JP4954386B2 - Microchip liquid-liquid interface reaction method by applying electric field or magnetic field and microchip for the same - Google Patents

Microchip liquid-liquid interface reaction method by applying electric field or magnetic field and microchip for the same Download PDF

Info

Publication number
JP4954386B2
JP4954386B2 JP2001136669A JP2001136669A JP4954386B2 JP 4954386 B2 JP4954386 B2 JP 4954386B2 JP 2001136669 A JP2001136669 A JP 2001136669A JP 2001136669 A JP2001136669 A JP 2001136669A JP 4954386 B2 JP4954386 B2 JP 4954386B2
Authority
JP
Japan
Prior art keywords
liquid
microchip
electric field
liquid interface
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001136669A
Other languages
Japanese (ja)
Other versions
JP2002326963A (en
Inventor
武彦 北森
秀明 久本
学 渡慶次
彰秀 火原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2001136669A priority Critical patent/JP4954386B2/en
Publication of JP2002326963A publication Critical patent/JP2002326963A/en
Application granted granted Critical
Publication of JP4954386B2 publication Critical patent/JP4954386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この出願の発明は、電場または磁場印加によるマイクロチップ液液界面反応方法とそのためのマイクロチップに関するものである。
【0002】
【従来の技術と発明の課題】
従来より、マイクロチップに形成した微細流路(マイクロチャンネル)において化学反応を行うことが提案されてきている。この出願の発明者らによっても、このようなマイクロチップ上での化学反応について、高効率での化学合成や高精度での分析等を可能とすることが見出され、たとえば、錯体形成反応、溶媒抽出、免疫反応、酵素反応、イオン対抽出などのさまざまな化学反応系としてマイクロチップに集積化することが提案されている。
【0003】
そして、発明者らによるこれらの提案は、マイクロチップ上の流路という微小空間での液液界面反応とその制御についての多面的観点からの検討により得られた新規な知見に基づいている。
【0004】
このような検討の過程において、発明者らは、微小空間での液液界面反応をより高度に制御するための方策を探索してきた。液液界面方法における反応基質の反応部位の位置や立体配置を自在に選択制御できるのであれば、反応効率を飛躍的に向上させることや、不斉合成、立体選択的合成も可能になると期待されるからである。
【0005】
この出願の発明は、以上のとおりの背景よりなされたものであって、マイクロチップ上の流路における液液界面反応をより高度に選択制御することのできる新しい技術手段を提供することを課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、マイクロチップ流路における液液界面反応において、液液界面に電場または磁場を印加することを特徴とする電場または磁場印加によるマイクロチップ液液界面反応方法を提供する。また、第2には、上記第1のマイクロチップ液液界面反応方法であって、液液界面が形成されて反応が進行する流路で、マイクロチップの上下間に電場または磁場を印加することを特徴とする電場または磁場印加によるマイクロチップ液液界面反応方法を提供する。
【0007】
そして、この出願の発明は、第3には、上記第1または2のマイクロチップ液液界面反応方法であって、液液界面が形成される流路への各試薬の導入路でマイクロチップの上下間に電場または磁場を印加することを特徴とするマイクロチップ液液界面反応方法を提供する。
【0008】
また、この出願の発明は、第4には、上記の反応方法のためのマイクロチップであって、電場を形成するマイクロ電極または磁場を形成するマイクロマグネットもしくはマイクロコイルが配設されていることを特徴とするマイクロチップを提供する。
【0009】
【発明の実施の形態】
この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
【0010】
添付した図面の図1は、この発明の方法とそのためのマイクロチップの要部について概要を例示した平面図であって、この例においては、試薬Aと試薬Bとの液液界面反応を行うための流路(マイクロチャンネル)(1)において、たとえばマイクロチップの上下にマイクロ電極を配設することによって、液液界面に平行に電場が印加されるようにしている。また、この例においては、試薬Aと試薬Bの導入のための流路(2A)(2B)にも同様にマイクロ電極を配設して電場が印加されるようにしている。
【0011】
液液界面が形成されて反応が進行する流路(1)での電場の印加によって、反応の選択性が高められることになる。試薬導入のための流路(2A)(2B)においては、試薬の分極化等のために適宜に電場が印加されてよいが、このような電場の印加は必ずしも必要ではない。
【0012】
もちろん、電場の印加は、必要に応じて、試薬の導入路(2A)(2B)の少くともいずれかのみで行うようにしてもよい。
【0013】
電場の印加によって、反応試薬の活性基や活性種の空間配置、分布が変更、制御され、反応の選択性が高められる。マイクロチップ上の流路という微小空間という特性によって、小さな外部電位で大きな電場を、効率的に、しかも方向を均一に印加することができる。同様にして、電場に代えてマイクロマグネットやマイクロコイルを配設して磁場印加可能としたマイクロチップにおいても、磁場感応性の選択的な反応が進行することになる。
【0014】
電場や磁場の印加による反応においては、反応生成物をマイクロチップから容易回収できることはいうまでもなく、チップ上で多段反応を構成してもよいし、流路において、光学顕微鏡、特にこの出願の発明者らが提案している熱レンズ顕微鏡等の手段によって非接触で分析することもできる。
【0015】
そこで、以下に実施例を示し、さらに詳しく発明の実施の形態について説明する。もちろん、以下の例によって発明が限定されることはない。
【0016】
【実施例】
図2に示したとおりのマイクロチップは7×3cm、厚さ1.4mm、チャネル幅250μm、深さ100μmとし、導入された有機相溶液と水相溶液はY字状に合流しチャネルに沿った平面状の液−液界面を形成するようにした。チップの上下に電極を取り付け直流電源によって0〜1700V/cm(0〜250V)の電場を液−液界面に対して平行に印加するようにした。このマイクロチャネル中にレゾルシノール誘導体酢酸エチル溶液とp−ニトロペンゼンジアゾニウムテトラフルオロボレート水溶液を導入しジアゾカップリング反応を行った。平面状液−液界面を形成させた場合と、比較のため2相を1つの導入口から導入してランダムに混合し、平面状の液−液界面を形成させなかった場合についてそれぞれ反応を行った。合成収率は反応液の酢酸エチル相を採取してHPLCで評価した。
【0017】
反応基質に4−エチルレゾルシノールを用いた結果、主生成物の収率が、平面状界面が形成していない場合では約1%でほぼ一定であるが、平面状界面の形成時では電場強度に依存して1.06%から1.44%にまで上昇するという、収率向上効果を見出した。また5−メチルレゾルシノールを基質として行ったときには10.47%から13.55%まで上昇した。この理由として、まずは電場印加による温度上昇の可能性を考え、電場印加時の温度変化を熱電対を用いて測定したが、これは誤差の範囲内であることが確認できた。このことから、電場印加による試薬の分子配向や濃度勾配の形成等によるものと考えられる。この結果は、マイクロチップ中に形成される比界面積が大きく、かつ方向の規制された液−液界面が、電場による反応制御に適用可能であることを示しており、位置・立体選択的合成反応等への展開が期待できる。
【0018】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、マイクロチップ上での液液界面反応がより高度に選択的に制御可能となる。
【図面の簡単な説明】
