JP4954362B2 - Method for producing polymer electrolyte fuel cell - Google Patents

Method for producing polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4954362B2
JP4954362B2 JP2000200656A JP2000200656A JP4954362B2 JP 4954362 B2 JP4954362 B2 JP 4954362B2 JP 2000200656 A JP2000200656 A JP 2000200656A JP 2000200656 A JP2000200656 A JP 2000200656A JP 4954362 B2 JP4954362 B2 JP 4954362B2
Authority
JP
Japan
Prior art keywords
catalyst layer
electrode
polymer electrolyte
catalyst
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000200656A
Other languages
Japanese (ja)
Other versions
JP2002025561A (en
Inventor
栄一 安本
昭彦 吉田
誠 内田
久朗 行天
一仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000200656A priority Critical patent/JP4954362B2/en
Priority to PCT/JP2001/005684 priority patent/WO2002003489A1/en
Priority to CNB018113192A priority patent/CN1288779C/en
Priority to EP01945738.1A priority patent/EP1304753B1/en
Priority to KR10-2002-7017837A priority patent/KR100468102B1/en
Publication of JP2002025561A publication Critical patent/JP2002025561A/en
Priority to US10/335,958 priority patent/US7220514B2/en
Application granted granted Critical
Publication of JP4954362B2 publication Critical patent/JP4954362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子電解質型燃料電池の製造方法、特に触媒層の形成方法に関する。
【0002】
【従来の技術】
高分子電解質型燃料電池の電極は、一般的に白金やルテニウムなどの貴金属を触媒成分とする触媒層を、多孔質導電性基材上に形成したものが用いられる。通常、これらの触媒層の形成方法は、貴金属を担持した炭素微粉末と、水素イオン伝導性高分子電解質の溶液と、イソプロピルアルコールなどの有機溶媒とを混合してインク化し、このインクをスクリーン印刷法やスプレー法を用いて、基材となるカーボンペーパー上に成形するのが一般的である。このようにして作製した電極を、電解質膜を介してホットプレスにより接合し、電極電解質膜接合体を作製する。これ以外にも、化学的に不活性な高分子フィルム上に触媒層を形成した後に、これを電解質膜に転写する方法も提案されている。
【0003】
【発明が解決しようとする課題】
高分子電解質型燃料電池は燃料ガスに一酸化炭素が混入していると、性能が低下する。この原因は、触媒層中の白金が一酸化炭素で被毒されることによる。
【0004】
また、カーボンペーパーなどの多孔性電極基材上に形成する触媒層は、基本的に単層であるのが一般的であり、これを多層化することは難しい。例えば、スクリーン印刷などの手法により触媒層を多層化することも製法としては可能であるが、2層目の塗工においては、先に形成した触媒層が印刷圧により破壊される危険性がある。また、仮に塗工が出来たとしても、その界面では2層が混ざり合った中間層的な層が必然的に生じ、2つの触媒層が切り替わる境界が曖昧になる。これにより触媒層多層化の効果が薄れる。また、このような多孔性導電性基材上に触媒層を2層以上形成する製造方法は、工程が複雑となり量産化には不適である。
【0005】
また、多孔性電極基材上に電極を形成する場合、多孔性電極基材中に触媒層が入り込み触媒利用率の低下が起こると共に、基材の表面形状に触媒層が左右され、均一な厚みの触媒層の形成が困難となる。また、多孔性電極基材は、ガス拡散層の役割も果たしているたので、触媒層が入り込むことによりガス拡散性も阻害されるため、電極構造としては理想的ではない。
【0006】
また、高分子フィルム上に触媒層を形成する方法に関しては、電極インクの粘度を高める必要がある。このために高沸点のアルコールや粘度調製剤を入れるのが一般的である。この場合、電極インク塗工工程後の乾燥や焼成を十分行う等の必要性がある。また、これらの処理が不十分な場合には、電池特性が低下するなどの問題がある。さらに、電極インクの粘度が低い場合には、乾燥工程に時間をかけて穏やかに乾燥させる必要がある。また塗膜にクラックが生じたり、塗膜の均一性が損なわれる可能性がある。
【0007】
【課題を解決するための手段】
この課題を解決するため本発明の高分子電解質型燃料電池の製造方法は、化学的に不活性な多孔性シート上に、触媒粒子と水素イオン伝導性高分子電解質とを含有する電極インクを塗布し、半乾燥状態の塗膜を形成し、乾燥した後、前記塗膜を水素イオン伝導性高分子電解質膜の裏表両側に転写する工程を複数回繰り返す工程、または、化学的に不活性な多孔性シート上に、触媒粒子と水素イオン伝導性高分子電解質とを含有する2種以上の電極インクを順次塗布し、半乾燥状態の塗膜を形成し、乾燥した後、前記塗膜を水素イオン伝導性高分子電解質膜の裏表両側に転写する工程を有することを特徴とする
【0008】
このとき、本発明の製造方法で得られる高分子電解質型燃料電池の電極は、水素イオン伝導性高分子電解質膜に接する第1触媒層と、前記第1触媒層の上に形成した第2触媒層とを有し、前記第1触媒層を構成する触媒成分は白金であり、前記第2触媒層を構成する触媒成分は白金と、これに加えてルテニウム、パラジウム、ロジウム、ニッケル、イリジウム、鉄からなる群より選ばれた少なくとも1種の金属を有することが有効である。
【0011】
このとき、化学的に不活性な多孔性シートは、撥水処理がされていることが有用である。
【0012】
また、化学的に不活性な多孔性シートは、気体透過率の異なる2種類以上のシートが積層されていることが有用である。
【0013】
【発明の実施の形態】
本発明の製造方法で得られる高分子電解質型燃料電池は、触媒層を不連続な2層で構成しているので、触媒層間の界面で2層の触媒が混ざり合うことがない。よって、本来の触媒層多層化の効果がより顕著に現れる。また、燃料ガスに改質ガスを用いる場合は、改質ガス中のCOが白金電極を被毒することが知られている。この場合、高分子電解質膜と接しない第2の触媒層に白金とルテニウム、パラジウムなどの多元系の触媒を用いた触媒層をアノードとして使用すると、この第2層が改質ガス中のCOを酸化し、第1層で本来の電極反応を行うことが出来るために、電池特性が著しく向上する。
【0014】
また、本発明の高分子電解質型燃料電池の製造方法は、多孔性シートの基材上に、2種類以上の電極インクを順次塗工した後に、高分子電解質膜に転写することにより高分子電解質型燃料電池を製造することが出来るため、連続して多層の触媒層を形成することが出来る。この場合コータ塗工等の採用により、一端触媒層を塗工して乾燥させた後に、次の触媒層を重ねて塗工することが出来る。この方法を用いれば、基材上の触媒層が破壊されることなく、次の触媒層を形成することが可能となり、スクリーン印刷のような境界界面での混合も比較的少なくなる。
【0015】
また、触媒層の高分子電解質膜への転写を2回以上行うことにより、例えば最初の触媒層を転写した後に、別の触媒層をその上から転写することができる。これにより多層の触媒層が形成できる。さらに、この触媒層は転写により多層化を実現しており、それぞれの触媒層が形状を保ったままで2層を構成しているので、界面で触媒が混じり合うことなく2層が独立して形成されている。
【0016】
さらに、本発明の固体高分子電解質型燃料電池の製造方法は、適当な気体透過率を有する多孔性シート基材上に電極触媒層を形成するため、電極触媒インク中の溶媒成分が塗工後速やかに多孔性シートに含浸し、半乾燥状態の塗膜を形成することができる。これにより従来粘度調整のために用いていた、高沸点アルコールや粘度調整剤を用いる必要が無くなる。これにより、電池性能の低下も回避できる。また、低粘度のインクでも触媒層が形成でき、溶媒の選択範囲が広がる。また、塗工後、塗膜はすでに半乾燥状態でするので、塗膜の均一性が保たれると同時に、乾燥時のクラックの発生が低減できる。また、多孔性シートに撥水処理を施すことにより、基材への触媒成分の浸透が低減できると共に、転写時の離型性が向上する。さらに、気体透過率の異なる多孔性シートの貼り合わせ品を用いることにより、基材中への触媒の入り込みを極少にできる。
【0017】
【実施例】
以下、本発明の電解質型燃料電池およびその製造方法について図面を参照して述べる。
【0018】
参考例1)
まず、電極用インクを2種類作製した。25重量%の白金を担持したカーボン粉末に、5重量%のナフィオン溶液(アルドリッチ製)と、溶媒として2−プロパノール(IPA)とテルピネオールとを加え、ボールミル法により混合し、電極インクAを作製した。また、50重量%の白金を担持したカーボン粉末に、5重量%のナフィオン溶液、2−プロパノールとテルピネオールを加え、先と同様に混合して電極インクBを作製した。
【0019】
これらのインクを、図1に示すコータ塗工装置を用いて、基材上に触媒層を形成した。図1において、基材としては、ポリエステルフィルム(厚み50μm、幅250mm)を使用した。塗料タンク3に電極インクBを入れた後、コータ装置の巻出し部1からポリエステルフィルム2を送り、塗工を行った。塗工は、塗料タンクからスリット状のノズルを経てフィルム上に塗布される。この時のノズルとフィルムのギャップは50〜250μm、送り速度は1m/分に設定した。触媒層が塗布されたフィルムを、温度100℃、風量10m3に設定された乾燥室4に送ることにより、フィルム上に触媒B層5を形成した。
【0020】
次に、電極インクAが満たされた塗料タンク6から、スリット上のノズルを経て塗料を触媒B層の上に塗工を行った。この後、先と同様の条件に設定した乾燥室7で乾燥させて、触媒A層8を形成した。このように作製した触媒層付きフィルムは、コータ装置の巻き取り部9で回収した。以上の工程で作成した触媒層付きフィルムをフィルムAとした。
【0021】
また、これとは別に先と同様の装置で、第2の塗工部6と乾燥室7がないコータ装置を用いて、フィルム上に電極インクBのみを塗工、乾燥し、巻き取って、触媒層付きフィルムを作製した。このフィルムをフィルムBとした。
【0022】
また、電極インクAのみを塗工、乾燥し、巻き取って触媒層付きフィルムを作製した。このフィルムをフィルムCとした。
【0023】
以上の工程で作製したフィルムの触媒層の表面には、クラック等の発生も認められなかった。このフィルムAの断面の様子を観察した結果、触媒層A1+触媒層B2の厚みは約15μm、触媒層B1よ触媒層A1の厚みは約8μmであった。これより触媒層A1と触媒層B1は、わずかに混ざり合っている部分が見られるものの、基本的に不連続な分離された2層で構成されていることが分かった。
【0024】
次に、フィルムAとフィルムBとを、高分子電解質膜(Nafion112、デュポン製)を挟んで、ホットローラを用いて接合し、電極電解質接合体を作製した。接合温度は100℃、接合の加圧力は3×107Paで行った。この工程で作成したものを電極電解質接合体Aとした。
【0025】
また、触媒層付きフィルム2を2つ準備し、高分子電解質膜を挟んで先と同様にホットローラーを用いて転写を行った後、一方の側に触媒層付きフィルムを配して、再度ホットローラーを用いて触媒層B1の上に触媒層A1を形成し、電極電解質接合体Bを作製した。この電極電解質接合体Bの断面観察を行ったのが図5である。これより触媒層B1と触媒層A1の境界は、触媒の混ざりあいがなく、不連続な2層から構成されていることが分かった。接合後のポリエステルフィルム上には、触媒層の固形分の残存は認められず、どちらの転写も良好であった。
【0026】
さらに、比較のために電極基材上にスクリーン印刷法で電極インクB、電極インクAを塗工し、電極電解質接合体Cを作製した。まず、所定の大きさのカーボンペーパーを印刷機にセットして、電極インクBを塗工した。この時のスクリーンはステンレス製200メッシュのものを使用した。これを80℃に設定された乾燥器中で乾燥させ触媒層B2をカーボンペーパー上に形成した。これを再度スクリーン印刷機にセットして、同様に電極インクAを塗工し、乾燥させ触媒層A2を触媒層B2上に形成し、触媒層付き電極基材1を作製した。これとは別に、先と同様の装置を用いて、カーボンペーパー上に触媒層A2のみを形成した触媒層付き電極基材2も作製した。触媒層付き電極基材1の断面を観察したのが図6である。これより触媒層A2と触媒層B2の界面は各々の層が混ざり合った混合層が形成されているのが分かった。この触媒層付き電極基材1と触媒層付き電極基材2を膜を介してホットプレスにより接合し、電極電解質接合体Cを作製した。
【0027】
次に、電極電解質接合体A、Bを所定の大きさに打ち抜き、カーボンペーパーとガスケットを介して挟み込み、電極−電解質接合体Cはガスケットを両側に配し、各々多層化した触媒層が燃料極となるようにして、単電池試験装置にセットし電池特性を調べた。作製した単電池には、燃料極に改質模擬ガス(二酸化炭素25%、一酸化炭素50ppm、水素バランスガス)を、空気極には空気を流し、電池温度を80℃、燃料利用率を80%、空気利用率を40%、加湿は改質模擬ガスを75℃、空気を60℃の露点になるように調整した。
【0028】
図7に、それぞれの電池の電流−電圧特性を比較して示した。これより電極電解質接合体Bを用いた電池の特性がもっとも優れていることが分かった。また、電極電解質接合体Cを用いたものはもっとも性能が低くなった。これは接合体Cの燃料極側では、本来、膜と接していない触媒層B2で一酸化炭素が効率よく酸化除去されるはずであるが、触媒層B2と触媒層A2の境界が混ざり合っているため、その効果が低下したものと考えられた。これに対して、接合体Bは燃料極側の触媒層B1と触媒層A1の界面で、各々が混ざり合っていないため、触媒層B1で一酸化炭素を効率よく除去し、触媒層A1への影響を極力低くできたものと考えられた。また、接合体Aでは、接合体Bを用いたものよりも特性は少し劣ったが、触媒層の混合が接合体Cに比べて非常に小さく、接合体Cを用いたものよりも特性は良かった。ここでは示さなかったが、電極インクBの白金ルテニウムを担持したカーボン粉末のかわりに、白金パラジウム、白金ロジウム、白金ニッケル、白金イリジウム、白金鉄を担持したカーボン粉末を用いた場合にも白金ルテニウム担持カーボンと同程度の特性を示した。
【0029】
本方法を用いれば、電極電解質接合体の触媒層の多層化を実現することが出来る。また、従来考えられている多層化の方法よりも、より特性の高い高分子電解質型燃料電池を作製することが出来る。
【0030】
(実施例
まず、25重量%の白金を担持したカーボン粉末、5重量%のNafion溶液(アルドリッチ製)、溶媒として2−プロパノール(IPA)と酢酸ブチルを加え、ボールミル法により混合し、電極用インクCを作製した。このインクの粘度は、参考例1で使用した電極インクA、Bよりも低く、せん断速度100(1/sec)の時に10(mPa・s)とした。
【0031】
まず、参考例1で使用した塗工装置2を用いて、多孔性シート上に電極触媒層を形成した。多孔性シートは、太さ50デニールのポリエステル繊維の織布とこの織布に撥水処理を施した2種類と参考例1で使用した通常のポリエステルフィルムを使用した。織布の厚みは約0.1mmである。電極インクCを塗料タンク6に入れ、塗工装置の操作速度を5m/minにして、撥水処理無しのポリエステル織布上に触媒層を形成した後、100℃の乾燥室で乾燥して最終的に巻き取った。乾燥時間は参考例1の1.5倍として行った。塗工直後、電極インク中の溶媒成分は、速やかにポリエステル織布上に浸透した。この時、わずかに織布の裏側に触媒成分が浸透しているのが確認された。乾燥後の塗膜には、クラック等の発生は認めらなかった。
【0032】
また、撥水処理を施したポリエステル織布を用いた場合には、無処理よりも触媒成分の浸透は少なく、塗膜の表面形状は良くなった。また、形成された触媒層の膜厚は共に約10μmであった。これに対してポリエステルフィルムに塗工した同様に塗工した場合には、電極インク中の溶媒成分がフィルム上に残るため、塗膜が不安定で、固着しにくく、乾燥後の触媒層塗膜には塗りムラが見られた。これは、塗料の粘度が低いため塗工後の塗膜が形状を維持できなくなり、乾燥時に塗膜のかたよりが生じてしまったためと考えられた。
【0033】
このようにして作製した電極シートを2つ用意し、参考例1で用いたホットローラーを用いて、電解質膜(Nafion112)の両側に接合し、電極ー電解質接合体D(無撥水処理織布使用)、電極電解質接合体E(撥水処理織布使用)、電極−電解質接合体F(フィルム使用)を作製した。接合条件等は参考例1と同じにした。接合後の無撥水処理のポリエステル織布には、わずかに触媒インク固形分の残存が見られたが、撥水処理を施したものには、触媒インク固形分の残存はほとんど見られず、より転写が良好に行われていることが分かった。また、ポリエステルフィルムを用い場合、接合はうまく行うことが出来たが、塗膜形成時のムラがそのまま電解質膜側に転写されていた。
【0034】
また次に、多孔性シートとして、通気度が35secの多孔質テフロンシートと通気度が5sec以下のポリエステル織布がラミネートされた複合シートを用い塗工を行った。通気度はJIS規格の通気性試験(JISP8117)により、645.16mm2の面積の試料を空気100mlが通過するのにかかる平均秒数として示した。つまり、この値が高いほどガスの通気性が悪く、どちらかと言えば素材が緻密になっていることを示す。電極インク、塗工装置、塗工条件等は先に示したポリエステル織布を用いた場合と同じにした。塗工する面はポリエステル織布側とした。塗工直後、電極インク中の溶媒成分は、速やかに表側のポリエステル織布に浸透したが、先のポリエステル織布を用いたときに見られたような裏面への触媒成分の浸透は全く見られなかった。これは裏面側の多孔質テフロンシートの通気度が低く、素材が緻密になっているので触媒成分が目止めされた形になったものと推察された。また乾燥後の塗膜には、クラック等の発生は認めらなかった。
【0035】
このようにして作製した電極シートを先と同様にホットローラーを用いて接合し、電極電解質接合体Gを作製した。接合後の複合シートのポリエステル織布上には、触媒インク固形分の残存は全く見られなかった。
【0036】
次に、電極−電解質接合体D,E,F,Gを所定の大きさに打ち抜き、カーボンペーパーとガスケットを介して挟み込み、単電池試験装置にセットし電池特性を調べた。作製した単電池には、燃料極に水素ガスを、空気極には空気を流し、電池温度を80℃、燃料利用率を80%、空気利用率を40%、加湿は改質模擬ガスを75℃、空気を60℃の露点になるように調整した。図8に、それぞれの電池の電流−電圧特性を比較して示した。これより電極−電解質接合体Gを用いた電池の特性がもっとも優れていることが分かった。
【0037】
また、転写性の良好な順に電池特性も良くなっていることが分かった。
【0038】
本方法を用いれば、適当な気体透過率を有する多孔性シート基材上に電極触媒層を形成するため、電極触媒インク中の溶媒成分が塗工後速やかに多孔性シートに含浸し、半乾燥状態の移動しない塗膜を形成することができる。これにより従来粘度調整のために用いていたテルピネオールなどの粘度調整剤を用いる必要が無くなる。これにより、電池性能の低下も回避できる。また、低粘度のインクでも触媒層が形成でき、溶媒の選択範囲が広がる。また、気体透過率の異なる多孔性シートの貼り合わせ品を用いることにより、基材中への触媒の入り込みが無くなる。
【0039】
【発明の効果】
以上のように、燃料電池の触媒層を2層化することで、特性を向上することが出来た。さらに、本発明は多孔性シートの基材上に2種類以上の電極インクを順次塗工した後に、高分子電解質膜に転写することにより高分子電解質型燃料電池を製造することが出来るため、連続して多層の触媒層を形成することが出来る。この場合コータ塗工等の採用により、一端触媒層を塗工して乾燥させた後に、次の触媒層を重ねて塗工することが出来る。この方法を用いれば、基材上の触媒層が破壊されることなく、次の触媒層を形成することが出来、スクリーン印刷のような境界界面での混合も比較的少なくなる。
【0040】
また、触媒層の高分子電解質膜への転写を2回以上行うことにより、例えば最初の触媒層を転写した後に、別の触媒層をその上から転写することができる。これにより多層の触媒層が形成できる。さらに、この触媒層は転写により多層化を実現しており、それぞれの触媒層が形状を保ったままで2層を構成しているので、界面で触媒が混じり合うことなく形成されている。
【0041】
さらに、適当な気体透過率を有する多孔性シート基材上に電極触媒層を形成するため、電極触媒インク中の溶媒成分が塗工後速やかに多孔性シートに含浸し、半乾燥状態の塗膜を形成することができる。これにより従来粘度調整のために用いていた、高沸点アルコールや粘度調整剤を用いる必要が無くなる。これにより、電池性能の低下も回避できる。また、低粘度のインクでも触媒層が形成でき、溶媒の選択範囲が広がる。また、塗工後、塗膜はすでに半乾燥状態で固定化しているので、塗膜の均一性が保たれると同時に、乾燥時のクラックの発生が低減できる。また、気体透過率の異なる多孔性シートの貼り合わせ品を用いることにより、基材中への触媒の入り込みが極少になる。
【図面の簡単な説明】
【図1】 本発明の参考例で用いた第1の製造装置を示す図
【図2】 本発明の参考例で用いた第2の製造装置を示す図
【図3】 本発明の参考例の構成要素である触媒層付きフィルムの断面を示す図
【図4】 本発明の参考例で用いた第3の製造装置を示す図
【図5】 本発明の参考例の構成要素である電極電解質接合体の断面を示す図
【図6】 本発明の参考例の構成要素である触媒層付き電極基材の断面を示す図
【図7】 本発明の参考例である高分子電解質型燃料電池の特性を示す図
【図8】 本発明の実施例である高分子電解質型燃料電池の特性を示す図
【符号の説明】
1,9 コ−タ装置の巻き出し部
2 ポリエステルフィルム
3,6 燃料タンク
4,7 乾燥室
5 触媒B層
8 触媒A層
9 コ−タ装置の巻き取り部
10 高分子電解質膜
11 ホットロ−ラ−
12 電極電解質接合体
A1 触媒層A1
B1 触媒層B1
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polymer electrolyte fuel cells, particularly a method for forming a catalyst layer.
[0002]
[Prior art]
As the electrode of the polymer electrolyte fuel cell, generally used is one in which a catalyst layer containing a noble metal such as platinum or ruthenium as a catalyst component is formed on a porous conductive substrate. Normally, these catalyst layers are formed by mixing fine carbon powder carrying a noble metal, a solution of a hydrogen ion conductive polymer electrolyte, and an organic solvent such as isopropyl alcohol into an ink, and screen printing this ink. In general, it is formed on carbon paper as a base material using a spraying method or a spraying method. The electrode thus produced is joined by hot pressing through the electrolyte membrane to produce an electrode electrolyte membrane assembly. In addition, a method has also been proposed in which a catalyst layer is formed on a chemically inert polymer film and then transferred to an electrolyte membrane.
[0003]
[Problems to be solved by the invention]
The performance of the polymer electrolyte fuel cell deteriorates when carbon monoxide is mixed in the fuel gas. This is because platinum in the catalyst layer is poisoned with carbon monoxide.
[0004]
Further, the catalyst layer formed on a porous electrode substrate such as carbon paper is generally basically a single layer, and it is difficult to make it multilayer. For example, although it is possible as a manufacturing method to make a catalyst layer multilayer by techniques, such as screen printing, in the coating of the 2nd layer, there exists a danger that the catalyst layer formed previously may be destroyed by printing pressure. . Even if the coating can be performed, an intermediate layer in which the two layers are mixed is inevitably generated at the interface, and the boundary at which the two catalyst layers are switched becomes ambiguous. As a result, the effect of the multilayer catalyst layer is reduced. Moreover, the manufacturing method in which two or more catalyst layers are formed on such a porous conductive base material is not suitable for mass production because the process becomes complicated.
[0005]
In addition, when an electrode is formed on a porous electrode substrate, the catalyst layer enters the porous electrode substrate and the catalyst utilization rate decreases, and the catalyst layer depends on the surface shape of the substrate, and the uniform thickness Formation of the catalyst layer becomes difficult. Moreover, since the porous electrode base material also plays the role of a gas diffusion layer, the gas diffusibility is also inhibited when the catalyst layer enters, so that the electrode structure is not ideal.
[0006]
Moreover, regarding the method of forming the catalyst layer on the polymer film, it is necessary to increase the viscosity of the electrode ink. For this purpose, it is common to add a high boiling point alcohol or a viscosity modifier. In this case, there is a need for sufficient drying and baking after the electrode ink coating process. In addition, when these treatments are insufficient, there are problems such as deterioration of battery characteristics. Furthermore, when the viscosity of the electrode ink is low, it is necessary to gently dry the drying process over time. Moreover, a crack may arise in a coating film and the uniformity of a coating film may be impaired.
[0007]
[Means for Solving the Problems]
In order to solve this problem, the method for producing a polymer electrolyte fuel cell according to the present invention applies an electrode ink containing catalyst particles and a hydrogen ion conductive polymer electrolyte on a chemically inert porous sheet. Forming a semi-dried coating film and drying it , then repeating the process of transferring the coating film to both sides of the hydrogen ion conductive polymer electrolyte membrane a plurality of times, or chemically inert Two or more types of electrode inks containing catalyst particles and a hydrogen ion conductive polymer electrolyte are sequentially applied on the porous sheet to form a semi-dry coating film, and after drying , the coating film It has the process of transcribe | transferring to the both sides of a hydrogen ion conductive polymer electrolyte membrane .
[0008]
At this time, the electrode of the polymer electrolyte fuel cell obtained by the production method of the present invention includes a first catalyst layer in contact with the hydrogen ion conductive polymer electrolyte membrane and a second catalyst formed on the first catalyst layer. The catalyst component constituting the first catalyst layer is platinum, the catalyst component constituting the second catalyst layer is platinum, and in addition to this, ruthenium, palladium, rhodium, nickel, iridium, iron It is effective to have at least one metal selected from the group consisting of:
[0011]
At this time , it is useful that the chemically inert porous sheet has been subjected to water repellent treatment.
[0012]
In addition, it is useful that a chemically inert porous sheet is formed by laminating two or more kinds of sheets having different gas permeability.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the polymer electrolyte fuel cell obtained by the production method of the present invention , the catalyst layer is composed of two discontinuous layers, so that the two layers of catalyst are not mixed at the interface between the catalyst layers. Therefore, the original effect of multilayering the catalyst layer appears more remarkably. In addition, when reformed gas is used as the fuel gas, it is known that CO in the reformed gas poisons the platinum electrode. In this case, if a catalyst layer using a multi-component catalyst such as platinum, ruthenium, and palladium is used as the anode for the second catalyst layer that is not in contact with the polymer electrolyte membrane, the second layer uses CO in the reformed gas. Oxidation and the original electrode reaction can be performed in the first layer, so that the battery characteristics are remarkably improved.
[0014]
Also, the method for producing a polymer electrolyte fuel cell of the present invention comprises applying a polymer electrolyte membrane by sequentially applying two or more types of electrode inks onto a porous sheet substrate, and then transferring the ink to a polymer electrolyte membrane. Since a type fuel cell can be manufactured, a multilayer catalyst layer can be formed continuously. In this case, by employing a coater coating or the like, after the catalyst layer is applied and dried, the next catalyst layer can be applied in layers. If this method is used, the next catalyst layer can be formed without destroying the catalyst layer on the substrate, and the mixing at the boundary interface such as screen printing is relatively reduced.
[0015]
In addition, by transferring the catalyst layer to the polymer electrolyte membrane twice or more, for example, after the first catalyst layer is transferred, another catalyst layer can be transferred thereon. Thereby, a multilayer catalyst layer can be formed. Furthermore, this catalyst layer has been multilayered by transfer, and each catalyst layer is formed in two layers while maintaining the shape, so that the two layers are formed independently without intermingling the catalyst at the interface. Has been.
[0016]
Furthermore, in the method for producing a solid polymer electrolyte fuel cell according to the present invention, an electrode catalyst layer is formed on a porous sheet base material having an appropriate gas permeability, so that the solvent component in the electrode catalyst ink is applied after coating. The porous sheet can be quickly impregnated to form a semi-dried coating film. This eliminates the need to use high boiling alcohols and viscosity modifiers that were conventionally used for viscosity adjustment. Thereby, the fall of battery performance can also be avoided. In addition, a catalyst layer can be formed even with low viscosity ink, and the selection range of the solvent is expanded. In addition, since the coating film is already in a semi-dry state after coating, the uniformity of the coating film can be maintained and the occurrence of cracks during drying can be reduced. Further, by subjecting the porous sheet to a water repellent treatment, the penetration of the catalyst component into the substrate can be reduced, and the releasability at the time of transfer is improved. Furthermore, by using a bonded product of porous sheets having different gas permeability, it is possible to minimize the entry of the catalyst into the substrate.
[0017]
【Example】
Hereinafter, an electrolyte fuel cell and a manufacturing method thereof according to the present invention will be described with reference to the drawings.
[0018]
( Reference Example 1)
First, two types of ink for electrodes were produced. An electrode ink A was prepared by adding 5% by weight of Nafion solution (manufactured by Aldrich), 2-propanol (IPA) and terpineol as solvents to a carbon powder supporting 25% by weight of platinum, and mixing them by a ball mill method. . Further, 5% by weight of Nafion solution, 2-propanol and terpineol were added to carbon powder supporting 50% by weight of platinum, and mixed in the same manner as above to prepare electrode ink B.
[0019]
A catalyst layer was formed on the substrate of these inks using the coater coating apparatus shown in FIG. In FIG. 1, a polyester film (thickness 50 μm, width 250 mm) was used as the substrate. After putting the electrode ink B into the paint tank 3, the polyester film 2 was sent from the unwinding part 1 of the coater device, and coating was performed. The coating is applied on the film from the paint tank through a slit nozzle. At this time, the gap between the nozzle and the film was set to 50 to 250 μm, and the feeding speed was set to 1 m / min. The catalyst B layer 5 was formed on the film by sending the film coated with the catalyst layer to the drying chamber 4 set at a temperature of 100 ° C. and an air volume of 10 m 3 .
[0020]
Next, the paint was applied onto the catalyst B layer from the paint tank 6 filled with the electrode ink A through a nozzle on the slit. Thereafter, the catalyst A layer 8 was formed by drying in the drying chamber 7 set to the same conditions as above. The film with the catalyst layer thus produced was collected by the winding unit 9 of the coater device. The film with the catalyst layer prepared by the above steps was designated as film A.
[0021]
In addition to this, with the same device as above, using a coater device without the second coating unit 6 and the drying chamber 7, only the electrode ink B is applied on the film, dried, wound up, A film with a catalyst layer was produced. This film was designated as film B.
[0022]
Moreover, only the electrode ink A was applied, dried, and wound up to prepare a film with a catalyst layer. This film was designated as film C.
[0023]
Generation | occurrence | production of the crack etc. was not recognized on the surface of the catalyst layer of the film produced at the above process. As a result of observing the state of the cross section of the film A, the thickness of the catalyst layer A1 + catalyst layer B2 was about 15 μm, and the thickness of the catalyst layer B1 to the catalyst layer A1 was about 8 μm. From this, it was found that the catalyst layer A1 and the catalyst layer B1 are basically composed of two discontinuous separated layers although a slightly mixed portion is seen.
[0024]
Next, the film A and the film B were joined using a hot roller with a polymer electrolyte membrane (Nafion 112, manufactured by DuPont) interposed therebetween, and an electrode electrolyte assembly was produced. The joining temperature was 100 ° C. and the joining pressure was 3 × 10 7 Pa. The electrode electrolyte assembly A was prepared in this step.
[0025]
Moreover, after preparing two films 2 with a catalyst layer and carrying out transfer using a hot roller in the same manner as before with a polymer electrolyte membrane sandwiched, a film with a catalyst layer is arranged on one side and again hot The catalyst layer A1 was formed on the catalyst layer B1 using a roller, and the electrode electrolyte assembly B was produced. FIG. 5 shows a cross-sectional observation of the electrode electrolyte assembly B. From this, it was found that the boundary between the catalyst layer B1 and the catalyst layer A1 is composed of two discontinuous layers with no catalyst mixing. The solid content of the catalyst layer was not observed on the polyester film after bonding, and both transfers were good.
[0026]
Further, for comparison, electrode ink B and electrode ink A were applied on the electrode base material by screen printing to produce an electrode electrolyte assembly C. First, carbon paper of a predetermined size was set in a printing machine, and the electrode ink B was applied. At this time, a stainless steel 200 mesh screen was used. This was dried in a drier set at 80 ° C. to form catalyst layer B2 on carbon paper. This was set again on a screen printer, and the electrode ink A was applied in the same manner and dried to form the catalyst layer A2 on the catalyst layer B2. Thus, an electrode substrate 1 with a catalyst layer was produced. Separately from this, an electrode substrate 2 with a catalyst layer in which only the catalyst layer A2 was formed on carbon paper was also produced using the same apparatus as above. FIG. 6 shows a cross section of the electrode substrate 1 with a catalyst layer. From this, it was found that a mixed layer in which the layers were mixed was formed at the interface between the catalyst layer A2 and the catalyst layer B2. This electrode base material 1 with a catalyst layer and the electrode base material 2 with a catalyst layer were joined by hot press through the membrane, and the electrode electrolyte assembly C was produced.
[0027]
Next, the electrode electrolyte assemblies A and B are punched out to a predetermined size, and sandwiched between carbon paper and a gasket. The electrode-electrolyte assembly C has gaskets on both sides, and each of the multilayered catalyst layers has a fuel electrode. Then, it was set in a single cell test apparatus and the battery characteristics were examined. In the fabricated unit cell, a reforming simulation gas (carbon dioxide 25%, carbon monoxide 50 ppm, hydrogen balance gas) is flowed to the fuel electrode, air is flowed to the air electrode, the cell temperature is 80 ° C., and the fuel utilization rate is 80 %, The air utilization rate was 40%, and the humidification was adjusted so that the dew point of the reforming simulation gas was 75 ° C and the air was 60 ° C.
[0028]
FIG. 7 shows a comparison of current-voltage characteristics of the batteries. From this, it was found that the characteristics of the battery using the electrode electrolyte assembly B were the most excellent. The performance using the electrode electrolyte assembly C was the lowest. This is because carbon monoxide should be efficiently oxidized and removed by the catalyst layer B2 that is not in contact with the membrane on the fuel electrode side of the assembly C, but the boundary between the catalyst layer B2 and the catalyst layer A2 is mixed. Therefore, the effect was considered to have decreased. On the other hand, since the joined body B is not mixed at the interface between the catalyst layer B1 and the catalyst layer A1 on the fuel electrode side, the carbon monoxide is efficiently removed by the catalyst layer B1, It was thought that the impact was made as low as possible. In addition, the characteristics of the joined body A were slightly inferior to those using the joined body B, but the mixing of the catalyst layers was much smaller than that of the joined body C, and the characteristics were better than those using the joined body C. It was. Although not shown here, platinum ruthenium is supported even when carbon powder supporting platinum palladium, platinum rhodium, platinum nickel, platinum iridium, or platinum iron is used instead of the carbon powder supporting platinum ruthenium of electrode ink B. It showed the same characteristics as carbon.
[0029]
If this method is used, multilayering of the catalyst layer of the electrode electrolyte assembly can be realized. In addition, it is possible to produce a polymer electrolyte fuel cell having higher characteristics than the conventionally proposed multilayering method.
[0030]
(Example 1 )
First, carbon powder carrying 25% by weight of platinum, 5% by weight of Nafion solution (manufactured by Aldrich), 2-propanol (IPA) and butyl acetate are added as solvents, and they are mixed by the ball mill method to produce ink C for electrodes. did. The viscosity of this ink was lower than that of the electrode inks A and B used in Reference Example 1, and was 10 (mPa · s) at a shear rate of 100 (1 / sec).
[0031]
First, the electrode catalyst layer was formed on the porous sheet using the coating apparatus 2 used in Reference Example 1. As the porous sheet, a polyester fiber woven fabric having a thickness of 50 denier, two types obtained by subjecting the woven fabric to a water repellent treatment, and a normal polyester film used in Reference Example 1 were used. The thickness of the woven fabric is about 0.1 mm. The electrode ink C is put into the paint tank 6, the operation speed of the coating apparatus is set to 5 m / min, a catalyst layer is formed on the polyester woven fabric without water repellent treatment, and then dried in a drying room at 100 ° C. Rolled up. The drying time was 1.5 times that of Reference Example 1. Immediately after coating, the solvent component in the electrode ink quickly permeated the polyester woven fabric. At this time, it was confirmed that the catalyst component slightly permeated the back side of the woven fabric. The coating film after drying, the generation of cracks was not observed, et al.
[0032]
Further, when the polyester woven fabric subjected to the water repellent treatment was used, the catalyst component permeated less than the non-treated fabric, and the surface shape of the coating film was improved. Further, the film thickness of the formed catalyst layer was about 10 μm. On the other hand, when applied to the polyester film in the same way, the solvent component in the electrode ink remains on the film, so the coating film is unstable and difficult to stick, and the catalyst layer coating film after drying There was uneven coating. This was thought to be because the coating film after coating could not maintain its shape because the viscosity of the coating material was low, and the coating film had a shape during drying.
[0033]
Two electrode sheets thus prepared were prepared and joined to both sides of the electrolyte membrane (Nafion 112) using the hot roller used in Reference Example 1, and the electrode-electrolyte assembly D (water-repellent woven fabric) Use), an electrode electrolyte assembly E (using a water-repellent woven fabric), and an electrode-electrolyte assembly F (using a film). The joining conditions were the same as in Reference Example 1. The water-repellent treated polyester woven fabric after joining showed a slight residual catalyst ink solids, but the water-repellent treated one showed almost no residual catalyst ink solids. It was found that the transfer was performed better. Further, when the polyester film was used, the bonding could be performed well, but the unevenness at the time of forming the coating film was directly transferred to the electrolyte membrane side.
[0034]
Next, coating was performed using a composite sheet in which a porous Teflon sheet having an air permeability of 35 sec and a polyester woven fabric having an air permeability of 5 sec or less were laminated as the porous sheet. The air permeability was shown as an average number of seconds required for 100 ml of air to pass through a sample having an area of 645.16 mm 2 by a JIS standard air permeability test (JIS P8117). In other words, the higher this value, the worse the gas permeability, which is rather dense. The electrode ink, coating apparatus, coating conditions, etc. were the same as when using the polyester woven fabric shown above. The coated surface was the polyester woven fabric side. Immediately after coating, the solvent component in the electrode ink quickly permeated into the front polyester woven fabric, but the catalyst component permeated into the back surface as seen when using the previous polyester woven fabric was not seen at all. There wasn't. This was presumed that the porous Teflon sheet on the back side had a low air permeability and the material was dense, so that the catalyst component was in the shape of the target. Moreover, generation | occurrence | production of the crack etc. was not recognized in the coating film after drying.
[0035]
The electrode sheet thus produced was joined using a hot roller in the same manner as described above, and an electrode electrolyte joined body G was produced. No residual catalyst ink solid was observed on the polyester woven fabric of the composite sheet after bonding.
[0036]
Next, the electrode-electrolyte assemblies D, E, F, and G were punched out to a predetermined size, sandwiched between carbon paper and a gasket, set in a single cell test apparatus, and battery characteristics were examined. In the produced unit cell, hydrogen gas is flowed to the fuel electrode, air is flowed to the air electrode, the cell temperature is 80 ° C., the fuel utilization rate is 80%, the air utilization rate is 40%, and humidification is performed using 75 reformed simulation gas. The air was adjusted to a dew point of 60 ° C. FIG. 8 shows a comparison of current-voltage characteristics of the batteries. From this, it was found that the characteristics of the battery using the electrode-electrolyte assembly G were the most excellent.
[0037]
It was also found that the battery characteristics were improved in the order of good transferability.
[0038]
If this method is used, in order to form an electrode catalyst layer on a porous sheet substrate having an appropriate gas permeability, the solvent component in the electrode catalyst ink is impregnated into the porous sheet immediately after coating, and is semi-dried. A coating film in which the state does not move can be formed. This eliminates the need to use a viscosity modifier such as terpineol that has been used for viscosity adjustment in the past. Thereby, the fall of battery performance can also be avoided. In addition, a catalyst layer can be formed even with low viscosity ink, and the selection range of the solvent is expanded. Further, by using a bonded product of porous sheets having different gas permeability, the catalyst does not enter the substrate.
[0039]
【Effect of the invention】
As described above, the characteristics could be improved by making the catalyst layer of the fuel cell into two layers. Furthermore, since the present invention can produce a polymer electrolyte fuel cell by sequentially applying two or more types of electrode inks onto a porous sheet substrate, and then transferring the ink to a polymer electrolyte membrane. Thus, a multi-layered catalyst layer can be formed. In this case, by employing a coater coating or the like, after the catalyst layer is applied and dried, the next catalyst layer can be applied in layers. By using this method, the next catalyst layer can be formed without destroying the catalyst layer on the substrate, and the mixing at the boundary interface such as screen printing is relatively reduced.
[0040]
In addition, by transferring the catalyst layer to the polymer electrolyte membrane twice or more, for example, after the first catalyst layer is transferred, another catalyst layer can be transferred thereon. Thereby, a multilayer catalyst layer can be formed. Furthermore, this catalyst layer has been multilayered by transfer, and each catalyst layer is formed in two layers while maintaining its shape, so that the catalyst is formed without mixing at the interface.
[0041]
Further, in order to form an electrode catalyst layer on a porous sheet substrate having an appropriate gas permeability, the solvent component in the electrode catalyst ink is impregnated into the porous sheet immediately after coating, and the coating film in a semi-dry state Can be formed. This eliminates the need to use high boiling alcohols and viscosity modifiers that were conventionally used for viscosity adjustment. Thereby, the fall of battery performance can also be avoided. In addition, a catalyst layer can be formed even with low viscosity ink, and the selection range of the solvent is expanded. Moreover, since the coating film has already been fixed in a semi-dry state after coating, the uniformity of the coating film can be maintained and the occurrence of cracks during drying can be reduced. Further, by using a bonded product of porous sheets having different gas permeability, the catalyst enters the base material to a minimum.
[Brief description of the drawings]
[1] in the reference example of the present drawing showing a second manufacturing apparatus used in Reference Example of Figure 2 shows the present invention showing a first manufacturing apparatus used in Reference Example of the Invention [3] The present invention third view Figure 5 showing a manufacturing device is a component of the reference example is the electrode electrolyte junction of the present invention used in reference example of FIG. 4 shows the present invention showing a cross section of the catalyst layer with a film which is a component characteristics of the polymer electrolyte fuel cell is a reference example in FIG. 7 the invention showing a cross section of the catalyst layer with the electrode substrate which is a component of the reference example of FIG. 6 the invention showing a body section FIG. 8 is a diagram showing characteristics of a polymer electrolyte fuel cell that is an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1,9 Unwinding part of coater 2 Polyester film 3,6 Fuel tank 4,7 Drying chamber 5 Catalyst B layer 8 Catalyst A layer 9 Winding part of coater 10 Polymer electrolyte membrane 11 Hot roller −
12 Electrode electrolyte assembly A1 Catalyst layer A1
B1 Catalyst layer B1

Claims (3)

化学的に不活性な多孔性シート上に、触媒粒子と水素イオン伝導性高分子電解質とを含有する電極インクを塗布し、半乾燥状態の塗膜を形成し、乾燥した後、前記塗膜を水素イオン伝導性高分子電解質膜の裏表両側に転写する工程を複数回繰り返す工程、または、化学的に不活性な多孔性シート上に、触媒粒子と水素イオン伝導性高分子電解質とを含有する2種以上の電極インクを順次塗布し、半乾燥状態の塗膜を形成し、乾燥した後、前記塗膜を水素イオン伝導性高分子電解質膜の裏表両側に転写する工程を有することを特徴とする高分子電解質型燃料電池の製造方法。On the chemically inert porous sheet, an electrode ink containing catalyst particles and a hydrogen ion conductive polymer electrolyte is applied to form a semi-dry coating film, and after drying , the coating film A step of repeating the process of transferring the hydrogen ion conductive polymer electrolyte membrane on both sides of the hydrogen ion conductive polymer membrane multiple times, or containing catalyst particles and a hydrogen ion conductive polymer electrolyte on a chemically inert porous sheet It comprises the steps of applying two or more kinds of electrode inks in sequence, forming a semi-dried coating film , drying, and then transferring the coating film to both sides of the hydrogen ion conductive polymer electrolyte membrane. A method for producing a polymer electrolyte fuel cell. 化学的に不活性な多孔性シートは、撥水処理がされていることを特徴とする請求項1記載の高分子電解質型燃料電池の製造方法。  2. The method for producing a polymer electrolyte fuel cell according to claim 1, wherein the chemically inert porous sheet is subjected to water repellent treatment. 化学的に不活性な多孔性シートは、気体透過率の異なる2種類以上のシートが積層されていることを特徴とする請求項1または2記載の高分子電解質型燃料電池の製造方法。  The method for producing a polymer electrolyte fuel cell according to claim 1 or 2, wherein the chemically inert porous sheet comprises two or more kinds of sheets having different gas permeability.
JP2000200656A 2000-07-03 2000-07-03 Method for producing polymer electrolyte fuel cell Expired - Lifetime JP4954362B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000200656A JP4954362B2 (en) 2000-07-03 2000-07-03 Method for producing polymer electrolyte fuel cell
PCT/JP2001/005684 WO2002003489A1 (en) 2000-07-03 2001-06-29 Polyelectrolyte fuel cell
CNB018113192A CN1288779C (en) 2000-07-03 2001-06-29 Polyelectrolyte fuel cell
EP01945738.1A EP1304753B1 (en) 2000-07-03 2001-06-29 Polyelectrolyte fuel cell
KR10-2002-7017837A KR100468102B1 (en) 2000-07-03 2001-06-29 Polyelectrolyte fuel cell
US10/335,958 US7220514B2 (en) 2000-07-03 2003-01-03 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000200656A JP4954362B2 (en) 2000-07-03 2000-07-03 Method for producing polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002025561A JP2002025561A (en) 2002-01-25
JP4954362B2 true JP4954362B2 (en) 2012-06-13

Family

ID=18698490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000200656A Expired - Lifetime JP4954362B2 (en) 2000-07-03 2000-07-03 Method for producing polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4954362B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1229602B1 (en) * 2000-07-06 2010-11-24 Panasonic Corporation Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
US7432009B2 (en) 2002-04-03 2008-10-07 3M Innovative Properties Company Lamination apparatus and methods
KR100480782B1 (en) 2002-10-26 2005-04-07 삼성에스디아이 주식회사 Membrane and electrode assembly of full cell, production method of the same and fuel cell employing the same
US7195690B2 (en) 2003-05-28 2007-03-27 3M Innovative Properties Company Roll-good fuel cell fabrication processes, equipment, and articles produced from same
EP1492184A1 (en) * 2003-06-27 2004-12-29 Umicore AG & Co. KG Process for the manufacture of a polymer electrolyte membrane coated with a catalyst
JP4908778B2 (en) * 2004-06-30 2012-04-04 キヤノン株式会社 Method for producing catalyst layer of polymer electrolyte fuel cell and method for producing polymer electrolyte fuel cell
JP5082239B2 (en) * 2005-12-28 2012-11-28 大日本印刷株式会社 Catalyst layer-electrolyte membrane laminate and method for producing the same
JP5008368B2 (en) * 2006-09-29 2012-08-22 三洋電機株式会社 Electrode / membrane assembly, fuel cell having electrode / membrane assembly, and fuel cell system
JP4550798B2 (en) * 2006-12-25 2010-09-22 シャープ株式会社 Solid polymer electrolyte fuel cell and method for producing the same
JP5332261B2 (en) * 2007-03-30 2013-11-06 大日本印刷株式会社 Catalyst layer transfer film
JP5482420B2 (en) * 2010-05-10 2014-05-07 トヨタ自動車株式会社 Method for producing electrode for fuel cell
JP6074978B2 (en) * 2012-09-25 2017-02-08 凸版印刷株式会社 Manufacturing method of membrane electrode assembly for fuel cell and manufacturing method of polymer electrolyte fuel cell
JP6889735B2 (en) 2016-04-28 2021-06-18 コーロン インダストリーズ インク Fuel Cell Membrane-Electrode Assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353518B2 (en) * 1995-01-31 2002-12-03 松下電器産業株式会社 Polymer electrolyte fuel cell
JPH1024651A (en) * 1996-07-12 1998-01-27 Canon Inc Image forming method
JPH10270057A (en) * 1997-03-21 1998-10-09 Toshiba Corp Solid high molecular fuel cell
JPH10270050A (en) * 1997-03-26 1998-10-09 Tokyo Gas Co Ltd Fuel cell electrode and its manufacture
JP4090108B2 (en) * 1997-04-04 2008-05-28 旭化成ケミカルズ株式会社 Membrane / electrode assembly for polymer electrolyte fuel cells
JP4023903B2 (en) * 1998-04-02 2007-12-19 旭化成ケミカルズ株式会社 Membrane / electrode assembly for polymer electrolyte fuel cells
JP2001076742A (en) * 1999-09-01 2001-03-23 Asahi Glass Co Ltd Solid polymer fuel cell

Also Published As

Publication number Publication date
JP2002025561A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
US6627035B2 (en) Gas diffusion electrode manufacture and MEA fabrication
US6998149B2 (en) Process for producing a membrane electrode assembly for fuel cells
JP4954362B2 (en) Method for producing polymer electrolyte fuel cell
KR100531607B1 (en) Method for manufacturing fuel cell electrolyte film-electrode bond
EP0948071A2 (en) Electrode for fuel cell and method of producing the same
CA2430681C (en) Process for the manufacture of membrane-electrode-assemblies using catalyst-coated membranes
JP4896365B2 (en) Method for applying aqueous catalyst ink onto a substrate, and catalyst coated substrate and membrane electrode assembly obtained thereby
JP5183925B2 (en) Process for producing a polymer electrolyte membrane coated with a catalyst
JP2007317658A (en) Control parameter for optimizing performance of membrane electrode assembly
KR102353423B1 (en) Method and device for preparing a catalyst coated membrane
WO2006023592A1 (en) Method of making electrodes for electrochemical fuel cells
JP2001068119A (en) Polymer electrolyte fuel cell and method of manufacturing its electrode
JP4501342B2 (en) Method for producing separator of polymer electrolyte fuel cell
US8802329B2 (en) Electrode containing nanostructured thin catalytic layers and method of making
JP2005294123A (en) Manufacturing method of membrane electrode conjugate
US20040071881A1 (en) Method and apparatus for the continuous coating of an ion-exchange membrane
CN106256039B (en) The method for manufacturing the film seal assembly of enhancing
JP3827653B2 (en) Method for producing electrode for fuel cell
EP1984967B1 (en) Method of forming membrane electrode assemblies for electrochemical devices
KR20220119001A (en) Method and apparatus for manufacturing membrane-catalyst conjugate
EP1531509A1 (en) Method and apparatus for the continuous coating of an ion-exchange membrane
KR102295995B1 (en) Method for manufacturing membrane-catalyst conjugate, and manufacturing apparatus
JP2003282076A (en) Electrode for fuel cell and manufacturing method of the same, and polymerelectrolyte type fuel cell
KR20230082867A (en) Method for manufacturing mea of fuel cell
JP2004047454A (en) Fuel cell electrode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4954362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

EXPY Cancellation because of completion of term