JP4930674B2 - Sealed alkaline storage battery and its assembled battery - Google Patents

Sealed alkaline storage battery and its assembled battery Download PDF

Info

Publication number
JP4930674B2
JP4930674B2 JP2005239642A JP2005239642A JP4930674B2 JP 4930674 B2 JP4930674 B2 JP 4930674B2 JP 2005239642 A JP2005239642 A JP 2005239642A JP 2005239642 A JP2005239642 A JP 2005239642A JP 4930674 B2 JP4930674 B2 JP 4930674B2
Authority
JP
Japan
Prior art keywords
positive electrode
cobalt
hydroxide
electrode plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005239642A
Other languages
Japanese (ja)
Other versions
JP2007059071A (en
Inventor
啓晃 森
晃一 坂本
寿則 坂東
健吾 古川
一弥 岡部
秀一 井土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2005239642A priority Critical patent/JP4930674B2/en
Publication of JP2007059071A publication Critical patent/JP2007059071A/en
Application granted granted Critical
Publication of JP4930674B2 publication Critical patent/JP4930674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、金属多孔体基板に水酸化ニッケルを主体とする活物質を充填した正極及びこれを用いた密閉形アルカリ蓄電池及びその複数個で構成した組電池に関し、さらに詳しくはその生産性の改善と耐過放電耐久性の向上に関するものである。   The present invention relates to a positive electrode in which a metal porous substrate is filled with an active material mainly composed of nickel hydroxide, a sealed alkaline storage battery using the positive electrode, and an assembled battery composed of a plurality of the positive electrodes, and more particularly to improvement in productivity. And over-discharge durability.

近年、モバイルコンピュータ、デジタルカメラなどの移動体電子機器を始めとする小型軽量を求められる電動機器が急速に増加する傾向にある。これらの機器の電源として、金属多孔体に水酸化ニッケルを主体とする活物質を充填してなる正極(=以下、非焼結式ニッケル極板と記載する)を用いた密閉型アルカリ蓄電池は、焼結式ニッケル極板を用いたニッケルカドミウム蓄電池や鉛蓄電池等よりも単位体積及び単位質量当たりのエネルギーが高い。また、これらのうち、負極に水素吸蔵合金からなる電極を用いたニッケル水素蓄電池は、とくに環境にクリーンな電源と前記電動機器用電源として広く用いられ、ハイブリッド形電気自動車(HEV)や従来ニッケルカドミウム電池が用いられていた電動工具や玩具などの電源のように高出力特性に優れ、かつ長寿命特性が要求される分野への適用も始まっている。   In recent years, there has been a rapid increase in the number of electric devices that are required to be small and light, such as mobile electronic devices such as mobile computers and digital cameras. As a power source for these devices, a sealed alkaline storage battery using a positive electrode (= hereinafter referred to as a non-sintered nickel electrode plate) formed by filling a metal porous body with an active material mainly composed of nickel hydroxide, Energy per unit volume and unit mass is higher than nickel cadmium storage batteries and lead storage batteries using sintered nickel electrode plates. Of these, nickel-metal hydride storage batteries using an electrode made of a hydrogen storage alloy for the negative electrode are widely used as a power source that is particularly clean for the environment and as a power source for the electric equipment, such as hybrid electric vehicles (HEV) and conventional nickel cadmium. Applications have also begun in fields that require high output characteristics and long life characteristics, such as power tools such as power tools and toys that use batteries.

非焼結式ニッケル極板は、耐アルカリ性の金属多孔体に、水酸化ニッケルを主体とする活物質及びコバルトを主体とする導電剤前駆体と結着剤を充填もしくは塗着した後に、圧縮成形、所定寸法に裁断することにより製造される。活物質の充填もしくは塗工は、上記粉末を増粘剤を溶解した水溶液等でペースト状にして、金属多孔体を該ペースト中に浸漬したり、該ペーストを金属多孔体に塗布することにより行う。
ここで「水酸化ニッケルを主体とする活物質」(以下、「活物質」と略すこともある)とは、ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物のことを指す。
Non-sintered nickel electrode plates are formed by filling or coating an alkali-resistant metal porous body with an active material mainly composed of nickel hydroxide and a conductive agent precursor composed mainly of cobalt and a binder. It is manufactured by cutting to a predetermined dimension. The filling or coating of the active material is performed by making the powder into a paste with an aqueous solution in which a thickener is dissolved and immersing the metal porous body in the paste, or applying the paste to the metal porous body. .
Here, the “active material mainly composed of nickel hydroxide” (hereinafter sometimes abbreviated as “active material”) refers to hydroxides and oxides mainly composed of nickel and containing cobalt and zinc.

この方法で製造されたニッケル極板は、焼結式ニッケル極板と比較して、活物質を多量に充填できること及び工程が簡略化され生産性が高いという利点がある。しかしながら、このような電極では活物質粒子を主体とする正極粉体が極板端面から脱落発生しやすくまた、裁断面から金属多孔体の端部が露出し易いために、正極板と負極板をセパレータを介して捲回する際に、脱落した正極粉体や金属穿出部がセパレータを突き破って短絡が発生し、不良となる問題があった。
前記正極粉体とは前記水酸化ニッケルを主体とする活物質と混合添加されているコバルトを主体とする導電剤前駆体、希土類水酸化物または酸化物、結着剤等の添加剤との混合物のことを指す。
Compared with the sintered nickel electrode plate, the nickel electrode plate manufactured by this method has the advantages that it can be filled with a large amount of active material and that the process is simplified and the productivity is high. However, in such an electrode, the positive electrode powder mainly composed of active material particles is likely to drop off from the end face of the electrode plate, and the end of the metal porous body is easily exposed from the cut surface. When winding through the separator, there has been a problem that the dropped positive electrode powder or the metal piercing portion breaks through the separator and causes a short circuit, resulting in a defect.
The positive electrode powder is a mixture of a conductive agent precursor mainly composed of cobalt mixed with an active material mainly composed of nickel hydroxide, an additive such as a rare earth hydroxide or oxide, and a binder. Refers to that.

また、電池組み立て後も、充放電に伴って正極板は膨張収縮を繰り返す為、正極粉体の脱落が発生しやすい。このような電極では電池の過充電や過放電によって正極が電解液の分解ガスを発生する場合、活物質粒子を主体とする正極粉体が極板端面から押し出され脱落発生しやすいという問題があった。とくに、正極板の上縁部や下縁部などの端面においては、正極粉体の脱落が抑制困難であるため、電池使用中に微小短絡が進行し、突然電池が使用できなくなるという問題があった。   In addition, even after the battery is assembled, the positive electrode plate repeatedly expands and contracts with charge and discharge, so that the positive electrode powder is likely to fall off. In such an electrode, when the positive electrode generates a decomposition gas of the electrolytic solution due to overcharge or overdischarge of the battery, the positive electrode powder mainly composed of active material particles is pushed out from the end face of the electrode plate and easily falls off. It was. In particular, it is difficult to prevent the positive electrode powder from falling off at the upper and lower edges of the positive electrode plate, so that there is a problem that a micro short-circuit progresses during use of the battery, and the battery cannot be used suddenly. It was.

さらに、非焼結式ニッケル極板においては、アルカリ中で2価のイオンを生成するコバルト化合物を活物質である水酸化ニッケル粉末に混合添加、もしくは水酸化ニッケル粉末の表面に予め被覆することにより、焼結式ニッケル極板の場合と比べ孔径が大きい金属多孔体と活物質の電気的接続、及び活物質粉末同士の粒子間電気的接続が図られている。コバルト化合物はアルカリ電解液中でいったん溶解してCo(OH)2として極板表面に再析出する。さらにこれが電池組み立て後の充電操作で電気化学的に2価以上の高導電性のコバルト酸化物に酸化されることにより、もともと導電性に乏しい水酸化ニッケル活物質粒子間の電導性ネットワークが形成され、充分な放電容量を得ることのできるペースト式ニッケル電極となる。(例えば、特許文献1、特許文献2参照)
特開昭61−138458 特公平4−4698
Furthermore, in a non-sintered nickel electrode plate, a cobalt compound that generates divalent ions in an alkali is added to nickel hydroxide powder as an active material, or the surface of the nickel hydroxide powder is coated in advance. In addition, an electrical connection between a porous metal body having a large pore diameter and an active material as compared with the case of a sintered nickel electrode plate and an electrical connection between particles of active material powders are achieved. The cobalt compound is once dissolved in the alkaline electrolyte and reprecipitated on the surface of the electrode plate as Co (OH) 2 . Furthermore, when this is electrochemically oxidized into a highly conductive cobalt oxide having a valence of 2 or more during the charging operation after battery assembly, a conductive network is formed between the nickel hydroxide active material particles that are originally poor in conductivity. Thus, a paste type nickel electrode capable of obtaining a sufficient discharge capacity is obtained. (For example, see Patent Document 1 and Patent Document 2)
JP 61-138458 JP 4-4698

しかしながら、上述のようなコバルト化合物によって導電性ネットワークが形成された非焼結式ニッケル極板は、その耐過放電性能が充分ではない。これは通常の電池使用においては、いったん酸化された高導電性のコバルト酸化物は安定に存在しているが、例えば、電動工具用途などで瞬間的に低い電圧まで放電された場合には、2価以上とされたコバルト化合物が還元されてしまい、還元生成物である2価コバルトはアルカリ溶液中に溶解してしまうためである。溶出したCoイオンはセパレータ中に拡散したり、活物質の内部細孔に取り込まれたりして、活物質表面の導電性ネットワークが破壊され、活物質粒子間の電気的接続が維持できなくなってしまったり、電池短絡の原因となることが分かっている。とくに電池を集合化して機器の動力源として用いる場合には、電池性能のバラツキの程度によって、特定の電池に負荷が大きくかかってしまい転極するなどして、電池が過放電されることによって、組電池の寿命が低下してしまう問題があった。   However, the non-sintered nickel electrode plate in which the conductive network is formed of the cobalt compound as described above does not have sufficient overdischarge performance. In normal battery use, once oxidized highly conductive cobalt oxide exists stably, for example, when it is momentarily discharged to a low voltage in a power tool application etc., 2 This is because a cobalt compound having a valence higher than that is reduced, and divalent cobalt as a reduction product is dissolved in an alkaline solution. The eluted Co ions diffuse into the separator or are taken into the internal pores of the active material, destroying the conductive network on the active material surface, making it impossible to maintain the electrical connection between the active material particles. It has been found that it causes a battery short circuit. In particular, when batteries are assembled and used as a power source for equipment, depending on the degree of variation in battery performance, a specific battery may be heavily loaded and reversed, causing overdischarge of the battery. There was a problem that the life of the assembled battery was reduced.

図1に円筒形アルカリ蓄電池の略構造を図示する。ハイブリッド形電気自動車(HEV)や電動工具や玩具などの高出力特性が要求される電池では、長尺状の正極板及び負極板がセパレータを介して渦巻き状に捲回されてなる極群と、これを収容する有底円筒形の外装缶と、この外装缶の開口部を封口するガス排出弁を有する蓋部から構成されている。
正極及び負極の集電のために、それぞれの極板の長手方向の一方の端部を活物質や添加剤等が充填されていない未充填部を設け、これらの未充填部が互いに対向しない向きに極群が捲回されている。極群の両端に突出したこれらの未充填部にそれぞれ円形の正極集電体及び負極集電体が溶接され、次いで正極集電体と蓋部下面が集電リードにより接続されていることで、各々の極板の電気的接続が達成されており、捲回した極群の全周より集電して、電池出力を確保している。( 特にこの方式による集電方法を、正極板の長手方向の一部のみ活物質を除去してリード溶接し、集電をとる方式の電池と区別して、インダイレクト集電方式と呼ぶ )
FIG. 1 shows a schematic structure of a cylindrical alkaline storage battery. In a battery requiring high output characteristics such as a hybrid electric vehicle (HEV), a power tool, a toy, etc., a pole group in which a long positive electrode plate and a negative electrode plate are spirally wound via a separator, It is comprised from the bottomed cylindrical exterior can which accommodates this, and the cover part which has a gas discharge valve which seals the opening part of this exterior can.
In order to collect the positive electrode and the negative electrode, one end in the longitudinal direction of each electrode plate is provided with an unfilled portion that is not filled with an active material or an additive, and these unfilled portions do not face each other. The pole group is wound around. A circular positive electrode current collector and a negative electrode current collector are welded to these unfilled portions protruding at both ends of the pole group, respectively, and then the positive electrode current collector and the lower surface of the lid portion are connected by current collecting leads. Each electrode plate is electrically connected, and current is collected from the entire circumference of the wound electrode group to ensure battery output. (Especially, this method of current collection is called the indirect current collection method, distinguishing it from a battery that collects current by removing the active material only in the longitudinal direction of the positive electrode plate and lead welding.)

高出力が要求されるインダイレクト集電方式の電池においては、非焼結式ニッケル極板の長手方向に活物質や添加剤の未充填部と充填部が形成されておりこれらの厚みがそれぞれ異なるために、極群を捲回した場合、対向する負極板との圧迫圧力差が生じ、未充填部と充填部の境界領域で、活物質を主体とする正極粉体が極板から脱落発生しやすく、また、極板の裁断端面から金属多孔体骨格の破断端部が露出し易いという点を解決するため、非焼結式ニッケル極板の未充填部と充填部の境界領域に樹脂を塗布する多くの提案がなされている。例えば、非焼結式ニッケル極板の未充填部と充填部の境界領域に選択的に、熱溶融性樹脂により表面コートする方法が開示されている。(例えば、特許文献3、特許文献4参照)
特開2000−323136号公報 特開2002−367607号公報
In an indirect current collecting type battery that requires high output, an unfilled portion and a filled portion of an active material and an additive are formed in the longitudinal direction of a non-sintered nickel electrode plate, and these thicknesses are different from each other. For this reason, when the electrode group is wound, a pressure difference between the opposing negative electrode plate is generated, and the positive electrode powder mainly composed of the active material is dropped from the electrode plate in the boundary region between the unfilled part and the filled part. In order to solve the problem that the fracture end of the porous metal skeleton is easily exposed from the cut end surface of the electrode plate, a resin is applied to the boundary region between the unfilled portion and the filled portion of the non-sintered nickel electrode plate. Many proposals have been made. For example, a method of selectively surface coating with a hot-melt resin on a boundary region between an unfilled portion and a filled portion of a non-sintered nickel electrode plate is disclosed. (For example, see Patent Document 3 and Patent Document 4)
JP 2000-323136 A JP 2002-367607 A

前記特許文献3、特許文献4によれば、電池組み立て工程で、正極粉体の極板の未充填部と充填部の境界からの脱落発生や、極板から金属多孔体の突出部が露出することをある程度抑制することができる。しかし、厚みを持った非焼結式ニッケル極板が渦巻き状に巻き取られる際には、概略円状になるよう極板が割れながら巻き取られていくため、割れた亀裂部分から活物質を主体とする正極粉末が脱落することは避けられず、この方法による脱落抑制は不十分である。さらに、正極の集電側と反対側の極板下端部に対向する負極集電側には、正極と同様に未充填部と充填部が形成されておりこれらの厚みがそれぞれ異なるために、対向する極板との圧迫圧力差が生じる。よって蓄電池を充放電すると、正極が体積膨張・収縮したり、正極からのガス発生によって正極下端部からの正極粉体脱落が発生する。このため、特許文献3、特許文献4に記載の方法によっても大きな改善にはつながらない。   According to Patent Document 3 and Patent Document 4, in the battery assembly process, the positive electrode powder is detached from the boundary between the unfilled portion and the filled portion of the electrode plate, and the protruding portion of the metal porous body is exposed from the electrode plate. This can be suppressed to some extent. However, when a non-sintered nickel electrode plate with a thickness is wound up in a spiral shape, the electrode plate is wound up in a roughly circular shape, so that the active material is removed from the cracked portion. It is inevitable that the positive electrode powder as a main component falls off, and this method is insufficient to suppress the removal. Furthermore, on the negative electrode current collector side facing the lower end of the electrode plate on the side opposite to the current collector side of the positive electrode, an unfilled part and a filled part are formed in the same manner as the positive electrode. A pressure difference with the electrode plate is generated. Therefore, when the storage battery is charged / discharged, the positive electrode expands and contracts in volume, or gas generation from the positive electrode causes the positive electrode powder to fall off from the lower end of the positive electrode. For this reason, even the methods described in Patent Document 3 and Patent Document 4 do not lead to significant improvement.

さらに、正極のコバルト導電性ネットワークの耐久性を改善するために、水酸化ニッケルを主体とする活物質粒子の表面に2価以上のコバルト化合物を被覆して、2価の未酸化コバルト化合物残留を制限する方法が、開示されている。
すなわち、ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物(水酸化ニッケルを主体とする活物質と定義した)からなる粉末の表面に少なくともコバルト水酸化物又はオキシ水酸化コバルトの層を形成した粉末(以下、「コバルト被覆水酸化ニッケル活物質」という。「コバルト被覆活物質」と略すこともある。)とするものである(例えば、特許文献5、特許文献6、特許文献7参照)。
特開平8−148146号公報 特開2001−52695号公報 特開2000−268820号公報
Further, in order to improve the durability of the cobalt conductive network of the positive electrode, the surface of the active material particles mainly composed of nickel hydroxide is coated with a bivalent or higher cobalt compound, and the residual bivalent cobalt oxide compound is formed. A method of limiting is disclosed.
That is, at least a layer of cobalt hydroxide or cobalt oxyhydroxide on the surface of a powder composed of a hydroxide and oxide containing nickel and cobalt and zinc (defined as an active material mainly containing nickel hydroxide). (Hereinafter, referred to as “cobalt-coated nickel hydroxide active material”, sometimes abbreviated as “cobalt-coated active material”) (for example, Patent Document 5, Patent Document 6, and Patent Document 7). reference).
JP-A-8-148146 JP 2001-52695 A JP 2000-268820 A

従来は2価のコバルトを導電性の高い2価以上のコバルト酸化物に変換しようとするには、電気化学的酸化(充電)という手段によっていたが、これは電池化成条件のわずかな違いに左右されやすく、正極内部の電気的接続が不十分となったり、電解液中で溶解離散して投入した2価コバルト化合物量に見合う導電ネットワークが形成されないなどの問題があった。上記の方法では電池組立後の電気化学的酸化(充電)の代わりに予め粉末状態で化学的に酸化するという手段を用いることで水酸化コバルトの酸化反応の完遂を達成し、溶解・析出過程の条件及び充電電流・時間などの諸条件に左右されることのない2価以上のコバルト化合物を形成することができる。しかしながら、この方法によって生成される導電性ネットワークは、従来のように2価コバルトの溶解析出過程を経ていないため、粒子同士の接触のみによっており、粒子間電気接続が不十分である。このため、これらの方法による活物質粉末を用いた非焼結式ニッケル極板では、高率放電性能が不十分となる問題があり、また、上記の手段を持ってしても、電池が深い過放電を受けた場合には、やはりコバルト還元が生じるため充分な耐過放電特性を有するには至らなかった。   Conventionally, divalent cobalt has been converted to highly conductive cobalt oxide with higher conductivity by means of electrochemical oxidation (charging), which depends on slight differences in battery formation conditions. There is a problem that the electrical connection inside the positive electrode is insufficient, and a conductive network corresponding to the amount of the divalent cobalt compound which is dissolved and dispersed in the electrolytic solution is not formed. In the above method, the oxidation reaction of cobalt hydroxide is completed by using the means of chemical oxidation in the powder state in advance instead of the electrochemical oxidation (charging) after battery assembly. It is possible to form a divalent or higher valent cobalt compound that is not affected by various conditions such as conditions and charging current / time. However, since the conductive network generated by this method does not go through the process of dissolution and precipitation of divalent cobalt as in the prior art, it is only due to the contact between the particles, and the electrical connection between the particles is insufficient. For this reason, the non-sintered nickel electrode plate using the active material powder by these methods has a problem that the high-rate discharge performance is insufficient, and the battery is deep even if the above means are provided. In the event of overdischarge, cobalt reduction still occurs, so that sufficient overdischarge characteristics were not achieved.

本発明は、上記問題点を解決するためになされたものであり、非焼結式ニッケル極板を用いた密閉形アルカリ蓄電池の耐短絡性と耐過放電耐久性の向上、及びその複数個で構成した組電池のサイクル寿命の向上を目的とし、高性能な密閉形アルカリ蓄電池及びその複数個で構成した組電池を歩留まりよく提供することを課題とする。   The present invention has been made in order to solve the above-mentioned problems, and it is possible to improve the short-circuit resistance and over-discharge durability of a sealed alkaline storage battery using a non-sintered nickel electrode plate, and a plurality thereof. For the purpose of improving the cycle life of the assembled battery, it is an object to provide a high-performance sealed alkaline storage battery and a plurality of the assembled batteries with high yield.

上記の課題を達成するために、本発明者らは鋭意検討の結果、水酸化ニッケルを主体とする粉末の表面に少なくともコバルト水酸化物またはオキシ水酸化コバルトの層を形成した粉末をコバルト被覆活物質として、多孔体に充填した非焼結式ニッケル極板において、極板の下縁部の特定領域に特定針入度の樹脂を含浸させると、優れた耐短絡性を有するアルカリ蓄電池を実現でき、また、コバルト被覆活物資粉末を充填する際に、特定の希土類水酸化物または酸化物の特定の量をコバルト被覆活物質粉末に混合添加することにより驚くべきことに、優れた耐短絡性を維持しつつ、充放電の膨張収縮と過放電及び過充電によって発生するガス発生に起因する脱落と過放電によるコバルト導電性の低下を抑制して優れた特性を備えるアルカリ蓄電池が得られることを見出し、本発明に至った。また、これらの方法を用いて作成した電池を集合組電池とすることにより、組電池特有の電池容量ばらつきや、充電、放電の特性のばらつきによって発生する過充電、過放電の耐久性を向上させ、極めて優れたサイクル寿命性能を有する組電池を得ることが出来る。又、高率放電を要求される電池に於いては、瞬間的に低い電圧まで放電された場合でも特定の電池が選択的にダメージを受けにくく、組電池での高率放電性能を維持することができ、格段に優れた耐過放電耐久特性を有する組電池の実現が可能であることを見いだし本発明に至った。本発明は、前記課題を解決するために、以下の手段を採用するものである。   In order to achieve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, have obtained a powder obtained by forming at least a cobalt hydroxide or cobalt oxyhydroxide layer on the surface of a powder mainly composed of nickel hydroxide. As a material, in a non-sintered nickel electrode plate filled with a porous material, impregnating a specific area of the lower edge of the electrode plate with a specific penetration resin can realize an alkaline storage battery with excellent short-circuit resistance. In addition, when filling the cobalt-coated active material powder, surprisingly, excellent short-circuit resistance is achieved by adding a specific amount of a specific rare earth hydroxide or oxide to the cobalt-coated active material powder. Alkaline power storage with excellent characteristics while maintaining the expansion and contraction of charge / discharge, overdischarge, and dropping due to gas generation caused by overcharge and suppressing the decrease in cobalt conductivity due to overdischarge Found that to obtain, it has completed the present invention. In addition, by making the battery created using these methods into an assembled battery, the durability of overcharge and overdischarge caused by the battery capacity variation unique to the assembled battery and the variation in charging and discharging characteristics can be improved. An assembled battery having extremely excellent cycle life performance can be obtained. In addition, for batteries that require high-rate discharge, specific batteries are not selectively damaged even when discharged to a low voltage instantaneously, and maintain high-rate discharge performance in assembled batteries. Thus, the present inventors have found that it is possible to realize an assembled battery having an extremely excellent overdischarge durability characteristic. The present invention employs the following means in order to solve the above problems.

(1)電槽内に、金属多孔体を基板としニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面にコバルト水酸化物又はオキシ水酸化コバルトの層を形成し希土類水酸化物又は酸化物を混合して充填した正極板と、負極板と、セパレータとを巻き込んで構成した円筒形極群と、正極集電体と負極集電体と電解液とを備え、絶縁体を介して前記電槽と電気的に絶縁された蓋に正極板及び正極集電体とを電気的に接続するリードを備えた密閉形アルカリ蓄電池において、前記正極板が、その上下両端部のうち少なくとも下端部を、25℃の針入度0.15mm以上2.6mm以下の樹脂で、正極板充填部の下端面から0.2mm以上含浸したものであることを特徴とする密閉形アルカリ蓄電池電池である。(請求項1)
(2)前記正極板が、少なくとも下端部を、25℃の針入度0.15mm以上2.6mm以下の樹脂で、前記正極板充填部の下端面から0.2mm〜1.0mm含浸したものであることを特徴とする前記(1)の密閉形アルカリ蓄電池である。(請求項2)
(3)前記樹脂が、飽和炭化水素であることを特徴とする前記(1)又は(2)の密閉形アルカリ蓄電池である。(請求項3)
(4)前記希土類が、少なくともイッテルビウムを含むことを特徴とする前記(1)〜(3)のいずれか一項の密閉形アルカリ蓄電池である。(請求項4)
(5)前記希土類水酸化物または酸化物は、ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面に少なくともコバルト水酸化物又はオキシ水酸化コバルトの層を形成した粉末を100重量部としたとき、酸化物量換算で1重量部から3重量部添加することを特徴とする前記(1)〜(4)のいずれか一項の密閉形アルカリ蓄電池である。(請求項5)
(6)前記ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面に形成したコバルト水酸化物又はオキシ水酸化コバルトは、前記ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面に少なくともコバルト水酸化物又はオキシ水酸化コバルトの層を形成した粉末を100重量部としたとき、金属コバルト量換算で4重量部から8重量部含有することを特徴とする前記(1)〜(5)のいずれか一項の密閉形アルカリ蓄電池である。(請求項6)
(7)前記負極が、水素を吸蔵脱離する希土類元素とニッケルを含有する遷移金属元素を主成分として構成された水素吸蔵合金粉末からなる前記(1)〜(6)のいずれか一項の密閉形アルカリ蓄電池である。(請求項7)
(8)前記(1)〜(7)のいずれか一項の密閉形アルカリ蓄電池を用い、複数個で構成したことを特徴とする組電池である。(請求項8)
(1) In the battery case, a layer of cobalt hydroxide or cobalt oxyhydroxide is formed on the surface of a powder composed of a metal porous substrate, nickel, mainly cobalt and zinc-containing hydroxide and oxide. A positive electrode plate filled with a mixture of rare earth hydroxide or oxide, a negative electrode plate, a cylindrical electrode group constituted by winding a separator, a positive electrode current collector, a negative electrode current collector, and an electrolyte solution, In a sealed alkaline storage battery comprising a lead that electrically connects a positive electrode plate and a positive electrode current collector to a lid electrically insulated from the battery case via an insulator, the positive electrode plate has upper and lower ends thereof Among them, at least the lower end portion is impregnated with a resin having a penetration of 0.15 mm or more and 2.6 mm or less at 25 ° C., which is impregnated from the lower end surface of the positive electrode plate filling portion by 0.2 mm or more. It is a storage battery. (Claim 1)
(2) The positive electrode plate is impregnated at least at the lower end with a resin having a penetration of 0.15 mm or more and 2.6 mm or less at 25 ° C. from the lower end surface of the positive electrode plate filling portion to 0.2 mm to 1.0 mm. (1) The sealed alkaline storage battery according to the above (1). (Claim 2)
(3) The sealed alkaline storage battery according to (1) or (2), wherein the resin is a saturated hydrocarbon. (Claim 3)
(4) The sealed alkaline storage battery according to any one of (1) to (3), wherein the rare earth contains at least ytterbium. (Claim 4)
(5) The rare earth hydroxide or oxide has at least a layer of cobalt hydroxide or cobalt oxyhydroxide formed on the surface of powder composed of hydroxide and oxide mainly containing nickel and cobalt and zinc. The sealed alkaline storage battery according to any one of (1) to (4), wherein 1 to 3 parts by weight in terms of oxide amount is added when the powder is 100 parts by weight. (Claim 5)
(6) The cobalt hydroxide or cobalt oxyhydroxide formed on the surface of the powder consisting of hydroxide and oxide containing cobalt and zinc mainly containing nickel contains cobalt and zinc mainly containing nickel. When 100 parts by weight of the powder in which at least a layer of cobalt hydroxide or cobalt oxyhydroxide is formed on the surface of the powder composed of hydroxide and oxide is 100 parts by weight, 4 to 8 parts by weight in terms of metallic cobalt is contained. The sealed alkaline storage battery according to any one of (1) to (5) above. (Claim 6)
(7) The negative electrode according to any one of (1) to (6), wherein the negative electrode is made of a hydrogen storage alloy powder composed mainly of a rare earth element that absorbs and desorbs hydrogen and a transition metal element containing nickel. It is a sealed alkaline storage battery. (Claim 7)
(8) An assembled battery comprising a plurality of the sealed alkaline storage batteries according to any one of (1) to (7), and a plurality of the batteries. (Claim 8)

本発明においては、正極板の下端部(正極集電体と反対側の端部)への樹脂含浸の度合いを示す指標として正極板充填部の下端面(正極集電体と反対側の端面)からの幅で定義しており、請求項1及び2に記載された「0.2mm以上」、「0.2mm〜1.0mm」という幅は正極板を高さに対して水平に、厚みに対して垂直に切断した断面において、拡大鏡で観察した正極板充填部の下端面からの平均幅を意味する(以下の実施例等においても同じ)。なお、樹脂含浸の度合いを樹脂の重量、もしくは体積等の量で定義することも可能であるが、重量定義では比重の異なる様々な樹脂に対して前述した被覆範囲が一義的とならず、また体積定義では、正極板の空孔率が異なると同体積の樹脂でも含浸させた時の高さが異なり樹脂による被覆範囲が一義的とならない虞があるので、上記のように定義した。
また、本発明における樹脂の「針入度」とは、材料(樹脂)の硬度を表す指標であり、ASTM D1321に規定される方法で評価した25℃における針入度の値をmmの単位で示したものである。
In the present invention, the lower end surface (end surface opposite to the positive electrode current collector) of the positive electrode plate filling portion is used as an index indicating the degree of resin impregnation to the lower end portion (end portion opposite to the positive electrode current collector) of the positive electrode plate. The widths of “0.2 mm or more” and “0.2 mm to 1.0 mm” described in claims 1 and 2 are the thickness of the positive electrode plate parallel to the height and the thickness. On the other hand, in the cross section cut perpendicularly, it means the average width from the lower end surface of the positive electrode plate filling portion observed with a magnifying glass (the same applies to the following examples). The degree of resin impregnation can be defined by the amount of resin, such as the weight or volume of the resin. However, in the weight definition, the above-mentioned coating range is not unambiguous for various resins having different specific gravities, and In the volume definition, when the porosity of the positive electrode plate is different, the height when impregnated with a resin of the same volume is different and the covering range by the resin may not be unambiguous.
Further, the “penetration” of the resin in the present invention is an index representing the hardness of the material (resin), and the value of the penetration at 25 ° C. evaluated by the method prescribed in ASTM D1321 in the unit of mm. It is shown.

本発明の請求項1及び2によれば、優れた耐過放電性を有する密閉形アルカリ蓄電池を歩留まりよく提供することができる。
本発明の請求項3によれば、生産性が高い密閉形アルカリ蓄電池を提供することができる。
本発明の請求項4及び6によれば、コバルト導電性ネットワークの耐過放電作用に関して特に優れた効果が発揮される。
本発明の請求項5によれば、希土類水酸化物又は酸化物の添加の効果を顕著に発揮することができる。
本発明の請求項7によれば、前記請求項1〜請求項7に記載の耐短絡性を維持しつつさらに過放電耐久性を備える効果と合わせて優れた環境負荷特性を有する密閉形ニッケル水素蓄電池を提供することができる。
本発明の請求項8によれば、耐短絡性を維持しつつさらに過放電耐久性を備える組電池を提供することができる。
According to the first and second aspects of the present invention, a sealed alkaline storage battery having excellent overdischarge resistance can be provided with high yield.
According to claim 3 of the present invention, a sealed alkaline storage battery with high productivity can be provided.
According to the fourth and sixth aspects of the present invention, particularly excellent effects are exhibited regarding the overdischarge resistance of the cobalt conductive network.
According to claim 5 of the present invention, the effect of addition of rare earth hydroxide or oxide can be remarkably exhibited.
According to claim 7 of the present invention, sealed nickel-metal hydride having excellent environmental load characteristics in combination with the effect of providing overdischarge durability while maintaining short-circuit resistance according to claims 1 to 7. A storage battery can be provided.
According to claim 8 of the present invention, it is possible to provide an assembled battery having overdischarge durability while maintaining short circuit resistance.

本発明者らは鋭意検討の結果、アルカリ蓄電池の製造時の歩留まり、サイクル繰り返し後の電池の短絡問題、及び電池の過放電時性能低下の大きな部分を正極が占めることを確認した。
そこで、電池組み立て時の歩留まり向上、過放電における正極のコバルトからなる導電性ネットワークの強化とサイクル経過後の短絡発生率の低減をすべく、非焼結式ニッケル極板の構成について検討したが、その構成を特定のものとすることによって、驚くべき歩留まり向上、耐過放電性能とサイクル経過後の短絡発生率の低減性能が得られることが判った。
As a result of intensive studies, the present inventors have confirmed that the positive electrode occupies a large part of the yield at the time of manufacturing the alkaline storage battery, the short circuit problem of the battery after repeating the cycle, and the performance deterioration at the time of battery overdischarge.
Therefore, in order to improve the yield at the time of battery assembly, strengthen the conductive network made of cobalt of the positive electrode in overdischarge and reduce the short-circuit occurrence rate after the cycle elapsed, we examined the configuration of the non-sintered nickel electrode plate, It has been found that by making the configuration specific, it is possible to obtain surprising yield improvement, overdischarge resistance, and short circuit occurrence rate reduction performance after a cycle.

即ち、ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面にコバルト水酸化物又はオキシ水酸化コバルトの層を形成した活物質にコバルト水酸化物と希土類水酸化物又は酸化物を混合して充填した正極板の下縁部を、25℃の浸入針入度0.15mm以上2.6mm以下の樹脂で0.2mm以上含浸することによって、電池の高率放電性能を低下させることなく、コバルト導電性ネットワークの強化が実現される。これは、予め活物質表面にコバルト被覆層を形成することによって、コバルトの2価から3価への酸化変換を完遂させ、かつコバルト水酸化物を添加することによって、コバルト2価の溶解析出反応により活物質粒子間を接続することができる。さらに、正極板下端部の特定の領域に特定の深度で樹脂含浸することにより、電池組み立て時の短絡不良発生を大幅に低減させ、かつサイクル経過時においても電池の短絡発生率を大幅に低減させることができた。中でも樹脂含浸を25℃の針入度0.15mm以上2.6mm以下の樹脂で0.2mm以上としたとき極めて優れた歩留まり向上が得られ好ましいことを確認した。樹脂を特定範囲で極板へ含浸させることによって、正極を巻き込む際の、正極とガイドのこすれによって発生する基板として用いる金属多孔体のバリの発生を抑制し、かつ、ニッケル極板が渦巻き状に巻き取られる際に概略円状になるよう極板が割れながら巻き取られていくときの割れた亀裂部分からの活物質を主体とした正極粉末が脱落と、亀裂部に新たに生成する金属多孔体の穿出によるセパレータの突き破り短絡を効果的に抑制することができるため、電池の組み立て歩留まりも改善される。   That is, cobalt hydroxide and rare earth hydroxide are formed on the active material in which a layer of cobalt hydroxide or cobalt oxyhydroxide is formed on the surface of a powder composed of hydroxide and oxide mainly containing nickel and cobalt and zinc. Alternatively, the high-rate discharge performance of the battery is obtained by impregnating the lower edge portion of the positive electrode plate mixed with oxide and impregnating 0.2 mm or more with a resin having a penetration of 0.15 mm or more and 2.6 mm or less at 25 ° C. Reinforcement of the cobalt conductive network is achieved without reducing the. This is because the cobalt coating layer is formed on the active material surface in advance to complete the oxidation conversion of cobalt from divalent to trivalent, and by adding cobalt hydroxide, cobalt bivalent dissolution and precipitation reaction Thus, the active material particles can be connected. Furthermore, by impregnating a specific area at the lower end of the positive electrode with a resin at a specific depth, the occurrence of short-circuit failure during battery assembly is greatly reduced, and the short-circuit occurrence rate of the battery is also greatly reduced during the cycle. I was able to. In particular, it was confirmed that when the resin impregnation was 0.2 mm or more with a resin having a penetration of 0.15 mm or more and 2.6 mm or less at 25 ° C., an extremely excellent yield improvement was obtained, which was preferable. By impregnating the electrode with resin in a specific range, the occurrence of burrs in the porous metal used as a substrate generated by rubbing the positive electrode and the guide when the positive electrode is wound is suppressed, and the nickel electrode plate is spirally formed. When the electrode plate is wound while being wound so as to be roughly circular when wound, the positive electrode powder mainly composed of the active material from the cracked portion is removed, and a new metal porosity is generated in the cracked portion. Since the breakthrough of the separator due to body piercing can be effectively suppressed, the battery assembly yield is also improved.

また理由はかならずしも明らかではないが、特定の希土類水酸化物又は酸化物を正極活物質と混合添加した場合、コバルトによる導電性ネットワークが還元され導電性を失うことによると思われる容量低下が抑制され、耐過放電性能が改善されることが判った。アルカリ水溶液中では希土類化合物はイオン形態を経由して水酸化物として極板中に存在している。このアルカリ水溶液中に存在する溶出した希土類イオンがコバルトネットワークを保護する皮膜を形成して電池の過放電時に還元された2価のコバルトがイオンとして溶解、活物質表面からの離散を抑制する効果を有しているものと考えられる。検討の結果、Dy、Ho、Er、Yb、Lu等の重希土類元素の中でも特にイッテルビウムの酸化物又は水酸化物は分散性が高いためか優れたコバルト溶出防止性能を有し極めて優れたコバルト導電性ネットワーク破壊抑制作用が得られ、耐過放電性能が向上することが分かった。   The reason is not necessarily clear, but when a specific rare earth hydroxide or oxide is mixed and added to the positive electrode active material, the decrease in capacity, which is thought to be due to reduction of the conductive network due to cobalt and loss of conductivity, is suppressed. It has been found that the overdischarge resistance is improved. In the alkaline aqueous solution, the rare earth compound exists in the electrode plate as a hydroxide via an ionic form. The eluted rare earth ions present in the alkaline aqueous solution form a film that protects the cobalt network, and the divalent cobalt that is reduced during battery overdischarge dissolves as ions and suppresses the separation from the active material surface. It is thought to have. As a result of investigation, among heavy rare earth elements such as Dy, Ho, Er, Yb, and Lu, oxide or hydroxide of ytterbium has excellent dispersibility, or has excellent cobalt elution prevention performance. As a result, it was found that the overdischarge resistance was improved.

ただし、水酸化ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面にあらかじめコバルト水酸化物又はオキシ水酸化コバルトの層を形成していない活物質粉末に、アルカリ中で2価のイオンを生成するコバルト化合物と、希土類水酸化物や酸化物を混合添加すると、希土類のイオンが2価のコバルトのアルカリ水溶液への溶解・析出を抑制してしまうため、むしろ導電性ネットワークを脆弱なものにしてしまう虞がある。このため、水酸化ニッケルを主体とする水酸化物及び酸化物からなる粉末の表面にあらかじめコバルト水酸化物の層を形成し、さらに望ましくは表面のコバルト層をオキシ水酸化ニッケルとしておくことで、強固な導電性ネットワークを形成できることが分かった。   However, in an active material powder in which a layer of cobalt hydroxide or cobalt oxyhydroxide is not formed in advance on the surface of a powder composed of hydroxide and oxide mainly containing nickel hydroxide and cobalt and zinc, If a cobalt compound that generates divalent ions at the same time and a rare earth hydroxide or oxide are mixed and added, the rare earth ions suppress the dissolution and precipitation of divalent cobalt in an alkaline aqueous solution. There is a risk of making the network vulnerable. For this reason, by previously forming a layer of cobalt hydroxide on the surface of the powder consisting of hydroxide and oxide mainly composed of nickel hydroxide, and more desirably, by setting the surface cobalt layer as nickel oxyhydroxide, It has been found that a strong conductive network can be formed.

HEVや電動工具や玩具などの高出力特性が要求される電池で、瞬時に低電圧まで放電された場合、上述のような正極の導電性ネットワークの破壊が生じ、正極の容量が十分に放電できなくなる。こうした正極は、次の充電過程で容量が残存したまま過充電を受け、酸素ガス発生反応を伴い、さらなる極板からの活物質脱落を促進することになる。あわせて過充電条件では低密度であるガンマ型オキシ水酸化ニッケルが副生成し、極板厚み膨張が生じ、活物質を主体とする正極粉末の脱落がさらに促進される。
活物質を主体とする正極粉末の脱落した極板では、電池内部短絡の可能性が大きくなることに加え、極板容量が低下しているにもかかわらず、初期と同様の定格容量が充電されることによって、さらに過充電の条件となってしまい、電池性能低下が促進される。
本発明者らは鋭検討の結果、樹脂含浸を25℃の針入度0.15mm以上2.6mm以下の樹脂で0.2mm以上としたとき極めて優れた過放電耐久性を得ることが分かった。これはかならずしも明らかではないが、含浸した樹脂が前記正極板において正極粉体同士もしくは正極粉体と正極基板とを樹脂で強固に結着させ、正極粉体の脱落を抑制したものと考えられる。
なお、該樹脂は、融点が120℃を超えるような材料であると、溶融含浸する際に活物質を痛めてしまう虞があり、融点が75℃未満であるような材料であると電池の充放電時における発熱により、電池内部で樹脂が再度溶融してしまう虞があるため、含浸する樹脂の融点は75℃以上120℃未満であることが好ましい。
高出力用途のように電池が瞬時に低電圧まで放電されるサイクルを繰り返すような用途の場合、本発明のようなコバルト導電性ネットワークの強化と同時に正極粉体脱落の抑制を行うことによって極めて優れた効果が得られる。
When batteries with high output characteristics, such as HEVs, power tools and toys, are discharged to a low voltage instantaneously, the positive electrode conductive network is destroyed as described above, and the capacity of the positive electrode can be sufficiently discharged. Disappear. Such a positive electrode is overcharged with its capacity remaining in the next charging process, and is accompanied by an oxygen gas generation reaction, and further promotes active material shedding from the electrode plate. In addition, gamma-type nickel oxyhydroxide having a low density is formed as a by-product under overcharge conditions, electrode plate thickness expansion occurs, and the detachment of the positive electrode powder mainly composed of the active material is further promoted.
In the electrode plate from which the positive electrode powder mainly composed of the active material has fallen, the possibility of a short circuit inside the battery is increased, and the rated capacity similar to the initial value is charged even though the electrode plate capacity is reduced. As a result, it becomes a condition of overcharge, and the battery performance deterioration is promoted.
As a result of intensive studies, the present inventors have found that when the resin impregnation is 0.2 mm or more with a resin having a penetration of 0.15 mm or more and 2.6 mm or less at 25 ° C., extremely excellent overdischarge durability is obtained. . Although this is not necessarily clear, it is considered that the impregnated resin strongly binds the positive electrode powders or the positive electrode powder and the positive electrode substrate with the resin in the positive electrode plate, thereby suppressing the falling off of the positive electrode powder.
If the resin has a melting point exceeding 120 ° C., the active material may be damaged when melted and impregnated. If the melting point is less than 75 ° C., the battery is charged. Since the resin may melt again inside the battery due to heat generated during discharge, the impregnating resin preferably has a melting point of 75 ° C. or higher and lower than 120 ° C.
In applications where the battery is repeatedly discharged to a low voltage instantaneously, such as in high power applications, it is extremely excellent by strengthening the cobalt conductive network as in the present invention and at the same time suppressing positive electrode powder dropout. Effect.

さらに、集合組電池として用いた高出力用途の電池では、瞬間的に低い電圧まで放電されたり、構成する電池の容量差や電池温度のばらつきによる充電高率の差に起因する容量差によって発生する過放電が発生しやすい。この場合、コバルトネットワークの破壊による容量低下は電池の容量低下の大きな因子となっていた。
また、高率放電用途の電池では高率での過放電によって、発生する大量及び高速のガスによって活物質が基板である金属多孔体から押し出され、活物質を主体とする正極粉体の脱落が発生しやすい。さらに組電池の場合、過放電によって容量低下した電池は、容量が少ないために、さらなる容量低下を発生してしまい、組電池の性能低下の大きな因子となっていた。
本発明のようにコバルト導電性ネットワークの強化と同時に活物質脱落の抑制がなされた電池を集合組電池することにより、瞬間的に低い電圧まで放電された場合でも特定の電池が選択的にダメージを受けることなく性能を維持することができる。
Furthermore, in a battery with a high output application used as an assembled battery, the battery is instantaneously discharged to a low voltage, or is generated due to a capacity difference caused by a difference in charge rate due to a difference in capacity between batteries or a variation in battery temperature. Overdischarge is likely to occur. In this case, the capacity reduction due to the destruction of the cobalt network has been a major factor in the capacity reduction of the battery.
Also, in high-rate discharge batteries, the active material is pushed out of the porous metal body, which is the substrate, by a large amount of high-speed gas generated by overdischarge at a high rate, and the positive electrode powder mainly composed of the active material falls off. Likely to happen. Furthermore, in the case of an assembled battery, since the capacity of a battery whose capacity has been reduced by overdischarge is small, the capacity is further reduced, which has been a major factor in reducing the performance of the assembled battery.
By assembling a battery in which active material dropping is suppressed at the same time as strengthening the cobalt conductive network as in the present invention, a specific battery is selectively damaged even when it is momentarily discharged to a low voltage. Performance can be maintained without receiving.

ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面にコバルト水酸化物又はオキシ水酸化コバルトからなる表面層を形成するに際しては、ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面に少なくともコバルト水酸化物又はオキシ水酸化コバルトの層を形成した粉末を100重量部としたとき、金属コバルト換算で4重量部から8重量部となるよう被覆すると、十分な電池容量を維持しつつ、強固な導電性ネットワークが得られ好ましい。   When forming a surface layer made of cobalt hydroxide or cobalt oxyhydroxide on the surface of powder consisting of hydroxide and oxide containing cobalt and zinc mainly containing nickel, it contains cobalt and zinc mainly containing nickel. When the powder in which at least a layer of cobalt hydroxide or cobalt oxyhydroxide is formed on the surface of the powder composed of hydroxide and oxide is 100 parts by weight, the amount is 4 to 8 parts by weight in terms of metallic cobalt. Such coating is preferable because a strong conductive network can be obtained while maintaining a sufficient battery capacity.

また、コバルト被覆活物質粉末への希土類水酸化物または酸化物の添加量は、ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面にコバルト水酸化物又はオキシ水酸化コバルトからなる表面層を形成させた粉末100重量部に対して酸化物量換算で1〜3重量部とすると、電池容量を維持しつつ、強固な導電性ネットワークが得られるので好ましい。これらの希土類化合物添加は、ニッケル電極の酸素過電圧を大きくする効果も併せもつため、電池の充電効率をも向上させる。該含有量が1重量部未満では耐過放電効果が得られず、3重量部を超えると、導電性ネットワーク形成機能が阻害されるためか出力特性が低くなる虞がある。   Further, the amount of rare earth hydroxide or oxide added to the cobalt-coated active material powder is such that cobalt hydroxide or oxywater is added to the surface of the powder composed of nickel and cobalt-zinc-containing hydroxide and oxide. It is preferable to use 1 to 3 parts by weight in terms of oxide amount with respect to 100 parts by weight of the powder on which the surface layer made of cobalt oxide is formed because a strong conductive network can be obtained while maintaining the battery capacity. The addition of these rare earth compounds also has the effect of increasing the oxygen overvoltage of the nickel electrode, thus improving the charging efficiency of the battery. If the content is less than 1 part by weight, the overdischarge-resistant effect cannot be obtained. If the content exceeds 3 parts by weight, the function of forming the conductive network may be hindered, which may reduce the output characteristics.

負極は通常アルカリ蓄電池に用いられる材料であればよく、特に限定されるものではない。
負極としては、特に過放電時において正極から発生する水素を吸蔵することのできる水素吸蔵合金が好ましい。水素吸蔵合金は、水素吸蔵が可能な合金であれば良く、AB2系、AB5系の合金であれば好適に用いることができる。
また、La、Ce、Pr、Ndなどの希土類元素とNiを含有する遷移金属元素を主成分とする水素吸蔵合金を用いると、特に環境負荷の小さい電池とすることができる。
AB5形の水素吸蔵合金の場合、MmNi5(Mmはミッシュメタルを表し、La、Ce、Pr等の希土類元素の混合物)のNiの一部をCo、Mn、Al、Cu等で置換した合金が、優れたサイクル寿命特性と高い放電容量を持つので好ましい。
水素吸蔵合金にあらかじめ触媒を付与しておくと、セパレータを透過する正極から発生するガスを吸収でき、端面方向へのガスの発生速度が遅くなるためか、過放電を含む寿命性能を向上出来るため好ましい。
中でも、AB5系の合金を高温のアルカリ水溶液で浸漬した合金は、極めて優れた水素ガス吸収力を有しているので好ましい。
The negative electrode is not particularly limited as long as it is a material usually used for alkaline storage batteries.
As the negative electrode, a hydrogen storage alloy capable of storing hydrogen generated from the positive electrode particularly during overdischarge is preferable. The hydrogen storage alloy may be any alloy that can store hydrogen, and can be suitably used if it is an AB 2 or AB 5 alloy.
In addition, when a hydrogen storage alloy containing a rare earth element such as La, Ce, Pr, or Nd and a transition metal element containing Ni as a main component is used, a battery having a particularly low environmental load can be obtained.
For AB 5 form of the hydrogen storage alloy, MmNi 5 (Mm represents a misch metal, La, Ce, mixture of rare earth elements Pr, etc.) Co a part of Ni of, Mn, Al, alloys obtained by substituting Cu, etc. Is preferable because it has excellent cycle life characteristics and high discharge capacity.
If a catalyst is applied to the hydrogen storage alloy in advance, the gas generated from the positive electrode that permeates the separator can be absorbed, and the generation rate of the gas in the direction of the end face can be slowed, or the life performance including overdischarge can be improved. preferable.
Among them, an alloy was immersed AB 5 type alloy at a high temperature of an alkaline aqueous solution is preferred because it has extremely excellent hydrogen gas absorption.

水素吸蔵合金を用いる場合、水素吸蔵合金の電解液への耐蝕性を高めるため、希土類を添加する事が好ましい。
中でも、Yb、Erの水酸化物は極めて優れた防食性を有しているために好ましい。
添加の方法として、これらの希土類は酸化物で添加すると電解液として用いたアルカリと反応して水酸化物に化学変化する過程で、極めて細かい粒子に分散するため酸化物で添加することも好適である。
防触作用は添加量が多いほど好ましいが、正極からの過放電時の水素ガスの吸収には、水素吸蔵合金の水素過電圧を低くするため、水素吸収速度と水素吸蔵量を低下させるため、水素吸蔵合金に対し酸化物として3%以上の添加は好ましくない。
防触添加剤として、イットリウム、エルビウムの酸化物や水酸化物を記載したが、予め水素吸蔵合金に金属として含有させても良い。
When using a hydrogen storage alloy, it is preferable to add a rare earth in order to improve the corrosion resistance of the hydrogen storage alloy to the electrolyte.
Among them, Yb and Er hydroxides are preferable because they have extremely excellent anticorrosion properties.
As a method of addition, when these rare earths are added as oxides, they react with the alkali used as the electrolyte and chemically change into hydroxides, so that they are dispersed in extremely fine particles, so it is also preferable to add them as oxides. is there.
The anti-corrosion effect is preferably as the added amount is large, but in order to absorb hydrogen gas during overdischarge from the positive electrode, the hydrogen absorption voltage and the hydrogen storage amount are reduced in order to lower the hydrogen overvoltage of the hydrogen storage alloy, so Addition of 3% or more as an oxide to the storage alloy is not preferable.
Although yttrium and erbium oxides and hydroxides have been described as anti-corrosion additives, they may be previously contained as a metal in the hydrogen storage alloy.

水素吸蔵合金粉体を所定の形状で得るためには粉砕機や分級機が用いられるが、分級方法としては、特に限定されるものではない。   In order to obtain the hydrogen storage alloy powder in a predetermined shape, a pulverizer or a classifier is used, but the classification method is not particularly limited.

以上、負極の主要構成成分である負極活物質について詳述したが、前記水素吸蔵電極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   As described above, the negative electrode active material that is the main constituent of the negative electrode has been described in detail. In addition to the main constituent, the hydrogen storage electrode includes a conductive agent, a binder, a thickener, a filler, and the like. It may be contained as a constituent component.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、気相成長炭素、金属(銅,ニッケル,金等)粉、金属繊維等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, A conductive material such as ketjen black, carbon whisker, carbon fiber, vapor-grown carbon, metal (copper, nickel, gold, etc.) powder, metal fiber or the like can be included as one type or a mixture thereof.

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりケチェンブラックが望ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜2重量%が導電性を有しつつ、負極の容量を大きく低下させないことから好ましい。特にケッチェンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。   Among these, as the conductive agent, Ketjen black is desirable from the viewpoints of electron conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by weight to 2% by weight with respect to the total weight of the positive electrode or the negative electrode because it has conductivity and does not significantly reduce the capacity of the negative electrode. In particular, ketjen black is preferably used after being pulverized into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE)、ポリエチレン(PE)、ポリプロピレン(PP)等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化(EPDM)、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して0.1〜3重量%が好ましい。   The binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), ethylene-propylene-diene terpolymer (EPDM), sulfonated (EPDM), styrene. Polymers having rubber elasticity such as butadiene rubber (SBR) and fluorine rubber can be used as one kind or a mixture of two or more kinds. The addition amount of the binder is preferably 0.1 to 3% by weight with respect to the total weight of the positive electrode or the negative electrode.

前記増粘剤としては、通常、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)等の多糖類等を1種または2種以上の混合物として用いることができる。増粘剤の添加量は、正極または負極の総重量に対して0.1〜3重量%が好ましい。   As said thickener, polysaccharides, such as carboxymethylcellulose (CMC) and methylcellulose (MC), etc. can be normally used as 1 type, or 2 or more types of mixtures. The addition amount of the thickener is preferably 0.1 to 3% by weight with respect to the total weight of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は5重量%以下が好ましい。   As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefinic polymers such as polypropylene and polyethylene, carbon and the like are used. The addition amount of the filler is preferably 5% by weight or less with respect to the total weight of the positive electrode or the negative electrode.

正極及び負極は、前記活物質、導電剤及び結着剤を水やアルコール、トルエン等の有機溶媒に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、乾燥することによって、好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚み及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。   The positive electrode and the negative electrode were prepared by mixing the active material, the conductive agent and the binder in an organic solvent such as water, alcohol and toluene, and then applying the obtained mixture onto a current collector described in detail below. It is preferably produced by drying. About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. Is not to be done.

正極の集電体としては、構成された電池に悪影響を及ぼさない電子伝導体であれば特に選ぶところはない。例えば、ニッケルやニッケルメッキを行った発泡体、繊維群の形成体、凹凸加工を施した3次元基材が好適に用いられる。厚みの限定は特にないが、5〜700μmのものが用いられる。これら集電体の中で、正極としては、アルカリに対する耐食性と耐酸化性に優れているNiを、集電性、粉末保持性に優れた構造である多孔体構造の発泡体としたものを使用することが好ましい。   As the positive electrode current collector, there is no particular choice as long as it is an electronic conductor that does not adversely affect the constructed battery. For example, nickel, a nickel-plated foam, a fiber group formed body, or a three-dimensional base material with uneven processing is preferably used. Although there is no particular limitation on the thickness, a thickness of 5 to 700 μm is used. Among these current collectors, the positive electrode used is a foam with a porous body structure that is excellent in corrosion resistance and oxidation resistance against alkali and has a structure with excellent current collection and powder retention. It is preferable to do.

負極の集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、ニッケルやニッケルメッキを行った鋼板を好適に用いることが出来、発泡体、繊維群の形成体、凸凹加工を施した3次元機材の他に、パンチング鋼板等の2次元機材が用いられる。
厚みの限定は特にないが、5〜700μmのものが用いられる。これらの集電体の中で、正極としては、アルカリに対する耐食性と耐酸化性に優れているNiを、集電性に優れた構造である多孔体構造の発泡体としたものを使用する事が好ましい。
水素吸蔵電極の集電体としては、安価で、且つ電導性に優れる鉄箔に、耐還元性向上のためにニッケルメッキを施した、パンチング体を使用することが好ましい。
さらに、鋼板のパンチング径は1.7mm以下、開口率40%以上であることが好ましく、これにより少量の結着剤でも負極活物質と集電体との密着性は優れたものとなる。
Any negative electrode current collector may be used as long as it is an electronic conductor that does not adversely affect the battery. For example, nickel or a nickel-plated steel plate can be suitably used, and a two-dimensional device such as a punched steel plate can be used in addition to a foam, a formed group of fibers, and a three-dimensional device subjected to uneven processing.
Although there is no particular limitation on the thickness, a thickness of 5 to 700 μm is used. Among these current collectors, as the positive electrode, it is possible to use a material having a porous structure with Ni having excellent corrosion resistance and oxidation resistance against alkali and having a structure excellent in current collection. preferable.
As the current collector of the hydrogen storage electrode, it is preferable to use a punching body obtained by applying nickel plating for improving reduction resistance to an iron foil that is inexpensive and excellent in electrical conductivity.
Furthermore, it is preferable that the punching diameter of the steel sheet is 1.7 mm or less and the opening ratio is 40% or more, so that the adhesion between the negative electrode active material and the current collector is excellent even with a small amount of binder.

焼成炭素、導電性高分子の他に、接着性、導電性及び耐酸化性向上の目的で、集電体のニッケルの表面をNi粉末やカーボンや白金等を付着させて処理した物を用いることができる。これらの材料については表面を酸化処理することも可能である。   In addition to calcined carbon and conductive polymer, use nickel treated surface treated with Ni powder, carbon, platinum, etc. for the purpose of improving adhesion, conductivity and oxidation resistance. Can do. The surface of these materials can be oxidized.

上述のような構成を持つ正極板の長手方向に集電のための活物質を主体とする正極粉末の未充填部を設ける方法としては、特に限定されるものではないが、一例として、一様に金属多孔体に粉末を充填した後に、所定厚み・寸法に裁断して、超音波振動により極板の長手方向の一方端の粉末を除去することで作成することができる。   A method of providing an unfilled portion of the positive electrode powder mainly composed of an active material for current collection in the longitudinal direction of the positive electrode plate having the above-described configuration is not particularly limited, but as an example, uniform After the metal porous body is filled with powder, it is cut into a predetermined thickness and size, and the powder at one end in the longitudinal direction of the electrode plate is removed by ultrasonic vibration.

密閉形アルカリ蓄電池用セパレータとしては、優れたレート特性を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。セパレータを構成する材料としては、例えばPE、PP等に代表されるポリオレフィン系樹脂や、ポリアミド樹脂(ナイロン)を挙げることができる。   As the separator for a sealed alkaline storage battery, it is preferable to use a porous film or a nonwoven fabric exhibiting excellent rate characteristics alone or in combination. Examples of the material constituting the separator include polyolefin resins typified by PE and PP, and polyamide resin (nylon).

密閉形アルカリ蓄電池用セパレータの空孔率は強度、ガス透過性の観点から80体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the sealed alkaline storage battery separator is preferably 80% by volume or less from the viewpoint of strength and gas permeability. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

また、密閉形アルカリ蓄電池用セパレータは親水化処理を施す事が好ましい。
例えば、ポリエチレンなどのポリオレフィン系樹脂に、表面にスルフォン化処理、コロナ処理、PVA処理を施したり、これらの処理を既に施されたものを混合したものを用いても良い。
Moreover, it is preferable that the separator for sealed alkaline storage batteries is subjected to a hydrophilic treatment.
For example, a polyolefin resin such as polyethylene may be used in which the surface is subjected to sulfonation treatment, corona treatment, PVA treatment, or a mixture of those already subjected to these treatments.

電解液としては、一般にアルカリ電池等への使用が提案されているものが使用可能である。水を溶媒とし、溶質としてはK、Na、Liを単独またはそれら2種以上の混合物等を挙げることができるがこれらに限定されるものではない。   As the electrolytic solution, those generally proposed for use in alkaline batteries and the like can be used. Water can be used as a solvent, and examples of the solute include, but are not limited to, K, Na, Li alone or a mixture of two or more thereof.

電解液における電解質塩の濃度としては、高い電池特性を有する電池を確実に得るために、水酸化カリウム5〜7mol/l、水酸化リチウム0.1〜0.8mol/lを含む水溶液が好ましい。   As the concentration of the electrolyte salt in the electrolytic solution, an aqueous solution containing potassium hydroxide 5 to 7 mol / l and lithium hydroxide 0.1 to 0.8 mol / l is preferable in order to reliably obtain a battery having high battery characteristics.

本発明に係る密閉形アルカリ蓄電池は、電解質を、例えば、セパレータと正極と負極とを積層する前または積層した後に注液し、最終的に、外装材で封止することによって好適に作製される。また、正極と負極とがセパレータを介して積層された発電要素を巻回してなる密閉型アルカリ蓄電池においては、電解質は、前記巻回の前後に発電要素に注液されるのが好ましい。注液法としては、常圧で注液することも可能であるが、真空含浸方法や加圧含浸方法や遠心含浸法も使用可能である。   The sealed alkaline storage battery according to the present invention is suitably produced by injecting an electrolyte before or after laminating the separator, the positive electrode, and the negative electrode, and finally sealing with an exterior material. . Further, in a sealed alkaline storage battery in which a power generation element in which a positive electrode and a negative electrode are stacked via a separator is wound, the electrolyte is preferably injected into the power generation element before and after the winding. As the injection method, it is possible to inject at normal pressure, but a vacuum impregnation method, a pressure impregnation method, and a centrifugal impregnation method can also be used.

密閉形アルカリ蓄電池の外装体の材料としては、ニッケルメッキした鉄やステンレススチール、ポリオレフィン系樹脂等が一例として挙げられる。   Examples of the material of the outer package of the sealed alkaline storage battery include nickel-plated iron, stainless steel, polyolefin resin, and the like.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明は以下の記載により限定されるものではなく、試験方法や構成する電池の正極材料、負極材料、正極、負極、電解質、セパレータ並びに電池形状等は任意である。   In the following, the present invention will be described in more detail based on examples, but the present invention is not limited by the following description, the test method and the positive electrode material of the battery, the negative electrode material, the positive electrode, the negative electrode, the electrolyte, The separator and battery shape are arbitrary.

(水酸化ニッケル粒子の合成)
硫酸ニッケルと硫酸亜鉛及び硫酸コバルトを所定比で溶解した水溶液に硫酸アンモニウムと苛性ソーダ水溶液を添加してアンミン錯体を生成させた。反応系を激しく撹拌しながら更に苛性ソーダを滴下し、反応系のpHを10〜13に制御して芯層母材となる球状高密度水酸化ニッケル粒子を水酸化ニッケル:水酸化亜鉛:水酸化コバルト=93:5:2の重量比となるように水酸化ニッケルを主体とする活物質の粒子(以下、「水酸化ニッケル粒子」という。)を合成した。
(Synthesis of nickel hydroxide particles)
An ammonium complex and an aqueous sodium hydroxide solution were added to an aqueous solution in which nickel sulfate, zinc sulfate, and cobalt sulfate were dissolved at a predetermined ratio to form an ammine complex. While vigorously stirring the reaction system, sodium hydroxide is further added dropwise, and the pH of the reaction system is controlled to 10 to 13 to form spherical high-density nickel hydroxide particles serving as a core layer base material. Nickel hydroxide: zinc hydroxide: cobalt hydroxide Active material particles mainly composed of nickel hydroxide (hereinafter referred to as “nickel hydroxide particles”) were synthesized so as to have a weight ratio of 93: 5: 2.

(水酸化ニッケル粒子表面への表面層の形成)
前記高密度水酸化ニッケル粒子を、苛性ソーダでpH10〜13に制御したアルカリ水溶液に投入した。該溶液を撹拌しながら、所定濃度の硫酸コバルト、アンモニアを含む水溶液を滴下した。この間、苛性ソーダ水溶液を適宜滴下して反応浴のpHを10〜13の範囲に維持した。約1時間pHを10〜13の範囲に保持し、水酸化ニッケル粒子表面にCoを含む混合水酸化物から成る表面層を形成させたコバルト被覆水酸化ニッケル活物質粉末(以下、「コバルト被覆正極活物質粉末」と略すこともある。)を得た。該混合水酸化物の表面層の比率は前記Coを含む混合水酸化物から成る表面層を有する水酸化ニッケル粒子100重量部に対してCoの金属量換算で6重量部であった。
(Formation of surface layer on nickel hydroxide particle surface)
The high-density nickel hydroxide particles were put into an alkaline aqueous solution controlled to pH 10-13 with caustic soda. While stirring the solution, an aqueous solution containing cobalt sulfate and ammonia at predetermined concentrations was added dropwise. During this time, an aqueous caustic soda solution was appropriately added dropwise to maintain the pH of the reaction bath in the range of 10-13. Cobalt-coated nickel hydroxide active material powder (hereinafter referred to as “cobalt-coated positive electrode”) in which the pH is maintained in the range of 10 to 13 for about 1 hour, and a surface layer made of a mixed hydroxide containing Co is formed on the surface of nickel hydroxide particles. It may be abbreviated as “active material powder”. The ratio of the surface layer of the mixed hydroxide was 6 parts by weight in terms of the amount of Co metal with respect to 100 parts by weight of the nickel hydroxide particles having the surface layer made of the mixed hydroxide containing Co.

(表面層の酸化処理)
前記混合水酸化物から成る表面層を有する水酸化ニッケル粒子50gを、温度110℃の30wt%(10N)の苛性ソーダ水溶液に投入し、充分に攪拌した。続いて表面層に含まれるコバルトの水酸化物の当量に対して過剰のK228を添加し、粒子表面から酸素ガスが発生するのを確認した。活物質粒子をろ過し、水洗、乾燥した。
(Oxidation treatment of surface layer)
50 g of nickel hydroxide particles having a surface layer made of the mixed hydroxide was put into a 30 wt% (10N) aqueous caustic soda solution at a temperature of 110 ° C. and sufficiently stirred. Subsequently, excess K 2 S 2 O 8 was added to the equivalent of the cobalt hydroxide contained in the surface layer, and it was confirmed that oxygen gas was generated from the particle surface. The active material particles were filtered, washed with water and dried.

(正極板の作製)
前記コバルト被覆正極活物質粉末100重量部に対して、酸化イッテルビウム(Yb23)2重量部とカルボキシメチルセルローズ(CMC)0.2重量部を添加し混合した。該混合により得られた混合物に精製水を加え混練してペースト状とし、該ペーストを450g/m2のニッケル多孔体(住友電工(株)製ニッケルセルメット#8)に充填した。その後80℃で乾燥した後、所定の厚みにプレスし、表面にテフロン(登録商標)コーティングを行い幅34mm(内、無塗工部1mm)長さ260mmの容量3000mAhのニッケル正極板とした。
(Preparation of positive electrode plate)
2 parts by weight of ytterbium oxide (Yb 2 O 3 ) and 0.2 parts by weight of carboxymethyl cellulose (CMC) were added to and mixed with 100 parts by weight of the cobalt-coated positive electrode active material powder. Purified water was added to the mixture obtained by the mixing and kneaded to form a paste, and the paste was filled into a 450 g / m 2 nickel porous body (Nihon Celmet # 8 manufactured by Sumitomo Electric Industries, Ltd.). Then, after drying at 80 ° C., it was pressed to a predetermined thickness, the surface was coated with Teflon (registered trademark), and a nickel positive electrode plate with a capacity of 3000 mAh having a width of 34 mm (inside, uncoated part 1 mm) and a length of 260 mm was obtained.

(正極板端部の樹脂含浸加工)
針入度0.65mmのエチレンホモポリマー(べーカー・ペトロライト社製ポリワックスTM500)を110℃にて溶融させた。前記正極板の無塗工部と反対側の端部を前記溶融樹脂に含浸し、常温で固化させた後に表面及び下端面の余剰樹脂を削り落とした。このとき、正極板内部に浸透した樹脂の幅は、正極板充填部の下端面から0.5mmであった。
(Resin impregnation of the end of the positive electrode plate)
An ethylene homopolymer having a penetration of 0.65 mm (Polywax TM 500 manufactured by Baker Petrolite) was melted at 110 ° C. The end portion of the positive electrode plate opposite to the uncoated portion was impregnated with the molten resin and solidified at room temperature, and then the surplus resin on the surface and the lower end surface was scraped off. At this time, the width of the resin that had penetrated into the positive electrode plate was 0.5 mm from the lower end surface of the positive electrode plate filling portion.

(負極板の作製)
(第1工程)
粒径35μmのAB5型希土類系のMmNi3.6Co0.6Al0.3Mn0.35の組成を有する水素吸蔵合金を密閉容器中45℃にて水素ガスを0.4MPaの加圧後、合金を取り出し水素吸蔵量10の水素吸蔵合金を得た。
(第2工程)
次にアルカリ性水溶液によって合金表面と合金内部の微細な割れ部分を処理を行った。即ち、水素吸蔵処理後の水素吸蔵合金粉末を20℃の比重で1.48のNaOH水溶液に浸漬し、100℃で2時間の処理を行った。
(第3工程)
その後、加圧濾過し、PH10以下に水洗した後、希薄な酸を加えて希土類不純物を溶解後、加圧濾過し、80℃温水で水素脱離を行った。
(第4工程)
この後、加圧濾過、水洗を行い、攪拌下4%過酸化水素を合金重量と同量加え、水素脱離を行って、電極用水素吸蔵合金を得た。
得られた合金とスチレンブタジエン共重合体水溶液とヒドロキシプロピルメチルセルロース(HPMC)水溶液とを99.05:0.65:0.30の固形分重量比で混合し、水で分散してペースト状にし、ブレードコーターを用いて、鉄にニッケルメッキを施したパンチング鋼板に塗布した後、80℃で乾燥した後、所定の厚みにプレスして幅34mm(内、無塗工部1mm)長さ260mmの容量5100mAhの水素吸蔵合金負極板とした。
(Preparation of negative electrode plate)
(First step)
AB 5 type rare earth type MmNi 3.6 Co 0.6 Al 0.3 Mn 0.35 composition with a particle size of 35 μm was pressed in a sealed container at 45 ° C. with hydrogen gas at 0.4 MPa, the alloy was taken out, and the hydrogen storage capacity Ten hydrogen storage alloys were obtained.
(Second step)
Next, the surface of the alloy and fine cracks inside the alloy were treated with an alkaline aqueous solution. That is, the hydrogen storage alloy powder after the hydrogen storage treatment was immersed in a 1.48 NaOH aqueous solution with a specific gravity of 20 ° C., and the treatment was performed at 100 ° C. for 2 hours.
(Third step)
Thereafter, the mixture was filtered under pressure and washed with water at a pH of 10 or less. Then, diluted acid was added to dissolve rare earth impurities, followed by pressure filtration, and hydrogen desorption with 80 ° C. hot water.
(4th process)
Thereafter, pressure filtration and water washing were performed, 4% hydrogen peroxide was added in the same amount as the alloy weight with stirring, and hydrogen was desorbed to obtain a hydrogen storage alloy for electrodes.
The obtained alloy, styrene-butadiene copolymer aqueous solution and hydroxypropyl methylcellulose (HPMC) aqueous solution were mixed at a solid content weight ratio of 99.05: 0.65: 0.30, dispersed in water to form a paste, Using a blade coater, it is applied to a punched steel sheet with nickel plated on iron, dried at 80 ° C., pressed to a predetermined thickness, and has a capacity of 34 mm in width (with an uncoated part of 1 mm) and a length of 260 mm. A 5100 mAh hydrogen storage alloy negative electrode plate was obtained.

(評価電池の作製)
前記水素吸蔵合金負極版とスルフォン化処理を施した厚み120μmのポリプロピレンの不織布状セパレータと前記ニッケル極板とを組み合わせてロール状に巻回し、6.8Nの水酸化カリウム水溶液に0.8Nの水酸化リチウムを溶解したアルカリ電解液を4.8g注液し、開弁圧2.4MPaの弁を具備するsubC形の密閉型ニッケル水素蓄電池を作製した。
(Production of evaluation battery)
The hydrogen-absorbing alloy negative electrode plate, a 120 μm-thick polypropylene non-woven separator subjected to sulfonation treatment, and the nickel electrode plate are combined and wound into a roll, and 0.8 N water is added to a 6.8 N potassium hydroxide aqueous solution. 4.8 g of alkaline electrolyte in which lithium oxide was dissolved was injected to produce a subC-type sealed nickel-metal hydride storage battery having a valve with a valve opening pressure of 2.4 MPa.

(化成)
この電池を40℃12時間の保管処理の後、0.02ItAにて600mAh充電し、0.1ItAで12時間充電した後、0.2ItAで1Vまで放電した後、0.1ItAで12時間充電、0.2ItAで1Vまで放電する操作を4回繰り返した。
(Chemical formation)
This battery was stored at 40 ° C. for 12 hours, charged with 0.02 ItA at 600 mAh, charged at 0.1 ItA for 12 hours, discharged at 0.2 ItA to 1 V, charged at 0.1 ItA for 12 hours, The operation of discharging to 0.2 V at 0.2 ItA was repeated 4 times.

(捲回体作製時の生産性評価)
前記評価電池の作製において前記正極板及び負極板をロール上に捲回し作製する捲回体を1000個ずつ作製し、該工程における不良極群発生個数を調査した。該不良極群とは、巻きずれに起因し捲回体の高さ及び外径が規格値より外れてしまった極群、捲回時に活物質を主体とする正極粉末がが著しく脱落してしまった極群、捲回時に短絡してしまった極群のことを指す。
(Productivity evaluation at the time of winding body production)
In the production of the evaluation battery, 1000 pieces of wound bodies were produced by winding the positive electrode plate and the negative electrode plate on a roll, and the number of defective electrode groups generated in the process was investigated. The defective electrode group is a group of poles in which the height and outer diameter of the wound body deviate from the standard value due to winding slip, and the positive electrode powder mainly composed of the active material is significantly dropped during winding. This refers to the pole group that was short-circuited during winding.

(高率放電特性評価)
化成した電池を0.1ItAで16時間充電し、20℃の雰囲気にて4時間放置した後、放電レート10ItA、放電カット電圧0.8Vで放電し、該放電で得られた容量を10ItAで放電したときの放電容量とし、前記正極板の作製における活物質容量(100%)に対する比率(%)で評価した。また該放電容量の中間時における放電電圧を放電中間電圧とした。HEVや電動工具等の高出力を要求される用途に適用するためには、該放電において85%以上の容量を得ることが望ましい。
(High rate discharge characteristics evaluation)
The formed battery was charged at 0.1 ItA for 16 hours and left in an atmosphere at 20 ° C. for 4 hours, and then discharged at a discharge rate of 10 ItA and a discharge cut voltage of 0.8 V. The capacity obtained by the discharge was discharged at 10 ItA. The discharge capacity was evaluated by the ratio (%) to the active material capacity (100%) in the production of the positive electrode plate. The discharge voltage at the middle of the discharge capacity was defined as the discharge intermediate voltage. In order to apply to applications that require high output such as HEVs and electric tools, it is desirable to obtain a capacity of 85% or more in the discharge.

(過放電サイクル寿命特性)
化成した電池を周囲温度20℃において充放電サイクル試験に供した。1ItAにて−ΔVが10mVの変動が発生するまで充電し、放電レート3ItAで電池電圧が−0.4Vに至るまで放電し、さらに−0.4Vで10秒間定電圧放電を行った。該充放電を1サイクルとして充放電サイクルを繰り返し行い、放電容量が充放電サイクル試験の1サイクル目の放電容量の70%を切ったサイクル数をもって該電池の過放電サイクル寿命とした。なお、この寿命判定を行う放電容量には定電圧放電時の容量は含まないものとする。
水酸化ニッケルを正極活物質とするアルカリ蓄電池において、特に正極から水素ガスを発生するような深放電を行うと劣化しやすい。該過放電サイクル試験はHEVや電動工具等の複数の電池を直列に接続して使用される用途において、組電池を構成する単電池の電圧ばらつきに起因する深放電を想定した試験であり、該サイクル試験においてサイクル寿命が400サイクル以上であることが望ましく、さらには500サイクル以上であることがより望ましい。
(Overdischarge cycle life characteristics)
The formed battery was subjected to a charge / discharge cycle test at an ambient temperature of 20 ° C. The battery was charged at 1 ItA until −ΔV changed to 10 mV, discharged at a discharge rate of 3 ItA until the battery voltage reached −0.4 V, and then constant voltage discharge was performed at −0.4 V for 10 seconds. The charge / discharge cycle was repeated with this charge / discharge as one cycle, and the overdischarge cycle life of the battery was defined as the number of cycles in which the discharge capacity was cut off 70% of the discharge capacity in the first cycle of the charge / discharge cycle test. Note that the discharge capacity for determining the life does not include the capacity at the time of constant voltage discharge.
In an alkaline storage battery using nickel hydroxide as a positive electrode active material, the battery tends to deteriorate when a deep discharge is performed such that hydrogen gas is generated from the positive electrode. The overdischarge cycle test is a test assuming deep discharge due to voltage variation of single cells constituting an assembled battery in an application in which a plurality of batteries such as HEVs and electric tools are connected in series. In the cycle test, the cycle life is desirably 400 cycles or more, and more desirably 500 cycles or more.

実施例1において、正極板端部に含浸する樹脂をべーカー・ペトロライト社製ポリワックスTM725に代えたこと以外は実施例1と同様とした。該例を実施例2とする。このときの樹脂の針入度は0.15mmであった。 Example 1 was the same as Example 1 except that the resin impregnated at the end of the positive electrode plate was replaced with Polywax 725 manufactured by Baker Petrolite. This example is referred to as Example 2. The penetration of the resin at this time was 0.15 mm.

実施例1において、正極板端部に含浸する樹脂をべーカー・ペトロライト社製ポリワックスTM655に代えたこと以外は実施例1と同様とした。該例を実施例3とする。このときの樹脂の針入度は0.2mmであった。 Example 1 was the same as Example 1 except that the resin impregnated at the end of the positive electrode plate was replaced with Polywax 655 manufactured by Baker Petrolite. This example is referred to as Example 3. The penetration of the resin at this time was 0.2 mm.

実施例1において、正極板端部に含浸する樹脂をべーカー・ペトロライト社製ポリワックスTM400に代えたこと以外は実施例1と同様とした。該例を実施例4とする。このときの樹脂の針入度は1.5mmであった。 Example 1 was the same as Example 1 except that the resin impregnated at the edge of the positive electrode plate was replaced with Polywax 400 manufactured by Baker Petrolite. This example is referred to as Example 4. The penetration of the resin at this time was 1.5 mm.

実施例1において、正極板端部に含浸する樹脂をべーカー・ペトロライト社製BE SQUARE 175Waxに代えたこと以外は実施例1と同様とした。該例を実施例5とする。このときの樹脂の針入度は1.8mmであった。   Example 1 was the same as Example 1 except that the resin impregnated at the end of the positive electrode plate was replaced with BE SQUARE 175Wax manufactured by Baker Petrolite. This example is referred to as Example 5. The penetration of the resin at this time was 1.8 mm.

実施例1において、正極板端部に含浸する樹脂をべーカー・ペトロライト社製VICTORY Waxに代えたこと以外は実施例1と同様とした。該例を実施例6とする。このときの樹脂の針入度は2.6mmであった。   Example 1 was the same as Example 1 except that the resin impregnated at the end of the positive electrode plate was replaced with Victory Wax manufactured by Baker Petrolite. This example is referred to as Example 6. The penetration of the resin at this time was 2.6 mm.

(比較例1)
実施例1において、正極板端部に含浸する樹脂をべーカー・ペトロライト社製ポリワックスTM2000に代え、130℃にて溶融含浸させたこと以外は実施例1と同様とした。該例を比較例1とする。このときの樹脂の針入度は0.05mmであった。
(Comparative Example 1)
Example 1 was the same as Example 1 except that the resin impregnated at the end of the positive electrode plate was replaced with Polywax TM 2000 manufactured by Baker Petrolite and melt impregnated at 130 ° C. This example is referred to as Comparative Example 1. The penetration of the resin at this time was 0.05 mm.

(比較例2)
実施例1において、正極板端部に含浸する樹脂をべーカー・ペトロライト社製ポリワックスTM850に代えたこと以外は実施例1と同様とした。該例を比較例2とする。このときの樹脂の針入度は0.1mmであった。
(Comparative Example 2)
Example 1 was the same as Example 1 except that the resin impregnated at the end of the positive electrode plate was replaced with Polywax TM 850 manufactured by Baker Petrolite. This example is referred to as Comparative Example 2. The penetration of the resin at this time was 0.1 mm.

(比較例3)
実施例1において、正極板端部に含浸する樹脂をべーカー・ペトロライト社製BE SQUARE 165Waxに代えたこと以外は実施例1と同様とした。該例を比較例3とする。このときの樹脂の針入度は3.0mmであった。
(Comparative Example 3)
Example 1 was the same as Example 1 except that the resin impregnated at the end of the positive electrode plate was replaced with BE SQUARE 165Wax manufactured by Baker Petrolite. This example is referred to as Comparative Example 3. The penetration of the resin at this time was 3.0 mm.

表1に、実施例1〜6、及び比較例1〜3の捲回体をそれぞれ1000個ずつ作製したときの不良発生個数について示す。   Table 1 shows the number of defects generated when 1000 wound bodies of Examples 1 to 6 and Comparative Examples 1 to 3 were produced.

Figure 0004930674
Figure 0004930674

表1に示した結果によれば、正極板端部に含浸した樹脂の針入度が0.15mm〜2.6mmであれば、捲回体作製時における不良発生個数は非常に少なく生産性は良好であるといえる。一方、比較例1、2のように正極板端部に含浸する樹脂の針入度が0.15mmよりも小さいときは、極群の捲回時に正極板に樹脂を含浸した部位から割れや折れが多く発生しており、そのことに起因して捲回体の外径が大きくなってしまったり、巻きずれが起こったりしてしまった。さらに、正極板の割れや折れに起因して短絡不良も発生した。また、比較例3のように前記樹脂の針入度が2.6mmを超える場合、樹脂が非常に柔らかく粘性に富むためか、樹脂と共に正極の活物質を含む正極粉体がセパレータに多く付着してしまい、そのため捲回体の巻きずれが多く発生してしまった。また捲回機の正極板ガイドに前記樹脂と共に正極基板から剥離した正極粉体が付着してしまい、捲回できない不良も発生した。
したがって、正極板端部に含浸する樹脂は適度な柔軟性と活物質保持力を有するものが好ましく、該樹脂の針入度は0.15mm〜2.6mmであるものが好ましい。
According to the results shown in Table 1, if the penetration of the resin impregnated in the end portion of the positive electrode plate is 0.15 mm to 2.6 mm, the number of defects generated in the production of the wound body is very small, and the productivity is low. It can be said that it is good. On the other hand, when the penetration of the resin impregnated at the end of the positive electrode plate is smaller than 0.15 mm as in Comparative Examples 1 and 2, the positive electrode plate is cracked or broken from the portion impregnated with the resin when the pole group is wound. A large number of squeezes occurred, which resulted in an increase in the outer diameter of the wound body or a winding slip. In addition, short circuit defects occurred due to cracks and breakage of the positive electrode plate. Also, when the penetration of the resin exceeds 2.6 mm as in Comparative Example 3, the positive electrode powder containing the active material of the positive electrode together with the resin adheres to the separator because the resin is very soft and rich in viscosity. As a result, winding of the wound body often occurred. Further, the positive electrode powder peeled off from the positive electrode substrate together with the resin adhered to the positive electrode plate guide of the winding machine, and a defect that could not be wound occurred.
Therefore, the resin impregnated in the end portion of the positive electrode plate preferably has moderate flexibility and active material holding power, and the resin has a penetration of 0.15 mm to 2.6 mm.

実施例1において、正極板端部に含浸する樹脂の下端面からの幅が0.2mmであること以外は実施例1と同様とした。該例を実施例7とする。   In Example 1, it was the same as Example 1 except that the width from the lower end surface of the resin impregnated in the end portion of the positive electrode plate was 0.2 mm. This example is referred to as Example 7.

実施例1において、正極板端部に含浸する樹脂の下端面からの幅が1.0mmであること以外は実施例1と同様とした。該例を実施例8とする。   In Example 1, it was the same as Example 1 except that the width from the lower end surface of the resin impregnated at the end of the positive electrode plate was 1.0 mm. This example is referred to as Example 8.

(比較例4)
実施例1において、正極板端部に樹脂を含浸する工程を実施しないこと以外は実施例1と同様とした。該例を比較例4とする。
(Comparative Example 4)
Example 1 was the same as Example 1 except that the step of impregnating the positive electrode plate with the resin was not performed. This example is referred to as Comparative Example 4.

(比較例5)
実施例1において、正極板端部に含浸する樹脂の下端面からの幅が0.1mmであること以外は実施例1と同様とした。該例を比較例5とする。
(Comparative Example 5)
In Example 1, it was the same as Example 1 except that the width from the lower end surface of the resin impregnated in the end portion of the positive electrode plate was 0.1 mm. This example is referred to as Comparative Example 5.

(参考例1)
実施例1において、正極板端部に含浸する樹脂の下端面からの幅が1.5mmであること以外は実施例1と同様とした。該例を参考例1とする。
(Reference Example 1)
In Example 1, it was the same as that of Example 1 except that the width from the lower end surface of the resin impregnated in the end portion of the positive electrode plate was 1.5 mm. This example is referred to Reference Example 1.

表2に、実施例1、7、8、比較例4、5、及び参考例1の電池について20℃10ItA放電特性、放電中間電圧及び過放電サイクル寿命を示す。   Table 2 shows the 20 ° C. 10 ItA discharge characteristics, the discharge intermediate voltage, and the overdischarge cycle life for the batteries of Examples 1, 7, 8, Comparative Examples 4, 5, and Reference Example 1.

Figure 0004930674
Figure 0004930674

表2に示す結果によれば、正極板端部に含浸する樹脂の幅が下端面から0.2mm以上であれば過放電サイクル寿命は500サイクル以上の優れた耐久性が得られた。一方、比較例4、5のように樹脂を含浸しないとき、含浸する樹脂の幅が下端面から0.1mmのとき、過放電サイクル寿命は300サイクル以下であった。これは必ずしも明らかではないが、過放電サイクルに伴う容量劣化の要因として、正極板の転極時に発生する水素ガスによって正極活物質が脱落してしまい容量低下するためと考えられる。正極粉体の脱落は特に正極板の端部から起こりやすいため、その端部を特定の幅以上樹脂を含浸し被覆することにより、活物質が正極基板に強固に保持され、脱落が抑制されたため、過放電サイクル寿命が向上したと考えられる。しかしながら、参考例1に示すように含浸する樹脂の幅が1.5mmのとき、過放電サイクル寿命は優れるものの、20℃10ItA放電特性及び放電中間電圧が低下してしまった。樹脂を含浸することにより、正極活物質は強固に保持されるものの、樹脂は導電性が乏しく含浸する幅が広すぎると放電反応を阻害してしまうためであると考えられる。
したがって、含浸する樹脂の幅は、正極板充填部の下端面から0.2mm〜1.0mmとすることが好ましい。
According to the results shown in Table 2, when the width of the resin impregnated in the end portion of the positive electrode plate is 0.2 mm or more from the lower end surface, an excellent durability with an overdischarge cycle life of 500 cycles or more was obtained. On the other hand, when the resin was not impregnated as in Comparative Examples 4 and 5, the overdischarge cycle life was 300 cycles or less when the width of the impregnated resin was 0.1 mm from the lower end surface. Although this is not necessarily clear, it is considered that the positive electrode active material is dropped by the hydrogen gas generated during the reversal of the positive electrode plate and the capacity is lowered as a factor of capacity deterioration accompanying the overdischarge cycle. The positive electrode powder is likely to fall off particularly from the end of the positive electrode plate, so that the active material is firmly held on the positive electrode substrate by covering the end with a resin having a specific width or more, and dropping is suppressed. It is considered that the overdischarge cycle life is improved. However, as shown in Reference Example 1, when the resin to be impregnated had a width of 1.5 mm, the overdischarge cycle life was excellent, but the 20 ° C. 10 ItA discharge characteristics and the discharge intermediate voltage were lowered. Although the positive electrode active material is firmly held by impregnating the resin, it is considered that the resin is poor in conductivity and impedes the discharge reaction if the impregnation width is too wide.
Therefore, the width of the resin to be impregnated is preferably 0.2 mm to 1.0 mm from the lower end surface of the positive electrode plate filling portion.

(樹脂の種類について)
なお、前記樹脂材料としてポリスチレン等の不飽和炭化水素を有機溶剤で溶解した後に正極板端部に含浸させ対外は実施例1と同様に電池を作製し、前記同様な過放電サイクル寿命評価を行ったが、いずれの不飽和炭化水素を用いた場合においても過放電サイクル寿命は低下してしまった。詳細は明らかではないが、不飽和炭化水素化合物は一般的に耐酸化性が低く、充電時において酸化分解されてしまい正極粉体の脱落を抑制する効果が小さいため及び、分解によって正負極の容量バランスを崩したためであると考えられる。
(About types of resin)
In addition, an unsaturated hydrocarbon such as polystyrene as the resin material was dissolved in an organic solvent, and then impregnated into the end portion of the positive electrode plate, and a battery was manufactured in the same manner as in Example 1, and the same overdischarge cycle life evaluation was performed as described above. However, even when any unsaturated hydrocarbon was used, the overdischarge cycle life was reduced. Although details are not clear, unsaturated hydrocarbon compounds generally have low oxidation resistance and are less effective in suppressing the falling off of the positive electrode powder due to oxidative decomposition during charging. This is thought to be because the balance was lost.

実施例1の正極板端部の樹脂含浸加工において、正極板の集電体側端部の正極粉体充填層とその反対側の端部の両側に樹脂を含浸したこと以外は実施例1と同様とした。このとき樹脂の含浸幅は集電体側端面(上端面)から0.2mmであり、集電体と反対側の端面(下端面)から0.3mmであった。該例を実施例9とする。   In the resin impregnation processing of the end portion of the positive electrode plate in Example 1, the same as in Example 1 except that the positive electrode powder packed layer at the current collector side end portion of the positive electrode plate and the opposite end portion were impregnated with resin. It was. At this time, the impregnation width of the resin was 0.2 mm from the current collector side end face (upper end face) and 0.3 mm from the end face (lower end face) opposite to the current collector. This example is referred to as Example 9.

(参考例2)
実施例1の正極板端部の樹脂含浸加工において、正極板の集電体側端部の正極粉体充填層に樹脂を含浸したこと以外は実施例1と同様とした。このとき樹脂の含浸幅は集電体側端面の正極充填層上端面から0.5mmであった。該例を参考例2とする。
(Reference Example 2)
The resin impregnation process at the end of the positive electrode plate of Example 1 was the same as that of Example 1 except that the positive electrode powder packed layer at the current collector side end of the positive electrode plate was impregnated with resin. At this time, the impregnation width of the resin was 0.5 mm from the upper end surface of the positive electrode filling layer on the current collector side end surface. This example is referred to Reference Example 2.

表3に、実施例1、9、及び参考例2の樹脂の含浸箇所の異なる電池について過放電サイクル寿命を示す。   Table 3 shows the overdischarge cycle life of the batteries of Examples 1 and 9 and Reference Example 2 with different resin impregnation locations.

Figure 0004930674
Figure 0004930674

表3に示した結果によれば、少なくとも正極集電体の反対側の端部に樹脂を含浸したものは優れた過放電サイクル寿命が得られたが、集電体側端部のみ樹脂を含浸した参考例2の電池では過放電サイクル寿命が低下した。しかしながら、樹脂を含浸しなかった前記比較例4に比べると過放電耐久性は優れていたことから、上端部及び下端部いずれに樹脂を含浸しても、過放電時の正極粉体脱落を抑制する効果は得られることが分かる。しかしながら上記結果より、より効果的に正極粉体脱落を抑制するためには、正極板両端部のうち少なくとも集電体と反対側の下端部に樹脂を含浸することが好ましい。   According to the results shown in Table 3, at least the opposite end of the positive electrode current collector was impregnated with resin, but an excellent overdischarge cycle life was obtained, but only the current collector side edge was impregnated with resin. In the battery of Reference Example 2, the overdischarge cycle life decreased. However, since the overdischarge durability was superior compared to Comparative Example 4 in which the resin was not impregnated, the positive electrode powder dropout during overdischarge was suppressed even if the resin was impregnated in either the upper end or the lower end. It turns out that the effect to do is acquired. However, from the above results, in order to suppress the positive electrode powder dropout more effectively, it is preferable to impregnate at least the lower end on the opposite side of the current collector among the both ends of the positive electrode plate.

実施例1の正極板の作製において、酸化イッテルビウム(Yb23)に替えて、Yb23の純度が90%である混合希土類酸化物(Mm23)を添加したこと以外は実施例1と同様とした。該例を実施例10とする。 In preparation of the positive electrode plate of Example 1, in place of ytterbium oxide (Yb 2 O 3), except for adding the mixed rare earth oxide purity of Yb 2 O 3 is 90 percent (Mm 2 O 3) carried Same as Example 1. This example is referred to as Example 10.

(参考例3)
実施例1の正極板の作製において、酸化イッテルビウム(Yb23)に替えて、酸化イットリウム(Y23)を添加したこと以外は実施例1と同様とした。該例を参考例3とする。
(Reference Example 3)
The production of the positive electrode plate of Example 1 was the same as Example 1 except that yttrium oxide (Y 2 O 3 ) was added instead of ytterbium oxide (Yb 2 O 3 ). This example is referred to Reference Example 3.

表4に、実施例1、10、及び参考例3の電池について過放電サイクル寿命を示す。   Table 4 shows the overdischarge cycle life of the batteries of Examples 1 and 10 and Reference Example 3.

Figure 0004930674
Figure 0004930674

表4に示す結果によれば、添加する希土類酸化物が酸化イッテルビウム(Yb23)単一希土類化合物もしくは酸化イッテルビウム(Yb23)を主体とする混合希土類化合物(Mm23)のとき、500サイクルを超える優れた過放電サイクル寿命が得られるので好ましい。しかしながら、添加する希土類化合物がY23であるとき、サイクル寿命が低下してしまった。過放電サイクルにおける容量低下の一要因として、正極活物質の導電性ネットワーク破壊が考えられる。転極を伴う深放電時、オキシ水酸化コバルトの還元反応が起こり、一部コバルトが電解液中に溶出してしまうが、Yb23を添加するとCoの溶解速度が著しく低下するためコバルト導電性ネットワークの破壊が起こりにくくなる。一方、希土類添加剤が酸化イットリウム(Y23)のとき、還元されたコバルトの溶出量が多く、コバルトが電解液沖合に溶出してしまったため、導電性の低下が大きくなり容量劣化が早くなったことが考えられる。以上の理由により、添加する希土類化合物はYb23もしくはその高純度混合希土類化合物が好ましい。 According to the results shown in Table 4, the rare earth oxide is ytterbium oxide to be added (Yb 2 O 3) single rare earth compound or ytterbium oxide (Yb 2 O 3) mixed rare earth compounds mainly (Mm 2 O 3) Is preferable because an excellent overdischarge cycle life exceeding 500 cycles can be obtained. However, when the rare earth compound to be added is Y 2 O 3 , the cycle life has been reduced. As one factor of the capacity reduction in the overdischarge cycle, the conductive network destruction of the positive electrode active material can be considered. During deep discharge with inversion, cobalt oxyhydroxide reduction reaction occurs, and some cobalt is eluted in the electrolyte, but if Yb 2 O 3 is added, the dissolution rate of Co is significantly reduced, so cobalt conductivity The destruction of the sex network is less likely to occur. On the other hand, when the rare earth additive is yttrium oxide (Y 2 O 3 ), a large amount of reduced cobalt is eluted, and cobalt is eluted off the electrolyte, resulting in a large decrease in conductivity and rapid capacity deterioration. It is thought that it became. For the above reasons, the rare earth compound to be added is preferably Yb 2 O 3 or a high purity mixed rare earth compound thereof.

実施例1の正極板の作製において、コバルト被覆正極活物質粉末100重量部に対し、酸化イッテルビウム(Yb23)を1重量部添加したこと以外は実施例1と同様とした。該例を実施例11とする。 The production of the positive electrode plate of Example 1 was the same as Example 1 except that 1 part by weight of ytterbium oxide (Yb 2 O 3 ) was added to 100 parts by weight of the cobalt-coated positive electrode active material powder. This example is referred to as Example 11.

実施例1の正極板の作製において、コバルト被覆正極活物質粉末100重量部に対し、酸化イッテルビウム(Yb23)を3重量部添加したこと以外は実施例1と同様とした。該例を実施例12とする。 The production of the positive electrode plate of Example 1 was the same as Example 1 except that 3 parts by weight of ytterbium oxide (Yb 2 O 3 ) was added to 100 parts by weight of the cobalt-coated positive electrode active material powder. This example is referred to as Example 12.

(比較例6)
実施例1の正極板の作製において、コバルト被覆正極活物質粉末に酸化イッテルビウム(Yb23)を添加しなかったこと以外は実施例1と同様とした。該例を比較例6とする。
(Comparative Example 6)
Preparation of the positive electrode plate of Example 1 was the same as Example 1 except that ytterbium oxide (Yb 2 O 3 ) was not added to the cobalt-coated positive electrode active material powder. This example is referred to as Comparative Example 6.

(参考例4)
実施例1の正極板の作製において、コバルト被覆正極活物質粉末100重量部に対し、酸化イッテルビウム(Yb23)を0.5重量部添加したこと以外は実施例1と同様とした。該例を参考例4とする。
(Reference Example 4)
Preparation of the positive electrode plate of Example 1 was the same as Example 1 except that 0.5 part by weight of ytterbium oxide (Yb 2 O 3 ) was added to 100 parts by weight of the cobalt-coated positive electrode active material powder. This example is referred to Reference Example 4.

(参考例5)
実施例1において、コバルト被覆正極活物質粉末100重量部に対し、酸化イッテルビウム(Yb23)を4重量部添加したこと以外は実施例1と同様とした。該例を参考例5とする。
(Reference Example 5)
Example 1 was the same as Example 1 except that 4 parts by weight of ytterbium oxide (Yb 2 O 3 ) was added to 100 parts by weight of the cobalt-coated positive electrode active material powder. This example is referred to Reference Example 5.

表5に、実施例1、11、12、比較例6、及び参考例4、5の電池について20℃10ItA放電特性と過放電サイクル寿命を示す。   Table 5 shows the 20 ° C. 10 ItA discharge characteristics and the overdischarge cycle life for the batteries of Examples 1, 11, 12, Comparative Example 6, and Reference Examples 4, 5.

Figure 0004930674
Figure 0004930674

表5に示した結果によれば、酸化イッテルビウムの添加量が1重量部以上であれば、優れた過放電サイクルが得られるが、添加量が1重量部より小さいとき、過放電サイクル寿命が低下してしまった。また、添加量が4重量部のとき、過放電サイクル寿命は優れるものの20℃10ItA放電特性が低下してしまった。
添加量が少ないとき過放電サイクル寿命が低下することは、前記同様、過放電時の正極活物質の導電性ネットワーク破壊によるものであると考えられ、Yb23の添加量が1重量部よりも少ないと、その効果が十分に発揮されない。一方、添加量が3重量部よりも多いと、添加したYb23が正極活物質の反応面を覆ったり、活物質粒子内部に入り込んだりして正極活物質の電気化学反応を阻害するためか、高率放電特性が低下してしまう。このことからコバルト被覆正極活物質へのYb23の添加量は1重量部〜3重量部であることが好ましい。
According to the results shown in Table 5, an excellent overdischarge cycle can be obtained if the amount of ytterbium oxide added is 1 part by weight or more, but when the amount added is less than 1 part by weight, the overdischarge cycle life is reduced. have done. Moreover, when the addition amount was 4 parts by weight, the overdischarge cycle life was excellent, but the 20 ° C. and 10 ItA discharge characteristics were deteriorated.
The decrease in overdischarge cycle life when the addition amount is small is considered to be due to the destruction of the conductive network of the positive electrode active material during overdischarge as described above, and the addition amount of Yb 2 O 3 is less than 1 part by weight. If the amount is too small, the effect is not fully exhibited. On the other hand, when the added amount is more than 3 parts by weight, the added Yb 2 O 3 covers the reaction surface of the positive electrode active material or enters the active material particles to inhibit the electrochemical reaction of the positive electrode active material. Or, the high-rate discharge characteristics are degraded. Therefore, the amount of Yb 2 O 3 added to the cobalt-coated positive electrode active material is preferably 1 to 3 parts by weight.

実施例1に記載した、水酸化ニッケル粒子表面にCoを含む混合水酸化物から成る表面層を形成させる工程において、その量がCoの金属量換算で4重量部であったこと以外は実施例1と同様とした。該例を実施例13とする。   In the step of forming a surface layer composed of a mixed hydroxide containing Co on the surface of nickel hydroxide particles described in Example 1, the amount was 4 parts by weight in terms of the amount of Co metal. Same as 1. This example is referred to as Example 13.

実施例1に記載した、水酸化ニッケル粒子表面にCoを含む混合水酸化物から成る表面層を形成させる工程において、その量がCoの金属量換算で8重量部であったこと以外は実施例1と同様とした。該例を実施例14とする。   In the step of forming a surface layer composed of a mixed hydroxide containing Co on the surface of nickel hydroxide particles described in Example 1, the amount was 8 parts by weight in terms of the amount of Co metal. Same as 1. This example is referred to as Example 14.

(参考例6)
実施例1に記載した、水酸化ニッケル粒子表面にCoを含む混合水酸化物から成る表面層を形成させる工程において、その量がCoの金属量換算で2重量部であったこと以外は実施例1と同様とした。該例を参考例6とする。
(Reference Example 6)
In the step of forming the surface layer composed of the mixed hydroxide containing Co on the nickel hydroxide particle surface described in Example 1, the amount was 2 parts by weight in terms of the amount of Co metal. Same as 1. This example is referred to as Reference Example 6.

(参考例7)
実施例1に記載した、水酸化ニッケル粒子表面にCoを含む混合水酸化物から成る表面層を形成させる工程において、その量がCoの金属量換算で3重量部であったこと以外は実施例1と同様とした。該例を参考例7とする。
(Reference Example 7)
In the step of forming a surface layer composed of a mixed hydroxide containing Co on the surface of nickel hydroxide particles described in Example 1, the amount was 3 parts by weight in terms of the amount of Co metal. Same as 1. This example is referred to as Reference Example 7.

(参考例8)
実施例1に記載した、水酸化ニッケル粒子表面にCoを含む混合水酸化物から成る表面層を形成させる工程において、その量がCoの金属量換算で10重量部であったこと以外は実施例1と同様とした。該例を参考例8とする。
(Reference Example 8)
In the step of forming a surface layer composed of a mixed hydroxide containing Co on the surface of nickel hydroxide particles described in Example 1, the amount was 10 parts by weight in terms of the amount of Co metal. Same as 1. This example is referred to as Reference Example 8.

表6に、実施例1、13、14、及び参考例6〜8の電池について過放電サイクル寿命を示す。   Table 6 shows the overdischarge cycle life for the batteries of Examples 1, 13, 14 and Reference Examples 6-8.

Figure 0004930674
Figure 0004930674

表6に示した結果によれば、優れた過放電サイクル寿命が得られたが、3重量部以下のとき、過放電サイクル寿命は低下してしまった。水酸化ニッケルを被覆するCo量が少ないと過放電サイクル時の耐還元性が低下し、被覆Coの高次水酸化物の還元による導電性低下が早くなったためであると考えられる。一方、水酸化ニッケルを被覆するCo量が8重量部を超えたときもまた過放電サイクル寿命が低下した。被覆するCo水酸化物量が多すぎると、同容量の電池をつくるための正極板の体積が大きくなってしまうため、残存空間が減少し、電解液が残存空間を占める割合が高くなった結果、正極から発生する酸素ガス吸収が遅れ内圧が高くなり、水素吸蔵合金電極の劣化が加速されたり、安全弁の作動が起こりやすくなり、寿命が低下する。さらに、正極から発生した水素ガスが極群空間を占める電解液に阻まれ正極板細孔から抜け出にくくなることにより正極が水素ガスに暴露される時間が長くなってしまうため被覆Coが還元されやすくなってしまったためであると考えられる。以上により、水酸化ニッケルを被覆するCo量は金属量換算で4重量部〜8重量部であることが好ましい。実施例1では被覆するコバルト水酸化物の前酸化処理を行ったが、この処理を行わない水酸化コバルト被覆水酸化ニッケル活物質を用いても同様の効果が得られた。   According to the results shown in Table 6, an excellent overdischarge cycle life was obtained, but when the amount was 3 parts by weight or less, the overdischarge cycle life was lowered. This is probably because when the amount of Co covering the nickel hydroxide is small, the reduction resistance during the overdischarge cycle is lowered, and the conductivity is lowered earlier due to the reduction of the higher order hydroxide of the coated Co. On the other hand, the overdischarge cycle life also decreased when the amount of Co covering nickel hydroxide exceeded 8 parts by weight. If the amount of Co hydroxide to be coated is too large, the volume of the positive electrode plate for making a battery of the same capacity will increase, resulting in a decrease in the remaining space and a higher proportion of the electrolyte occupying the remaining space. Absorption of oxygen gas generated from the positive electrode is delayed, the internal pressure is increased, the deterioration of the hydrogen storage alloy electrode is accelerated, the safety valve is easily activated, and the life is shortened. Furthermore, since the hydrogen gas generated from the positive electrode is blocked by the electrolyte solution that occupies the polar group space and becomes difficult to escape from the positive electrode plate pores, the time for which the positive electrode is exposed to the hydrogen gas becomes long, so that the coated Co is easily reduced. This is thought to be because it has become. As mentioned above, it is preferable that the amount of Co which coat | covers nickel hydroxide is 4 weight part-8 weight part in conversion of a metal amount. In Example 1, the cobalt hydroxide to be coated was pre-oxidized, but the same effect was obtained using a cobalt hydroxide-coated nickel hydroxide active material that was not subjected to this treatment.

また、少なくとも水酸化ニッケルを水酸化コバルトやオキシ水酸化コバルトで被覆することは必要だが、該コバルト被覆水酸化ニッケル活物質に水酸化コバルトやオキシ水酸化コバルトを混合添加しても、過放電サイクル寿命が向上する。実施例1の正極板の作製において、コバルト被覆水酸化ニッケル活物質100重量部に対し、水酸化コバルトを1重量部混合添加すること以外は実施例1と同様に電池を作製し評価を行うと、過放電サイクル寿命は570サイクルであった。同様に前記水酸化コバルトの混合添加量を2重量部とし電池の作製評価を行うと、過放電サイクル寿命は590サイクルとなり、いずれもさらに過放電サイクル寿命が向上し、水酸化コバルトを混合添加することによっても耐過放電耐久性が向上しより好ましい。
前記水酸化コバルトに替えてオキシ水酸化コバルトを同様に混合添加しても同様の効果が得られた。
In addition, it is necessary to coat at least nickel hydroxide with cobalt hydroxide or cobalt oxyhydroxide. However, even if cobalt hydroxide or cobalt oxyhydroxide is added to the cobalt-coated nickel hydroxide active material, The service life is improved. In the production of the positive electrode plate of Example 1, a battery was produced and evaluated in the same manner as in Example 1 except that 1 part by weight of cobalt hydroxide was mixed and added to 100 parts by weight of the cobalt-coated nickel hydroxide active material. The overdischarge cycle life was 570 cycles. Similarly, when the mixed addition amount of the cobalt hydroxide is 2 parts by weight and the battery is evaluated for production, the overdischarge cycle life becomes 590 cycles, both of which further improve the overdischarge cycle life, and the cobalt hydroxide is mixed and added. This is also preferable because the overdischarge durability is improved.
The same effect was obtained even when cobalt oxyhydroxide was similarly mixed and added instead of the cobalt hydroxide.

以下の実施例及び比較例においては、密閉形アルカリ蓄電池を組電池として評価し効果を確認した。   In the following examples and comparative examples, sealed alkaline storage batteries were evaluated as assembled batteries to confirm the effects.

実施例1に記載した正極板の作製において、容量を2900mAhとしたこと以外は実施例1と同様に電池を作製した。該電池と実施例1の電池とを幅10mm長さ30mm厚さ0.2mmのニッケル板を用いて直列に接続した。該組電池を実施例15とする。該組電池は前述の通り100mAh容量の異なる単電池の組み合わせにより構成されている。   A battery was produced in the same manner as in Example 1 except that the capacity of the positive electrode plate described in Example 1 was 2900 mAh. The battery and the battery of Example 1 were connected in series using a nickel plate having a width of 10 mm, a length of 30 mm, and a thickness of 0.2 mm. This assembled battery is referred to as Example 15. As described above, the assembled battery is composed of a combination of single cells having different capacities of 100 mAh.

(比較例7)
実施例1に記載した正極板の作製において、容量を2900mAhとし、下端部に樹脂を含浸しなかったこと以外は実施例1と同様に電池を作製した。該電池と比較例4の電池とを幅10mm長さ30mm厚さ0.2mmのニッケル板を用いて直列に接続した。該組電池を比較例7とする。該組電池は前期同様100mAh容量の異なる単電池の組み合わせにより構成されており、かつそれぞれの電池を構成する正極板には樹脂含浸加工が成されていない。
(Comparative Example 7)
A battery was fabricated in the same manner as in Example 1 except that the capacity of the positive electrode plate described in Example 1 was 2900 mAh and the lower end portion was not impregnated with resin. The battery and the battery of Comparative Example 4 were connected in series using a nickel plate having a width of 10 mm, a length of 30 mm, and a thickness of 0.2 mm. This assembled battery is referred to as Comparative Example 7. The assembled battery is constituted by a combination of single cells having different 100 mAh capacities as in the previous period, and the positive electrode plate constituting each battery is not subjected to resin impregnation.

(組電池のサイクル寿命評価)
実施例15及び比較例7の組電池を周囲温度20℃において充放電サイクル試験に供した。1ItAにて−ΔVが20mVの変動が発生するまで充電し、放電レート3ItAで組電池電圧が0Vに至るまで放電した。該充放電を1サイクルとして充放電サイクルを繰り返し行い、放電容量が充放電サイクル試験の1サイクル目の放電容量の70%を切ったサイクル数をもって該電池の過放電サイクル寿命とした。
(Assembly battery cycle life evaluation)
The assembled batteries of Example 15 and Comparative Example 7 were subjected to a charge / discharge cycle test at an ambient temperature of 20 ° C. The battery was charged at 1 ItA until -ΔV changed to 20 mV, and discharged at a discharge rate of 3 ItA until the assembled battery voltage reached 0 V. The charge / discharge cycle was repeated with this charge / discharge as one cycle, and the overdischarge cycle life of the battery was defined as the number of cycles in which the discharge capacity was cut off 70% of the discharge capacity in the first cycle of the charge / discharge cycle test.

表7に、実施例15及び比較例7の組電池についてサイクル寿命を示す。   Table 7 shows the cycle life of the assembled batteries of Example 15 and Comparative Example 7.

Figure 0004930674
Figure 0004930674

表7に示した結果によれば、実施例15の組電池は600サイクルを超える優れたサイクル寿命が得られたのに対し、比較例7の組電池はサイクル寿命が低下してしまった。サイクル寿命試験において、0Vまでの放電時に、組電池を構成する電池の容量差により、容量の小さな電池がより過放電されてしまう。正極板下端部を樹脂で含浸した実施例16の組電池では、この過放電時においても、正極粉末の脱落が起こりにくく、容量低下を抑制できたため、優れたサイクル寿命が得られたものと考えられる。
以上、組電池の評価試験においても単電池で評価した時と同様の結果が得られた。
正極板の端部を樹脂で含浸を行うことにより、組電池を構成する単電池の容量ばらつきに起因する過放電に対する耐久性が向上し、優れたサイクル寿命を有する組電池を得られることが確認された。
According to the results shown in Table 7, the assembled battery of Example 15 had an excellent cycle life exceeding 600 cycles, whereas the assembled battery of Comparative Example 7 had a reduced cycle life. In the cycle life test, a battery having a small capacity is more overdischarged due to a capacity difference between the batteries constituting the assembled battery when discharging to 0V. In the assembled battery of Example 16 in which the lower end portion of the positive electrode plate was impregnated with resin, it was considered that an excellent cycle life was obtained because the positive electrode powder was less likely to drop off during this overdischarge and the capacity reduction was suppressed. It is done.
As described above, in the evaluation test of the assembled battery, the same result as that obtained when the single battery was evaluated was obtained.
It is confirmed that by impregnating the end of the positive electrode plate with resin, durability against over-discharge due to capacity variation of the cells constituting the assembled battery is improved, and an assembled battery having an excellent cycle life can be obtained. It was done.

Claims (8)

電槽内に、金属多孔体を基板としニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面に少なくともコバルト水酸化物又はオキシ水酸化コバルトの層を形成し希土類水酸化物又は酸化物を混合して充填した正極板と、負極板と、セパレータとを巻き込んで構成した円筒形極群と、正極集電体と負極集電体と電解液とを備え、絶縁体を介して前記電槽と電気的に絶縁された蓋に正極板及び正極集電体とを電気的に接続するリードを備えた密閉形アルカリ蓄電池において、前記正極板が、その上下両端部のうち少なくとも下端部を、25℃の針入度0.15mm以上2.6mm以下の樹脂で、正極板充填部の下端面から0.2mm以上含浸したものであることを特徴とする密閉形アルカリ蓄電池。   In the battery case, at least a layer of cobalt hydroxide or cobalt oxyhydroxide is formed on the surface of a powder composed of a hydroxide and an oxide mainly composed of a metal porous body, nickel as a main component and cobalt and zinc, and rare earth water. An insulator comprising a positive electrode plate filled with an oxide or an oxide, a negative electrode plate, a cylindrical electrode group formed by winding a separator, a positive electrode current collector, a negative electrode current collector, and an electrolytic solution. In a sealed alkaline storage battery having a lead electrically connected to a positive electrode plate and a positive electrode current collector on a lid electrically insulated from the battery case via the positive electrode plate, of the upper and lower ends thereof A sealed alkaline storage battery characterized in that at least a lower end portion is impregnated with a resin having a penetration of 0.15 mm or more and 2.6 mm or less at 25 ° C. from a lower end surface of a positive electrode plate filling portion by 0.2 mm or more. 前記正極板が、少なくとも下端部を、25℃の針入度0.15mm以上2.6mm以下の樹脂で、前記正極板充填部の下端面から0.2mm〜1.0mm含浸したものであることを特徴とする請求項1に記載の密閉形アルカリ蓄電池。   The positive electrode plate has at least a lower end portion impregnated with a resin having a penetration of 0.15 mm or more and 2.6 mm or less at 25 ° C. from a lower end surface of the positive electrode plate filling portion of 0.2 mm to 1.0 mm. The sealed alkaline storage battery according to claim 1. 前記樹脂が、飽和炭化水素であることを特徴とする請求項1又は2に記載の密閉形アルカリ蓄電池。   The sealed alkaline storage battery according to claim 1, wherein the resin is a saturated hydrocarbon. 前記希土類が、少なくともイッテルビウムを含むことを特徴とする請求項1〜3のいずれか一項に記載の密閉形アルカリ蓄電池。   The sealed alkaline storage battery according to any one of claims 1 to 3, wherein the rare earth contains at least ytterbium. 前記希土類水酸化物又は酸化物は、ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面に少なくともコバルト水酸化物又はオキシ水酸化コバルトの層を形成した粉末を100重量部としたとき、酸化物量換算で1重量部から3重量部添加することを特徴とする請求項1〜4のいずれか一項に記載の密閉形アルカリ蓄電池。   The rare earth hydroxide or oxide is a powder in which at least a layer of cobalt hydroxide or cobalt oxyhydroxide is formed on the surface of a powder composed of hydroxide and oxide mainly containing nickel and containing cobalt and zinc. The sealed alkaline storage battery according to any one of claims 1 to 4, wherein when the amount is in parts by weight, 1 to 3 parts by weight is added in terms of oxide amount. 前記ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面に形成したコバルト水酸化物又はオキシ水酸化コバルトは、前記ニッケルを主体としてコバルトと亜鉛を含有した水酸化物及び酸化物からなる粉末の表面に少なくともコバルト水酸化物又はオキシ水酸化コバルトの層を形成した粉末を100重量部としたとき、金属コバルト量換算で4重量部から8重量部含有することを特徴とする請求項1〜5のいずれか一項に記載の密閉形アルカリ蓄電池。   The cobalt hydroxide or cobalt oxyhydroxide formed on the surface of the powder consisting of hydroxide and oxide containing cobalt and zinc mainly containing nickel is the hydroxide containing cobalt and zinc mainly containing nickel. And 4 parts by weight to 8 parts by weight in terms of the amount of metallic cobalt when 100 parts by weight of the powder in which at least a layer of cobalt hydroxide or cobalt oxyhydroxide is formed on the surface of the powder made of oxide. The sealed alkaline storage battery according to any one of claims 1 to 5. 前記負極が、水素を吸蔵脱離する希土類元素とニッケルを含有する遷移金属元素を主成分として構成された水素吸蔵合金粉末からなる請求項1〜6のいずれか一項に記載の密閉形アルカリ蓄電池。   7. The sealed alkaline storage battery according to claim 1, wherein the negative electrode comprises a hydrogen storage alloy powder composed mainly of a rare earth element that absorbs and desorbs hydrogen and a transition metal element containing nickel. . 請求項1〜7のいずれか一項に記載の密閉形アルカリ蓄電池を用い、複数個で構成したことを特徴とする組電池。
A battery pack comprising a plurality of sealed alkaline storage batteries according to claim 1, wherein the battery pack is composed of a plurality.
JP2005239642A 2005-08-22 2005-08-22 Sealed alkaline storage battery and its assembled battery Active JP4930674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239642A JP4930674B2 (en) 2005-08-22 2005-08-22 Sealed alkaline storage battery and its assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239642A JP4930674B2 (en) 2005-08-22 2005-08-22 Sealed alkaline storage battery and its assembled battery

Publications (2)

Publication Number Publication Date
JP2007059071A JP2007059071A (en) 2007-03-08
JP4930674B2 true JP4930674B2 (en) 2012-05-16

Family

ID=37922391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239642A Active JP4930674B2 (en) 2005-08-22 2005-08-22 Sealed alkaline storage battery and its assembled battery

Country Status (1)

Country Link
JP (1) JP4930674B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743185B2 (en) * 2011-01-18 2015-07-01 株式会社Gsユアサ Positive electrode active material for alkaline storage battery and alkaline storage battery
US9269952B2 (en) 2011-01-11 2016-02-23 Gs Yuasa International Ltd. Positive active material for alkaline secondary battery, method for manufacturing the same and alkaline secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321222A (en) * 1997-05-15 1998-12-04 Sanyo Electric Co Ltd Electrode plate for alkaline storage battery, and alkaline battery provided with this electrode plate
JP2002367607A (en) * 2001-06-05 2002-12-20 Hitachi Maxell Ltd Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP3764912B2 (en) * 2001-07-17 2006-04-12 日立マクセル株式会社 Non-sintered electrode for alkaline storage battery, and alkaline storage battery using this electrode
JP2004119280A (en) * 2002-09-27 2004-04-15 Sanyo Electric Co Ltd Battery and its manufacturing method
JP4305264B2 (en) * 2004-04-22 2009-07-29 パナソニック株式会社 Non-sintered positive electrode for alkaline storage battery and alkaline storage battery

Also Published As

Publication number Publication date
JP2007059071A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
KR101938103B1 (en) Carbon Fiber Zinc Negative Electrode
JP5257823B2 (en) Method for producing hydrogen storage electrode and method for producing nickel metal hydride battery
JP5119577B2 (en) Nickel metal hydride battery
JP2015181121A (en) Nickel hydroxide electrode for rechargeable batteries
WO2003047014A1 (en) Active electrode composition with graphite additive
JPH11135114A (en) Nickel-hydrogen secondary battery and manufacture of electrode thereof
JP2016507871A (en) Paste-type nickel hydroxide electrodes and additives for rechargeable alkaline batteries
US20060166099A1 (en) Closed nickel-hydrogen storage battery and its production method
JP2012227106A (en) Nickel-metal hydride battery
JP4429569B2 (en) Nickel metal hydride storage battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP4973892B2 (en) Capacitors
JP5716969B2 (en) Nickel metal hydride storage battery
KR20220099106A (en) Electrode assembly comprising ion exchange material
JP4930674B2 (en) Sealed alkaline storage battery and its assembled battery
JP2012238565A (en) Alkaline storage battery
JPH0855618A (en) Sealed alkaline storage battery
JP5061582B2 (en) battery
JP4894132B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and nickel metal hydride storage battery
US20240113280A1 (en) Monolithic Electrode Assemblies With Contained Three-Dimensional Channels Usable With Ion Exchange Materials
JP5309479B2 (en) Alkaline storage battery
JP2000200612A (en) Rectangular alkaline secondary battery
JP6893103B2 (en) Separator evaluation method
JP2004185956A (en) Nickel-hydrogen storage battery
JPH08329955A (en) Paste electrode and alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4930674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3