【図1】この発明の方法とそのためのマイクロチップの構成を例示した要部平面図である。
【図2】実施例について例示した概要斜視図である。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a microchip liquid-liquid interface reaction method by applying an electric field or a magnetic field and a microchip therefor.
[0002]
[Prior art and problems of the invention]
Conventionally, it has been proposed to perform a chemical reaction in a fine channel (microchannel) formed in a microchip. The inventors of this application have also found that chemical reaction on such a microchip enables chemical synthesis with high efficiency, analysis with high accuracy, etc., for example, complex formation reaction, It has been proposed to integrate microchips as various chemical reaction systems such as solvent extraction, immune reaction, enzyme reaction, and ion pair extraction.
[0003]
And these proposals by the inventors are based on new knowledge obtained by examination from various viewpoints about the liquid-liquid interface reaction in the micro space called the flow path on the microchip and its control.
[0004]
In the course of such studies, the inventors have searched for a measure for controlling the liquid-liquid interface reaction in a minute space to a higher degree. If the position and configuration of the reaction substrate in the liquid-liquid interface method can be freely selected and controlled, it is expected that reaction efficiency will be dramatically improved, and asymmetric synthesis and stereoselective synthesis will be possible. This is because that.
[0005]
The invention of this application has been made based on the background as described above, and has as its object to provide a new technical means capable of selecting and controlling the liquid-liquid interface reaction in the channel on the microchip to a higher degree. Yes.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application firstly applies an electric field or a magnetic field, wherein an electric field or a magnetic field is applied to a liquid-liquid interface in a liquid-liquid interface reaction in a microchip channel. A microchip liquid-liquid interface reaction method is provided. Second, in the first microchip liquid-liquid interface reaction method, an electric field or a magnetic field is applied between the upper and lower sides of the microchip in a flow path in which the liquid-liquid interface is formed and the reaction proceeds. A microchip liquid-liquid interface reaction method by applying an electric field or a magnetic field is provided.
[0007]
Third, the invention of this application is the above-described first or second microchip liquid-liquid interface reaction method, wherein each reagent is introduced into a flow path where a liquid-liquid interface is formed . Provided is a microchip liquid-liquid interface reaction method characterized by applying an electric field or a magnetic field between upper and lower sides .
[0008]
The invention of this application is, fourthly, a microchip for the above reaction method, wherein a microelectrode for forming an electric field or a micromagnet or a microcoil for forming a magnetic field is provided. A featured microchip is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the features as described above, and an embodiment thereof will be described below.
[0010]
FIG. 1 of the accompanying drawings is a plan view illustrating an outline of the main part of the method of the present invention and the microchip for the method. In this example, a liquid-liquid interface reaction between the reagent A and the reagent B is performed. In this flow path (microchannel) (1), for example, by arranging microelectrodes above and below the microchip, an electric field is applied in parallel to the liquid-liquid interface. In this example, the microelectrodes are similarly disposed in the flow paths (2A) and (2B) for introducing the reagent A and the reagent B so that an electric field is applied.
[0011]
The selectivity of the reaction is enhanced by the application of an electric field in the flow path (1) where the liquid-liquid interface is formed and the reaction proceeds. In the flow paths (2A) and (2B) for introducing the reagent, an electric field may be appropriately applied for the polarization of the reagent and the like, but such an electric field is not necessarily applied.
[0012]
Of course, the electric field may be applied through at least one of the reagent introduction paths (2A) and (2B) as required.
[0013]
By applying an electric field, the spatial arrangement and distribution of the active groups and active species of the reaction reagent are changed and controlled, and the selectivity of the reaction is enhanced. A large electric field with a small external potential can be applied efficiently and uniformly in a direction due to a characteristic of a micro space called a flow path on a microchip. Similarly, in a microchip in which a micromagnet or microcoil is provided instead of an electric field and a magnetic field can be applied, a magnetic field sensitive selective reaction proceeds.
[0014]
In the reaction by applying an electric field or a magnetic field, it is needless to say that the reaction product can be easily recovered from the microchip, and a multistage reaction may be configured on the chip. Non-contact analysis can also be performed by means such as a thermal lens microscope proposed by the inventors.
[0015]
Therefore, examples will be shown below, and the embodiments of the invention will be described in more detail. Of course, the invention is not limited by the following examples.
[0016]
【Example】
The microchip as shown in FIG. 2 has a size of 7 × 3 cm, a thickness of 1.4 mm, a channel width of 250 μm, and a depth of 100 μm, and the introduced organic phase solution and aqueous phase solution merge in a Y shape and follow the channel. A flat liquid-liquid interface was formed. Electrodes were attached to the top and bottom of the chip, and an electric field of 0 to 1700 V / cm (0 to 250 V) was applied in parallel to the liquid-liquid interface by a DC power source. A resorcinol derivative ethyl acetate solution and a p-nitrobenzene diazonium tetrafluoroborate aqueous solution were introduced into the microchannel to carry out a diazo coupling reaction. For the case where a planar liquid-liquid interface is formed and for comparison, two phases are introduced from one inlet and mixed randomly, and the planar liquid-liquid interface is not formed. It was. The synthesis yield was evaluated by HPLC after collecting the ethyl acetate phase of the reaction solution.
[0017]
As a result of using 4-ethylresorcinol as the reaction substrate, the yield of the main product is almost constant at about 1% when the planar interface is not formed, but the electric field strength is increased when the planar interface is formed. The yield increasing effect of increasing from 1.06% to 1.44% was found. Further, when 5-methylresorcinol was used as a substrate, it increased from 10.47% to 13.55%. As a reason for this, first, considering the possibility of temperature rise due to electric field application, the temperature change at the time of electric field application was measured using a thermocouple, and it was confirmed that this was within the error range. From this, it is considered that this is due to the molecular orientation of the reagent and the formation of a concentration gradient by applying an electric field. This result shows that the liquid-liquid interface with a large specific interface area formed in the microchip and whose direction is regulated can be applied to the reaction control by the electric field. The development to reaction etc. can be expected.
[0018]
【Effect of the invention】
As described in detail above, the invention of this application makes it possible to control the liquid-liquid interface reaction on the microchip more selectively.
[Brief description of the drawings]
FIG. 1 is a plan view of an essential part illustrating the method of the present invention and the configuration of a microchip for the method.
FIG. 2 is a schematic perspective view illustrating an example.

Claims (4)

マイクロチップ流路における液液界面反応において、液液界面に電場または磁場を印加することを特徴とする電場または磁場印加によるマイクロチップ液液界面反応方法。  A liquid-liquid interface reaction method by applying an electric field or a magnetic field, wherein an electric field or a magnetic field is applied to the liquid-liquid interface in a liquid-liquid interface reaction in a microchip channel. 液液界面が形成されて反応が進行する流路で、マイクロチップの上下間に電場または磁 場を印加することを特徴とする請求項1記載の電場または磁場印加によるマイクロチップ液液界面反応方法。2. The microchip liquid-liquid interface reaction method by applying an electric field or a magnetic field according to claim 1 , wherein an electric field or a magnetic field is applied between the upper and lower sides of the microchip in a flow path in which a reaction proceeds by forming a liquid-liquid interface. . 液液界面が形成される流路への試薬の導入路で、マイクロチップの上下間に電場または磁場を印加することを特徴とする請求項1または2記載の電場または磁場印加によるマイクロチップ液液界面反応方法。 3. The microchip solution by applying an electric field or a magnetic field according to claim 1 or 2, wherein an electric field or a magnetic field is applied between the upper and lower sides of the microchip in an introduction path of each reagent into a flow path where a liquid-liquid interface is formed. Liquid interface reaction method. 請求項1ないし3のいずれかに記載の反応方法のためのマイクロチップであって、電場を形成するマイクロ電極または磁場を形成するマイクロマグネットもしくはマイクロコイルが配設されていることを特徴とするマイクロチップ。  A microchip for the reaction method according to any one of claims 1 to 3, wherein a microelectrode for forming an electric field, a micromagnet or a microcoil for forming a magnetic field is provided. Chip.
JP2001136669A 2001-05-07 2001-05-07 Microchip liquid-liquid interface reaction method by applying electric field or magnetic field and microchip for the same Expired - Fee Related JP4954386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136669A JP4954386B2 (en) 2001-05-07 2001-05-07 Microchip liquid-liquid interface reaction method by applying electric field or magnetic field and microchip for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001136669A JP4954386B2 (en) 2001-05-07 2001-05-07 Microchip liquid-liquid interface reaction method by applying electric field or magnetic field and microchip for the same

Publications (2)

Publication Number Publication Date
JP2002326963A JP2002326963A (en) 2002-11-15
JP4954386B2 true JP4954386B2 (en) 2012-06-13

Family

ID=18983906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136669A Expired - Fee Related JP4954386B2 (en) 2001-05-07 2001-05-07 Microchip liquid-liquid interface reaction method by applying electric field or magnetic field and microchip for the same

Country Status (1)

Country Link
JP (1) JP4954386B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009605A1 (en) * 2003-07-24 2005-02-03 Ryoichi Aogaki Microreactor including magnetic barrier
JP2006187685A (en) 2004-12-28 2006-07-20 Fuji Xerox Co Ltd Microstructure, microreactor, heat exchanger and manufacturing method of microstructure
JP2006187684A (en) 2004-12-28 2006-07-20 Fuji Xerox Co Ltd Microfluid device
JP2007038047A (en) 2005-07-29 2007-02-15 Sumitomo Electric Ind Ltd Microreacter
JP5092443B2 (en) * 2007-02-20 2012-12-05 富士ゼロックス株式会社 Microfluidic device, reaction apparatus, and reaction method
US9539511B2 (en) 2011-03-08 2017-01-10 Nintendo Co., Ltd. Computer-readable storage medium, information processing system, and information processing method for operating objects in a virtual world based on orientation data related to an orientation of a device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772146B2 (en) * 1991-06-12 1995-08-02 工業技術院長 Control method of chemical reaction
JPH11104487A (en) * 1997-09-30 1999-04-20 Shimadzu Corp Chemical reaction device
JPH11104485A (en) * 1997-10-03 1999-04-20 Japan Science & Technology Corp Promotion of dissolution of gas into liquid by magnetic field gradient
GB9723260D0 (en) * 1997-11-05 1998-01-07 British Nuclear Fuels Plc A method of performing a chemical reaction
EP1174182A4 (en) * 1999-02-18 2003-07-23 Toyo Kohan Co Ltd Micro-chip for chemical reaction
JP2000298079A (en) * 1999-04-13 2000-10-24 Kanagawa Acad Of Sci & Technol Molecule transportation and extraction method
JP3417344B2 (en) * 1999-05-26 2003-06-16 株式会社島津製作所 Chemiluminescence detection method and microchip electrophoresis apparatus using the method
JP2001004628A (en) * 1999-06-18 2001-01-12 Kanagawa Acad Of Sci & Technol Immunoassay and its method
JP3960806B2 (en) * 2001-01-22 2007-08-15 独立行政法人科学技術振興機構 Method for photo-substitution reaction of organic compounds
JP2002277478A (en) * 2001-03-15 2002-09-25 Kanagawa Acad Of Sci & Technol Liquid-liquid interface segment flow method and segment analysis method
JP2002292275A (en) * 2001-03-29 2002-10-08 Kanagawa Acad Of Sci & Technol Microchip pile-up type chemical reaction system

Also Published As

Publication number Publication date
JP2002326963A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
Viefhues et al. DNA dielectrophoresis: Theory and applications a review
Bousse et al. Electrokinetically controlled microfluidic analysis systems
Belkin et al. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA
Weigl et al. Lab-on-a-chip for drug development
JP2019164142A (en) Nano gap electrode and manufacturing method of the same
Barrett et al. Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels
Zhu et al. Integrated droplet analysis system with electrospray ionization-mass spectrometry using a hydrophilic tongue-based droplet extraction interface
Anand et al. Bipolar electrode focusing: faradaic ion concentration polarization
Verpoorte et al. Microfluidics meets MEMS
TWI359693B (en)
JP4932066B2 (en) Flow path device and sample processing apparatus including the same
Gu et al. Multifunctional picoliter droplet manipulation platform and its application in single cell analysis
Saias et al. Design, modeling and characterization of microfluidic architectures for high flow rate, small footprint microfluidic systems
JP6274455B2 (en) Methods and systems for manipulating molecules
Turgeon et al. Measuring aptamer equilibria using gradient micro free flow electrophoresis
JP2003527601A (en) Method and apparatus for locating and concentrating polar analytes using an alternating electric field
Martinez-Cisneros et al. Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications
Johnson et al. Micro free flow electrophoresis
Belkin et al. Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores
KR20110008174A (en) Microfluidic chip devices and their use
Jayamohan et al. Advances in microfluidics and lab-on-a-chip technologies
KR101355994B1 (en) Microdevice for pathogen detection
Cong et al. Recent progress in preparation and application of microfluidic chip electrophoresis
JP4954386B2 (en) Microchip liquid-liquid interface reaction method by applying electric field or magnetic field and microchip for the same
Gardeniers et al. Micro-and nanofluidic devices for environmental and biomedical applications

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees