド自動車20では、モータMG2の回転数Nm2と逆起電圧作用トルクTbとの関係を予め定めた逆起電圧作用トルク導出用マップを用いて逆起電圧作用トルクTbを導出するものとしたが、電流センサ46U,46V,46Wからの相電流に基づいて逆起電圧作用トルクTbを推定するなど、駆動軸としてのリングギヤ軸32aに作用するブレーキトルクの少なくとも一部に相当するトルクが得られるものであれば、予め定めたマップを用いることなく逆起電圧作用トルクTbを得るものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the counter electromotive force acting torque Tb is derived using a reverse electromotive force acting torque deriving map in which the relationship between the rotational speed Nm2 of the motor MG2 and the counter electromotive force acting torque Tb is predetermined. However, a torque corresponding to at least a part of the brake torque acting on the ring gear shaft 32a as the drive shaft is obtained, such as estimating the back electromotive force acting torque Tb based on the phase current from the current sensors 46U, 46V, 46W. If possible, the counter electromotive force acting torque Tb may be obtained without using a predetermined map.

実施例のハイブリッド自動車20では、モータMG2を駆動するインバータ42が一相短絡の状態となる異常が生じたときには、インバータ42が三相短絡の状態で停止するよう制御するものとしたが、インバータ42の二相短絡の状態で停止するよう制御するなどとしてもよい。   In the hybrid vehicle 20 of the embodiment, when an abnormality occurs in which the inverter 42 that drives the motor MG2 is in a one-phase short circuit state, the inverter 42 is controlled to stop in a three-phase short circuit state. It may be controlled to stop in the state of the two-phase short circuit.

実施例のハイブリッド自動車20では、モータMG2を駆動するインバータ42が一相短絡の状態となる異常が生じたときの処理として説明したが、インバータ42が二相短絡の状態となる異常が生じたときの処理としてもよい。   In the hybrid vehicle 20 according to the embodiment, the processing has been described when the abnormality that causes the inverter 42 that drives the motor MG2 to be in a one-phase short-circuit state occurs, but when the abnormality that causes the inverter 42 to be in a two-phase short-circuit state occurs. It is good also as processing of.

実施例のハイブリッド自動車20では、減速ギヤ35を介して駆動軸としてのリングギヤ軸32aにモータMG2を取り付けるものとしたが、リングギヤ軸32aにモータMG2を直接取り付けるものとしてもよいし、減速ギヤ35に代えて2段変速や3段変速,4段変速などの変速機を介してリングギヤ軸32aにモータMG2を取り付けるものとしても構わない。   In the hybrid vehicle 20 of the embodiment, the motor MG2 is attached to the ring gear shaft 32a as the drive shaft via the reduction gear 35. However, the motor MG2 may be directly attached to the ring gear shaft 32a, or Instead, the motor MG2 may be attached to the ring gear shaft 32a via a transmission such as a 2-speed, 3-speed, or 4-speed.

実施例のハイブリッド自動車20では、モータMG2の動力を減速ギヤ35により変速してリングギヤ軸32aに出力するものとしたが、図8の変形例のハイブリッド自動車120に例示するように、モータMG2の動力をリングギヤ軸32aが接続された車軸(駆動輪63a,63bが接続された車軸)とは異なる車軸(図8における車輪64a,64bに接続された車軸)に接続するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the motor MG2 is shifted by the reduction gear 35 and output to the ring gear shaft 32a. However, as illustrated in the hybrid vehicle 120 of the modified example of FIG. May be connected to an axle (an axle connected to the wheels 64a and 64b in FIG. 8) different from an axle to which the ring gear shaft 32a is connected (an axle to which the drive wheels 63a and 63b are connected).

実施例のハイブリッド自動車20では、エンジン22およびモータMG1からの動力と減速ギヤ35により変速されたモータMG2からの動力とをリングギヤ軸32aに出力するものとしたが、図9の変形例のハイブリッド自動車220に例示するように、これらに加えてモータMG3の動力をリングギヤ軸32aが接続された車軸(駆動輪63a,63bが接続された車軸)とは異なる車軸(図9における車輪64a,64bに接続された車軸)側に出力するものとしてもよい。この場合、実施例のモータ仮トルクTm1tmpのうちトルク制限Tm1min,Tm1maxで制限されたトルクに相当するトルクがモータMG3から出力されて走行するようモータMG3を駆動するインバータ243を制御するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power from the engine 22 and the motor MG1 and the power from the motor MG2 shifted by the reduction gear 35 are output to the ring gear shaft 32a. 220, in addition to these, the power of the motor MG3 is connected to an axle (an axle to which the drive wheels 63a and 63b are connected) different from the axle to which the ring gear shaft 32a is connected (the wheels 64a and 64b in FIG. 9). It is good also as what outputs to the (axle) side. In this case, the inverter 243 that drives the motor MG3 may be controlled such that the torque corresponding to the torques limited by the torque limits Tm1min and Tm1max of the motor temporary torque Tm1tmp of the embodiment is output from the motor MG3. .

実施例のハイブリッド自動車20では、エンジン22の動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力するものとしたが、図10の変形例のハイブリッド自動車320に例示するように、エンジン22のクランクシャフト26に接続されたインナーロータ332と駆動輪63a,63bに動力を出力する駆動軸に接続されたアウターロータ334とを有し、エンジン22の動力の一部を駆動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機330とこの対ロータ電動機330を駆動するインバータ341とを備えるものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30, but the modified example of FIG. The hybrid vehicle 320 includes an inner rotor 332 connected to the crankshaft 26 of the engine 22 and an outer rotor 334 connected to a drive shaft that outputs power to the drive wheels 63a and 63b. It is also possible to include a counter-rotor motor 330 that transmits a part of the power to the drive shaft and converts remaining power into electric power and an inverter 341 that drives the counter-rotor motor 330.

また、こうしたハイブリッド自動車に適用するものに限定されるものではなく、自動車以外の車両や船舶,航空機などの移動体に搭載される動力出力装置に内燃機関や二次電池などの蓄電装置と共に組み込まれる駆動装置の形態としても構わない。さらに、こうした車両の制御方法の形態としてもよい。   Further, the present invention is not limited to those applied to such hybrid vehicles, and is incorporated together with a power storage device such as an internal combustion engine or a secondary battery into a power output device mounted on a moving body such as a vehicle other than an automobile, a ship, or an aircraft. The form of the driving device may be used. Furthermore, it is good also as a form of the control method of such a vehicle.

ここで、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22が「内燃機関」に相当し、動力分配統合機構30と「発電機」としてのモータMG1とが「電力動力入出力手段」に相当し、モータMG2が「電動機」に相当し、インバータ41が「第1インバータ回路」に相当し、インバータ42が「第2インバータ回路」に相当し、バッテリ50が「蓄電手段」に相当し、電流センサ46U,46V,46Wからの相電流に基づいてインバータ42のトランジスタT7〜T12の一つがオン固定する異常が検出する図示しない短絡異常検出ルーチンを実行するモータECU40が「閉回路形成異常検出手段」に相当し、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定する図3の駆動制御ルーチンのステップS120の処理を実行するハイブリッド用電子制御ユニット70が「要求駆動力設定手段」に相当し、モータMG2の三相コイルの一相が短絡する異常が検出されたときにインバータ42が三相短絡の状態で停止するようモータECU40に指示すると共に要求トルクTr*と逆起電圧作用トルクTbをキャンセルするトルクと操舵角作用トルクTsに対応するトルクとの和に基づく実行用トルクTr*により走行するようエンジン22の目標回転数Ne*および目標トルクTe*とモータMG1のトルク指令Tm1*を設定してエンジンECU24やモータECU40に送信する図3の直行走行モード時駆動制御ルーチンのステップS100,S130〜S200の処理を実行するハイブリッド用電子制御ユニット70と目標回転数Ne*と目標トルクTe*とに基づいてエンジン22を制御するエンジンECU24とインバータ42が三相短絡の状態になるようトランジスタT7〜T12をスイッチング制御しトルク指令Tm1*でモータMG1のインバータ41をスイッチング制御するモータECU40とが「制御手段」に相当する。また、動力分配統合機構30が「3軸式動力入出力手段」に相当し、モータMG3が「第2電動機」に相当し、インバータ243が「第3インバータ回路」に相当し、対ロータ電動機330も「発電機」および「電力動力入出力手段」に相当し、インバータ341も「第1インバータ回路」に相当する。   Here, the correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, the engine 22 corresponds to the “internal combustion engine”, the power distribution and integration mechanism 30 and the motor MG1 as the “generator” correspond to “power power input / output means”, and the motor MG2 corresponds to “electric motor”. The inverter 41 corresponds to the “first inverter circuit”, the inverter 42 corresponds to the “second inverter circuit”, the battery 50 corresponds to the “electric storage means”, and the phase current from the current sensors 46U, 46V, 46W. The motor ECU 40 that executes a short-circuit abnormality detection routine (not shown) that detects an abnormality in which one of the transistors T7 to T12 of the inverter 42 is fixed based on the ECU corresponds to the “closed circuit formation abnormality detection means”. The hybrid electronic control that executes the process of step S120 of the drive control routine of FIG. 3 that sets the required torque Tr * based on V The knit 70 corresponds to “required driving force setting means” and instructs the motor ECU 40 to stop the inverter 42 in a three-phase short-circuit state when an abnormality that short-circuits one phase of the three-phase coil of the motor MG2 is detected. At the same time, the target rotational speed Ne * of the engine 22 and the target are set so as to travel by the execution torque Tr * based on the sum of the torque that cancels the required torque Tr * and the counter electromotive force acting torque Tb and the torque corresponding to the steering angle acting torque Ts A hybrid electronic control unit that executes steps S100 and S130 to S200 of the direct drive mode drive control routine of FIG. 3 that sets the torque Te * and the torque command Tm1 * of the motor MG1 and transmits them to the engine ECU 24 and the motor ECU 40. 70, the engine speed is controlled based on the target rotational speed Ne * and the target torque Te *. A motor ECU40 controlling switching inverter 41 of the motor MG1 to the transistor T7~T12 the engine ECU24 and inverter 42 is in a state of three-phase short-circuited by the switching control to the torque command Tm1 * to correspond to the "control means". Further, the power distribution and integration mechanism 30 corresponds to “three-axis power input / output means”, the motor MG3 corresponds to “second electric motor”, the inverter 243 corresponds to “third inverter circuit”, and the counter-rotor electric motor 330 Are also equivalent to “generator” and “electric power input / output means”, and the inverter 341 is also equivalent to “first inverter circuit”.

ここで、「内燃機関」としては、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関に限定されるものではなく、水素エンジンなど如何なるタイプの内燃機関であっても構わない。「電力動力入出力手段」としては、動力分配統合機構30とモータMG1とを組み合わせたものや対ロータ電動機330に限定されるされるものではなく、動力を入出力可能な発電機を有し、車軸側に接続されると共に該車軸側とは独立に回転可能に内燃機関の出力軸に接続され、電力と動力の入出力を伴って車軸側と内燃機関の出力軸とに動力を入出力可能なものであれば如何なるものとしても構わない。「発電機」としては、同期発電電動機として構成されたモータMG1や対ロータ電動機330に限定されるものではなく、誘導電動機など、動力を入出力可能なものであれば如何なるタイプの発電機としても構わない。「電動機」としては、周知のPM型の同期発電電動機として構成されたモータMG2に限定されるものではなく、電力動力入出力手段が接続された車軸または該車軸とは異なる車軸に動力を入出力可能で回転に伴って逆起電圧を生じる電動機であれば如何なるタイプの電動機であっても構わない。「第1インバータ回路」としては、インバータ41やインバータ341に限定されるものではなく、発電機を駆動するためのものであれば如何なるものとしても構わない。「第2インバータ回路」としては、インバータ42に限定されるものではなく電動機を駆動するためのものであれば如何なるものとしても構わない。「蓄電手段」としては、二次電池としてのバッテリ50に限定されるものではなく、キャパシタなど、発電機と電動機と電力のやりとりが可能であれば如何なるものとしても構わない。「閉回路形成異常検出手段」としては、電流センサ46U,46V,46Wからの相電流に基づいてインバータ42のトランジスタT7〜T12の一つがオン固定する異常を検出するモータECU40に限定されるものではなく、トランジスタT7〜T12の各温度を検出する温度センサからの温度に基づいて異常を検出するものなど、第2インバータ回路の一部の相に閉回路が形成される閉回路形成異常を検出するものであれば如何なるものとしても構わない。「要求駆動力設定手段」としては、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定するものに限定されるものではなく、アクセル開度Accだけに基づいて要求トルクを設定するものや走行経路が予め設定されているものにあっては走行経路における走行位置に基づいて要求トルクを設定するものなど、走行に要求される要求駆動力を設定するものであれば如何なるものとしても構わない。「制御手段」としては、ハイブリッド用電子制御ユニット70とエンジンECU24とモータECU40とからなる組み合わせに限定されるものではなく単一の電子制御ユニットにより構成されるなどとしてもよい。また、「制御手段」としては、三相短絡の状態になるようインバータ42をスイッチング制御すると共に要求トルクTr*と逆起電圧作用トルクTbをキャンセルするトルクと操舵角作用トルクTsに対応するトルクとの和に基づく実行用トルクTr*により走行するようエンジン22の目標回転数Ne*および目標トルクTe*とモータMG1のトルク指令Tm1*を設定してエンジン22やモータMG1を制御するものに限定されるものではなく、閉回路形成異常検出手段により閉回路形成異常が検出されたときには、第2インバータ回路のスイッチング素子が所定のスイッチ状態で停止するよう該第2インバータ回路を制御すると共に電動機の回転に伴って生じる逆起電圧によって車両に作用する制動力の少なくとも一部をキャンセルするためのキャンセル用駆動力と走行に要求される要求駆動力との和の駆動力に基づく実行用駆動力により走行するよう内燃機関と第1インバータ回路とを制御するものであれば如何なるものとしても構わない。「3軸式動力入出力手段」としては、上述の動力分配統合機構30に限定されるものではなく、ダブルピニオン式の遊星歯車機構を用いるものや複数の遊星歯車機構を組み合わせて4以上の軸に接続されるものやデファレンシャルギヤのように遊星歯車とは異なる差動作用を有するものなど、車軸に連結された駆動軸と内燃機関の出力軸と発電機の回転軸との3軸に接続され該3軸のうちいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力するものであれば如何なるものとしても構わない。「第2電動機」としては、モータMG3に限定されるものではなく、蓄電手段と電力のやり取りが可能で電力動力入出力手段が接続された車軸側または該車軸とは異なる車軸側に動力を入出力可能なモータMG2などの電動機とは異なるものであれば如何なるものとしても構わない。「第3インバータ回路」としては、インバータ243に限定されるものではなく、第2電動機を駆動するためのものであれば如何なるものとしても構わない。   Here, the “internal combustion engine” is not limited to an internal combustion engine that outputs power using a hydrocarbon fuel such as gasoline or light oil, and may be any type of internal combustion engine such as a hydrogen engine. The “power power input / output means” is not limited to the combination of the power distribution and integration mechanism 30 and the motor MG1 or the counter-rotor motor 330, and has a generator capable of inputting and outputting power. Connected to the axle side and connected to the output shaft of the internal combustion engine so that it can rotate independently of the axle side, and can input and output power to the axle side and the output shaft of the internal combustion engine with input and output of power and power It does not matter as long as it is anything. The “generator” is not limited to the motor MG1 or the counter-rotor motor 330 configured as a synchronous generator motor, but may be any type of generator such as an induction motor that can input and output power. I do not care. The “motor” is not limited to the motor MG2 configured as a well-known PM-type synchronous generator motor, and inputs / outputs power to / from an axle to which power / power input / output means is connected or an axle different from the axle. Any type of electric motor may be used as long as it is possible and generates a counter electromotive voltage with rotation. The “first inverter circuit” is not limited to the inverter 41 and the inverter 341, and any circuit may be used as long as it is for driving a generator. The “second inverter circuit” is not limited to the inverter 42 and may be any circuit as long as it is for driving an electric motor. The “storage means” is not limited to the battery 50 as a secondary battery, and may be anything such as a capacitor as long as it can exchange electric power between the generator and the motor. The “closed circuit formation abnormality detection means” is not limited to the motor ECU 40 that detects an abnormality in which one of the transistors T7 to T12 of the inverter 42 is fixed on the basis of the phase current from the current sensors 46U, 46V, and 46W. And detecting a closed circuit formation abnormality in which a closed circuit is formed in some phases of the second inverter circuit, such as one detecting an abnormality based on the temperature from a temperature sensor that detects each temperature of the transistors T7 to T12. Any object can be used. The “required driving force setting means” is not limited to the one that sets the required torque Tr * based on the accelerator opening Acc and the vehicle speed V, but sets the required torque based only on the accelerator opening Acc. If the required driving force required for traveling is set, such as those for which the required torque is set based on the traveling position on the traveling route, such as those for which the driving route is set in advance I do not care. The “control means” is not limited to the combination of the hybrid electronic control unit 70, the engine ECU 24, and the motor ECU 40, and may be configured by a single electronic control unit. Further, as the “control means”, the inverter 42 is subjected to switching control so as to be in a three-phase short circuit state, the torque that cancels the required torque Tr * and the counter electromotive voltage operating torque Tb, and the torque corresponding to the steering angle operating torque Ts. The target rotational speed Ne * and the target torque Te * of the engine 22 and the torque command Tm1 * of the motor MG1 are set to control the engine 22 and the motor MG1 so as to travel with the execution torque Tr * based on the sum of Instead, when the closed circuit formation abnormality detecting means detects the closed circuit formation abnormality, the second inverter circuit is controlled so that the switching element of the second inverter circuit stops in a predetermined switch state, and the motor rotates. Cancel at least part of the braking force acting on the vehicle by the back electromotive force generated As long as the internal combustion engine and the first inverter circuit are controlled to run with the driving force for execution based on the sum of the driving force for canceling and the driving force required for running. It doesn't matter. The “three-axis power input / output means” is not limited to the power distribution / integration mechanism 30 described above, but includes four or more shafts using a double pinion type planetary gear mechanism or a combination of a plurality of planetary gear mechanisms. Connected to the three axles of the drive shaft connected to the axle, the output shaft of the internal combustion engine, and the rotating shaft of the generator, such as those connected to the shaft and those having a differential action different from the planetary gear such as a differential gear As long as the power is input / output to / from the remaining shafts based on the power input / output to / from any two of the three shafts, any configuration may be used. The “second electric motor” is not limited to the motor MG3, and power can be input to the axle side to which power can be exchanged with the power storage means and the power input / output means is connected, or to the axle side different from the axle side. As long as it is different from the electric motor such as the motor MG2 that can output, any motor can be used. The “third inverter circuit” is not limited to the inverter 243 and may be any circuit that drives the second electric motor.

なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem is the same as that of the embodiment described in the column of means for solving the problem. It is an example for specifically explaining the best mode for doing so, and does not limit the elements of the invention described in the column of means for solving the problem. That is, the interpretation of the invention described in the column of means for solving the problems should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problems. It is only a specific example.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明は、車両の製造産業などに利用可能である。   The present invention can be used in the vehicle manufacturing industry.

本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 according to an embodiment of the present invention. モータMG1,MG2やインバータ41,42,バッテリ50などからなる電気駆動系の構成の概略を示す構成図である。2 is a configuration diagram showing an outline of a configuration of an electric drive system including motors MG1, MG2, inverters 41, 42, a battery 50, and the like. FIG. 実施例のハイブリッド用電子制御ユニット70により実行される直行走行モード時駆動制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the drive control routine at the time of the direct drive mode performed by the electronic control unit for hybrid 70 of an Example. 要求トルク設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for request | requirement torque setting. 逆起電圧作用トルク導出用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for counter electromotive force action torque derivation | leading-out. 操舵角トルク導出用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for steering angle torque derivation | leading-out. 直行走行モードで走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。It is explanatory drawing which shows an example of the collinear diagram which shows the dynamic relationship between the rotation speed and torque in the rotation element of the power distribution integration mechanism 30 when drive | working in a straight running mode. 変形例のハイブリッド自動車120の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 according to a modification. 変形例のハイブリッド自動車220の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example. 変形例のハイブリッド自動車320の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 320 of a modified example.

符号の説明Explanation of symbols

20,120,220,320 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、40 モータ用電子制御ユニット(モータECU)、41,42,243,341 インバータ、43,44 回転位置検出センサ、45U,45V,45W,46U,46V,46W 電流センサ、50 バッテリ、51 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、60 ギヤ機構、62 デファレンシャルギヤ、63a,63b 駆動輪、64a,64b 車輪、70 ハイブリッド用電子制御ユニット、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、89 操舵角センサ、330 対ロータ電動機、332 インナーロータ 334 アウターロータ、MG1,MG2 モータ、D1〜D12 ダイオード、T1〜T12 トランジスタ。   20, 120, 220, 320 Hybrid vehicle, 22 engine, 24 engine electronic control unit (engine ECU), 26 crankshaft, 28 damper, 30 power distribution integration mechanism, 31 sun gear, 32 ring gear, 32a ring gear shaft, 33 pinion gear, 34 carrier, 35 reduction gear, 40 motor electronic control unit (motor ECU), 41, 42, 243, 341 inverter, 43, 44 rotational position detection sensor, 45U, 45V, 45W, 46U, 46V, 46W current sensor, 50 Battery, 51 Temperature sensor, 52 Battery electronic control unit (battery ECU), 54 Power line, 60 Gear mechanism, 62 Differential gear, 63a, 63b Drive wheel, 64a, 64b Wheel, 70 For hybrid Child control unit, 72 CPU, 74 ROM, 76 RAM, 80 ignition switch, 81 shift lever, 82 shift position sensor, 83 accelerator pedal, 84 accelerator pedal position sensor, 85 brake pedal, 86 brake pedal position sensor, 88 vehicle speed sensor, 89 steering angle sensor, 330 pair rotor motor, 332 inner rotor 334 outer rotor, MG1, MG2 motor, D1-D12 diode, T1-T12 transistor.

Claims (9)

内燃機関と、
動力を入出力可能な発電機を有し、車軸側に接続されると共に該車軸側とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記車軸側と前記出力軸とに動力を入出力可能な電力動力入出力手段と、
前記車軸または該車軸とは異なる車軸に動力を入出力可能で回転に伴って逆起電圧を生じる電動機と、
前記発電機を駆動するための第1インバータ回路と、
前記電動機を駆動するための第2インバータ回路と、
前記第1インバータ回路および前記第2インバータ回路を介して前記発電機および前記電動機と電力のやり取りが可能な蓄電手段と、
前記第2インバータ回路の一部の相に閉回路が形成される閉回路形成異常を検出する閉回路形成異常検出手段と、
走行に要求される要求駆動力を設定する要求駆動力設定手段と、
前記閉回路形成異常検出手段により閉回路形成異常が検出されたときには、前記第2インバータ回路のスイッチング素子が所定のスイッチ状態で停止するよう該第2インバータ回路を制御すると共に前記電動機の回転に伴って生じる逆起電圧によって車両に作用する制動力の少なくとも一部をキャンセルするためのキャンセル用駆動力と前記設定された要求駆動力との和の駆動力に基づく実行用駆動力により走行するよう前記内燃機関と前記第1インバータ回路とを制御する制御手段と、
を備える車両。
An internal combustion engine;
A power generator capable of inputting / outputting power, connected to the axle side and connected to the output shaft of the internal combustion engine so as to be rotatable independently of the axle side; Power power input / output means capable of inputting and outputting power to the side and the output shaft;
An electric motor capable of inputting and outputting power to the axle or an axle different from the axle and generating a back electromotive force with rotation;
A first inverter circuit for driving the generator;
A second inverter circuit for driving the electric motor;
Power storage means capable of exchanging electric power with the generator and the motor via the first inverter circuit and the second inverter circuit;
Closed circuit formation abnormality detection means for detecting a closed circuit formation abnormality in which a closed circuit is formed in a part of the phase of the second inverter circuit;
Required driving force setting means for setting required driving force required for traveling;
When the closed circuit formation abnormality detecting means detects the closed circuit formation abnormality, the second inverter circuit is controlled so that the switching element of the second inverter circuit stops in a predetermined switch state, and the motor is rotated. The vehicle is driven by the driving force for execution based on the sum of the driving force for cancellation and the set required driving force for canceling at least a part of the braking force acting on the vehicle by the counter electromotive voltage generated by Control means for controlling the internal combustion engine and the first inverter circuit;
A vehicle comprising:
前記所定のスイッチ状態は、前記第2インバータ回路の全ての相に閉回路が形成されるスイッチ状態である請求項1記載の車両。   The vehicle according to claim 1, wherein the predetermined switch state is a switch state in which a closed circuit is formed in all phases of the second inverter circuit. 前記制御手段は、前記電動機の回転数と前記キャンセル用駆動力との関係として予め定めた回転数駆動力関係を用いて得られる前記キャンセル用駆動力を用いて前記内燃機関と前記第1インバータ回路とを制御する手段である請求項1または2記載の車両。   The control means uses the cancellation driving force obtained by using a predetermined rotational speed driving force relationship as a relationship between the rotational speed of the electric motor and the canceling driving force, and the internal combustion engine and the first inverter circuit The vehicle according to claim 1, which is means for controlling 前記制御手段は、車両の操舵角が大きいほど大きくなる傾向に操舵角用駆動力を設定すると共に該設定した操舵角用駆動力と前記キャンセル用駆動力と前記設定された要求駆動力との和の駆動力を前記実行用駆動力として前記内燃機関と前記第1インバータ回路とを制御する手段である請求項1ないし3いずれか記載の車両。   The control means sets the steering angle driving force so as to increase as the steering angle of the vehicle increases, and the sum of the set steering angle driving force, the cancellation driving force, and the set required driving force. The vehicle according to any one of claims 1 to 3, which is means for controlling the internal combustion engine and the first inverter circuit using the driving force of the engine as the driving force for execution. 前記制御手段は、前記実行用駆動力を前記蓄電手段を充放電してもよい最大許容電力である入出力制限の範囲内で出力して走行するよう前記内燃機関と前記第1インバータ回路とを制御する手段である請求項1ないし4いずれか記載の車両。   The control means outputs the internal driving engine and the first inverter circuit so as to travel by outputting the execution driving force within an input / output limit range which is a maximum allowable power that may charge and discharge the power storage means. The vehicle according to any one of claims 1 to 4, which is means for controlling. 請求項1ないし5いずれか記載の車両であって、
前記蓄電手段と電力のやり取りが可能で前記車軸側または該車軸とは異なる車軸に動力を入出力可能な前記電動機とは異なる第2電動機と、
前記第2電動機を駆動するための第3インバータ回路と、
を備え、
前記制御手段は、前記第2電動機から駆動力が出力されて前記実行用駆動力により走行するよう前記内燃機関と前記第1インバータ回路と前記第3インバータ回路とを制御する手段である、
車両。
A vehicle according to any one of claims 1 to 5,
A second electric motor different from the electric motor capable of exchanging electric power with the power storage means and capable of inputting and outputting power to the axle side or an axle different from the axle;
A third inverter circuit for driving the second electric motor;
With
The control means is means for controlling the internal combustion engine, the first inverter circuit, and the third inverter circuit so that a driving force is output from the second electric motor and the vehicle is driven by the execution driving force.
vehicle.
前記電力動力入出力手段は、前記車軸に連結された駆動軸と前記内燃機関の出力軸と前記発電機の回転軸との3軸に接続され該3軸のうちいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段を有する手段である請求項1ないし6いずれか記載の車両。   The power / power input / output means is connected to three axes of a drive shaft connected to the axle, an output shaft of the internal combustion engine, and a rotating shaft of the generator, and is input / output to / from any two of the three shafts. The vehicle according to any one of claims 1 to 6, wherein the vehicle has a three-axis power input / output means for inputting / outputting power to / from the remaining shaft based on the power. 内燃機関および充放電可能な蓄電手段と共に駆動軸に動力を出力可能な動力出力装置に組み込まれる駆動装置であって、
前記蓄電手段と電力のやり取りが可能で、動力を入出力可能な発電機を有し、前記駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記駆動軸と前記出力軸とに動力を入出力可能な電力動力入出力手段と、
前記駆動軸に動力を入出力可能で回転に伴って逆起電圧を生じる電動機と、
前記発電機を駆動するための第1インバータ回路と、
前記電動機を駆動するための第2インバータ回路と、
前記第1インバータ回路および前記第2インバータ回路を介して前記発電機および前記電動機と電力のやり取りが可能な蓄電手段と、
前記第2インバータ回路の一部の相に閉回路が形成される閉回路形成異常を検出する閉回路形成異常検出手段と、
前記駆動軸に要求される要求駆動力を設定する要求駆動力設定手段と、
前記閉回路形成異常検出手段により閉回路形成異常が検出されたときには、前記第2インバータ回路のスイッチング素子が所定のスイッチ状態で停止するよう該第2インバータ回路を制御すると共に前記電動機の回転に伴って生じる逆起電圧によって前記駆動軸に作用する制動力の少なくとも一部をキャンセルするためのキャンセル用駆動力と前記設定された要求駆動力との和の駆動力に基づく実行用駆動力が前記駆動軸に出力されるよう前記内燃機関の制御と共に前記第1インバータ回路を制御する制御手段と、
を備える駆動装置。
A drive device incorporated in a power output device capable of outputting power to a drive shaft together with an internal combustion engine and chargeable / dischargeable power storage means,
A power generator capable of exchanging electric power with the power storage means and capable of inputting and outputting power is connected to the drive shaft and connected to the output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft. Power power input / output means capable of inputting / outputting power to / from the drive shaft and the output shaft together with power / power input / output;
An electric motor capable of inputting and outputting power to the drive shaft and generating a counter electromotive voltage with rotation;
A first inverter circuit for driving the generator;
A second inverter circuit for driving the electric motor;
Power storage means capable of exchanging electric power with the generator and the motor via the first inverter circuit and the second inverter circuit;
Closed circuit formation abnormality detection means for detecting a closed circuit formation abnormality in which a closed circuit is formed in a part of the phase of the second inverter circuit;
Required driving force setting means for setting required driving force required for the drive shaft;
When the closed circuit formation abnormality detecting means detects the closed circuit formation abnormality, the second inverter circuit is controlled so that the switching element of the second inverter circuit stops in a predetermined switch state, and the motor is rotated. The driving force for execution based on the sum of the canceling driving force for canceling at least a part of the braking force acting on the driving shaft by the counter electromotive voltage generated and the set required driving force is the driving. Control means for controlling the first inverter circuit together with the control of the internal combustion engine to be output to a shaft;
A drive device comprising:
内燃機関と、動力を入出力可能な発電機を有し車軸側に接続されると共に該車軸側とは独立に回転可能に前記内燃機関の出力軸に接続され電力と動力の入出力を伴って前記車軸側と前記出力軸とに動力を入出力可能な電力動力入出力手段と、前記車軸または該車軸とは異なる車軸に動力を入出力可能で回転に伴って逆起電圧を生じる電動機と、前記発電機を駆動するための第1インバータ回路と、前記電動機を駆動するための第2インバータ回路と、前記第1インバータ回路および前記第2インバータ回路を介して前記発電機および前記電動機と電力のやり取りが可能な蓄電手段と、を備える車両の制御方法であって、
前記第2インバータ回路の一部の相に閉回路が形成される閉回路形成異常が生じたときには、前記第2インバータ回路のスイッチング素子が所定のスイッチ状態で停止するよう該第2インバータ回路を制御すると共に前記電動機の回転に伴って生じる逆起電圧によって前記駆動軸に作用する制動力の少なくとも一部をキャンセルするためのキャンセル用駆動力と走行に要求される要求駆動力との和の駆動力に基づく実行用駆動力により走行するよう前記内燃機関と前記第1インバータ回路とを制御する、
ことを特徴とする車両の制御方法。
An internal combustion engine and a generator capable of inputting / outputting power are connected to the axle side and connected to the output shaft of the internal combustion engine so as to be rotatable independently of the axle side, with input / output of electric power and power Power power input / output means capable of inputting / outputting power to / from the axle side and the output shaft, an electric motor capable of inputting / outputting power to / from the axle or an axle different from the axle, and generating a back electromotive force with rotation; A first inverter circuit for driving the generator, a second inverter circuit for driving the electric motor, and the generator, the electric motor and the electric power through the first inverter circuit and the second inverter circuit. A vehicle control method comprising a storage means capable of exchange,
Controls the second inverter circuit so that the switching element of the second inverter circuit stops in a predetermined switch state when a closed circuit formation abnormality occurs in which a closed circuit is formed in a part of the phase of the second inverter circuit In addition, a driving force that is a sum of a canceling driving force for canceling at least a part of the braking force that acts on the drive shaft by a counter electromotive voltage that occurs as the motor rotates and a required driving force required for traveling Controlling the internal combustion engine and the first inverter circuit to travel with an execution driving force based on
A method for controlling a vehicle.
JP2007182798A 2007-07-12 2007-07-12 VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE Expired - Fee Related JP4965363B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007182798A JP4965363B2 (en) 2007-07-12 2007-07-12 VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE
EP08778086.2A EP2165903A4 (en) 2007-07-12 2008-07-11 Vehicle, its control method, and drive device
PCT/JP2008/062571 WO2009008501A1 (en) 2007-07-12 2008-07-11 Vehicle, its control method, and drive device
US12/667,786 US8335603B2 (en) 2007-07-12 2008-07-11 Vehicle, control method of vehicle, and driving apparatus
CN2008800244210A CN101687503B (en) 2007-07-12 2008-07-11 Vehicle, its control method, and drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007182798A JP4965363B2 (en) 2007-07-12 2007-07-12 VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE

Publications (2)

Publication Number Publication Date
JP2009018693A JP2009018693A (en) 2009-01-29
JP4965363B2 true JP4965363B2 (en) 2012-07-04

Family

ID=40228671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007182798A Expired - Fee Related JP4965363B2 (en) 2007-07-12 2007-07-12 VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE

Country Status (5)

Country Link
US (1) US8335603B2 (en)
EP (1) EP2165903A4 (en)
JP (1) JP4965363B2 (en)
CN (1) CN101687503B (en)
WO (1) WO2009008501A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222407B2 (en) * 2006-10-25 2009-02-12 トヨタ自動車株式会社 Power output device and hybrid vehicle
JP4229175B2 (en) * 2006-11-22 2009-02-25 トヨタ自動車株式会社 Power output device, automobile equipped with the same, and method for controlling power output device
JP4229173B2 (en) * 2006-11-22 2009-02-25 トヨタ自動車株式会社 Power output device, automobile equipped with the same, and method for controlling power output device
JP4965363B2 (en) * 2007-07-12 2012-07-04 トヨタ自動車株式会社 VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE
JP4240149B1 (en) * 2008-02-14 2009-03-18 トヨタ自動車株式会社 Motor drive device and hybrid drive device
TWI413593B (en) * 2008-11-28 2013-11-01 Ind Tech Res Inst Series and parallel coupling control system adapted to hybrid vehicle and method therefor
JP5334678B2 (en) * 2009-05-14 2013-11-06 トヨタ自動車株式会社 Control device for vehicle drive system
US8955625B2 (en) * 2009-09-11 2015-02-17 ALTe Technologies, Inc. Stackable motor
JP5527883B2 (en) * 2009-12-08 2014-06-25 住友建機株式会社 Construction machinery
JP2012091667A (en) * 2010-10-27 2012-05-17 Nissan Motor Co Ltd Hybrid vehicle control device
KR101987092B1 (en) * 2011-04-28 2019-06-10 세브콘 리미티드 Electric motor and motor controller
US10933893B2 (en) * 2011-06-13 2021-03-02 Transportation Ip Holdings, Llc Vehicle electric supply system
JP5622053B2 (en) * 2012-02-09 2014-11-12 株式会社デンソー Control device for multi-phase rotating machine and electric power steering device using the same
JPWO2013140542A1 (en) * 2012-03-21 2015-08-03 トヨタ自動車株式会社 Drive control apparatus for hybrid vehicle
JP5700000B2 (en) * 2012-08-27 2015-04-15 トヨタ自動車株式会社 vehicle
JP5614661B2 (en) 2012-10-09 2014-10-29 株式会社デンソー Rotating electrical machine control device and electric power steering device using the same
KR101791722B1 (en) * 2013-08-30 2017-10-30 주식회사 만도 Steering control apparatus and method
JP6277917B2 (en) * 2014-09-16 2018-02-14 株式会社デンソー Hybrid vehicle
DE102015000466B4 (en) * 2015-01-15 2016-11-17 Audi Ag Drive device for a motor vehicle and motor vehicle
JP6314863B2 (en) * 2015-02-03 2018-04-25 株式会社デンソー Electronic control unit
JP6260558B2 (en) * 2015-03-06 2018-01-17 トヨタ自動車株式会社 Hybrid car
US10550816B2 (en) * 2016-02-17 2020-02-04 General Electric Company Start/stop system for vehicles and method of making same
US11072245B2 (en) * 2016-08-09 2021-07-27 Nidec Corporation Motor control method, motor control system, and electric power steering system
JP6521484B2 (en) 2017-02-23 2019-05-29 マツダ株式会社 Power control method and power control apparatus for hybrid vehicle
JP6489509B2 (en) 2017-02-23 2019-03-27 マツダ株式会社 Power control method and power control apparatus for hybrid vehicle
JP6519957B2 (en) 2017-02-23 2019-05-29 マツダ株式会社 Power control method and power control apparatus for hybrid vehicle
JP6504527B2 (en) * 2017-02-23 2019-04-24 マツダ株式会社 Power control method and power control apparatus for hybrid vehicle
JP6607217B2 (en) * 2017-03-03 2019-11-20 トヨタ自動車株式会社 Hybrid car
JP6911750B2 (en) * 2017-12-27 2021-07-28 トヨタ自動車株式会社 Drive device
US10756665B2 (en) * 2018-07-27 2020-08-25 Hamilton Sunstrand Corporation Fault isolation for pulse width modulated three phase motor systems
US10675984B2 (en) 2018-08-03 2020-06-09 American Axle & Manufacturing, Inc. Drive system and method for vehicle employing multiple electric motors
IT201900006238A1 (en) * 2019-04-23 2020-10-23 Piaggio & C Spa CONTROL SYSTEM OF A RIDING SADDLE VEHICLE EQUIPPED WITH AN ELECTRIC DRIVE
KR20210075265A (en) * 2019-12-12 2021-06-23 현대자동차주식회사 Apparatus and method for controlling motor system for vehicle
US11577612B2 (en) * 2021-03-30 2023-02-14 Toyota Motor Engineering & Manufacturing North America, Inc. System for adjusting regenerative torque according to state of charge of multiple batteries

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3842465B2 (en) * 1998-11-20 2006-11-08 富士重工業株式会社 Control device for hybrid vehicle
JP3702749B2 (en) 2000-05-24 2005-10-05 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
JP4158363B2 (en) * 2001-08-01 2008-10-01 アイシン・エィ・ダブリュ株式会社 Hybrid vehicle drive control device
US6653812B1 (en) * 2002-01-31 2003-11-25 Analog Devices, Inc. Space vector modulation methods and structures for electric-motor control
JP3809824B2 (en) * 2002-09-10 2006-08-16 トヨタ自動車株式会社 Hybrid car
JP3661689B2 (en) * 2003-03-11 2005-06-15 トヨタ自動車株式会社 Motor drive device, hybrid vehicle drive device including the same, and computer-readable recording medium storing a program for causing a computer to control the motor drive device
JP2005333690A (en) * 2004-05-18 2005-12-02 Denso Corp Controller of hybrid vehicle
JP2006063819A (en) 2004-08-25 2006-03-09 Toyota Motor Corp Power output device, automobile equipped with this and method for controlling power output device
JP2006077600A (en) * 2004-09-07 2006-03-23 Toyota Motor Corp Power output device, automobile equipped with it and method of controlling power output device
JP4113527B2 (en) * 2004-11-25 2008-07-09 トヨタ自動車株式会社 Power output apparatus and vehicle equipped with the same
JP4263697B2 (en) 2005-01-13 2009-05-13 トヨタ自動車株式会社 Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP4232751B2 (en) * 2005-03-16 2009-03-04 トヨタ自動車株式会社 Hybrid vehicle
JP4350676B2 (en) * 2005-03-31 2009-10-21 本田技研工業株式会社 Control device for hybrid vehicle
JP2007028733A (en) 2005-07-13 2007-02-01 Toyota Motor Corp Motor driving unit and hybrid driving unit
JP3927584B2 (en) * 2005-10-26 2007-06-13 三菱電機株式会社 Power control device for automobile
JP4281730B2 (en) 2005-11-16 2009-06-17 トヨタ自動車株式会社 Vehicle and control method thereof
JP4449942B2 (en) * 2006-06-19 2010-04-14 株式会社デンソー Control device for hybrid electric vehicle
EP2048772B1 (en) * 2006-07-24 2021-10-20 Kabushiki Kaisha Toshiba Variable magnetic flux motor drive system
JP4179381B2 (en) * 2007-01-25 2008-11-12 トヨタ自動車株式会社 Electric vehicle
JP4965363B2 (en) * 2007-07-12 2012-07-04 トヨタ自動車株式会社 VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE
DE102010039190A1 (en) * 2010-08-11 2012-02-16 Robert Bosch Gmbh Method and system for operating a controlled by an inverter electric machine in a motor vehicle in case of failure
JP5146555B2 (en) * 2011-02-28 2013-02-20 株式会社デンソー Switching element drive circuit

Also Published As

Publication number Publication date
CN101687503B (en) 2012-11-07
EP2165903A1 (en) 2010-03-24
WO2009008501A1 (en) 2009-01-15
EP2165903A4 (en) 2017-03-29
US8335603B2 (en) 2012-12-18
CN101687503A (en) 2010-03-31
JP2009018693A (en) 2009-01-29
US20100152940A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP4965363B2 (en) VEHICLE, ITS CONTROL METHOD AND DRIVE DEVICE
JP4453765B2 (en) Hybrid vehicle and control method thereof
JP4462366B2 (en) POWER OUTPUT DEVICE, VEHICLE EQUIPPED WITH THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP2013203116A (en) Hybrid vehicle and method for controlling the same
JP2010012827A (en) Vehicle and control method therefor
JP4501812B2 (en) Maximum output setting device, drive device including the same, power output device including the same, automobile equipped with the same, maximum output setting method
JP4222332B2 (en) Hybrid vehicle and control method thereof
JP2013207833A (en) Hybrid vehicle and method for controlling the same
JP4949918B2 (en) Vehicle and control method thereof
JP2009184500A (en) Vehicle and its control method
JP2009220791A (en) Vehicle and its control method
JP2009280033A (en) Vehicle and method of controlling vehicle
JP4692498B2 (en) Vehicle and control method thereof
JP2010173476A (en) Hybrid automobile, its control method, and drive unit
JP2007112291A (en) Power output device, vehicle loading it and control method for power output device
JP2006067655A (en) Motive power output device and automobile mounting the same, and method of controlling the motive power output device
JP4248553B2 (en) Vehicle and control method thereof
JP2009149154A (en) Vehicle and control method therefor
JP4301252B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP2008007018A (en) Motive power output device, vehicle equipped with the same, and control method of motive power output device
JP4215030B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP2013001181A (en) Power train of vehicle
JP3846453B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND AUTOMOBILE MOUNTING THE SAME
CN108528435B (en) Hybrid electric vehicle
JP5387460B2 (en) Vehicle and control method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees