JP4953044B2 - Method and apparatus for forming lipid bilayer membrane - Google Patents

Method and apparatus for forming lipid bilayer membrane Download PDF

Info

Publication number
JP4953044B2
JP4953044B2 JP2005136111A JP2005136111A JP4953044B2 JP 4953044 B2 JP4953044 B2 JP 4953044B2 JP 2005136111 A JP2005136111 A JP 2005136111A JP 2005136111 A JP2005136111 A JP 2005136111A JP 4953044 B2 JP4953044 B2 JP 4953044B2
Authority
JP
Japan
Prior art keywords
lipid bilayer
membrane
lipid
chamber
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005136111A
Other languages
Japanese (ja)
Other versions
JP2006312141A (en
Inventor
昌治 竹内
宏明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foundation for the Promotion of Industrial Science
Original Assignee
Foundation for the Promotion of Industrial Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foundation for the Promotion of Industrial Science filed Critical Foundation for the Promotion of Industrial Science
Priority to JP2005136111A priority Critical patent/JP4953044B2/en
Publication of JP2006312141A publication Critical patent/JP2006312141A/en
Application granted granted Critical
Publication of JP4953044B2 publication Critical patent/JP4953044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、バイオテクノロジー、バイオチップ、膜タンパク質分析、創薬スクリーニング、バイオセンサーなどの分野に用いられる膜タンパク質分析用脂質二重膜の形成方法とその装置に関するものである。   The present invention relates to a method and apparatus for forming a lipid bilayer membrane for membrane protein analysis used in fields such as biotechnology, biochips, membrane protein analysis, drug discovery screening, and biosensors.

膜タンパク質は、細胞膜中に存在し、免疫反応、細胞の内外の物質輸送・排出に重要な役割を果たしているため、各種の膜タンパク質の機能や特性を一つ一つ解明することが、次世代の治療、創薬法の開発に重要な課題となっている。
イオンチャンネル等、膜タンパク質分析のための平面脂質膜作製の代表的な従来方法としては平面膜法、すなわち、はけ塗り法やLB法(Longmuir−Blodgett法)が挙げられる。両者とも、バッファを満たしたチャンバ内でテフロン(登録商標)シートなどに開けた数百ミクロン程度の小孔に、脂質二重膜を形成する方法であるが、前者は脂質溶液をはけで小孔に塗る方法、後者は、液体表面に脂質の単分子膜が形成されることを利用して、テフロンシートの両側のチャンバの溶液表面を徐々に上昇させることによって平面脂質膜を形成する方法である。
Membrane proteins are present in cell membranes and play an important role in immune reactions and transport and excretion of substances inside and outside the cell. Therefore, elucidating the functions and characteristics of various membrane proteins one by one is the next generation. It has become an important issue for the development of new treatments and drug discovery methods.
Typical conventional methods for preparing planar lipid membranes for membrane protein analysis such as ion channels include planar membrane methods, that is, brush coating method and LB method (Longmuir-Blodgett method). In both methods, a lipid bilayer is formed in a small hole of several hundred microns opened in a Teflon (registered trademark) sheet or the like in a chamber filled with a buffer. The latter is a method of forming a planar lipid membrane by gradually raising the solution surface of the chambers on both sides of the Teflon sheet using the fact that a monolayer of lipid is formed on the liquid surface. is there.

図15はそのLB法による平面脂質膜形成法を示す模式図である。
この図において、101はテフロンシート、102はそのテフロンシート101に開口された小孔、103は表面に脂質の単分子膜104が形成される溶液、105はバッファ溶液であり、テフロンシート101の両側のチャンバーの溶液103及びバッファ溶液105の表面を徐々に上昇させることによって脂質膜106を形成するようにしている。
FIG. 15 is a schematic diagram showing the planar lipid film formation method by the LB method.
In this figure, 101 is a Teflon sheet, 102 is a small hole opened in the Teflon sheet 101, 103 is a solution in which a monolayer of lipid 104 is formed on the surface, 105 is a buffer solution, The lipid membrane 106 is formed by gradually raising the surfaces of the solution 103 and the buffer solution 105 in the chamber.

また、特許文献6として、下溶液槽は底板および間隔保持部材に囲まれ、上溶液槽の下方に形成されており、下溶液槽の内部の圧力を低下させることにより、小孔で形成した人工脂質二重膜を下溶液槽側に膨らませて薄化させ、人工脂質二重膜を薄化した状態で支持層で支持するようにした人工脂質二重膜を有する電流測定装置が提案されているが、その場合の人工脂質二重膜の形成は、後述するように困難が伴うものであった。
特開平02−35941号公報 特開平05−253467号公報 特開平07−241512号公報 特表2002−505007号公報 特表2003−511679号公報 特開2005−091308号公報 H.Zhu et al.,“Global Analysis of Protein Activities Using Proteome Chips”,Science,Vol.293,pp.2101−2105,2001. B.Alberts et al.,“Molecular Biology of the Cell;4th Ed.,”Garland Science,2002. C.Miller,ed.,“Ion Channel Reconstitution,”Plenum Press,1986. T.Ide and T.Yanagida,“An Artificial Lipid Bilayer Formed on an Agarose−Coated Glass for Simultaneous Electrical and Optical Measurement of Single Ion Channels,”Biochem.Biophys.Res.Comm.,265,pp.595−599,1999. T.Ide,Y.Takeuchi and T.Yanagida,“Development of an Experimental Apparatus for Simultaneous Observation of Optical and Electrical Signals from Single Ion Channels,”Single Molecules,3(1),pp.33−42,2002. J.T.Groves,N.Ulman,and S.G.Boxer,“Micropatterning Fluid Lipid Bilayers on Solid Supports,”Science,Vol.275,pp.651−653. M.Mayer et al.,“Microfabricated Teflon Membranes for Low−Noise Recordings of Ion Channels in Planar Lipid Bilayers,”Biophys.J.,Vol.85,pp.2684−2695,2003. Fertig et al.,“Microstructured Glass Chip for Ion−Channel Electrophysiology,”Phys.Rev.E,Vol.64,040901(R),2001. 鈴木宏明、野地博行、竹内昌治、「マイクロ流路を用いた脂質平面膜の再構成」、第8回化学とマイクロ・ナノシステム研究会講演要旨集、61頁、2003年
Further, as Patent Document 6, the lower solution tank is surrounded by a bottom plate and a spacing member, and is formed below the upper solution tank. By reducing the pressure inside the lower solution tank, an artificial hole formed by a small hole is formed. A current measuring device having an artificial lipid bilayer membrane in which the lipid bilayer membrane is inflated and thinned to the lower solution tank side and is supported by the support layer in a thinned state has been proposed. However, the formation of the artificial lipid bilayer in that case was accompanied by difficulties as described later.
JP 02-35941 A Japanese Patent Laid-Open No. 05-253467 Japanese Patent Application Laid-Open No. 07-241512 Special Table 2002-505007 Japanese translation of PCT publication No. 2003-511679 Japanese Patent Laying-Open No. 2005-091308 H. Zhu et al. , “Global Analysis of Protein Activities Using Proteome Chips”, Science, Vol. 293, pp. 2101-2105, 2001. B. Alberts et al. "Molecular Biology of the Cell; 4th Ed.," Garland Science, 2002. C. Miller, ed. "Ion Channel Reconfiguration," Plenum Press, 1986. T.A. Ide and T.M. Yanagida, “An Artificial Lipid Formered on an Agarose-Coated Glass for Simulaneous Electrical and Optical Measurement of Single Ion.” Biophys. Res. Comm. , 265, pp. 595-599, 1999. T.A. Ide, Y .; Takeuchi and T.K. Yanagida, "Development of an Experimental Apparatus for Simulaneous Observation of Optical and Electrical Signals from Single Channel, 3 Channels." 33-42, 2002. J. et al. T.A. Groves, N.M. Ulman, and S.M. G. Boxer, “Micropatterning Fluid Lipid Layers on Solid Supports,” Science, Vol. 275, pp. 651-653. M.M. Mayer et al. , “Microfabricated Teflon Membranes for Low-Noise Recordings of Ion Channels in Planar Lipid Bayers,” Biophys. J. et al. , Vol. 85, pp. 2684-2695, 2003. Fertig et al. , “Microstructured Glass Chip for Ion-Channel Electrochemistry,” Phys. Rev. E, Vol. 64, 040901 (R), 2001. Hiroaki Suzuki, Hiroyuki Noji, Shoji Takeuchi, "Reconstitution of planar lipid membrane using microchannels", Proceedings of the 8th Chemistry and Micro-Nano System Research Meeting, 61, 2003

しかしながら、上記したはけ塗り法とLB法の両方法とも、数cm程度の大きなチャンバーが必要であり、デッドボリュームが大きく、顕微鏡観察も不可能である。また、上記の方法により流路内に複数の小孔を設けて、複数の平面膜を同時に形成した場合、隣り合う小孔(平面膜)同士は流路中のバッファ液により電気的に導通しているため、個々の電気生理計測を行うことは難しい。   However, both the brushing method and the LB method described above require a large chamber of about several centimeters, a large dead volume, and microscope observation is impossible. In addition, when a plurality of small holes are provided in the flow path by the above method and a plurality of planar films are formed at the same time, the adjacent small holes (planar films) are electrically connected to each other by the buffer solution in the flow path. Therefore, it is difficult to measure individual electrophysiology.

また、一度に形成できる脂質二重膜は基本的に一つであり、また形成には職人的熟練を要し、再現性にも乏しい。したがって、これまで分析の多チャンネル化は不可能であった。
そこで、本願発明者らは既に、第1及び第2のマイクロ流路を形成して、第2のマイクロ流路へ脂質溶液を流して、その脂質溶液を制御することにより、平面脂質二重膜を形成する人工脂質膜の形成方法及びその装置を提案している。
In addition, the number of lipid bilayer membranes that can be formed at one time is basically one, and the formation requires craftsmanship and poor reproducibility. Therefore, it has been impossible to make multi-channel analysis.
Therefore, the inventors of the present application have already formed the first and second microchannels, flowed the lipid solution into the second microchannel, and controlled the lipid solution to thereby obtain a planar lipid bilayer membrane. Have proposed a method and apparatus for forming an artificial lipid membrane for forming a membrane.

これによれば、まず、第1のマイクロ流路にバッファ溶液(水溶液)を満たし、次に、小孔を有する第2のマイクロ流路に脂質溶液を満たし、次に、この第2のマイクロ流路に空気を注入することにより脂質溶液を排出する。このとき小孔のバッファ溶液の界面には脂質溶液の一部が残留する。次に、第2のマイクロ流路にバッファ溶液が注入されて空気を押し出し、空気をバッファ溶液に置換する。すると小孔には平面脂質二重膜が形成される。   According to this, first, the first microchannel is filled with a buffer solution (aqueous solution), then the second microchannel having small holes is filled with a lipid solution, and then the second microchannel is filled. The lipid solution is drained by injecting air into the tract. At this time, a part of the lipid solution remains at the interface of the small pore buffer solution. Next, the buffer solution is injected into the second microchannel to push out the air and replace the air with the buffer solution. Then, a planar lipid bilayer membrane is formed in the small pore.

本発明は、この方法を更に改良し、膜厚及び圧力を制御可能とし、再現性の飛躍的向上を図った。
一方、これまでの膜タンパク質の機能解析法は、膜電流を計測する方法が一般的である。中でもパッチクランプ法は、細胞膜に直接ガラス管の先端を接触させて吸引し、吸引された内側の膜に存在するイオンチャンネルを通過するイオンの量を膜電流として計測する方法である。これによって、原理的には膜タンパク質の寿命、開閉確率、伝導性などを明らかにすることができるが、実際は、吸引した細胞膜中には多種の膜タンパク質が混在し、そのうちの一種類に注目した議論をするためには、さまざまな工夫を要する。また、トランスポータなど物質輸送にかかわる膜タンパク質は、計測可能な膜電流が発生しないため、一般的にこの方法は使えない。
The present invention further improves this method, makes it possible to control the film thickness and pressure, and dramatically improves reproducibility.
On the other hand, the function analysis method of membrane protein so far is generally a method of measuring membrane current. In particular, the patch clamp method is a method in which the tip of a glass tube is directly brought into contact with a cell membrane and sucked, and the amount of ions passing through an ion channel existing in the sucked inner membrane is measured as a membrane current. In principle, the life span, switching probability, and conductivity of membrane proteins can be clarified. However, in reality, various types of membrane proteins are mixed in the aspirated cell membrane, and one of them has been focused on. To argue, various ideas are required. In addition, membrane proteins involved in mass transport such as transporters generally cannot use this method because no measurable membrane current is generated.

一方、近年注目されているのが上記した「平面膜法」である。これは、テフロンシートなどに小孔を開け、その内部に細胞膜と同じ、脂質二重層を再構成する方法であるが、再構成後に1種類の膜タンパク質を導入することで、一分子の特性を解析できる。例えば、膜の上下に電極を配置すれば、膜電流の計測ができる。このような平面膜法は、効率的な膜タンパク質の機能解析法であるが、現状で販売されている製品は、脂質二重膜の再構成プロセスは運まかせであり、再構成膜の再現性、安定性は、一般に低い。また、複数の脂質膜を同時に再構成するのは至難の業である。   On the other hand, the above-described “planar film method” has attracted attention in recent years. This is a method of opening a small hole in a Teflon sheet and reconstituting the lipid bilayer in the same way as the cell membrane. Can be analyzed. For example, if electrodes are arranged above and below the membrane, the membrane current can be measured. Such a planar membrane method is an efficient method for analyzing membrane protein functions, but the products currently being sold leave the reconstitution process of the lipid bilayer membrane and the reproducibility of the reconstituted membrane. The stability is generally low. In addition, it is a difficult task to reconfigure a plurality of lipid membranes at the same time.

本発明は、上記状況に鑑みて、マイクロ・ナノ加工技術を利用して、小型チップ上に再現性よく、安定して脂質膜を再構成できる脂質二重膜の形成方法およびその装置を提供することを目的とする。   In view of the above circumstances, the present invention provides a method and apparatus for forming a lipid bilayer membrane that can reconstruct a lipid membrane stably and reproducibly on a small chip using micro / nano processing technology. For the purpose.

本発明は、上記目的を達成するために、
〔1〕脂質二重膜の形成方法において、基板の表にチャンバ、前記基板の裏にマイクロ流路を設け、前記チャンバと前記マイクロ流路との間の前記基板を貫通する微小孔が底部に形成され、この微小孔の直径/高さの比率が100/21〜82の漏斗型の穴を設け、前記チャンバ内にバッファ媒体を導入し、前記マイクロ流路にはバッファ媒体−脂質を含む有機溶媒−バッファ媒体を順次供給し、かつ前記チャンバのバッファ媒体に圧力を印加可能にして前記チャンバ内の圧力を調整することにより、前記微小孔に形成される脂質層を薄膜化して脂質二重膜を形成することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the method of forming a lipid bilayer membrane, a chamber is provided on the front surface of the substrate, a microchannel is provided on the back of the substrate, and a micropore penetrating the substrate between the chamber and the microchannel is provided at the bottom. A funnel-shaped hole having a diameter / height ratio of 100/21 to 82 is formed, a buffer medium is introduced into the chamber, and a buffer medium-organic containing lipid is contained in the microchannel. A lipid bilayer membrane is formed by thinning the lipid layer formed in the micropores by sequentially supplying a solvent-buffer medium and adjusting the pressure in the chamber by applying pressure to the buffer medium of the chamber. It is characterized by forming.

〔2〕上記〔1〕記載の脂質二重膜の形成方法において、前記微小孔を複数個形成することを特徴とする。
〔3〕上記〔1〕又は〔2〕記載の脂質二重膜の形成方法において、前記微小孔の直径を100μm、前記チャンバ内の圧力を200Pa−400Paとすることを特徴とする。
[2] The method for forming a lipid bilayer membrane according to [1] above, wherein a plurality of the micropores are formed.
[3] In the method for forming the above-mentioned [1] or [2], wherein the lipid bilayer membrane, characterized in that the pressure and the 2 00Pa-400Pa in the micropores 1 a diameter of 00Myuemu, before Symbol chamber.

〔4〕上記〔3〕記載の脂質二重膜の形成方法において、前記脂質二重膜の形成の成功率を90%以上とすることを特徴とする。
〔5〕上記〔1〕、〔3〕又は〔4〕記載の脂質二重膜の形成方法において、前記微小孔を独立にアレイ化し、異種の膜タンパク質を形成することを特徴とする。
〔6〕上記〔1〕から〔5〕の何れか1項記載の脂質二重膜の形成方法において、前記チャンバ側と前記マイクロ流路側にそれぞれマイクロ電極を配置し、さらにこのマイクロ電極に接続されるパッチクランプ増幅器を配置し、前記脂質二重膜の膜電流を測定することを特徴とする。
[4] The method for forming a lipid bilayer membrane according to [3] above, wherein the success rate of the lipid bilayer membrane formation is 90% or more.
[5] The method for forming a lipid bilayer membrane according to [1], [3] or [4] above, wherein the micropores are independently arrayed to form a heterologous membrane protein.
[6] In the method for forming a lipid bilayer membrane according to any one of [1] to [5] above, a microelectrode is disposed on each of the chamber side and the microchannel side, and further connected to the microelectrode. A patch clamp amplifier is arranged, and the membrane current of the lipid bilayer membrane is measured.

〔7〕脂質二重膜の形成装置において、基板と、この基板の表に形成されるチャンバと、前記基板の裏に形成されるマイクロ流路と、前記チャンバと前記マイクロ流路との間の前記基板を貫通する微小孔が底部に形成され、この微小孔の直径/高さの比率が100/21〜82の漏斗型の穴と、この漏斗型の穴を単位として形成される前記チャンバ内の圧力を調整する圧力調整手段とを具備することを特徴とする。 [7] In the apparatus for forming a lipid bilayer membrane, a substrate, a chamber formed on the front surface of the substrate, a microchannel formed on the back of the substrate, and between the chamber and the microchannel A microhole penetrating the substrate is formed at the bottom , a funnel-shaped hole having a diameter / height ratio of the microhole of 100/21 to 82, and the chamber formed with the funnel-shaped hole as a unit. And a pressure adjusting means for adjusting the pressure.

〔8〕上記〔7〕記載の脂質二重膜の形成装置において、前記微小孔を複数個配置することを特徴とする。
〔9〕上記〔7〕記載の脂質二重膜の形成装置において、前記チャンバ側と前記マイクロ流路側にそれぞれ配置されるマイクロ電極と、このマイクロ電極に接続されるパッチクランプ増幅器とを備え、脂質二重膜の膜電流を測定可能にしたことを特徴とする。
[8] The apparatus for forming a lipid bilayer membrane according to [7], wherein a plurality of the micropores are arranged.
[9] The apparatus for forming a lipid bilayer membrane according to [7], comprising: a microelectrode disposed on each of the chamber side and the microchannel side; and a patch clamp amplifier connected to the microelectrode; It is possible to measure the membrane current of the double membrane.

本発明によれば、マイクロ・ナノ加工技術を利用して、小型チップ上に再現性よく、安定して脂質膜を再構成できる計測プラットフォームを実現する。マイクロ加工により、微小孔のサイズを調整し、平面膜の安定化を図る。また、微小流路と組合わせ、脂質の量や液体導入圧力を制御し、再現性を向上させる。さらに、微小孔を独立にアレイ化し、異種の膜タンパク質の膜電流計測、物質輸送イメージングを選択的に行えるシステムを提供する。   According to the present invention, a measurement platform capable of stably reconfiguring a lipid membrane on a small chip with high reproducibility is realized using micro / nano processing technology. By micro-processing, the size of the micropores is adjusted to stabilize the planar film. Also, in combination with a microchannel, the amount of lipid and liquid introduction pressure are controlled to improve reproducibility. Furthermore, a system capable of selectively arraying micropores and selectively measuring membrane currents and mass transport imaging of different types of membrane proteins is provided.

本発明の脂質二重膜の形成方法は、基板の表にチャンバ、前記基板の裏にマイクロ流路を設け、前記チャンバと前記マイクロ流路との間の前記基板を貫通する微小孔が底部に形成され、この微小孔の直径/高さの比率が100/21〜82の漏斗型の穴を設け、前記チャンバ内にバッファ媒体を導入し、前記マイクロ流路にはバッファ媒体−脂質を含む有機溶媒−バッファ媒体を順次供給し、かつ前記チャンバのバッファ媒体に圧力を印加可能にして前記チャンバ内の圧力を調整することにより、前記微小孔に形成される脂質層を薄膜化して脂質二重膜を形成する。 In the method for forming a lipid bilayer membrane of the present invention, a chamber is provided on the front surface of the substrate, a microchannel is provided on the back of the substrate, and a micropore passing through the substrate between the chamber and the microchannel is provided at the bottom. A funnel-shaped hole having a diameter / height ratio of 100/21 to 82 is formed, a buffer medium is introduced into the chamber, and a buffer medium-organic containing lipid is contained in the microchannel. A lipid bilayer membrane is formed by thinning the lipid layer formed in the micropores by sequentially supplying a solvent-buffer medium and adjusting the pressure in the chamber by applying pressure to the buffer medium of the chamber. Form.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の原理を示す脂質二重膜の形成装置の模式図、図2は本発明にかかる脂質を含む有機溶媒を示す模式図である。
この図において、1はガラス基板(底面板)、2はマイクロ流路、3は基板(チップ)、4Aは漏斗型の穴、4Bはその漏斗型の穴の底部に形成される微小孔、5はチャンバ、6は脂質二重膜、7は微小注入装置(図示なし)から滴下されるバッファ液、8はマイクロ流路2内のバッファ液、9はパッチクランプ増幅器、10,11はマイクロ電極、12は対物レンズ、13は脂質を含む有機溶媒である。なお、微小孔4Bの部分は疎水性であることが望ましい。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic view of an apparatus for forming a lipid bilayer membrane showing the principle of the present invention, and FIG. 2 is a schematic view showing an organic solvent containing lipid according to the present invention.
In this figure, 1 is a glass substrate (bottom plate), 2 is a microchannel, 3 is a substrate (chip), 4A is a funnel-shaped hole, 4B is a microhole formed at the bottom of the funnel-shaped hole, 5 Is a chamber, 6 is a lipid bilayer membrane, 7 is a buffer solution dropped from a microinjection device (not shown), 8 is a buffer solution in the microchannel 2, 9 is a patch clamp amplifier, 10 and 11 are microelectrodes, 12 is an objective lens, and 13 is an organic solvent containing lipid. In addition, it is desirable that the part of the micropore 4B is hydrophobic.

このように、基板(チップ)3の表裏にチャンバ5およびマイクロ流路2を設け、基板(チップ)3を貫通する微小孔4Bに脂質二重膜6を再構成するようにしている。マイクロ流路2に脂質を含む有機溶媒13およびバッファ液8としての水溶液を交互に流すことにより、微小孔4Bに脂質からなる薄膜が水平に形成され、その薄膜化が進行することにより脂質二重膜6が形成される。その脂質二重膜6は、直接対物レンズ12を通して顕微鏡観察でき、その面積を求めたり、脂質二重膜6に導入されたタンパク質を蛍光イメージングして密度を求めることができる。また、パッチクランプ増幅器9により膜電流計測も可能となる。これらの情報は、膜タンパク1分子あたりのチャンネル電流値や、分子の輸送量を定量的に求めるのに必要な情報となる。   As described above, the chamber 5 and the microchannel 2 are provided on the front and back of the substrate (chip) 3, and the lipid bilayer membrane 6 is reconfigured in the micropores 4 </ b> B penetrating the substrate (chip) 3. By alternately flowing an organic solvent 13 containing lipid and an aqueous solution as the buffer solution 8 through the microchannel 2, a thin film made of lipid is formed horizontally in the micropore 4B, and the formation of the thin film proceeds to form a lipid duplex. A film 6 is formed. The lipid bilayer membrane 6 can be directly observed with a microscope through the objective lens 12, and the area can be obtained, or the density of the protein introduced into the lipid bilayer membrane 6 can be obtained by fluorescence imaging. Further, the membrane current can be measured by the patch clamp amplifier 9. These pieces of information are information necessary for quantitatively determining the channel current value per molecule of membrane protein and the transport amount of the molecule.

図3は本発明にかかる脂質二重膜の形成工程を示す図である。
まず、図3(a)に示すように、チャンバ5の壁5Aにはシリンジポンプ(図示なし)によって気圧を制御するための通路5Bが形成されている。
そこで、マイクロ流路2に空気15を通した状態で、チャンバ5に微小注入装置16からバッファ液7を滴下する。すると、バッファ液7の界面は、表面張力により微小孔4Bの下端からわずかに露出した状態でとどまる。
FIG. 3 is a diagram showing a process for forming a lipid bilayer membrane according to the present invention.
First, as shown in FIG. 3A, a passage 5B for controlling the atmospheric pressure by a syringe pump (not shown) is formed in the wall 5A of the chamber 5.
Therefore, the buffer solution 7 is dropped from the microinjection device 16 into the chamber 5 while the air 15 is passed through the microchannel 2. Then, the interface of the buffer liquid 7 remains slightly exposed from the lower end of the micropore 4B due to surface tension.

次に、図3(b)に示すように、マイクロ流路2に脂質を含む有機溶媒13を流す。
次に、図3(c)に示すように、マイクロ流路2内の脂質を含む有機溶媒13を抜いて、空気15を通す。すると、微小孔4Bの下端のバッファ液7の表面には脂質層18が付着して残る。
次に、図3(d)に示すように、マイクロ流路2にバッファ液8を通す。
Next, as shown in FIG. 3B, an organic solvent 13 containing lipid is allowed to flow through the microchannel 2.
Next, as shown in FIG. 3 (c), the organic solvent 13 containing lipid in the microchannel 2 is removed and air 15 is passed. Then, the lipid layer 18 remains attached to the surface of the buffer solution 7 at the lower end of the micropore 4B.
Next, as shown in FIG. 3 (d), the buffer solution 8 is passed through the microchannel 2.

次に、図3(e)に示すように、チャンバ5に蓋17を被せて密封するとともに、チャンバ5の壁5Aに形成された通路5Bから流体(ここでは空気)を充填してチャンバ内の圧力を調整する。すると、気圧の上昇とともにバッファ液8が押し下げられることにより、脂質層18は薄くなる(図7の上段参照)。それにより、図3(f)に示すように、脂質二重膜6が形成される。   Next, as shown in FIG. 3E, the chamber 5 is covered with a lid 17 and sealed, and a fluid (here, air) is filled from a passage 5B formed in the wall 5A of the chamber 5 to fill the inside of the chamber. Adjust pressure. Then, the buffer layer 8 is pushed down as the atmospheric pressure increases, and the lipid layer 18 becomes thin (see the upper part of FIG. 7). Thereby, as shown in FIG.3 (f), the lipid bilayer membrane 6 is formed.

このように形成される脂質二重膜6の再現性、安定性を高める条件として、微小孔の設計、二つのバッファ液(水溶液)が接触するための圧力、速度、脂質の量などが膜形成の重要な要素であることが、これまでの研究から分かってきた。
安定度を上げるための策として、まず微小孔の直径を小さくすることにより、より安定で割れにくい脂質二重膜を形成できる。従来、孔の直径が小さければ、脂質分子層の薄膜化が進行しにくく、二重膜が得られにくかったが、本発明では、マイクロ流路によって、脂質量を微量化できるため、薄膜に最適な量を抽出できる。さらに、圧力差を生む溶液変動がないように、ガラスチューブを利用したり、溶液切り替えシステムを導入する。また、平面膜にラフト構造となる繊維状分子を導入し、本質的に膜の安定化を向上させることもひとつの解決法である。
As conditions for improving the reproducibility and stability of the lipid bilayer membrane 6 formed in this way, the design of the micropores, the pressure for contacting the two buffer solutions (aqueous solution), the speed, the amount of lipid, etc., form the membrane. It has been found from previous studies that this is an important element.
As a measure for increasing the stability, first, by reducing the diameter of the micropores, a lipid bilayer membrane that is more stable and difficult to break can be formed. Conventionally, if the diameter of the pore is small, it is difficult for the lipid molecular layer to be thinned and it is difficult to obtain a double membrane. However, in the present invention, the amount of lipid can be reduced by a microchannel, so it is optimal for a thin film. A large amount can be extracted. Furthermore, a glass tube is used or a solution switching system is introduced so that there is no solution fluctuation causing a pressure difference. Another solution is to introduce fibrous molecules that have a raft structure into the planar membrane, which essentially improves the stabilization of the membrane.

図4は本発明の第1実施例を示す脂質二重膜の形成装置の模式図、図5は漏斗型の穴とその底部に形成される微小孔を示す図であり、図5(a)は漏斗型の穴の全体図、図5(b)はその微小孔の拡大図である。
これらの図において、20は脂質二重膜の形成装置、21は上部チャンバ、22Aは漏斗型の穴、22Bはその漏斗型の穴22Aの底部に形成される微小孔、23はマイクロ流路である。
FIG. 4 is a schematic diagram of the apparatus for forming a lipid bilayer membrane according to the first embodiment of the present invention, and FIG. 5 is a diagram showing a funnel-shaped hole and a micropore formed at the bottom thereof. Is an overall view of the funnel-shaped hole, and FIG. 5B is an enlarged view of the minute hole.
In these drawings, 20 is an apparatus for forming a lipid bilayer, 21 is an upper chamber, 22A is a funnel-shaped hole, 22B is a micropore formed at the bottom of the funnel-shaped hole 22A, and 23 is a microchannel. is there.

本発明では、脂質二重膜の形成装置20として、アクリルプラスチック(PMMA)板に微細機械加工を施し、マイクロ流路23および微小孔22Bを作製し、そこに脂質二重膜を再構成する。このように、マイクロ流路、チャンバが透明で機械加工が簡単で、電気的に絶縁されたPMMAで作製されているため、顕微鏡観察や膜電流計測が容易である。横型デバイスにおいては、微小孔22Bの直径、高さを調整し、チャンバ21を通して圧力を徐々にかけていくと、最大で90%以上の脂質二重膜の形成率を得ることに成功している。因みに、従来法では10%以下であった。   In the present invention, as an apparatus 20 for forming a lipid bilayer, an acrylic plastic (PMMA) plate is subjected to micromachining to produce microchannels 23 and micropores 22B, and the lipid bilayer is reconfigured therein. As described above, since the micro flow path and the chamber are transparent, easy to machine, and made of electrically insulated PMMA, it is easy to perform microscopic observation and membrane current measurement. In the horizontal device, when the diameter and height of the micropores 22B are adjusted and the pressure is gradually applied through the chamber 21, the formation rate of the lipid bilayer membrane of 90% or more at maximum is succeeded. Incidentally, it was 10% or less in the conventional method.

図6はその漏斗型の穴の底部の微小孔に形成される脂質平面膜を示す図であり、図6(a)は脂質二重膜形成前の脂質層の状態を、図6(b)は脂質二重膜形成後の状態を示している。
図7はそのチャンバにおける圧力と脂質二重膜の形成プロセスを示す図であり、図7(1)は20Paを印加、図7(2)は170Paを印加、図7(3)は210Paを印加したときの脂質二重膜の形成状態が示されている。これらの図から、圧力の増加とともに中央部から脂質層が押し下げられて薄くなり210Paを印加することにより、脂質二重膜が形成されていることがわかる。
FIG. 6 is a view showing a lipid planar membrane formed in the micropores at the bottom of the funnel-shaped hole, and FIG. 6 (a) shows the state of the lipid layer before formation of the lipid bilayer membrane, FIG. 6 (b). Indicates the state after lipid bilayer formation.
FIG. 7 is a diagram showing the pressure and formation process of the lipid bilayer in the chamber. FIG. 7 (1) applies 20 Pa, FIG. 7 (2) applies 170 Pa, and FIG. 7 (3) applies 210 Pa. The formation state of the lipid bilayer is shown. From these figures, it can be seen that the lipid bilayer membrane is formed by applying 210 Pa when the lipid layer is pushed down from the center and becomes thinner as the pressure increases.

ここで、微小孔22Bの高さH〔図7(1)参照〕が脂質二重膜形成の成功率に与える影響について調べた。
図8は脂質層および脂質二重膜の形成の成功率を示す図である。
この図から、その微小孔の高さHが47μmのとき、90%以上の成功率を達成できていることがわかる。なお、図8中の黒色のグラフは厚い脂質層が形成される割合、灰色のグラフは脂質二重膜形成の成功率を示している。
Here, the influence of the height H of the micropores 22B [see FIG. 7 (1)] on the success rate of lipid bilayer formation was examined.
FIG. 8 is a graph showing the success rate of formation of the lipid layer and lipid bilayer membrane.
From this figure, it can be seen that when the height H of the micropores is 47 μm, a success rate of 90% or more can be achieved. In addition, the black graph in FIG. 8 shows the rate at which a thick lipid layer is formed, and the gray graph shows the success rate of lipid bilayer formation.

このように、本発明により、脂質二重膜形成の成功率が飛躍的に向上した理由は、
(1)図7の上段に示すように、ある高さHをもった微小孔の内壁に、その高さHに比例した体積の脂質溶液(脂質層)が一定量残る(直径100μmの微小孔で実験したときの高さHの最適量は50μm前後であった)。
(2)また、図3(d)において説明したように、圧力調整を精密に行うことにある。
Thus, the reason why the success rate of lipid bilayer formation has been dramatically improved by the present invention is as follows.
(1) As shown in the upper part of FIG. 7, a certain amount of lipid solution (lipid layer) having a volume proportional to the height H remains on the inner wall of the micropore having a certain height H (a micropore having a diameter of 100 μm). The optimum amount of height H when the experiment was conducted was about 50 μm).
(2) Further, as described in FIG. 3D, the pressure adjustment is to be performed precisely.

図9は初期の脂質層の厚さと微小孔の高さHの特性図である。
この図において、xは各試験の生データ、実線はそれにあてはめた直線である。この図から分かるように、およそ±20μmという大きな変動があるが、初期膜厚は微小孔の高さHにほぼ比例する。
脂質層が二重膜にならない場合というのは、たいていの場合はシャボン玉が割れるのと同様に、膜が薄くなったときに壊れてしまう。
FIG. 9 is a characteristic diagram of the initial lipid layer thickness and micropore height H. FIG.
In this figure, x is the raw data of each test, and the solid line is a straight line fitted to it. As can be seen from this figure, there is a large variation of about ± 20 μm, but the initial film thickness is almost proportional to the height H of the micropores.
The case where the lipid layer does not become a bilayer is usually broken when the membrane becomes thin, just as a soap bubble breaks.

図10は脂質層が二重膜になった場合(円)及び二重膜にならずに壊れた場合(四角)のチャンバにおける圧力と初期の脂質層の厚さの特性図である。
二重膜の形成に成功した場合、加圧力は最初の厚さにかかわらずほとんどが400Pa未満である。00Pa以上の高圧であると脂質層の湾曲が大きくなり壊れる可能性が高くなる。
FIG. 10 is a characteristic diagram of the pressure in the chamber and the initial lipid layer thickness when the lipid layer becomes a bilayer (circle) and when the lipid layer breaks without becoming a bilayer (square).
When the double membrane is successfully formed, the applied pressure is almost less than 400 Pa regardless of the initial thickness. When the pressure is 400 Pa or higher, the lipid layer is greatly curved and is more likely to break.

これらの図から、微小孔の高さHの最適値は大体50μmであることがわかる。微小孔の高さHが20μm以下の場合、バッファを導入する際や、わずかに加圧した場合でも脂質層は壊れてしまう。微小孔の高さHが60μm以上の場合だと薄膜化により大きな圧力が必要になり、最終的な薄膜化の過程で壊れてしまう。
次に、本発明の第2実施例について説明する。
From these figures, it can be seen that the optimum value of the height H of the micropores is approximately 50 μm. When the height H of the micropores is 20 μm or less, the lipid layer is broken even when the buffer is introduced or when the pressure is slightly increased. If the height H of the micropores is 60 μm or more, a large pressure is required for thinning the film and it will be broken in the final thinning process.
Next, a second embodiment of the present invention will be described.

図11は本発明の第2実施例を示す漏斗型の穴の底部に複数の微小孔が形成されたチャンバを示す図であり、図11(a)はその全体図、図11(b)は複数の微小孔の拡大図、図11(c)はその複数の微小孔のうちの1個を示す斜視図である。なお、微小孔の部分は疎水性であることが望ましい。
この図から明らかなように、1つのチャンバ(漏斗型の穴)30内にここでは4個の微小孔31〜34を形成しておき、同時に複数の平面脂質膜を形成することができるように構成している。
FIG. 11 is a view showing a chamber in which a plurality of minute holes are formed at the bottom of a funnel-type hole according to a second embodiment of the present invention. FIG. 11 (a) is an overall view, and FIG. An enlarged view of a plurality of micro holes, FIG. 11C is a perspective view showing one of the plurality of micro holes. In addition, it is desirable that the micropores are hydrophobic.
As is clear from this figure, four micropores 31 to 34 are formed in one chamber (funnel-shaped hole) 30 so that a plurality of planar lipid membranes can be formed at the same time. It is composed.

図12はそのようにして得られた(微小孔の高さHが43μm)平面脂質膜を示す図であり、図12(a)は初期の厚い脂質層の状態を示し、図12(b)は、図12(a)の状態での蛍光脂質分子の蛍光像を示す図、図12(c)は最終状態の平面二重膜の状態を示し、図12(d)は、図12(c)の状態での蛍光脂質分子の蛍光像を示す図である。
図12(b)に示されるように、厚い脂質膜が形成された状態では、4孔すべてにほぼ均等な蛍光が見られるため、配置された脂質溶液の量が均一であることが分かる。図12(d)では上側チャンバが加圧され、中心部は薄膜化しており、蛍光がほとんどみられず、バルク相である周囲の部分のみ脂質膜が厚い状態であるため、環状に蛍光がみられる。
FIG. 12 is a view showing a planar lipid membrane thus obtained (the micropore height H is 43 μm), FIG. 12 (a) shows the state of the initial thick lipid layer, and FIG. 12 (b). Fig. 12 (a) shows a fluorescent image of a fluorescent lipid molecule in the state of Fig. 12 (a), Fig. 12 (c) shows the state of the planar bilayer membrane in the final state, and Fig. 12 (d) shows the state of Fig. 12 (c). It is a figure which shows the fluorescence image of the fluorescent lipid molecule in the state of ().
As shown in FIG. 12B, in a state where a thick lipid film is formed, almost uniform fluorescence is seen in all four holes, so that it can be seen that the amount of the lipid solution arranged is uniform. In FIG. 12 (d), the upper chamber is pressurized, the center is thinned, almost no fluorescence is seen, and the lipid film is thick only in the surrounding part that is the bulk phase. It is done.

図13は4つのそれぞれの微小孔に同時に形成される脂質膜とその確認状態を示す図〔図12(c)の拡大図〕であり、それぞれ、図13(1)は、図12(c)の左上、図13(2)は、図12(c)の右上、図13(3)は、図12(c)の左下、図13(4)は、図12(c)の右下の脂質二重膜を示している。
図14は本発明の第1実施例において(すなわち、図5の単一孔のデバイスにおいて)グラミシジンというチャンネルタンパク質を脂質二重膜に組み込み、膜の両面に電圧(80mV)を印加したときの、グラミシジンを通過する電流を示している。このとき、水相にはKClが添加されている。グラミシジンは、モノマーが二重膜のそれぞれの片面に入るが、表側と裏側に組み込まれたグラミシジンが結合してダイマーになったときに膜を通過するチャンネルを形成する。結合は確率的に発生するが、図14にもみられるステップ状の通過電流は、グラミシジンの二量化の現象にともなって通過する電流を一分子レベルでとらえたものである。グラミシジンが二量化によってチャンネルを形成する現象は、脂質膜が二重膜であるときにしか発生しないため、これにより形成された膜が真に脂質二重膜であることが証明されている。また、本発明のデバイスがタンパク質一分子のチャンネル電流計測に耐えうるものであることも同時に示している。
FIG. 13 is a diagram (enlarged view of FIG. 12 (c)) showing lipid membranes simultaneously formed in four micropores and their confirmation states, respectively, and FIG. 13 (1) is shown in FIG. 12 (c). 13 (2) is the upper right of FIG. 12 (c), FIG. 13 (3) is the lower left of FIG. 12 (c), and FIG. 13 (4) is the lower right lipid of FIG. 12 (c). A double membrane is shown.
FIG. 14 shows that in the first embodiment of the present invention (that is, in the single-pore device of FIG. 5), when a channel protein called gramicidin is incorporated into a lipid bilayer membrane and a voltage (80 mV) is applied to both sides of the membrane. The current passing through gramicidin is shown. At this time, KCl is added to the aqueous phase. Gramicidin forms a channel that passes through the membrane when the monomer enters each side of the bilayer membrane, but the gramicidin incorporated on the front and back sides combine to form a dimer. Although the binding occurs stochastically, the step-like passing current also seen in FIG. 14 is obtained by capturing the current passing through the phenomenon of dimerization of gramicidin at a single molecule level. Since the phenomenon that gramicidin forms a channel by dimerization occurs only when the lipid membrane is a bilayer, it has been proved that the membrane formed thereby is truly a lipid bilayer. It also shows that the device of the present invention can withstand channel current measurement of a single protein molecule.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

膜タンパク質は、薬剤応答・エネルギー変換・免疫反応・物質輸送・情報伝達などの生理的な機能の重要な役割を担っている。また、膜タンパク質の多くは、創薬の主なターゲットであり、たとえばGPCR(G−protein coupled receptor;Gタンパク質共役受容体)と呼ばれる一連のレセプタータンパク質に関する薬の市場規模は大きい。そのため、チップ上への膜タンパク質のアレイ化が期待されているが、脂質平面膜を効率的にアレイ状に再構成したものは報告されていない。また、生理的条件設定と同様に膜電流を計測可能なデバイスは皆無である。よって、本発明の膜タンパク質機能計測システムの開発は、極めて有用性があり、創薬、治療分野へのブレークスルーとなりえる。   Membrane proteins play an important role in physiological functions such as drug response, energy conversion, immune reaction, mass transport, and information transmission. Many of the membrane proteins are main targets for drug discovery, and the market size of drugs related to a series of receptor proteins called GPCR (G-protein coupled receptor; G protein coupled receptor) is large. For this reason, arraying of membrane proteins on the chip is expected, but there has been no report of efficiently reconstituting a lipid planar membrane into an array. In addition, there is no device that can measure the membrane current as in the physiological condition setting. Therefore, the development of the membrane protein function measuring system of the present invention is extremely useful and can be a breakthrough in the field of drug discovery and treatment.

例えば、ヒトゲノム計画で、すでに全てのGPCRの遺伝子は同定されており、実質上ターゲットとなりうる数は限られている。そのため、これをチップ上にアレイ状に並べて、それぞれのGPCRに対する薬剤に対する応答を調べることが急務である。これ以外にも、がん細胞の薬剤耐性の原因であるABCトランスポータと呼ばれる一連の膜タンパク質など、次世代の創薬ターゲットの主なものも膜タンパク質である。本システムの開発は、こういった創薬のターゲット膜としてのタンパク質を組み込むことで、迅速な薬剤開発に寄与することができる。   For example, in the Human Genome Project, all GPCR genes have already been identified, and the number of targets that can be practically limited is limited. Therefore, there is an urgent need to arrange these in an array on the chip and examine the response to the drug for each GPCR. Besides these, membrane proteins are also the main next-generation drug targets, such as a series of membrane proteins called ABC transporters that are responsible for drug resistance of cancer cells. The development of this system can contribute to rapid drug development by incorporating proteins as target membranes for such drug discovery.

本発明の原理を示す脂質二重膜の形成装置の模式図である。It is a schematic diagram of the apparatus for forming a lipid bilayer membrane showing the principle of the present invention. 本発明にかかる脂質を含む有機溶媒を示す模式図である。It is a schematic diagram which shows the organic solvent containing the lipid concerning this invention. 本発明にかかる脂質二重膜の形成工程を示す図である。It is a figure which shows the formation process of the lipid bilayer membrane concerning this invention. 本発明の第1実施例を示す脂質二重膜の形成装置の模式図である。It is a schematic diagram of the apparatus for forming a lipid bilayer membrane showing the first embodiment of the present invention. 本発明の第1実施例を示す漏斗型の穴とその底部に形成される微小孔を示す図である。It is a figure which shows the funnel type | mold hole which shows 1st Example of this invention, and the micropore formed in the bottom part. 本発明の第1実施例を示す漏斗型の穴の底部の微小孔に形成される脂質平面膜を示す図である。It is a figure which shows the lipid plane membrane formed in the micropore of the bottom part of the funnel-shaped hole which shows 1st Example of this invention. 本発明の第1実施例を示すチャンバにおける圧力と脂質二重膜の形成プロセスを示す図である。It is a figure which shows the formation process of the pressure and lipid bilayer membrane in the chamber which shows 1st Example of this invention. 本発明の第1実施例を示す脂質層および脂質二重膜の形成の成功率を示す図である。It is a figure which shows the success rate of formation of the lipid layer and lipid bilayer membrane which show 1st Example of this invention. 本発明の第1実施例を示す初期の脂質膜の厚さと微小孔の高さの特性図である。FIG. 3 is a characteristic diagram of the initial lipid membrane thickness and micropore height showing the first embodiment of the present invention. 本発明の第1実施例を示すチャンバにおける圧力と初期の脂質層の厚さの特性図である。It is a characteristic view of the pressure in the chamber which shows 1st Example of this invention, and the thickness of the initial lipid layer. 本発明の第2実施例を示す漏斗型の穴の底部に複数の微小孔が形成されたチャンバを示す図である。It is a figure which shows the chamber in which the several micropore was formed in the bottom part of the funnel type | mold hole which shows 2nd Example of this invention. 本発明の第2実施例により得られた平面脂質膜を示す図である。It is a figure which shows the planar lipid membrane obtained by 2nd Example of this invention. 本発明の第2実施例による単一の微小孔に形成される平面脂質膜とその確認状態を示す図である。It is a figure which shows the planar lipid membrane formed in the single micropore by 2nd Example of this invention, and its confirmation state. 本発明の第1実施例の平面脂質膜の特性を示す図である。It is a figure which shows the characteristic of the planar lipid membrane of 1st Example of this invention. LB法による従来の平面脂質膜形成法を示す模式図である。It is a schematic diagram which shows the conventional planar lipid membrane formation method by LB method.

1 ガラス基板(底面板)
2,23 マイクロ流路
3 基板(チップ)
4A,22A,30 漏斗型の穴
4B,22B 微小孔
5 チャンバ
5A チャンバの壁
5B 通路
6 脂質二重膜
7 微小注入装置(図示なし)から滴下されるバッファ液
8 マイクロ流路内のバッファ液
9 パッチクランプ増幅器
10,11 マイクロ電極
12 対物レンズ
13 脂質を含む有機溶媒
15 空気
16 微小注入装置
17 蓋
18 脂質層
20 脂質二重膜の形成装置
21 上部チャンバ
30 1つのチャンバ
31〜34 4個の微小孔
1 Glass substrate (bottom plate)
2,23 Micro flow path 3 Substrate (chip)
4A, 22A, 30 Funnel-shaped hole 4B, 22B Micropore 5 Chamber 5A Chamber wall 5B Passage 6 Lipid bilayer membrane 7 Buffer solution dropped from microinjection device (not shown) 8 Buffer solution in microchannel 9 Patch clamp amplifier 10, 11 Microelectrode 12 Objective lens 13 Organic solvent containing lipid 15 Air 16 Microinjection device 17 Lid 18 Lipid layer 20 Lipid bilayer formation device 21 Upper chamber 30 One chamber 31-34 Four micro Hole

Claims (9)

基板の表にチャンバ、前記基板の裏にマイクロ流路を設け、前記チャンバと前記マイクロ流路との間の前記基板を貫通する微小孔が底部に形成され、該微小孔の直径/高さの比率が100/21〜82の漏斗型の穴を設け、前記チャンバ内にバッファ媒体を導入し、前記マイクロ流路にはバッファ媒体−脂質を含む有機溶媒−バッファ媒体を順次供給し、かつ前記チャンバのバッファ媒体に圧力を印加可能にして前記チャンバ内の圧力を調整することにより、前記微小孔に形成される脂質層を薄膜化して脂質二重膜を形成することを特徴とする脂質二重膜の形成方法。 A chamber is provided on the front surface of the substrate, and a microchannel is provided on the back of the substrate. A microhole penetrating the substrate between the chamber and the microchannel is formed at the bottom, and the diameter / height of the microhole is A funnel-shaped hole having a ratio of 100/21 to 82 is provided, a buffer medium is introduced into the chamber, a buffer medium-an organic solvent containing a lipid-a buffer medium is sequentially supplied to the microchannel, and the chamber A lipid bilayer membrane characterized in that a lipid bilayer membrane is formed by thinning the lipid layer formed in the micropores by adjusting the pressure in the chamber by applying pressure to the buffer medium of Forming method. 請求項1記載の脂質二重膜の形成方法において、前記微小孔を複数個形成することを特徴とする脂質二重膜の形成方法。   2. The method of forming a lipid bilayer according to claim 1, wherein a plurality of the micropores are formed. 請求項1又は2記載の脂質二重膜の形成方法において、前記微小孔の直径を100μm、前記チャンバ内の圧力を200Pa−400Paとすることを特徴とする脂質二重膜の形成方法。 In forming method according to claim 1 or 2, wherein the lipid bilayer membrane, the microporous 1 a diameter of 00Myuemu, prior SL forming method of the lipid bilayer membrane, characterized in that the pressure in the chamber to 2 00Pa-400Pa . 請求項3記載の脂質二重膜の形成方法において、前記脂質二重膜の形成の成功率を90%以上とすることを特徴とする脂質二重膜の形成方法。   4. The method for forming a lipid bilayer according to claim 3, wherein the success rate of the formation of the lipid bilayer is 90% or more. 請求項1、3又は4記載の脂質二重膜の形成方法において、前記微小孔を独立にアレイ化し、異種の膜タンパク質を形成することを特徴とする脂質二重膜の形成方法。   5. The method for forming a lipid bilayer membrane according to claim 1, 3 or 4, wherein the micropores are arrayed independently to form a heterogeneous membrane protein. 請求項1から5の何れか1項記載の脂質二重膜の形成方法において、前記チャンバ側と前記マイクロ流路側にそれぞれマイクロ電極を配置し、さらに該マイクロ電極に接続されるパッチクランプ増幅器を配置し、前記脂質二重膜の膜電流を測定することを特徴とする脂質二重膜の形成方法。 6. The method of forming a lipid bilayer membrane according to claim 1, wherein a microelectrode is disposed on each of the chamber side and the microchannel side, and a patch clamp amplifier connected to the microelectrode is further disposed. and, the method of forming the lipid bilayer membrane and measuring membrane currents of the lipid bilayer. (a)基板と、
(b)該基板の表に形成されるチャンバと、
(c)前記基板の裏に形成されるマイクロ流路と、
(d)前記チャンバと前記マイクロ流路との間の前記基板を貫通する微小孔が底部に形成された該微小孔の直径/高さの比率が100/21〜82の漏斗型の穴と、
(e)該漏斗型の穴を単位として形成される前記チャンバ内の圧力を調整する圧力調整手段とを具備することを特徴とする脂質二重膜の形成装置。
(A) a substrate;
(B) a chamber formed on the surface of the substrate;
(C) a microchannel formed on the back of the substrate;
(D) a funnel-shaped hole having a diameter / height ratio of 100/21 to 82 in which a microhole penetrating the substrate between the chamber and the microchannel is formed in the bottom;
(E) A device for forming a lipid bilayer, comprising pressure adjusting means for adjusting the pressure in the chamber formed with the funnel-shaped hole as a unit.
請求項7記載の脂質二重膜の形成装置において、前記微小孔を複数個配置することを特徴とする脂質二重膜の形成装置。   8. The apparatus for forming a lipid bilayer membrane according to claim 7, wherein a plurality of the micropores are arranged. 請求項7記載の脂質二重膜の形成装置において、前記チャンバ側と前記マイクロ流路側にそれぞれ配置されるマイクロ電極と、該マイクロ電極に接続されるパッチクランプ増幅器とを備え、脂質二重膜の膜電流を測定可能にしたことを特徴とする脂質二重膜の形成装置。   The apparatus for forming a lipid bilayer according to claim 7, comprising: a microelectrode disposed on each of the chamber side and the microchannel side; and a patch clamp amplifier connected to the microelectrode. An apparatus for forming a lipid bilayer membrane, characterized in that a membrane current can be measured.
JP2005136111A 2005-05-09 2005-05-09 Method and apparatus for forming lipid bilayer membrane Expired - Fee Related JP4953044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136111A JP4953044B2 (en) 2005-05-09 2005-05-09 Method and apparatus for forming lipid bilayer membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136111A JP4953044B2 (en) 2005-05-09 2005-05-09 Method and apparatus for forming lipid bilayer membrane

Publications (2)

Publication Number Publication Date
JP2006312141A JP2006312141A (en) 2006-11-16
JP4953044B2 true JP4953044B2 (en) 2012-06-13

Family

ID=37533849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136111A Expired - Fee Related JP4953044B2 (en) 2005-05-09 2005-05-09 Method and apparatus for forming lipid bilayer membrane

Country Status (1)

Country Link
JP (1) JP4953044B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114702B2 (en) * 2005-07-29 2013-01-09 国立大学法人 東京大学 Method and apparatus for forming bilayer film by contact with amphiphilic monolayer
GB0614835D0 (en) * 2006-07-26 2006-09-06 Isis Innovation Formation of bilayers of amphipathic molecules
EP2122344B8 (en) 2007-02-20 2019-08-21 Oxford Nanopore Technologies Limited Lipid bilayer sensor system
JP5441142B2 (en) 2007-11-26 2014-03-12 国立大学法人 東京大学 Microfluidic planar lipid bilayer array and analytical method using the planar lipid bilayer membrane
JP5051841B2 (en) * 2007-11-29 2012-10-17 国立大学法人 東京大学 Method for producing artificial lipid membrane on micropore of substrate and artificial lipid membrane holding substrate
GB0724736D0 (en) * 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
JP5230300B2 (en) * 2008-08-26 2013-07-10 日本電信電話株式会社 Biomolecule function analysis substrate, biomolecule function analysis sample body, and biomolecule function analysis method
CN101971013B (en) 2008-08-26 2013-06-19 松下电器产业株式会社 Artificial lipid membrane forming method and artificial lipid membrane forming apparatus
WO2011043008A1 (en) * 2009-10-07 2011-04-14 パナソニック株式会社 Method for forming artificial lipid membrane
US8062489B2 (en) 2009-10-07 2011-11-22 Panasonic Corporation Method for forming artificial lipid membrane
JP5544186B2 (en) * 2010-02-17 2014-07-09 独立行政法人科学技術振興機構 Method for forming planar lipid bilayer membrane
JP5614642B2 (en) * 2010-10-10 2014-10-29 公益財団法人神奈川科学技術アカデミー Method for forming lipid bilayer membrane and instrument therefor
JP5683216B2 (en) * 2010-11-08 2015-03-11 公益財団法人神奈川科学技術アカデミー Target substance detection method and apparatus
JP5814567B2 (en) * 2011-03-07 2015-11-17 浜松ホトニクス株式会社 Sample observation apparatus and sample observation method
GB201202519D0 (en) 2012-02-13 2012-03-28 Oxford Nanopore Tech Ltd Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
US9850534B2 (en) * 2012-02-16 2017-12-26 Genia Technologies, Inc. Methods for creating bilayers for use with nanopore sensors
GB201313121D0 (en) 2013-07-23 2013-09-04 Oxford Nanopore Tech Ltd Array of volumes of polar medium
JP6211273B2 (en) * 2013-02-27 2017-10-11 国立大学法人 東京大学 Lipid bilayer device, lipid bilayer device array, lipid bilayer device manufacturing apparatus, and lipid bilayer device manufacturing method
JP6281834B2 (en) 2013-08-21 2018-02-21 国立大学法人 東京大学 High-density microchamber array and manufacturing method thereof
GB201418512D0 (en) 2014-10-17 2014-12-03 Oxford Nanopore Tech Ltd Electrical device with detachable components
GB201611770D0 (en) 2016-07-06 2016-08-17 Oxford Nanopore Tech Microfluidic device
JP7440915B2 (en) 2018-09-10 2024-02-29 地方独立行政法人神奈川県立産業技術総合研究所 analysis device
AU2020239385A1 (en) 2019-03-12 2021-08-26 Oxford Nanopore Technologies Plc Nanopore sensing device and methods of operation and of forming it
CN113634296B (en) * 2021-10-19 2022-02-11 北京芯迈微生物技术有限公司 Micro-fluidic chip

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312950A (en) * 1986-07-04 1988-01-20 Toyoe Moriizumi Solute response element
JP4394917B2 (en) * 2003-09-19 2010-01-06 独立行政法人科学技術振興機構 Current measuring device with artificial lipid bilayer membrane
JP4394916B2 (en) * 2003-09-19 2010-01-06 独立行政法人科学技術振興機構 Artificial lipid bilayer membrane formation apparatus, artificial lipid bilayer membrane formation method, and use thereof
JP3769622B2 (en) * 2003-09-22 2006-04-26 国立大学法人 東京大学 Artificial lipid membrane formation method and lipid planar membrane formation apparatus therefor

Also Published As

Publication number Publication date
JP2006312141A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP4953044B2 (en) Method and apparatus for forming lipid bilayer membrane
EP1712909B1 (en) Method of forming planar lipid double membrane for membrane protein analysis and apparatus therefor
Wang et al. Single-cell electroporation
US8232074B2 (en) Nanoelectrodes and nanotips for recording transmembrane currents in a plurality of cells
US8506905B2 (en) Method of forming bilayer membrane by contact between amphipathic monolayers and apparatus therefor
Neužil et al. Revisiting lab-on-a-chip technology for drug discovery
US8293524B2 (en) Methods and apparatus for the manipulation of particle suspensions and testing thereof
EP1322955B1 (en) System for electrophysiological measurements
Guo et al. Probing cell–cell communication with microfluidic devices
DE60003171T2 (en) METHODS FOR MINIATURIZED CELL ARRANGEMENT AND CELL-BASED SCREENING DEVICE
US20020063067A1 (en) System for electrophysiological measurements
US20060234298A1 (en) Systems and methods for rapidly changing the solution environment around sensors
JP2008194573A (en) Lipid double film forming method
JP3769622B2 (en) Artificial lipid membrane formation method and lipid planar membrane formation apparatus therefor
US20130140192A1 (en) Method of Producing a Lipid Bilayer and Microstructure and Measuring Arrangement
AU2003205132A1 (en) Systems and methods for rapidly changing the solution environment around sensors
AU2001293676A1 (en) System for electrophysiological measurements
CN104513787A (en) Integrated micro-fluidic chip and system for capture, culture and administration of single cells
De Stefano et al. The impact of microfluidics in high-throughput drug-screening applications
Arrabito et al. Oil-in-water fl droplets by interfacial spontaneous fragmentation and their electrical characterization
Frimat et al. Passive pumping for the parallel trapping of single neurons onto a microsieve electrode array
Robinson Microfluidics and giant vesicles: creation, capture, and applications for biomembranes
Solanki et al. Biological applications of microfluidics system
Cheung et al. Individually addressable planar patch clamp array
KR101927890B1 (en) Apparatus for Detecting Cell Performing Simultaneous Cell Culture and Detecting Based on Hydrogel and Microfluidic Channel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4953044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees