JP4939849B2 - Generator and power supply system - Google Patents

Generator and power supply system Download PDF

Info

Publication number
JP4939849B2
JP4939849B2 JP2006164282A JP2006164282A JP4939849B2 JP 4939849 B2 JP4939849 B2 JP 4939849B2 JP 2006164282 A JP2006164282 A JP 2006164282A JP 2006164282 A JP2006164282 A JP 2006164282A JP 4939849 B2 JP4939849 B2 JP 4939849B2
Authority
JP
Japan
Prior art keywords
power
container
voltage
power supply
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006164282A
Other languages
Japanese (ja)
Other versions
JP2007336659A (en
Inventor
修 服部
Original Assignee
盛岡セイコー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盛岡セイコー工業株式会社 filed Critical 盛岡セイコー工業株式会社
Priority to JP2006164282A priority Critical patent/JP4939849B2/en
Publication of JP2007336659A publication Critical patent/JP2007336659A/en
Application granted granted Critical
Publication of JP4939849B2 publication Critical patent/JP4939849B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prostheses (AREA)
  • Electrotherapy Devices (AREA)
  • Magnetic Treatment Devices (AREA)

Description

本発明が属する技術分野は、体内埋め込み型の医療機器に電気を供給する補助電源の分野に属する。体内埋め込み型の医療機器は、通常一次電池で稼働しているが、この電池は使用と共に消耗して行く。発電能力が低い発電器でも、持続的又は半持続的に電力を供給することで、一時的に消耗した一次電池の更なる消耗を押さえ、また、この一次電源が完全に消耗するまでの時間を延ばすことが可能になる。   The technical field to which the present invention belongs is that of an auxiliary power source for supplying electricity to an implantable medical device. Implantable medical devices are usually operated with a primary battery, which is consumed with use. Even with a generator with low power generation capacity, supplying power continuously or semi-persistently suppresses further consumption of the temporarily consumed primary battery, and reduces the time until the primary power supply is completely consumed. It can be extended.

病気や器官の疾患で生命活動に必要な酵素やホルモンを、定期的に又は必要な時に供給できない場合や、本来は一定のリズムで作動すべき臓器が臓器を動かすべき電気信号が乱れることによって正常に動かない場合がある。これらの病気や疾患は思量することが困難なものが多く、人工的な臓器や信号発生装置で代用する治療方法が増えて来ている。例えば、インシュリンを適時に供給する装置はインシュリン・ポンプであり、不整脈を校正するのは心臓ペースメーカである。このような生命維持器具は、通常の生活を送るのに不便にならないように自立して機能し、体内埋め込み型が普及してきている。   Normal when the enzymes and hormones necessary for life activities cannot be supplied regularly or when needed due to diseases or organ diseases, or when the organs that should operate at a constant rhythm are disturbed by the electrical signals that move the organs May not work. Many of these illnesses and diseases are difficult to conceive, and there are an increasing number of treatment methods that can be substituted with artificial organs or signal generators. For example, the device that delivers insulin in a timely manner is an insulin pump, and it is the cardiac pacemaker that calibrates the arrhythmia. Such life support devices function independently so as not to be inconvenient for living a normal life, and implantable types have become widespread.

この様な人工臓器や信号発生器は電源を必要とするものが多く、体内埋め込み型の場合は機動性を必要とすることから電池、特に一次電池を電源とするものが多い。この装置を体内に埋め込む場合は手術、つまり体を切開してこの装置を埋め込む必要があるので、電池が消耗したからと言って再度手術を行うことによる電池交換は、患者の体力的及び金銭的な負担を考えると簡単ではない。しかし、体内に確保できる空間には限りがあり、大型で高性能な電池を体内に埋め込むことには限界がある。一方、前記の理由から体内埋め込み型の機器には、高い信頼性が要求されることは周知のとおりである。信頼性を高める為にフェール・セイフ機構を搭載すればするほど、電源に負担がかかると言う現象が起きていることも事実である。   Many of these artificial organs and signal generators require a power source, and in the case of an implantable type, they need mobility, so many batteries, particularly primary batteries, are used as a power source. When this device is implanted in the body, it is necessary to implant the device by incising the body and replacing the battery by performing the operation again just because the battery is exhausted. Given the heavy burden, it is not easy. However, the space that can be secured in the body is limited, and there is a limit in embedding a large, high-performance battery in the body. On the other hand, it is well known that high reliability is required for an implantable device for the above reason. It is also true that there is a phenomenon that the more the fail-safe mechanism is installed to increase the reliability, the more burden is placed on the power supply.

このため、磁界変動を発生させる磁界発生装置と機械的変位をする磁石とを組み合わせ、非接触で発電を行って、生体内の機器に電力を供給する生体内電子機器が開示されている(特許文献1参照)。
特開平11−215802号公報参照
For this reason, an in-vivo electronic device is disclosed that combines a magnetic field generator that generates magnetic field fluctuations and a magnet that mechanically displaces, generates power in a non-contact manner, and supplies power to the in-vivo device (patent). Reference 1).
See JP-A-11-215802

一次電源は使用すれば消耗することは避けられない。しかし、体内埋め込み型の機器に於いて機能や性能を優先する結果、消費電力の小さい素子を用いて消費電力化を図るには限界がある。特に患者が若者である場合は患者が生存する期間が長い場合が多く見受けられ、電池交換をせずにこの患者が死期を迎えるまでこの機器を作動させ続けることは困難である。   If the primary power supply is used, it is inevitable that it will be consumed. However, as a result of giving priority to function and performance in an implantable device, there is a limit to achieving power consumption using an element with low power consumption. In particular, when the patient is a young person, it is often the case that the patient survives for a long period of time, and it is difficult to continue to operate the device until the patient reaches the death stage without replacing the battery.

一方、発電機構に2次電池を備えた電源もあるが、一般に自立型の発電器はその効率が悪く、また発電に必要な条件が揃わないと発電ができないため、一次電池の様に高い電源性能と安定した電源供給を発電型電源に求めることは厳しい。埋め込み型のこの機器は、動作しないと人命の危険が伴う為に、発電式の電源のみでこの機器を動かすことは、医療行為として好ましくない。   On the other hand, there is a power supply with a secondary battery in the power generation mechanism, but in general, a self-supporting power generator is inefficient and cannot generate power unless the conditions necessary for power generation are met. It is strict to demand power generation type power and stable power supply. Since this implantable device has a risk of human life if it does not operate, it is not preferable as a medical practice to operate this device with only a power generation type power source.

また、特許文献1に記載された生体内電子機器は、体内にある自ら電力を発生することができず、体外で発生させた磁界を体内に埋め込まれた磁石等に供給しなければならない。   Further, the in-vivo electronic device described in Patent Document 1 cannot generate electric power by itself in the body, and must supply a magnetic field generated outside the body to a magnet or the like embedded in the body.

本発明の発電器は、容器と、前記容器の内側にある磁石と、前記容器の内側にあって、一端を前記磁石に接続し、他端を前記容器に接続して、前記磁石を前記容器の内で中空に吊した状態に保持する弾力性のある弾性体と、前記容器の外側に巻かれたコイルと、から成る。   The power generator of the present invention is a container, a magnet inside the container, and inside the container, with one end connected to the magnet, the other end connected to the container, and the magnet connected to the container And an elastic elastic body that is held in a hollow state, and a coil wound around the outside of the container.

本発明の発電器は、装着者の動きによって、前記磁石が前記容器内を移動するものである。   In the power generator of the present invention, the magnet moves in the container by the movement of the wearer.

また、本発明の電源供給システムは、これらの発電器を有し、発電器により発電された電力を蓄える二次電池を有する。   Moreover, the power supply system of this invention has these power generators, and has a secondary battery which stores the electric power generated by the power generator.

本発明の発電器は、さらに、一次電池を有し、前記二次電池は前記一次電池の補助電源として使用するものである。一次電池は、安定していて比較的大きな電流を随時供給できるが、反面、消耗する一方との短所がある。二次電池は、発電条件が揃っていれば半永久的に比較的小さいが電流を供給できる。したがって、二次電池が供給する電流を優先的に使用し、不足している電流分を一次電池で補う。   The power generator of the present invention further includes a primary battery, and the secondary battery is used as an auxiliary power source for the primary battery. The primary battery is stable and can supply a relatively large current at any time, but has the disadvantage of being consumed. A secondary battery can supply a current though it is relatively small semipermanently if power generation conditions are met. Therefore, the current supplied from the secondary battery is preferentially used, and the insufficient current is compensated by the primary battery.

埋め込み型の医療器具の電源として、位置及び運動エネルギー変換型の発電器を備えた二次電池と一次電池を併用した電源を使用することで、一次電池が消耗する期間を伸ばし、電池消耗に起因する電池交換手術の頻度を下げることで、患者の金銭的且つ肉体的負担を軽減することができる効果を有する。   By using a power source that combines a primary battery and a secondary battery equipped with a position and kinetic energy conversion generator as a power source for an implantable medical device, the period of time when the primary battery is consumed is extended. By reducing the frequency of battery replacement surgery, the patient's financial and physical burden can be reduced.

本発明では、発電器搭載型二次電池に付いて、回転運動を電気に換える方法で装置構成を試みた。腕の運動、続いて足の運動に於いては、高い発電効率を得ることができた。なお、それ以外の体の部分に於いては、低い発電量しか得られなかった。この結果から、人間の体の動きは円運動ではないと判断し、同時に運動は線運動と仮定して、線運動を電気に変換する発電機構とした。   In the present invention, an apparatus configuration was attempted by a method of changing the rotational motion to electricity for a generator-mounted secondary battery. High power generation efficiency was obtained in the exercise of the arm and the exercise of the foot. In other parts of the body, only low power generation was obtained. From this result, it was judged that the movement of the human body was not a circular movement, and at the same time the movement was assumed to be a linear movement, and a power generation mechanism that converts the linear movement into electricity was adopted.

一次電池付いては、一般に使用されているリチウム電池とした。線運動を電気に換える発電方法として、双局型の永久磁石とコイルの組み合わせによる電磁誘導方式を採用した。   The primary battery is a commonly used lithium battery. An electromagnetic induction method using a combination of dual-station permanent magnets and coils was adopted as a power generation method to convert line motion to electricity.

本実施例では、線運動を電気に変換する電磁誘導型の発電装置と、二次電池の構造及びその機能について説明する。図1は永久磁石をバネ性の線で中空に吊し、永久磁石を自由に動ける様にした、いわゆる中空吊り発電器の原理を説明する模式図である。永久磁石100は、四本のバネ性の線110a、110b、110c、110dで収納箱130の対角線上の角に固定されている。永久磁石100は小型で強い磁力線を放つ材質のものが好ましく、本実施例ではサマリアム・コバルトを材料とする永久磁石100を用いた。永久磁石100を吊り下げるバネ材質サスペンダー110a、110b、110c、110dには、機械時計のゼンマイに用いられる材料、本実施例ではスプロン材をコイルバネ状に加工して用いた。ゼンマイ用金属は、繰り返しの曲げや応力に対する耐久性が高く、医療器具に要求される信頼性を満たすには最良の材料の1つである。収納箱130は、その材質に磁化しにくい金属材料を用いることが好ましく、本実施例では非磁化した軟鉄材を収納箱130の材質として用いた。収納箱130は、永久磁石100から出る磁力線を高める鉄心の効果があり、誘電体材料よりも磁化しにくい材料の方が高い発電効率が得られた。バネ材質サスペンダー110a、110b、110c、110dは、永久磁石100が収納箱130の側壁に極力ぶつからないように、長さ及びバネ常数を調整する。本実施例では、収納箱130の形状が直方体であるため、一方の壁、図4で言うX方向の壁にぶつかって永久磁石100が破壊されるのを防止するため、図1に示す様に、永久磁石100の4面に防護板120a、120b、120c、120dを取り付けた。防護板の材質は、衝撃を吸収し易い材質が好ましく、本実施例では軟質のビニール材を使用した。   In this embodiment, the structure and function of an electromagnetic induction power generation device that converts linear motion into electricity and a secondary battery will be described. FIG. 1 is a schematic diagram for explaining the principle of a so-called hollow suspension generator in which a permanent magnet is suspended in a hollow state by a spring-like wire so that the permanent magnet can freely move. The permanent magnet 100 is fixed to the diagonal corner of the storage box 130 by four spring-like wires 110a, 110b, 110c, and 110d. The permanent magnet 100 is preferably made of a small material that emits strong magnetic field lines. In this embodiment, the permanent magnet 100 made of samarium cobalt is used. As the spring material suspenders 110a, 110b, 110c, and 110d for suspending the permanent magnet 100, a material used for a mainspring of a mechanical timepiece, in this embodiment, a spron material processed into a coil spring shape was used. The mainspring metal is one of the best materials to satisfy the reliability required for medical devices because of its high durability against repeated bending and stress. The storage box 130 is preferably made of a metal material that is hard to be magnetized. In this embodiment, a non-magnetized soft iron material is used as the material of the storage box 130. The storage box 130 has the effect of an iron core that increases the lines of magnetic force emitted from the permanent magnet 100, and higher power generation efficiency is obtained with a material that is less magnetized than a dielectric material. The spring material suspenders 110a, 110b, 110c, and 110d adjust the length and the spring constant so that the permanent magnet 100 does not hit the side wall of the storage box 130 as much as possible. In this embodiment, since the shape of the storage box 130 is a rectangular parallelepiped, in order to prevent the permanent magnet 100 from being destroyed by colliding with one wall, the wall in the X direction as shown in FIG. 4, as shown in FIG. The protective plates 120a, 120b, 120c, and 120d were attached to the four surfaces of the permanent magnet 100. The material of the protective plate is preferably a material that easily absorbs impact, and in this embodiment, a soft vinyl material was used.

図2は、発電器の電気回路と二次電池及び電圧制御回路を示した模式図である。収納箱130に発電用コイル200となる電線210を巻き付けてある。発電用コイル200は、本実施例ではエナメル線を用い、単一方向に2重巻きとした。発電用コイル200に発生する起電力は、永久磁石100の運動の方向で電流の向きが決まる為、ブリッジ・ダイオードの平滑回路220を通して、二次電池230に接続されている。二次電池230としては、ニッケル水素電池やニッケル・カドミウム電池について検討を行ったが、充電・放電を繰り返すと寿命が極端に短くなるため、本実施例では充電許容量が大きい電気二重層コンデンサーを用いた。しかし、小型の電気二重層コンデンサーは、絶対耐圧が低いので、過度の発電によるサージ電圧を避ける為に、可変電圧制御機構のついた電圧制御器(VR)240を搭載した。電圧制御器240は、二次電池230からの出力電圧を一定に保つ機能とサージ電圧を防ぎ、二次電池230の絶対耐圧を越えない電圧に保つ2つの効果を合わせもつ。本実施例で使用した電気二重層コンデンサーの規格は、その容量が0.47F(ファラッド)で絶対耐圧が5.5Vのものを使用した。従って、電圧制御器230の制御電圧の範囲を0〜5Vのものとした。   FIG. 2 is a schematic diagram showing an electric circuit of the generator, a secondary battery, and a voltage control circuit. An electric wire 210 serving as a power generation coil 200 is wound around the storage box 130. In the present embodiment, the power generating coil 200 uses an enameled wire and is wound twice in a single direction. The electromotive force generated in the power generating coil 200 is connected to the secondary battery 230 through the smoothing circuit 220 of the bridge diode because the direction of the current is determined by the direction of movement of the permanent magnet 100. As a secondary battery 230, a nickel-hydrogen battery or a nickel-cadmium battery has been studied. However, if charging and discharging are repeated, the service life becomes extremely short. Therefore, in this embodiment, an electric double layer capacitor having a large charge capacity is used. Using. However, since a small electric double layer capacitor has a low absolute withstand voltage, a voltage controller (VR) 240 with a variable voltage control mechanism is mounted in order to avoid a surge voltage due to excessive power generation. The voltage controller 240 has both the function of keeping the output voltage from the secondary battery 230 constant and the two effects of preventing the surge voltage and keeping the voltage not exceeding the absolute withstand voltage of the secondary battery 230. As the standard of the electric double layer capacitor used in this example, a capacitor having a capacity of 0.47 F (Farad) and an absolute withstand voltage of 5.5 V was used. Accordingly, the control voltage range of the voltage controller 230 is set to 0 to 5V.

図3は、電気二重層コンデンサーの絶対耐圧、電圧制御器の設定電圧と発電電圧を示した電圧図である。電圧制御器240の電圧降下機能によって、発電電圧値が電気二重層コンデンサー230の絶対耐圧値を越えないことが判る。電圧制御器240の出口には500μF、耐圧6Vの電解コンデンサー250(図2参照)を接続し、負荷用バッファーとした。   FIG. 3 is a voltage diagram showing the absolute withstand voltage of the electric double layer capacitor, the set voltage of the voltage controller, and the generated voltage. It can be seen that the generated voltage value does not exceed the absolute withstand voltage value of the electric double layer capacitor 230 by the voltage drop function of the voltage controller 240. An electrolytic capacitor 250 (see FIG. 2) having 500 μF and a withstand voltage of 6 V was connected to the outlet of the voltage controller 240 to obtain a load buffer.

次に、発電器が効率の良い発電を行う為の条件について説明する。発電器400が埋め込み型の医療器具と共に体内、特に人間の胴体410の中に埋設されるときは、図4で示す方向に埋設すると発電効率を高めることができる。人間の行動の内、基本となるのは歩行運動と立ち座り運動である。歩行運動は、図4で言うY方向への等速直線に近い運動にZ方向の上下運動が加わったものである。   Next, conditions for the power generator to generate power efficiently will be described. When the power generator 400 is embedded in the body, particularly in the human torso 410 together with the implantable medical device, power generation efficiency can be improved by embedding in the direction shown in FIG. The basics of human behavior are walking and standing and sitting. The walking motion is obtained by adding a vertical motion in the Z direction to a motion close to a constant velocity straight line in the Y direction shown in FIG.

図5は、人間が歩く時の上下運動と永久磁石の位置を示した模式図である。発電に必要な運動とは、加速度を伴う運動である。歩行運動と立ち座り運動はZ方向への加速度運動であるため、人間が行う運動の内で加速度を伴う運動は、Z方向に動くことが多いものとし、Z方向の加速度運動に対し発電効率を最大にする必要がある。永久磁石100はバネ状のサスペンダー110a〜110dで中空に保持されているが、その慣性で体内に埋設された収納箱130とは異なった動きをする為、発電用コイル200を通過する磁束密度が変化する。磁束密度が変化することで発電用コイル210に電流が流れ、発電が行われることになる。立ち座り運動も同様にZ方向への上下運動である為、発電が起きるが、連続した運動とはならない為、発電効率は低い。図4に示すY方向に付いては、人間が歩く時の進行方向、つまり前方向である。歩行は、Y方向に若干の加速度運動を伴うが、図4のX方向、つまり人間の横方向の運動と同様、Z方向と比較すると差は大きい。   FIG. 5 is a schematic diagram showing the vertical movement and the position of the permanent magnet when a human walks. The movement necessary for power generation is movement accompanied by acceleration. Since walking motion and standing and sitting motion are acceleration motions in the Z direction, it is assumed that motions with acceleration among human motions often move in the Z direction. Must be maximized. The permanent magnet 100 is held hollow by spring-like suspenders 110a to 110d. However, since the permanent magnet 100 moves differently from the storage box 130 embedded in the body due to its inertia, the magnetic flux density passing through the power generating coil 200 is low. Change. When the magnetic flux density changes, a current flows through the power generation coil 210 and power generation is performed. Similarly, the standing and sitting movement is a vertical movement in the Z direction, and thus power generation occurs. However, since the movement is not continuous, the power generation efficiency is low. The Y direction shown in FIG. 4 is the traveling direction when a person walks, that is, the forward direction. Walking is accompanied by a slight acceleration motion in the Y direction, but the difference is large compared to the Z direction as in the X direction in FIG.

従って、発電器400を図4で示す方向で体内に埋め込むことで、最大の発電効率を得ることができる。   Therefore, the maximum power generation efficiency can be obtained by embedding the power generator 400 in the body in the direction shown in FIG.

一般的に、二次電源は一次電源の補助電源として使われることが多いが、ここでは一次電源の消耗を最大限押さえる為に、二次電源が供給する電源を通常使用しており、二次電源が必要とする電気を供給できなくなった場合のみに、一次電源を用いる方法について説明する。   In general, the secondary power supply is often used as an auxiliary power supply for the primary power supply, but here the power supplied by the secondary power supply is usually used to minimize the consumption of the primary power supply. A method of using the primary power supply only when the electricity required by the power supply cannot be supplied will be described.

図6は、この方法を実施する為の必要最低限の回路である。先ず、負荷の部分で必要とする電圧を電圧制御素子(VR)602の設定電圧に印可する。二次電源600の中の二次電池である電気二重層コンデンサー604に充分な電気が貯まっている状態、つまり電気二重層コンデンサー604が示す電圧が制御電圧を超えている場合は、逆流防止ダイオード610を通して負荷に対し電源が供給される。図6の点Aに於いては、制御電圧と同じ電圧が現れている為、コンパレータ620の出力点である点Cに於いては、コンパレータ620が一次電源630から電源を得ているので、一次電源630と同じ電圧が現れる。点Cに現れた電圧は、インバータ620を介して、パワートランジスタ640に供給される為、インバータ650の出力点Dに於いて、電圧は0Vとなる。従って、パワートランジスタ640は作動せず、一次電源630からの電源供給は行われないこととなる。   FIG. 6 shows a minimum necessary circuit for carrying out this method. First, the voltage required in the load portion is applied to the set voltage of the voltage control element (VR) 602. When sufficient electricity is stored in the electric double layer capacitor 604 that is a secondary battery in the secondary power supply 600, that is, when the voltage indicated by the electric double layer capacitor 604 exceeds the control voltage, the backflow prevention diode 610 Power is supplied to the load through. At point A in FIG. 6, the same voltage as the control voltage appears. Therefore, at point C, which is the output point of the comparator 620, the comparator 620 obtains power from the primary power source 630. The same voltage as the power supply 630 appears. Since the voltage appearing at the point C is supplied to the power transistor 640 via the inverter 620, the voltage is 0V at the output point D of the inverter 650. Therefore, the power transistor 640 does not operate, and power supply from the primary power supply 630 is not performed.

しかし、電気二重層コンデンサー604が示す電圧が制御電圧を下回った場合は、図6の点Aには電圧があらわれず、点Aに於いて0Vとなる為、点Cに於いても電圧は0Vとなる。点Cに於ける電圧が0Vである為、インバータ650出力点である点Dに於いては、一次電源630と同じ電圧になり、パワートランジスタ640が作動して、点Bへ一次電源630の電流が供給される。しかし、点Bの二次電源側には、逆流防止ダイオード610があるため、一次電源630の電流は負荷側にのみ供給される。   However, when the voltage indicated by the electric double layer capacitor 604 is lower than the control voltage, the voltage does not appear at the point A in FIG. 6 and becomes 0V at the point A. Therefore, the voltage at the point C is 0V. It becomes. Since the voltage at the point C is 0V, at the point D which is the output point of the inverter 650, the voltage is the same as the primary power source 630, the power transistor 640 is activated, and the current of the primary power source 630 to the point B Is supplied. However, since there is a backflow prevention diode 610 on the secondary power source side at point B, the current of the primary power source 630 is supplied only to the load side.

従って、この回路を用いることで、二次電源604を優先的に使い、二次電源604が枯渇した場合に初めて一次電源630を使う回路が実現できた。   Therefore, by using this circuit, a circuit that uses the secondary power source 604 preferentially and uses the primary power source 630 only when the secondary power source 604 is exhausted can be realized.

この発明は、埋め込み型の医療機器の電源として開発されたが、発電器をその他の発電方法に換えることで医療分野以外での利用が可能である。   Although this invention was developed as a power source for an implantable medical device, it can be used outside the medical field by replacing the power generator with another power generation method.

中空釣り発電器の原理と防護板を示す図であり、図1(a)は正面図、図1(b)は立体図、図1(c)は防護板の取り付け状態を示す立体図It is a figure which shows the principle of a hollow fishing power generator, and a protection board, FIG. 1 (a) is a front view, FIG.1 (b) is a three-dimensional view, FIG.1 (c) is a three-dimensional view which shows the attachment state of a protection board. 発電用コイルの形状及び平滑回路を示す図The figure which shows the shape and smoothing circuit of the coil for power generation 過電圧防止回路の動作方法を示す電圧図Voltage diagram showing how the overvoltage protection circuit operates 永久磁石の運動方向を示す模式図Schematic diagram showing the direction of movement of the permanent magnet 歩行運動と位置の変位を示す模式図Schematic diagram showing walking movement and position displacement 一次電源を二次電源の補助電源として用いる回路図Circuit diagram using primary power supply as auxiliary power supply for secondary power supply

符号の説明Explanation of symbols

100 磁石
110a、110b、110c、110d 線
120a、120b 防護板
130 収納箱
200 発電用コイル
210 電線
230、604 二次電池
400 発電器
100 Magnet 110a, 110b, 110c, 110d Wire 120a, 120b Guard plate 130 Storage box 200 Power generation coil 210 Electric wire 230, 604 Secondary battery 400 Generator

Claims (4)

容器と、
前記容器の内側にある磁石と、
前記容器の内側にあって、一端を前記磁石に接続し、他端を前記容器の内側の上面の対角線上の一対の角及び前記容器の内側の下面の対角線上の一対の角にそれぞれ接続して、前記磁石を前記容器の内で中空に吊した状態に保持する弾力性のある複数の弾性体と、
前記容器の外側に巻かれたコイルと、
から成る発電器。
A container,
A magnet inside the container;
Inside the container, one end is connected to the magnet, and the other end is connected to a pair of diagonal corners on the inner top surface of the container and a pair of diagonal corners on the bottom surface inside the container. A plurality of elastic elastic bodies that hold the magnet in a suspended state in the container,
A coil wound around the outside of the container;
A generator consisting of
装着者の動きによって、前記磁石が前記容器内を移動する請求項1記載の発電器。   The power generator according to claim 1, wherein the magnet moves in the container by a movement of a wearer. 請求項1または2に記載された発電器と、前記発電器により発電された電力を蓄える二次電池を有する電源供給システム。   A power supply system comprising: the power generator according to claim 1 or 2; and a secondary battery that stores power generated by the power generator. さらに、一次電池を有し、前記二次電池は前記一次電池の補助電源として使用する請求項3記載の電源供給システム。   The power supply system according to claim 3, further comprising a primary battery, wherein the secondary battery is used as an auxiliary power source for the primary battery.
JP2006164282A 2006-06-14 2006-06-14 Generator and power supply system Expired - Fee Related JP4939849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164282A JP4939849B2 (en) 2006-06-14 2006-06-14 Generator and power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164282A JP4939849B2 (en) 2006-06-14 2006-06-14 Generator and power supply system

Publications (2)

Publication Number Publication Date
JP2007336659A JP2007336659A (en) 2007-12-27
JP4939849B2 true JP4939849B2 (en) 2012-05-30

Family

ID=38935590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164282A Expired - Fee Related JP4939849B2 (en) 2006-06-14 2006-06-14 Generator and power supply system

Country Status (1)

Country Link
JP (1) JP4939849B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101429402B1 (en) * 2013-06-25 2014-08-14 울산대학교 산학협력단 A Pendulum device based Energy Harvester

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876214B2 (en) * 1988-12-16 1999-03-31 株式会社 金門製作所 Flowmeter
JPH10174411A (en) * 1996-12-09 1998-06-26 Yasuo Inoue Coil-winding vibration-generation device
JP2000069738A (en) * 1998-08-24 2000-03-03 Maruho Hatsujo Kogyo Kk Generator
JP2000308326A (en) * 1999-04-15 2000-11-02 Japan Science & Technology Corp Power-generating device and biomedical electronic apparatus using the same
JP2000308327A (en) * 1999-04-22 2000-11-02 Makino Tadashi Kenkyusho:Kk Portable electronic equipment
JP2001045126A (en) * 1999-08-04 2001-02-16 Mitsubishi Electric Corp Portable telephone set
JP2002374661A (en) * 2001-06-15 2002-12-26 Yamaguchi Technology Licensing Organization Ltd Portable generator and portable electronic apparatus comprising it
JP2004187429A (en) * 2002-12-04 2004-07-02 Tokai Rika Co Ltd Generator and tire inner pressure detection device
JP2004282818A (en) * 2003-03-13 2004-10-07 Mn Engineering Kk Card type portable generator
JP2006149163A (en) * 2004-11-24 2006-06-08 Chugoku Electric Power Co Inc:The Electricity accumulating unit

Also Published As

Publication number Publication date
JP2007336659A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP6203292B2 (en) Piezoelectric vibration energy harvester
Nasiri et al. A linear permanent magnet generator for powering implanted electronic devices
US3563245A (en) Biologically implantable and energized power supply
US8723342B2 (en) Wearable generator device
US20070293904A1 (en) Self-powered resonant leadless pacemaker
US3906960A (en) Medical energy converter
US20160248312A1 (en) Kinetic energy harvesting methods and apparatus
US20070276444A1 (en) Self-powered leadless pacemaker
US4245640A (en) Chest motion electricity generating device
RU2009104111A (en) POWER SUPPLY OF IMPLANTED JOINT SYSTEMS USING KINETIC MOVEMENT
Dai et al. Hip-mounted electromagnetic generator to harvest energy from human motion
US11065458B2 (en) Electronic pacemaker
Kumar et al. A comparative numerical study on piezoelectric energy harvester for self‐powered pacemaker application
CN211405828U (en) Energy collecting device
JP2010115025A (en) Contactless power transmission system and electronic device
JP4939849B2 (en) Generator and power supply system
CN107929943B (en) Wireless charging cardiac pacemaker
US20080200963A1 (en) Implantable power generator
JP2005057982A (en) Power generating device with pendulum type piezoelectric element
WO2018095239A1 (en) Energy supply device for collecting kinetic energy of organism
CN115800801A (en) Implanted flexible pulse generator
US6915145B2 (en) Self-rechargeable portable telephone
JP2006149164A (en) Electricity accumulating unit
WO2018192302A1 (en) Power generation apparatus and intelligent wearable device
US11043889B2 (en) Methods and apparatus for kinetic energy harvesting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees