JP4953591B2 - Solar cell element - Google Patents

Solar cell element Download PDF

Info

Publication number
JP4953591B2
JP4953591B2 JP2005160431A JP2005160431A JP4953591B2 JP 4953591 B2 JP4953591 B2 JP 4953591B2 JP 2005160431 A JP2005160431 A JP 2005160431A JP 2005160431 A JP2005160431 A JP 2005160431A JP 4953591 B2 JP4953591 B2 JP 4953591B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
antireflection film
electrode
solar cell
cell element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005160431A
Other languages
Japanese (ja)
Other versions
JP2006339301A (en
Inventor
寛人 大和田
祐子 府川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005160431A priority Critical patent/JP4953591B2/en
Publication of JP2006339301A publication Critical patent/JP2006339301A/en
Application granted granted Critical
Publication of JP4953591B2 publication Critical patent/JP4953591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は反射防止膜を有する太陽電池素子に関する。   The present invention relates to a solar cell element having an antireflection film.

従来の一般的な太陽電池素子の構造を図2に示す。例えば多結晶シリコンなどからなるp型の半導体基板1の表面近傍の全面に一定の深さまでn型不純物を拡散させてn型を呈する拡散層2が設けられている。そして、半導体基板1の表面に窒化シリコン膜などからなる反射防止膜5を設け、表面に表面電極6を設けるとともに、裏面に集電電極7と出力取出電極8とで構成される裏面電極(7、8)を設けている。また、半導体基板1の裏面には高濃度のp型拡散層であるBSF(Back Surface Field)層9が形成される。   The structure of a conventional general solar cell element is shown in FIG. For example, a n-type diffusion layer 2 is provided by diffusing an n-type impurity to a certain depth over the entire surface near the surface of a p-type semiconductor substrate 1 made of polycrystalline silicon or the like. Then, an antireflection film 5 made of a silicon nitride film or the like is provided on the surface of the semiconductor substrate 1, a surface electrode 6 is provided on the surface, and a back electrode (7) composed of a collector electrode 7 and an output extraction electrode 8 on the back surface. 8). Further, a BSF (Back Surface Field) layer 9 which is a high concentration p-type diffusion layer is formed on the back surface of the semiconductor substrate 1.

この太陽電池素子を製造するには、まず半導体基板1を用意する。この半導体基板1はp型、n型いずれでもよい。例えば単結晶シリコンの場合は引き上げ法などで形成され、多結晶シリコンの場合は鋳造法などで形成される。多結晶シリコンは、大量生産が容易で製造コスト面で単結晶シリコンよりもきわめて有利である。引き上げ法や鋳造法で形成された半導体インゴットを15cm×15cm程度の大きさに切断して300μm程度の厚みにスライスすることにより、半導体基板1を得る。その後アルカリなどの溶液などにより表面をエッチングすることにより、スライスや切断の際に表面に付着した汚れや、ダメージを除去し清浄化する。   In order to manufacture this solar cell element, first, the semiconductor substrate 1 is prepared. The semiconductor substrate 1 may be either p-type or n-type. For example, in the case of single crystal silicon, it is formed by a pulling method or the like, and in the case of polycrystalline silicon, it is formed by a casting method or the like. Polycrystalline silicon is very advantageous over single-crystal silicon in terms of manufacturing cost and easy mass production. A semiconductor substrate 1 is obtained by cutting a semiconductor ingot formed by a pulling method or a casting method into a size of about 15 cm × 15 cm and slicing it to a thickness of about 300 μm. Thereafter, the surface is etched with an alkali solution or the like to remove and clean the dirt and damage attached to the surface during slicing and cutting.

次に半導体接合を形成するために、p型もしくはn型の一導電型を呈する半導体基板1の一主面側に逆導電型の半導体領域である拡散層2を形成する。この拡散層2の形成方法としては、例えば、半導体基板1を設置した容器内に加熱しながらキャリアガスを用いて行う。例えば、半導体基板1がp型である場合、POClを流すことでn型のドーパントであるPを含有する不純物拡散源となるリンガラス(不図示)を半導体基板1の表面に形成し、同時に半導体基板1の表面への熱拡散も行うという気相拡散法が一般的である。その後、例えば、希釈したフッ酸溶液などの薬品に浸漬させることにより、リンガラスを除去する。 Next, in order to form a semiconductor junction, a diffusion layer 2, which is a semiconductor region of reverse conductivity type, is formed on one main surface side of the semiconductor substrate 1 exhibiting p-type or n-type conductivity. As a method for forming the diffusion layer 2, for example, a carrier gas is used while heating the container in which the semiconductor substrate 1 is installed. For example, when the semiconductor substrate 1 is p-type, by flowing POCl 3 , phosphorus glass (not shown) serving as an impurity diffusion source containing P which is an n-type dopant is formed on the surface of the semiconductor substrate 1, and at the same time A vapor phase diffusion method in which thermal diffusion to the surface of the semiconductor substrate 1 is also performed in general. Thereafter, for example, the phosphor glass is removed by dipping in a chemical such as a diluted hydrofluoric acid solution.

次に、半導体基板1の表面側に反射防止膜5を形成する。この反射防止膜5は、窒化シリコン膜などからなり、例えばシラン(SiH)とアンモニア(NH)との混合ガスを窒素(N)で希釈し、グロー放電分解してプラズマ化させて堆積させるプラズマCVD法などで形成される。具体的には、半導体基板1をプラズマCVD装置の反応室内に搬送し、一旦反応室を高真空状態にした後、反応ガスを導入し、その後、高周波やマイクロ波などによって、グロー放電を起こさせてプラズマを励起し、反応ガスを分解することによって、半導体基板1の表面に、窒化シリコン膜を成膜する。このときヒーターなどを用いて反応室内は500℃程度の高温に保たれる。この反射防止膜5は膜中に水素(H)を含有しており、成膜中および成膜後の加熱により半導体基板1内に水素が拡散し、パッシベート効果をもたらすことが知られている(例えば、特許文献1参照)。また半導体基板1との屈折率差などを考慮して屈折率および膜厚を決めることにより、反射防止膜5としての機能も発揮する。例えば半導体基板1がシリコン基板である場合、屈折率は1.8〜2.3程度、厚み500〜1000Å程度にすればよい。 Next, an antireflection film 5 is formed on the surface side of the semiconductor substrate 1. The antireflection film 5 is made of a silicon nitride film or the like, and is deposited by, for example, diluting a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ) with nitrogen (N 2 ), decomposing it by glow discharge and turning it into plasma. It is formed by a plasma CVD method or the like. Specifically, the semiconductor substrate 1 is transported into a reaction chamber of a plasma CVD apparatus, the reaction chamber is once brought into a high vacuum state, a reaction gas is introduced, and then glow discharge is caused by high frequency or microwaves. A silicon nitride film is formed on the surface of the semiconductor substrate 1 by exciting the plasma and decomposing the reaction gas. At this time, the reaction chamber is kept at a high temperature of about 500 ° C. using a heater or the like. This antireflection film 5 contains hydrogen (H 2 ) in the film, and it is known that hydrogen diffuses into the semiconductor substrate 1 by heating during film formation and after film formation, thereby providing a passivating effect. (For example, refer to Patent Document 1). The function as the antireflection film 5 is also exhibited by determining the refractive index and film thickness in consideration of the difference in refractive index with the semiconductor substrate 1. For example, when the semiconductor substrate 1 is a silicon substrate, the refractive index may be about 1.8 to 2.3 and the thickness may be about 500 to 1000 mm.

次に、裏面側の不要な領域の拡散層2を除去(不図示)した後、裏面に例えばアルミニウムを主成分とするペーストをスクリーン印刷などによって塗布して焼き付けることによって集電電極6が形成されるともに、半導体基板1中にp型のドーパントであるアルミニウムが拡散してp型高濃度層であるBSF層9が形成される。また、表裏面に銀からなる電極材料を塗布して焼き付けることよって表面電極6および出力取出電極7を形成する。   Next, after removing the diffusion layer 2 in an unnecessary area on the back surface side (not shown), the current collecting electrode 6 is formed by applying and baking a paste mainly composed of aluminum by screen printing or the like on the back surface. At the same time, the p-type dopant aluminum is diffused in the semiconductor substrate 1 to form the p-type high-concentration BSF layer 9. Moreover, the surface electrode 6 and the output extraction electrode 7 are formed by apply | coating and baking the electrode material which consists of silver on front and back.

表面電極6はその形成予定位置にある反射防止膜5を予め除去しておき、その除去された部分に例えば銀粉末、ガラスフリット、樹脂バインダー、有機溶剤などからなる電極ペーストをスクリーンプリント法によって塗布し、焼き付けることによって形成することも可能であるが(例えば、特許文献2参照)、工程が煩雑になり、また反射防止膜5が除去された部分に電極ペーストを位置あわせしなくてはならないため、特に細線化された電極パターンにおいては工程の安定化が難しかった。そこで反射防止膜5上に電極ペーストを塗布した後、焼き付けることによって、反射防止膜5下の半導体基板と電極のコンタクトをとる、いわゆるファイヤースルー法によって、形成されることが一般的である(例えば特許文献3参照)。
特開2002−277605号公報 特公平5−72114号公報 特開平10−233518号公報 特開昭62−49676号公報 特開2001−313400号公報
For the surface electrode 6, the antireflection film 5 at the position where it is to be formed is removed in advance, and an electrode paste made of, for example, silver powder, glass frit, resin binder, organic solvent or the like is applied to the removed portion by screen printing. However, although it can be formed by baking (see, for example, Patent Document 2), the process becomes complicated, and the electrode paste must be aligned with the portion from which the antireflection film 5 has been removed. In particular, it is difficult to stabilize the process in a thin electrode pattern. Therefore, the electrode paste is generally applied on the antireflection film 5 and then baked to make a contact between the semiconductor substrate under the antireflection film 5 and the electrode, and is generally formed by a so-called fire-through method (for example, (See Patent Document 3).
JP 2002-277605 A Japanese Patent Publication No. 5-72114 Japanese Patent Laid-Open No. 10-233518 JP 62-49676 A JP 2001-313400 A

しかし、上述した従来の方法によれば、半導体基板と電極の密着強度が弱く、電極の剥がれが生じたり、半導体基板と電極の間のコンタクト抵抗を充分に低下させることができないため、太陽電池素子の出力特性が低下するという問題が発生することがあった。   However, according to the conventional method described above, the adhesion strength between the semiconductor substrate and the electrode is weak, the electrode peels off, and the contact resistance between the semiconductor substrate and the electrode cannot be sufficiently reduced. In some cases, the output characteristics of the device deteriorate.

この問題を解決するために電極を焼き付ける時間を長くしたり、高温で処理するなどの方法が考えられるが、基板に欠陥が発生したり、拡散層の再拡散が起きプロファイルが変わることで、太陽電池素子の出力特性を低下させるという問題が発生することがあった。またさらに拡散層を突きぬけ、リーク電流が発生し出力特性が大幅に低下するという問題が発生することもあった。   In order to solve this problem, it is possible to increase the time for baking the electrodes or to treat the electrodes at a high temperature.However, if the substrate is defective or the diffusion layer re-diffuses and the profile changes, the solar There has been a problem that the output characteristics of the battery element are deteriorated. Further, the diffusion layer may be penetrated to cause a problem that a leak current is generated and output characteristics are greatly deteriorated.

特許文献4には反射防止膜上に印刷焼成して、反射防止膜を貫通する受光面電極を形成する金属ペースト材にガラス粉末および周期律表第V族に属する元素を含有させることが記載されている。この方法によれば、金属ペーストの焼成時に周期律表第V族に属する元素が、ガラス粉末および金属ペーストを活性化して反応を促進するとともに、前記元素が反射防止膜と反応し、これによって、金属ペースト材料が反射防止膜を貫通し易くなって受光面側電極と拡散層との間で充分なオーミック接触が得られる。また特許文献5には金属ペーストにTi、Bi、Co、Zn、Zr、Fe、Cr成分のうちいずれか1種または複数種を含有することによって受光面電極と拡散層の間でオーミック接触を得ることが記載されている。   Patent Document 4 describes that a glass paste and an element belonging to Group V of the periodic table are contained in a metal paste material that is printed and fired on an antireflection film to form a light-receiving surface electrode that penetrates the antireflection film. ing. According to this method, the element belonging to Group V of the periodic table during the firing of the metal paste activates the glass powder and the metal paste to promote the reaction, and the element reacts with the antireflection film, thereby The metal paste material easily penetrates the antireflection film, and sufficient ohmic contact can be obtained between the light receiving surface side electrode and the diffusion layer. In Patent Document 5, ohmic contact is obtained between the light-receiving surface electrode and the diffusion layer by including any one or more of Ti, Bi, Co, Zn, Zr, Fe, and Cr components in the metal paste. It is described.

これらの方法によればオーミック接触は得ることができるものの、添加材料の含有量を多くすれば、受光面電極自体が脆弱になったり、電極自体の導電抵抗が高くなり、太陽電池素子の出力特性を低下させるなどの問題が発生することがあった。   According to these methods, ohmic contact can be obtained, but if the content of the additive material is increased, the light-receiving surface electrode itself becomes weak or the conductive resistance of the electrode itself increases, and the output characteristics of the solar cell element In some cases, problems such as lowering may occur.

本発明はこれらの問題点に鑑みてなされたものであり、半導体基板の受光面側に反射防止膜を有し、この反射防止膜上にファイヤースルー法によって表面電極を形成した太陽電池素子において、十分なオーミック接触を得るとともに、表面電極と半導体基板間の密着強度を確保し、電極自体の強度も確保した太陽電池素子を提供することを目的とする。   The present invention has been made in view of these problems, and in a solar cell element having an antireflection film on the light receiving surface side of a semiconductor substrate and forming a surface electrode on the antireflection film by a fire-through method, An object of the present invention is to provide a solar cell element that obtains sufficient ohmic contact, secures the adhesion strength between the surface electrode and the semiconductor substrate, and secures the strength of the electrode itself.

本発明の太陽電池素子は、半導体基板の一主面側に反射防止膜と、該反射防止膜上に設けられ、かつ、前記半導体基板と導通接続された表面電極を有する太陽電池素子であって、前記半導体基板及び前記反射防止膜の間に、ガラスフリットおよび粉末と酸化還元反応可能な酸化物層と、該酸化物層の主成分と前記反射防止膜の主成分とを含有してなる領域とを、前記半導体基板から順次有するものである。
Solar cell device of the present invention, an antireflection film on one main surface side of the semiconductor substrate provided on the antireflection film, and a solar cell element having a surface electrode that is electrically connected to the semiconductor substrate And an oxide layer capable of oxidation-reduction with glass frit and silver powder, a main component of the oxide layer, and a main component of the antireflection film, between the semiconductor substrate and the antireflection film. Are sequentially formed from the semiconductor substrate.

また、前記反射防止膜上に形成された後、焼成されることによって前記半導体基板と導通接続された表面電極を有する。   In addition, the semiconductor device includes a surface electrode that is formed on the antireflection film and then electrically connected to the semiconductor substrate by firing.

本発明の太陽電池素子は、半導体基板の一主面側に反射防止膜と、該反射防止膜上に設けられ、かつ、前記半導体基板と導通接続された表面電極を有する太陽電池素子であって、前記半導体基板及び前記反射防止膜の間に、ガラスフリットおよび粉末と酸化還元反応可能な酸化物層と、該酸化物層の主成分と前記反射防止膜の主成分とを含有してなる領域とを、前記半導体基板から順次有することから、この反射防止膜上に表面電極を所謂
ファイヤースルー法で形成することによって十分なオーミック接触を得ることができるとともに、表面電極と半導体基板との密着強度を確保することが可能となる。
Solar cell device of the present invention, an antireflection film on one main surface side of the semiconductor substrate provided on the antireflection film, and a solar cell element having a surface electrode that is electrically connected to the semiconductor substrate And an oxide layer capable of oxidation-reduction with glass frit and silver powder, a main component of the oxide layer, and a main component of the antireflection film, between the semiconductor substrate and the antireflection film. Are sequentially formed from the semiconductor substrate, so that sufficient ohmic contact can be obtained by forming a surface electrode on the antireflection film by a so-called fire-through method, and the surface electrode and the semiconductor substrate It becomes possible to ensure adhesion strength.

以下、本発明を添付図面に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明に係る太陽電池素子の構造を示す断面図である。図1において、1は半導体基板、2は拡散層、3は中間酸化物層、4は密度遷移領域、5は反射防止膜、6は表面電極、7は裏面集電電極、8は裏面出力取出電極、9はBSF層を示す。本発明においても太陽電池素子の構造は、従来のものとほぼ同じである。   FIG. 1 is a cross-sectional view showing the structure of a solar cell element according to the present invention. In FIG. 1, 1 is a semiconductor substrate, 2 is a diffusion layer, 3 is an intermediate oxide layer, 4 is a density transition region, 5 is an antireflection film, 6 is a front electrode, 7 is a back collector electrode, and 8 is a back output extraction. An electrode 9 indicates a BSF layer. Also in the present invention, the structure of the solar cell element is almost the same as the conventional one.

例えば、p型の半導体基板1の表面近傍の全面に一定の深さまでn型不純物を拡散させてn型を呈する拡散層2が設けられている。そして、半導体基板1の表面に窒化シリコン膜などからなる反射防止膜5を設け、表面に表面電極6を設けるとともに、裏面に集電電極7と出力取出電極8とで構成される裏面電極(7、8)を設けている。また、半導体基板1の裏面には高濃度のp型拡散層であるBSF層9が形成される。   For example, a diffusion layer 2 exhibiting n-type is provided by diffusing n-type impurities to a certain depth over the entire surface near the surface of a p-type semiconductor substrate 1. Then, an antireflection film 5 made of a silicon nitride film or the like is provided on the surface of the semiconductor substrate 1, a surface electrode 6 is provided on the surface, and a back electrode (7) composed of a collector electrode 7 and an output extraction electrode 8 on the back surface. 8). Further, a BSF layer 9 which is a high concentration p-type diffusion layer is formed on the back surface of the semiconductor substrate 1.

そして、本発明の太陽電池素子においては、半導体基板1の受光面側表面にガラスフリットおよび粉末と酸化還元反応可能な酸化物層3、領域4、そして反射防止膜5を順次有することを特徴とする。このような構成を分析する方法としては、GIXR法(全反射X線回折法 Grazing Incidence Xray Reflectivity)を用いれば良い。
And in the solar cell element of this invention, it has the oxide layer 3, the area | region 4, and the anti-reflective film 5 which can carry out oxidation reduction reaction with the glass frit and silver powder on the light-receiving surface side surface of the semiconductor substrate 1 sequentially. And As a method of analyzing such a configuration, a GIXR method (total reflection X-ray diffraction method Grazing Incidence Xray Reflectivity) may be used.

このような構造にすることによって、銀粉末とガラスフリットを含有する金属ペーストを反射防止膜5の表面に印刷し焼き付けることによって、電極を形成するとともに電極と半導体基板1のコンタクト(導通接続)をとるいわゆるファイヤースルー法によって電極を形成しても十分なオーミック接触を得ることができるとともに、表面電極6と半導体基板1間の密着強度を確保し、電極自体の強度も確保した太陽電池素子を得ることができる。
With such a structure, by baking to print the metal paste containing silver powder and a glass frit on the surface of the antireflection film 5, the electrode and the semiconductor substrate 1 to form the electrode contact (the conductive connections) Even if the electrode is formed by the so-called fire-through method, sufficient ohmic contact can be obtained, and the adhesion strength between the surface electrode 6 and the semiconductor substrate 1 is ensured, and the solar cell element in which the strength of the electrode itself is secured is obtained. be able to.

特許文献4に記載されているように、ファイヤースルー法は、絶縁膜である反射防止膜に対して、電極ペースト中のガラスフリットおよび金属粉末が酸化還元作用によって拡散していくことにより、絶縁膜である反射防止膜を貫通して電極と半導体基板1のコンタクトをとる方法である。このとき金属ペースト中の金属粉末表面は酸化しており安定化している。またガラスフリットも酸化物であり化学的に安定しているため従来の方法では反応が進みにくくなる。しかし、本発明の太陽電池素子のように、反射防止膜5と半導体基板1の間にガラスフリットおよび粉末と酸化還元反応可能な酸化物層3を介在させることによって、金属ペースト中のガラスフリットおよび粉末表面が酸化物層3に結合しようとする力が働き、ファイヤースルーし易くなるものと考えられる。
As described in Patent Document 4, the fire-through method is based on the fact that the glass frit and metal powder in the electrode paste are diffused by the oxidation-reduction action with respect to the antireflection film that is an insulating film. In this method, the electrode and the semiconductor substrate 1 are contacted through the antireflection film. At this time, the surface of the metal powder in the metal paste is oxidized and stabilized. Further, since glass frit is also an oxide and is chemically stable, it is difficult for the conventional method to proceed. However, like the solar cell element of the present invention, the glass frit in the metal paste can be obtained by interposing the glass frit and the oxide layer 3 capable of oxidation-reduction reaction with the silver powder between the antireflection film 5 and the semiconductor substrate 1. Further, it is considered that the force that the surface of the silver powder is bonded to the oxide layer 3 works to facilitate the fire-through.

また、本発明の太陽電池素子では、半導体基板1表面の酸化物層3と反射防止膜5の間に領域4を形成する。このようにすることによって、金属ペーストにより近い位置で金属ペースト中のガラスフリットおよび粉末表面が酸化物層3に結合しようとする力が働き、ファイヤースルー性はさらに向上する。また、ガラスフリットおよび粉末と酸化還元反応可能な酸化物層3と反射防止膜5の間に両者の領域を設けていることから、反射防止膜5と酸化物層3の結合は強固なものとなり、両膜間でのはがれの問題などが発生することがない。
In the solar cell element of the present invention, the region 4 is formed between the oxide layer 3 on the surface of the semiconductor substrate 1 and the antireflection film 5. By doing in this way, the force which the glass frit and silver powder surface in a metal paste tends to couple | bond with the oxide layer 3 acts at a position nearer to the metal paste, and the fire-through property is further improved. Further, since both regions are provided between the oxide layer 3 capable of oxidation-reduction reaction with the glass frit and silver powder, and the antireflection film 5, the bond between the antireflection film 5 and the oxide layer 3 is strong. Thus, the problem of peeling between the two films does not occur.

さらに酸化物層3と半導体基板1の間に両者の遷移領域を設ければ、酸化物層3の半導体基板1への密着強度が向上し、半導体基板1と酸化物層3の間に剥がれが生じるという問題を防止することができるのでさらに良い。 By providing both the transition region between the further the oxides layer 3 and the semiconductor substrate 1 to improve the adhesion strength of the semiconductor substrate 1 of the oxides layer 3, peeling between the semiconductor substrate 1 and the oxides layer 3 This is even better because the problem of the occurrence of the problem can be prevented.

また本発明の方法では、例えば特許文献4や5に記載されているように、金属ペースト中に他の元素を添加する必要がないので、電極自体が脆弱になったり、導電抵抗が高くなるといった問題を未然に回避することができる。   Further, in the method of the present invention, as described in Patent Documents 4 and 5, for example, it is not necessary to add another element to the metal paste, so that the electrode itself becomes fragile or the conductive resistance becomes high. The problem can be avoided in advance.

また反射防止膜5はプラズマCVD法によって成膜するのが一般的であるが、半導体基板1上にガラスフリットおよび粉末と酸化還元反応可能な酸化物層3を形成しておくことにより、プラズマの衝撃により、半導体基板1表面に欠陥を形成するといった問題も未然に回避できるという効果も得ることができる。この効果は、電極をファイヤースルー法によって形成した太陽電池素子以外でも得ることができる。
Further, the antireflection film 5 is generally formed by plasma CVD, but by forming an oxide layer 3 capable of oxidation-reduction reaction with glass frit and silver powder on the semiconductor substrate 1, plasma is formed. It is possible to obtain an effect that the problem of forming defects on the surface of the semiconductor substrate 1 can be avoided in advance by the impact. This effect can also be obtained by devices other than solar cell elements in which electrodes are formed by the fire-through method.

反射防止膜5は窒化シリコン膜、酸化シリコン膜、酸化チタン膜などから選択することが可能であるが、反射防止膜5を窒化シリコン膜にすることによって、反射防止効果だけでなくパッシベーション効果も得ることができる。特に半導体基板1がシリコン基板である場合、パッシベーション効果が高くなる。さらに単結晶と比較して基板品質の劣る多結晶シリコン基板を使用したときには、さらにその効果が明白になる。   The antireflection film 5 can be selected from a silicon nitride film, a silicon oxide film, a titanium oxide film, and the like. However, when the antireflection film 5 is a silicon nitride film, not only the antireflection effect but also the passivation effect is obtained. be able to. In particular, when the semiconductor substrate 1 is a silicon substrate, the passivation effect is enhanced. Further, when a polycrystalline silicon substrate having a lower substrate quality than that of a single crystal is used, the effect becomes more apparent.

このとき反射防止膜5は、受光面側もしくは受光面側と側面のみに形成してもよいし、裏面にも形成してもかまわない。裏面にも形成することによってパッシベーション効果をさらに高めることができる。   At this time, the antireflection film 5 may be formed only on the light receiving surface side, the light receiving surface side and the side surface, or may be formed on the back surface. By forming it also on the back surface, the passivation effect can be further enhanced.

受光面側に形成する反射防止膜5の屈折率は1.8〜2.6、厚みが50〜1200Åとすることが望ましい。このようにすることによって反射防止効果を高め、太陽電池素子の特性を向上させることができる。   The antireflective film 5 formed on the light receiving surface side preferably has a refractive index of 1.8 to 2.6 and a thickness of 50 to 1200 mm. By doing so, the antireflection effect can be enhanced and the characteristics of the solar cell element can be improved.

以上本発明に係る反射防止膜5として窒化シリコン膜を例にとり説明したが、これに制限されるものではない。反射防止膜5としては窒化シリコン膜の他に例えば酸化シリコン膜、酸化チタン膜などを使用することが可能である。   Although the silicon nitride film has been described as an example of the antireflection film 5 according to the present invention, it is not limited to this. For example, a silicon oxide film or a titanium oxide film can be used as the antireflection film 5 in addition to the silicon nitride film.

また、窒化シリコン膜、酸化シリコン膜、酸化チタン膜、フッ化マグネシウム膜などを適宜組み合わせ、積層構造として使用することも可能である。このようにすることによって、さらに有効に反射防止効果を得ることができ、太陽電池素子の出力特性を向上させることが可能になる。さらにこれらの膜に水素を含有させ、その後加熱処理を行うことにより、窒化シリコン膜を用いたときと同じようなパッシベーション効果を得ることができるようになる。酸化シリコン膜を用いる場合においても酸化物層3を介在させず、良質の酸化シリコン膜を反射防止膜5として成膜することにより、太陽電池素子の出力特性を向上させることができる。 Alternatively, a silicon nitride film, a silicon oxide film, a titanium oxide film, a magnesium fluoride film, or the like can be combined as appropriate to be used as a stacked structure. By doing in this way, the antireflection effect can be obtained more effectively and the output characteristics of the solar cell element can be improved. Further, by adding hydrogen to these films and then performing a heat treatment, a passivation effect similar to that obtained when a silicon nitride film is used can be obtained. Without interposing the oxides layer 3 even when using a silicon oxide film, by deposition of silicon oxide film of good quality as an antireflection film 5, it is possible to improve the output characteristics of the solar cell element.

図2は本発明に係る太陽電池素子の受光面表面をGIXR法(全反射X線回折法 Grazing Incidence Xray Reflectivity)で分析したときの結果を示す。ここでは、ミラーポリッシュを行なった単結晶シリコン基板を用いて作製した太陽電池素子をサンプルとし、サンプルに浅い入射角でX線を入射し、全反射を起こさせその反射光を測定することでサンプルの密度を測定する。また入射角を微少に変化させ、サンプリングすることによって、深さ方向の密度分布を測定するという方法である。   FIG. 2 shows the results when the light-receiving surface of the solar cell element according to the present invention is analyzed by the GIXR method (total reflection X-ray diffractometry Grazing Incidence Xray Reflectivity). Here, a solar cell element manufactured using a single crystal silicon substrate that has been mirror-polished is used as a sample, and X-rays are incident on the sample at a shallow incident angle, causing total reflection, and measuring the reflected light. Measure the density. Further, the density distribution in the depth direction is measured by changing the incident angle slightly and sampling.

図中Aは半導体基板であるシリコン基板、Bは酸化物層、Cは酸化物層と反射防止膜の領域、Dは反射防止膜である窒化シリコン膜を示す。またAの半導体基板とBの酸化物層の間には薄い半導体基板と酸化物層の遷移領域Eが存在している。 Silicon substrate, B is an acid halide layer A in the figure is a semiconductor substrate, C is realm of the antireflection film and the oxides layer, D is showing a silicon nitride film is an antireflection film. Also it exists a transition region E of a thin semiconductor substrate and the oxides layer between the oxides layer semiconductor substrate and B A.

このような太陽電池素子を得るためには、半導体基板1の表面にあらかじめ酸化物層3を形成しておき、その後プラズマCVD法によって反射防止膜5を成膜すればよい。 To obtain such a solar cell element, the surface of the semiconductor substrate 1 previously formed a beforehand Me oxides layer 3 may be deposited antireflection film 5 by a subsequent plasma CVD method.

表面に酸化物層3を形成した半導体基板1が載置されたプラズマCVD装置のチャンバー内を高真空に引いた後、所定流量の窒素、シラン、アンモニアのガスを導入し、RF電力を印加することによってグロー放電を起こさせる。このときチャンバー内に予めガスを流しておき、印加するRF電力を一気に所定量まで上げるのではなく、徐々に立ち上げることにより酸化物層3を破壊することなく反射防止膜5を成膜し、酸化物層3上に酸化物層3と反射防止膜5との遷移領域を形成することが出来る。 After the semiconductor substrate 1 formed with the oxides layer 3 on the surface minus the chamber of the placed plasma CVD apparatus in a high vacuum, and introducing a predetermined flow of nitrogen, silane, ammonia gas, applying an RF power Cause glow discharge. The time advance flowing advance gas into the chamber, rather than once raised to a predetermined amount of RF power applied, deposited antireflection film 5 without destroying the Risan oxide layer 3 by the bringing up gradually and, it is possible to form a transition region between the oxides layer 3 on the oxides layer 3 and the anti-reflection film 5.

なお、プラズマ装置の処理条件については、装置によって条件が異なり、規定することはできないが、例えば、電力としては600〜1000W、処理時間としては5〜30sec程度を目安として各装置ごとに条件出しを行えばよい。   The processing conditions of the plasma apparatus vary depending on the apparatus and cannot be specified. For example, the power is 600 to 1000 W, and the processing time is about 5 to 30 sec. Just do it.

またガラスフリットおよび粉末と酸化還元反応可能な酸化物層3を形成するには、ウェットやドライの熱酸化法を用いることも可能であるし、反射防止膜5の成膜前に、フッ酸やフッ化アンモニウムなどの酸に半導体基板1を浸漬させ、乾燥させることによって、半導体基板1の表面に酸化物層3を形成しても良い。またオゾン水、や過酸化水素水などに浸漬させて表面に酸化物層3を形成することもできる。この中でも特にドライ酸化法を用いれば、表面パッシベーションの効果を得ることができるのでさらによい。 In addition, wet or dry thermal oxidation can be used to form the oxide layer 3 capable of oxidation-reduction with glass frit and silver powder, and hydrofluoric acid can be used before the antireflection film 5 is formed. Alternatively, the oxide layer 3 may be formed on the surface of the semiconductor substrate 1 by immersing the semiconductor substrate 1 in an acid such as ammonium fluoride or drying the substrate. The oxide layer 3 can also be formed on the surface by dipping in ozone water or hydrogen peroxide water. Among these, it is further preferable to use a dry oxidation method because the effect of surface passivation can be obtained.

ここまで本発明に係る太陽電池の製造方法の一例を示したが、この方法はあくまで一例であり、本発明はこれに制限されるものではない。例えば半導体基板1はp型多結晶シリコン基板を例にとり説明したが、これに限定されるものではなく例えばn型多結晶シリコン基板、単結晶シリコン基板そして薄膜系などに応用することは可能である。   Although the example of the manufacturing method of the solar cell which concerns on this invention was shown so far, this method is an example to the last, and this invention is not restrict | limited to this. For example, the semiconductor substrate 1 has been described by taking a p-type polycrystalline silicon substrate as an example. However, the present invention is not limited to this, and can be applied to, for example, an n-type polycrystalline silicon substrate, a single crystal silicon substrate, and a thin film system. .

また、電極の構造および形成方法についてもこれに限定されるものではない。例えば、電極材料を塗布し焼きつける方法以外にも、スパッタ法や蒸着法を利用した方法で電極を形成することも可能であるし、表裏両面に電極を有する構造以外でも、本発明は裏面のみに電極を有する太陽電池素子に使用してもその効果を充分に発揮する。   Further, the structure and formation method of the electrode are not limited to this. For example, in addition to the method of applying and baking the electrode material, it is also possible to form the electrode by a method using a sputtering method or a vapor deposition method. Even if it is used for a solar cell element having an electrode, the effect is sufficiently exhibited.

本発明にかかる太陽電池素子の一実施形態を示す図である。It is a figure which shows one Embodiment of the solar cell element concerning this invention. 本発明にかかる太陽電池素子の一例をGIXR法で分析した結果を示した図である。It is the figure which showed the result of having analyzed an example of the solar cell element concerning this invention by GIXR method. 従来の太陽電池素子の構造を説明するための図である。It is a figure for demonstrating the structure of the conventional solar cell element.

符号の説明Explanation of symbols

1:半導体基板
2:拡散層
3:化物層
4:
5:反射防止膜
6:表面電極
7:裏面集電極
8:裏面出力取出電極
9:BSF層
1: semiconductor substrate 2: diffusion layer 3: oxides layer 4: realm <br/> 5: antireflective film 6: surface electrode 7: back surface collector electrode 8: back surface output extraction electrode 9: BSF layer

Claims (2)

半導体基板の一主面側に反射防止膜と、
該反射防止膜上に設けられ、かつ、前記半導体基板と導通接続された表面電極を有する太陽電池素子であって、
前記半導体基板及び前記反射防止膜の間に、ガラスフリットおよび粉末と酸化還元反応可能な酸化物層と、該酸化物層の主成分と前記反射防止膜の主成分とを含有してなる領域とを、前記半導体基板から順次有することを特徴とする太陽電池素子。
An antireflection film on one main surface side of the semiconductor substrate;
A solar cell element provided on the antireflection film and having a surface electrode electrically connected to the semiconductor substrate,
Between the semiconductor substrate and the antireflection film, a region containing an oxide layer capable of oxidation-reduction with glass frit and silver powder, a main component of the oxide layer, and a main component of the antireflection film In order from the semiconductor substrate.
前記表面電極は、焼成されることによって前記半導体基板と導通接続されることを特徴とする請求項1記載の太陽電池素子。   The solar cell element according to claim 1, wherein the surface electrode is electrically connected to the semiconductor substrate by firing.
JP2005160431A 2005-05-31 2005-05-31 Solar cell element Active JP4953591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160431A JP4953591B2 (en) 2005-05-31 2005-05-31 Solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160431A JP4953591B2 (en) 2005-05-31 2005-05-31 Solar cell element

Publications (2)

Publication Number Publication Date
JP2006339301A JP2006339301A (en) 2006-12-14
JP4953591B2 true JP4953591B2 (en) 2012-06-13

Family

ID=37559616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160431A Active JP4953591B2 (en) 2005-05-31 2005-05-31 Solar cell element

Country Status (1)

Country Link
JP (1) JP4953591B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293196B1 (en) 2005-10-27 2012-10-23 ADA-ES, Inc. Additives for mercury oxidation in coal-fired power plants
US8372362B2 (en) 2010-02-04 2013-02-12 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US8383071B2 (en) 2010-03-10 2013-02-26 Ada Environmental Solutions, Llc Process for dilute phase injection of dry alkaline materials
US8409330B2 (en) 2006-03-29 2013-04-02 Calgon Carbon Corporation Enhanced adsorbents and methods for mercury removal
US8496894B2 (en) 2010-02-04 2013-07-30 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US8524179B2 (en) 2010-10-25 2013-09-03 ADA-ES, Inc. Hot-side method and system
US8784757B2 (en) 2010-03-10 2014-07-22 ADA-ES, Inc. Air treatment process for dilute phase injection of dry alkaline materials
US10220369B2 (en) 2015-08-11 2019-03-05 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
US11857942B2 (en) 2012-06-11 2024-01-02 Calgon Carbon Corporation Sorbents for removal of mercury

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063049B2 (en) * 2006-07-28 2012-10-31 京セラ株式会社 Method for manufacturing solar cell element
JP5737204B2 (en) * 2012-02-02 2015-06-17 信越化学工業株式会社 Solar cell and manufacturing method thereof
CN104037242B (en) * 2013-03-06 2016-03-16 中美硅晶制品股份有限公司 Photovoltaic element and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153980A (en) * 1993-11-29 1995-06-16 Kyocera Corp Manufacture of solar battery
JP2001313400A (en) * 2000-04-28 2001-11-09 Kyocera Corp Method for forming solar battery element
JP2004006565A (en) * 2002-04-16 2004-01-08 Sharp Corp Solar cell and its manufacturing method
JP4439213B2 (en) * 2003-07-31 2010-03-24 京セラ株式会社 Solar cell element and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293196B1 (en) 2005-10-27 2012-10-23 ADA-ES, Inc. Additives for mercury oxidation in coal-fired power plants
US8409330B2 (en) 2006-03-29 2013-04-02 Calgon Carbon Corporation Enhanced adsorbents and methods for mercury removal
US8372362B2 (en) 2010-02-04 2013-02-12 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US8496894B2 (en) 2010-02-04 2013-07-30 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US8383071B2 (en) 2010-03-10 2013-02-26 Ada Environmental Solutions, Llc Process for dilute phase injection of dry alkaline materials
US8784757B2 (en) 2010-03-10 2014-07-22 ADA-ES, Inc. Air treatment process for dilute phase injection of dry alkaline materials
US8524179B2 (en) 2010-10-25 2013-09-03 ADA-ES, Inc. Hot-side method and system
US11857942B2 (en) 2012-06-11 2024-01-02 Calgon Carbon Corporation Sorbents for removal of mercury
US10220369B2 (en) 2015-08-11 2019-03-05 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas

Also Published As

Publication number Publication date
JP2006339301A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4953591B2 (en) Solar cell element
JP5649580B2 (en) Manufacturing method of solar cell
JP3722326B2 (en) Manufacturing method of solar cell
US10529875B2 (en) Solar cell and production method therefor
WO2008065918A1 (en) Solar cell and method for manufacturing the same
JP4373774B2 (en) Method for manufacturing solar cell element
JP2010123859A (en) Solar battery element and production process of solar battery element
JP2010129872A (en) Solar battery element
JP2006073617A (en) Solar cell and manufacturing method thereof
JP5323827B2 (en) Photovoltaic device and manufacturing method thereof
JP2006295212A (en) Method of producing solar cell and method of producing semiconductor device
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method
JP6114171B2 (en) Manufacturing method of solar cell
JP5014263B2 (en) Photovoltaic device and manufacturing method thereof
WO2017122422A1 (en) Solar cell and method for producing solar cell
JP2004281569A (en) Method for producing solar cell element
JP5452755B2 (en) Method for manufacturing photovoltaic device
JP2004235272A (en) Solar cell element and its fabricating process
CN113809185A (en) Preparation method of solar cell and solar cell
JP2006339300A (en) Solar cell element and manufacturing method thereof
WO2012012167A1 (en) Methods of forming a floating junction on a solar cell with a particle masking layer
JP2005159171A (en) Solar cell element and its manufacturing method
JP2007266649A (en) Method of manufacturing solar cell element
WO2016072048A1 (en) Solar cell and method for manufacturing same
JP2011165806A (en) Method of manufacturing solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Ref document number: 4953591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3