JP4923728B2 - Phosphor-containing composition, light emitting device, lighting device, and image display device - Google Patents

Phosphor-containing composition, light emitting device, lighting device, and image display device Download PDF

Info

Publication number
JP4923728B2
JP4923728B2 JP2006143896A JP2006143896A JP4923728B2 JP 4923728 B2 JP4923728 B2 JP 4923728B2 JP 2006143896 A JP2006143896 A JP 2006143896A JP 2006143896 A JP2006143896 A JP 2006143896A JP 4923728 B2 JP4923728 B2 JP 4923728B2
Authority
JP
Japan
Prior art keywords
phosphor
emitting device
light emitting
light
containing composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006143896A
Other languages
Japanese (ja)
Other versions
JP2007314626A (en
Inventor
敬一 関
千鶴 村上
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006143896A priority Critical patent/JP4923728B2/en
Publication of JP2007314626A publication Critical patent/JP2007314626A/en
Application granted granted Critical
Publication of JP4923728B2 publication Critical patent/JP4923728B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor composition which is not deteriorated with time and in which light emitting properties are not changed even when the composition uses a phosphor having low humidity resistance in which deterioration is caused by moisture, a light emitting device, an illuminating device and an image display. <P>SOLUTION: This phosphor-containing composition comprises: (A) a phosphor having a deterioration degree of 1% or more as measured according to the following phosphor deterioration degree measuring test (I); and (B) a silicone-based compound containing substantially no aromatic group. The phosphor deterioration degree measuring test (I) comprises: (a) measuring the brightness of a powder of the phosphor to report the measured value as x; (b) allowing the powder of the phosphor of which brightness has been measured in (a) to stand still in air having a temperature of 60&deg;C and a relative humidity of 90% for one day; (c) measuring the brightness of the phosphor powder which has been obtained in (b) in substantially the same manner as in (a) to report the measured value as y; and (d) acquiring fluorescent substance deterioration degree (%)=(1-y/x)&times;100. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は蛍光体含有組成物、発光装置、照明装置、および画像表示装置に関する。詳しくは、経時による劣化の少ない蛍光体含有組成物、および前記蛍光体含有組成物を用いて形成された発光装置、および前記発光装置を用いて形成された照明装置および画像表示装置に関する。   The present invention relates to a phosphor-containing composition, a light emitting device, a lighting device, and an image display device. Specifically, the present invention relates to a phosphor-containing composition with little deterioration over time, a light-emitting device formed using the phosphor-containing composition, and an illumination device and an image display device formed using the light-emitting device.

波長変換材料としての蛍光体は、白色発光の発光装置の材料として、近紫外〜青色発光の半導体発光素子として注目されている発光効率の高い窒化ガリウム(GaN)系発光ダイオード(light emitting diode。以下、適宜「LED」と略称する。)や半導体レーザーダイオード(semiconductor laser diode。以下、適宜「LD」と略称する。)と
組み合わせて用いられており、その発光装置は画像表示装置や照明装置の発光源として用いられている。
A phosphor as a wavelength conversion material is a gallium nitride (GaN) light emitting diode (light emitting diode) having high luminous efficiency, which is attracting attention as a near-ultraviolet to blue light emitting semiconductor light emitting device as a material for a white light emitting device. And a semiconductor laser diode (hereinafter abbreviated as “LD” where appropriate), and the light emitting device emits light from an image display device or a lighting device. Used as a source.

前記の蛍光体は半導体発光素子の発光効率の高い近紫外域から青色の励起光に対し効率の高いものが要求される。
しかしながら、これらの蛍光体の中には従来蛍光灯等に使用されていた蛍光体とは異なり、耐湿性が低く、水分により劣化するものが有る。かかる蛍光体を使用して半導体発光装置を作製する場合、経時的に発光特性が変化するという問題があった。このような発光装置に使用する蛍光体を保持するために、従来はエポキシ樹脂、一般的なシリコーン樹脂等が使用されていたが(特許文献1〜3)、エポキシ樹脂は一般に吸水率が高く、またなシリコーン樹脂は一般に透湿性が高いので、実用上の十分な解決には至らなかった。
特許第3241338号公報 特開平7−25987号公報 特開2005−42099号公報
The phosphor is required to have a high efficiency with respect to blue excitation light from the near ultraviolet region where the luminous efficiency of the semiconductor light emitting device is high.
However, some of these phosphors have low moisture resistance and deteriorate due to moisture, unlike phosphors conventionally used in fluorescent lamps and the like. When a semiconductor light emitting device is manufactured using such a phosphor, there is a problem that the light emission characteristics change with time. In order to hold the phosphor used in such a light emitting device, an epoxy resin, a general silicone resin or the like has been conventionally used (Patent Documents 1 to 3), but an epoxy resin generally has a high water absorption rate. Moreover, since a silicone resin generally has high moisture permeability, it has not been a practically sufficient solution.
Japanese Patent No. 3241338 JP 7-25987 A Japanese Patent Laid-Open No. 2005-42099

本発明は、前述の従来技術に鑑みてなされたものであって、耐湿性が低く、水分により劣化を生じる蛍光体を用いても、経時劣化せず、発光特性が変化しない蛍光体組成物、発光装置、照明装置、および画像表示装置を提供することにある。   The present invention has been made in view of the above-described prior art, and is a phosphor composition that has low moisture resistance and does not deteriorate over time even when a phosphor that deteriorates due to moisture is used, and whose light emission characteristics do not change, The object is to provide a light emitting device, a lighting device, and an image display device.

本発明者等は前記問題を解決すべく鋭意検討を重ねた結果、耐湿性の低い特定の蛍光体において特定のシリコーン系化合物が発光装置の経時劣化防止に有効であることを見出し本発明に到達した。
すなわち本発明の要旨は下記の(1)〜(7)に存する。
(1)(A)蛍光体および(B)シリコーン系化合物を含有する蛍光体含有組成物であって、前記(A)蛍光体は、下記蛍光体劣化度測定試験(I)による劣化度が1%以上であり、かつ、母体結晶としてM SiO 、MS、MGa 、MAlSiN 、M Si 、MSi からなる群(ただし、Mは、Ca,Sr,Baからなる群から選ばれる1種以上を表す)の少なくとも一つを含有し、さらに付活剤としてCr,Mn,Fe,Bi,Ce,Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tm,Ybの少なくとも一つを含有するものであり、前記(B)シリコーン系化合物は、芳香族基を含有しないことを特徴とする蛍光体含有組成物。
蛍光体劣化度測定試験(I)
a)前記蛍光体の粉末の輝度を測定し、得られた測定値をxとする。
b)a)において輝度を測定した蛍光体粉末を温度60℃、相対湿度90%の空気中に1日放置する。
c) b)において得られた蛍光体粉末をa)と同様の方法にて輝度を測定し、得られた
測定値をyとする。
d)蛍光体劣化度(%)=(1−y/x)×100を求める。
(2)前記(A)蛍光体がアルカリ土類金属を含有し、かつ温度60℃、相対湿度90%の空気中に1日放置した場合にアルカリ土類金属炭酸塩を生成する蛍光体であことを特徴とする(1)に記載の蛍光体含有組成物。
(3)前記(A)蛍光体が、(Sr 1-a Ba SiO :Eu(aは0≦a≦1を
満たす。)であることを特徴とする(1)または(2)に記載の蛍光体含有組成物。
(4)前記(1)〜(3)のいずれかに記載の蛍光体含有組成物を用いて形成された発光装置。
(5)半導体発光素子および前記(1)〜(3)のいずれかに記載の蛍光体含有組成物を用いて形成された発光装置であって、下記半導体発光装置劣化度試験(II)による劣化度が5%以下であることを特徴とする発光装置。
半導体発光装置劣化度測定試験(II)
e)半導体発光素子を上記蛍光体含有組成物で封止して半導体発光装置を作製する。
f)e)で作製した半導体発光装置について、前記半導体発光素子の定格電流を通電した
ときの半導体発光装置の全光束をφとする。
g)f)で光束を測定した半導体発光装置を温度60℃、相対湿度90%の空気中に、未通電の状態で3日間放置する。
h)g)で得られた半導体発光装置に定格電流を通電したときの全光束をφとする。
i)劣化度(%)=(1−φ/φ)×100を求める。
(6)前記(4)または(5)に記載の発光装置を用いて形成された照明装置。
(7)前記(4)または(5)に記載の発光装置を用いて形成された画像表示装置。
As a result of intensive investigations to solve the above problems, the present inventors have found that a specific silicone compound is effective in preventing deterioration over time of a light emitting device in a specific phosphor having low moisture resistance, and reached the present invention. did.
That is, the gist of the present invention resides in the following (1) to (7).
(1) A phosphor-containing composition containing (A) a phosphor and (B) a silicone compound, wherein the phosphor (A) has a degradation degree of 1 according to the following phosphor degradation degree measurement test (I). % And a group consisting of M 3 SiO 5 , MS, MGa 2 S 4 , MAlSiN 3 , M 2 Si 5 N 8 , MSi 2 N 2 O 2 as a base crystal (where M is Ca, Sr , Ba represents at least one selected from the group consisting of Ba, and Cr, Mn, Fe, Bi, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Ho as activators , Er, Tm, those that contain at least one of Yb, the (B) silicone-based compound, a phosphor-containing composition characterized by having no free aromatic group.
Phosphor degradation test (I)
a) The brightness of the phosphor powder is measured, and the measured value is defined as x.
b) The phosphor powder whose luminance was measured in a) is left in air at a temperature of 60 ° C. and a relative humidity of 90% for one day.
c) The luminance of the phosphor powder obtained in b) is measured by the same method as in a), and the measured value obtained is y.
d) The phosphor deterioration degree (%) = (1−y / x) × 100 is obtained.
(2) (A) the phosphor, an alkaline earth metal, and the temperature 60 ° C., with a phosphor to produce an alkaline earth metal carbonate when allowed to stand for 1 day in a relative humidity of 90% air it Oh Ru and wherein phosphor-containing composition according to (1).
(3) The phosphor (A) is (Sr 1-a Ba a ) 3 SiO 5 : Eu (a satisfies 0 ≦ a ≦ 1).
Fulfill. The phosphor-containing composition according to (1) or (2), wherein
(4) A light-emitting device formed using the phosphor-containing composition according to any one of (1) to (3).
(5) A light emitting device formed using the semiconductor light emitting element and the phosphor-containing composition according to any one of (1) to (3), wherein the deterioration is caused by the following semiconductor light emitting device deterioration test (II) A light emitting device having a degree of 5% or less.
Semiconductor light emitting device degradation measurement test (II)
e) A semiconductor light emitting device is fabricated by sealing the semiconductor light emitting element with the phosphor-containing composition.
f) For the semiconductor light emitting device fabricated in e), let φ 1 be the total luminous flux of the semiconductor light emitting device when the rated current of the semiconductor light emitting element is applied.
g) The semiconductor light emitting device whose luminous flux has been measured in f) is left in an unpowered state for 3 days in air at a temperature of 60 ° C. and a relative humidity of 90%.
The total flux of when the rated current for the semiconductor light-emitting device obtained in h) g) and phi 2.
i) Deterioration degree (%) = (1−φ 2 / φ 1 ) × 100 is obtained.
(6) A lighting device formed using the light emitting device according to (4) or (5).
(7) An image display device formed using the light emitting device according to (4) or (5).

本発明によれば、耐湿性が低く、水分により劣化を生じる蛍光体を用いても、経時劣化せず、発光特性が変化しない蛍光体組成物、発光装置、照明装置、および画像表示装置を提供することができる。   According to the present invention, there are provided a phosphor composition, a light emitting device, a lighting device, and an image display device that do not deteriorate with time and do not change light emission characteristics even when a phosphor that has low moisture resistance and causes deterioration due to moisture is used. can do.

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[1]蛍光体組成物
本発明の蛍光体含有組成物は(A)蛍光体、および液状媒体である(B)シリコーン系化合物を含有することを必須要件とする。また、要すればその他の任意成分を含有していてもよい。
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
[1] Phosphor composition It is essential that the phosphor-containing composition of the present invention contains (A) a phosphor and (B) a silicone compound which is a liquid medium. Moreover, you may contain other arbitrary components if needed.

[1−1](A)蛍光体
本発明の蛍光体含有組成物に含有される(A)蛍光体は、
(i)後述の蛍光体劣化度測定試験(I)による劣化度が1%以上であること(請求項1)、又は
(ii)アルカリ土類金属を含有し、かつ製造直後、温度60℃、相対湿度90%の空気中に1日放置した場合にアルカリ土類金属炭酸塩を生成すること(請求項2)
が特徴である。
これは、本発明の蛍光体含有組成物を構成する蛍光体が、耐湿性の低いものであることを意味する。即ち、本発明の蛍光体含有組成物が、耐湿性が低い蛍光体において、安定的に用いられるという技術的意義を有する。
以下、(A)蛍光体について、説明する。
[1-1] (A) phosphor The phosphor (A) contained in the phosphor-containing composition of the present invention comprises:
(I) Deterioration degree by phosphor degradation degree measurement test (I) described later (I) is 1% or more (Claim 1), or (ii) Alkaline earth metal is contained, and immediately after production, the temperature is 60 ° C. Producing alkaline earth metal carbonates when left in air at 90% relative humidity for a day (claim 2)
Is a feature.
This means that the phosphor constituting the phosphor-containing composition of the present invention has low moisture resistance. That is, the phosphor-containing composition of the present invention has the technical significance that it can be used stably in phosphors with low moisture resistance.
Hereinafter, (A) the phosphor will be described.

[1−1−1]蛍光体劣化度測定試験(I)による劣化度
本発明の第一の蛍光体含有組成物に含有される蛍光体は、下記蛍光体劣化度測定試験(I)による劣化度が1%以上であることが特徴である。
蛍光体劣化度測定試験(I)
a)前記蛍光体の粉末の輝度を測定し、得られた測定値をxとする。
b)a)において輝度を測定した蛍光体粉末を温度60℃、相対湿度90%の空気中に1日放置する。
c) b)において得られた蛍光体粉末をa)と同様の方法にて輝度を測定し、得られた
測定値をyとする。
d)蛍光体劣化度(%)=(1−y/x)×100を求める。
[1-1-1] Deterioration degree by phosphor deterioration degree measurement test (I) The phosphor contained in the first phosphor-containing composition of the present invention is deteriorated by the following phosphor deterioration degree measurement test (I). The degree is characterized by being 1% or more.
Phosphor degradation test (I)
a) The brightness of the phosphor powder is measured, and the measured value is defined as x.
b) The phosphor powder whose luminance was measured in a) is left in air at a temperature of 60 ° C. and a relative humidity of 90% for one day.
c) The luminance of the phosphor powder obtained in b) is measured by the same method as in a), and the measured value obtained is y.
d) The phosphor deterioration degree (%) = (1−y / x) × 100 is obtained.

即ち、輝度計の測定値により、1%以上の輝度低下が認められるものを耐湿性の低い蛍光体とし、これを本発明の第一の蛍光体含有組成物に含有される蛍光体の構成要件とする。本発明の蛍光体含有組成物が経時劣化防止効果を奏する場合の蛍光体の前記劣化度は、好ましくは5%以上、更に好ましくは10%以上、特に好ましくは20%以上、とりわけ好ましくは50%以上である。また、劣化度の上限は通常90%、好ましくは70%である。劣化度が高すぎると後述の(B)シリコーン系化合物を用いても発光装置の劣化が認められる恐れがある。   That is, a phosphor with low moisture resistance that is found to have a luminance decrease of 1% or more as measured by a luminance meter is used as a constituent of the phosphor contained in the first phosphor-containing composition of the present invention. And When the phosphor-containing composition of the present invention exhibits the effect of preventing deterioration with time, the degree of deterioration of the phosphor is preferably 5% or more, more preferably 10% or more, particularly preferably 20% or more, and particularly preferably 50%. That's it. Further, the upper limit of the degree of deterioration is usually 90%, preferably 70%. If the degree of deterioration is too high, deterioration of the light emitting device may be observed even when a later-described (B) silicone compound is used.

なお、前記蛍光体劣化度測定試験(I)におけるx値は、製造直後の蛍光体粉末の輝度を測定するのが好ましい。これは、蛍光体が水分との接触により劣化されていない状態のものを測定するためである。従って、製造直後の蛍光体粉末でなくとも、蛍光体の製造後、劣化に影響を与えないようにデシケータに保管している状態、もしくは湿度バリア性の高いアルミラミネートパック等に封入保管している状態を経て速やかに測定していても良い。   The x value in the phosphor degradation degree measurement test (I) preferably measures the luminance of the phosphor powder immediately after production. This is because the phosphor is measured in a state where it is not deteriorated by contact with moisture. Therefore, even if it is not phosphor powder immediately after production, it is stored in a desiccator after production of the phosphor so that it does not affect deterioration, or it is enclosed and stored in an aluminum laminate pack with high humidity barrier properties, etc. You may measure quickly through the state.

[1−1−2]アルカリ土類金属炭酸塩の生成による劣化度
本発明の第二の蛍光体含有組成物に含有される蛍光体は、[1−1−1]に規定される劣化度を有しつつ、又はこれに代えて、アルカリ土類金属を含有し、かつ製造直後、温度60℃、相対湿度90%の空気中に1日放置した場合にアルカリ土類金属炭酸塩を生成することが特徴である。
[1-1-2] Deterioration degree due to generation of alkaline earth metal carbonate The phosphor contained in the second phosphor-containing composition of the present invention has a deterioration degree defined in [1-1-1]. Or in place of this, an alkaline earth metal carbonate is produced when it is left in air at a temperature of 60 ° C. and a relative humidity of 90% for 1 day immediately after production. It is a feature.

金属炭酸塩の生成確認はX線回折法を用い公知の定性分析法により確認できる。
例えば、SrBaSiO;Eu (以下、「SBS」と称することがある。)を温
度60℃、相対湿度90%の空気中に1日間放置した前後でCuKα線によりX線回折を行なった場合、放置前の図4と放置後の図5に示すように、SrBaSiO;Eu
が変化して(Sr,Ba)CO が生成していることがわかる。[1−1−3]蛍光体
粒子の粒径、形状
本発明に使用する蛍光体の粒径は特に制限はないが、蛍光体の粒径が大きいほど、比表面積が小さく、水分との反応が少ないため好ましい。蛍光体の粒径は、中央粒径(D50)で通常0.1μm〜100μm、好ましくは2μm〜50μm、更に好ましくは10μm〜20μmである。蛍光体粒子の粒度分布(QD)は、蛍光体含有組成物中での粒子の分散状態をそろえるために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップにつながるので、通常0.03以上、好ましくは0.05以上、更に好ましくは0.07以上である。また、通常0.4以下、好ましくは0.3以下、更に好ましくは0.2以下である。また、蛍光体粒子の形状は、蛍光体部形成に影響を与えない限り、特に限定されない。
Formation of metal carbonate can be confirmed by a known qualitative analysis method using an X-ray diffraction method.
For example, when X-ray diffraction is performed with CuKα rays before and after leaving Sr 2 BaSiO 5 ; Eu (hereinafter sometimes referred to as “SBS”) in air at a temperature of 60 ° C. and a relative humidity of 90% for one day. As shown in FIG. 4 before leaving and in FIG. 5 after leaving, Sr 2 BaSiO 5 ; Eu
It can be seen that (Sr, Ba) CO 3 is generated. [1-1-3] Particle Size and Shape of Phosphor Particles The particle size of the phosphor used in the present invention is not particularly limited, but the larger the phosphor particle size, the smaller the specific surface area and the reaction with moisture. Is preferable because of a small amount. The particle diameter of the phosphor is usually 0.1 μm to 100 μm, preferably 2 μm to 50 μm, and more preferably 10 μm to 20 μm, as the median particle diameter (D 50 ). The particle size distribution (QD) of the phosphor particles is preferably small in order to align the dispersed state of the particles in the phosphor-containing composition, but in order to reduce the particle size, the classification yield decreases, leading to an increase in cost. Usually, it is 0.03 or more, preferably 0.05 or more, more preferably 0.07 or more. Moreover, it is 0.4 or less normally, Preferably it is 0.3 or less, More preferably, it is 0.2 or less. Further, the shape of the phosphor particles is not particularly limited as long as the phosphor part formation is not affected.

なお、本発明において、中央粒径(D50)、粒度分布(QD)は、重量基準粒度分布曲線から得ることが出来る。前記重量基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定することが出来る。
気温25℃、湿度70%の環境下において、エチレングリコールなどの溶媒に蛍光体を分散させる。
In the present invention, the median particle size (D 50 ) and particle size distribution (QD) can be obtained from a weight-based particle size distribution curve. The weight-based particle size distribution curve is obtained by measuring the particle size distribution by a laser diffraction / scattering method, and specifically, for example, can be measured as follows.
A phosphor is dispersed in a solvent such as ethylene glycol under an environment of an air temperature of 25 ° C. and a humidity of 70%.

レーザ回折式粒度分布測定装置(堀場製作所 LA−300)により、粒径範囲0.1μm〜600μmにて測定する。
この重量基準粒度分布曲線において積算値が50%のときの粒径値を中央粒径D50と表記する。また、積算値が25%及び75%の時の粒径値をそれぞれD25、D75と表記し、QD=(D75−D25)/(D75+D25)と定義する。QDが小さいことは粒度分布が狭いことを意味する。
Measurement is performed with a laser diffraction particle size distribution measuring apparatus (Horiba, Ltd. LA-300) in a particle size range of 0.1 μm to 600 μm.
Integrated value in the weight particle size distribution curve is denoted a particle size value when the 50% and median particle diameter D 50. Further, the particle size values when the integrated values are 25% and 75% are expressed as D 25 and D 75 , respectively, and defined as QD = (D 75 −D 25 ) / (D 75 + D 25 ). A small QD means a narrow particle size distribution.

[1−1−4]蛍光体の種類
本発明に使用する蛍光体は、上述の様に水分と反応しやすい蛍光体がその対象となる。
かかる蛍光体としては、例えば母体結晶としてMSiO、MS、MGa、MAlSiN、MSi、MSiからなる群(ただし、Mは、Ca,Sr,Baからなる群から選ばれる1種以上を表す)の少なくとも一つを含有し、かつ付活剤としてCr,Mn,Fe,Bi,Ce,Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tm,Ybの少なくとも一つを含有する蛍光体が挙げられる。
[1-1-4] Types of phosphor The phosphor used in the present invention is a phosphor that easily reacts with moisture as described above.
As such a phosphor, for example, a group consisting of M 3 SiO 5 , MS, MGa 2 S 4 , MAlSiN 3 , M 2 Si 5 N 8 , MSi 2 N 2 O 2 as a host crystal (where M is Ca, Sr , Ba represents at least one selected from the group consisting of Ba), and Cr, Mn, Fe, Bi, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho as activators , Er, Tm, and Yb.

上記蛍光体の具体例としては、たとえば、
BaSiO:Eu、(Sr1-aBaSiO:Eu、SrSiO:Eu

CaS:Eu、SrS:Eu、BaS:Eu、CaS:Ce、SrS:Ce、BaS:Ce、
CaGa:Eu、SrGa:Eu、BaGa:Eu、CaGa:Ce、SrGaS4:Ce、BaGa:Ce、
CaAlSiN:Eu、SrAlSiN:Eu、(Ca1-aSr)AlSiN
Eu、CaAlSiN:Ce、SrAlSiN:Ce、(Ca1-aSr)AlSi
:Ce、
CaSi:Eu、SrSi:Eu、BaSi:Eu、(Ca1-aSr)Si:Eu、CaSi:Ce、SrSi:Ce、B
Si:Ce、(Ca1-aSr)Si:Ce、
CaSi:Eu、SrSi:Eu、BaSi:Eu、CaSi:Ce、SrSi:Ce、BaSi:Ce
(以上に関し、aは0≦a≦1を満たす。)が挙げられる。
中でも、SrBaSiO:Eu、CaS、CaGa:Eu、SrGa:Eu、(Sr0.8Ca0.2)AlSiN:Eu、SrAlSiN-:Euを好ま
しいものとして挙げることが出来る。
As a specific example of the phosphor, for example,
Ba 3 SiO 5 : Eu, (Sr 1-a Ba a ) 3 SiO 5 : Eu, Sr 3 SiO 5 : Eu
,
CaS: Eu, SrS: Eu, BaS: Eu, CaS: Ce, SrS: Ce, BaS: Ce,
CaGa 2 S 4: Eu, SrGa 2 S 4: Eu, BaGa 2 S 4: Eu, CaGa 2 S 4: Ce, SrGa 2 S4: Ce, BaGa 2 S 4: Ce,
CaAlSiN 3 : Eu, SrAlSiN 3 : Eu, (Ca 1-a Sr a ) AlSiN 3 :
Eu, CaAlSiN 3 : Ce, SrAlSiN 3 : Ce, (Ca 1-a Sr a ) AlSi
N 3 : Ce,
Ca 2 Si 5 N 8: Eu , Sr 2 Si 5 N 8: Eu, Ba 2 Si 5 N 8: Eu, (Ca 1-a Sr a) 2 Si 5 N 8: Eu, Ca 2 Si 5 N 8: Ce, Sr 2 Si 5 N 8 : Ce, B
a 2 Si 5 N 8: Ce , (Ca 1-a Sr a) 2 Si 5 N 8: Ce,
CaSi 2 N 2 O 2 : Eu, SrSi 2 N 2 O 2 : Eu, BaSi 2 N 2 O 2 : Eu, CaSi 2 N 2 O 2 : Ce, SrSi 2 N 2 O 2 : Ce, BaSi 2 N 2 O 2 : Ce
(With respect to the above, a satisfies 0 ≦ a ≦ 1).
Among them, Sr 2 BaSiO 5: Eu, CaS, CaGa 2 S 4: Eu, SrGa 2 S 4: Eu, (Sr 0.8 Ca 0.2) AlSiN 3: Eu, SrAlSiN 3 -: mentioned as preferred the Eu I can do it.

[1−1−5]蛍光体の表面処理
本発明に使用する蛍光体は、耐水性を高める目的で、または蛍光体含有組成物中で蛍光体の不要な凝集を防ぐ目的で、表面処理が行われていてもよい。かかる表面処理の例としては、例えば、有機材料、無機材料、ガラス材料などを用いた表面処理(特開2002−223008号公報)などが挙げられる。ただし、水溶液中で行う処理は、本発明にかかる蛍光体を劣化させる恐れがあり、好ましくない。
[1-1-5] Surface treatment of phosphor The phosphor used in the present invention is subjected to a surface treatment for the purpose of enhancing water resistance or preventing unnecessary aggregation of the phosphor in the phosphor-containing composition. It may be done. Examples of such surface treatment include surface treatment using an organic material, an inorganic material, a glass material (Japanese Patent Laid-Open No. 2002-223008), and the like. However, the treatment performed in an aqueous solution is not preferable because the phosphor according to the present invention may be deteriorated.

[1−1−6]蛍光体の配合量
本発明にかかる蛍光体は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても良い。また、[2−2]で後述するその他の蛍光体を併用して用いることもできる。
(A)蛍光体の配合量は、通常発光装置としたときに得ようとする発光色により決定されるが、後述する(B)シリコーン系化合物100重量部に対して、通常0.01重量部以上、好ましくは0.1重量部以上、更に好ましくは1重量部以上であり、通常100重量部以下、80重量部以下、更に好ましくは60重量部以下である。(A)蛍光体の配合量が少なすぎる場合は特に問題はないが、多すぎると蛍光体含有組成物の流動性が悪くなり、発光装置を作製する際に、例えば半導体発光素子を封入するための塗布工程、もしくは充填工程が困難になる。
[1-1-6] Compounding amount of phosphor The phosphor according to the present invention may be used alone or in combination of two or more in any combination and ratio. Also, other phosphors described later in [2-2] can be used in combination.
The blending amount of the phosphor (A) is usually determined by the emission color to be obtained when the light emitting device is used, but is usually 0.01 parts by weight with respect to 100 parts by weight of the (B) silicone compound described later. Above, preferably 0.1 parts by weight or more, more preferably 1 part by weight or more, and usually 100 parts by weight or less, 80 parts by weight or less, more preferably 60 parts by weight or less. (A) There is no particular problem when the amount of the phosphor blended is too small. However, when the amount is too large, the fluidity of the phosphor-containing composition is deteriorated. The coating process or filling process becomes difficult.

[1−2](B)シリコーン系化合物
本発明の蛍光体含有組成物に含有される(B)シリコーン系化合物は、芳香族基を実質的に含有しないことが特徴である。(B)シリコーン系化合物が、本発明の発光装置の劣化を防止する機構は充分に明らかではないが、以下の(i)(ii)の理由が推定される。
(i)芳香族基を有するシリコーン樹脂は一般的に機械的な負荷を受けた際に粘りがなく脆いため、加熱硬化後の冷却時の体積収縮もしくは半田付け等の加熱時の体積膨張に追従できずにマイクロクラックが生じやすく、それを伝わって内部に水分が侵入しやすく、耐湿性の低い蛍光体の劣化を助長するものと推測されるのに対し、本発明にかかる芳香族基を実質的に含有しないシリコーン樹脂は、かかる問題がない。
(ii)芳香族基を有するシリコーン樹脂は一般的に蛍光体表面との親和性が低いため、蛍光体表面への水分の接近を防ぐ効果が充分でないのに対し、本発明にかかる芳香族基を実質的に含有しないシリコーン樹脂は、かかる問題がない。
[1-2] (B) Silicone Compound The (B) silicone compound contained in the phosphor-containing composition of the present invention is characterized by substantially not containing an aromatic group. (B) Although the mechanism by which the silicone compound prevents the deterioration of the light emitting device of the present invention is not sufficiently clear, the following reasons (i) and (ii) are presumed.
(I) A silicone resin having an aromatic group is generally brittle and not sticky when subjected to a mechanical load, and therefore follows volume shrinkage during cooling after heat curing or volume expansion during heating such as soldering. However, it is presumed that microcracks are likely to occur, moisture is likely to enter the inside through the cracks, and the deterioration of the phosphor with low moisture resistance is assumed to be promoted. Such a problem does not occur when the silicone resin is not contained.
(Ii) Since the silicone resin having an aromatic group generally has low affinity with the phosphor surface, the effect of preventing moisture from approaching the phosphor surface is not sufficient, whereas the aromatic group according to the present invention Such a problem does not occur in a silicone resin that substantially does not contain.

従って、本発明にかかる(B)シリコーン系化合物は、蛍光体と水分が反応するのを防止するために、使用状態で水分が透過しにくいことまた水分を保持しないことが望ましい。
なお、本発明にかかる(B)シリコーン系化合物が、芳香族基を「実質的に」有しないとは、シリコーン系化合物中に、芳香族基を有しない、または芳香族基の量が微量であって、(A)蛍光体の劣化に影響のない程度のものを表す。
Accordingly, it is desirable that the (B) silicone compound according to the present invention does not allow moisture to permeate in the state of use and does not retain moisture in order to prevent the phosphor and moisture from reacting.
In addition, the (B) silicone compound according to the present invention does not have “substantially” an aromatic group means that the silicone compound does not have an aromatic group or the amount of the aromatic group is very small. In this case, (A) a substance that does not affect the deterioration of the phosphor is shown.

また、本発明にかかる(B)シリコーン系化合物が実質的に含有しない「芳香族基」とは、例えばフェニル基、ナフチル基、アントリル基、フェナントリル基及びそれらの誘導体を含む官能基を挙げることができる。中でも、フェニル基及びそれらの誘導体が好ましい。
前記芳香族基の検出は例えば以下の方法で行うことが出来る。
The “aromatic group” substantially not contained in the (B) silicone compound according to the present invention includes, for example, a functional group including a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and derivatives thereof. it can. Among these, a phenyl group and derivatives thereof are preferable.
The detection of the aromatic group can be performed by, for example, the following method.

即ち、シリコーン系化合物の赤外吸収スペクトルを測定し、芳香族基由来の特性振動吸収の有無により、芳香族基の有無を判定することができる。例えば、図6上段に本発明に使用することが好ましいシリコーン樹脂の赤外吸収スペクトルを、図6下段に本発明に使用することが好ましくないシリコーン樹脂の赤外吸収スペクトルを示す。図6上段および下段赤外吸収スペクトルの比較によれば、好ましくないシリコーン樹脂には波長698cm−1、717cm−1、741cm−1 にベンゼン環のCH面外変角振動による赤外
吸収、1593cm−1 にベンゼン環のC=C伸縮振動による赤外吸収、3026cm
−1、3051cm−1、3071cm−1 にベンゼン環のCH伸縮振動による赤外吸
収が同時に見られることから、芳香族基であるベンゼン環構造を持つことが確認される。
That is, the infrared absorption spectrum of the silicone compound can be measured, and the presence or absence of an aromatic group can be determined by the presence or absence of characteristic vibration absorption derived from the aromatic group. For example, the upper part of FIG. 6 shows an infrared absorption spectrum of a silicone resin that is preferably used in the present invention, and the lower part of FIG. 6 shows an infrared absorption spectrum of a silicone resin that is not preferably used in the present invention. According to the comparison of FIG. 6 the upper and lower infrared absorption spectrum, undesirable silicone resin wavelength 698cm -1, 717cm -1, infrared absorption by CH out-of-plane bending vibration of the benzene ring to 741cm -1, 1593cm - 1 Infrared absorption by C = C stretching vibration of benzene ring, 3026cm
-1, 3051cm -1, since the infrared absorption due to CH stretching vibration of benzene ring 3071Cm -1 is observed at the same time, it is confirmed with a benzene ring structure is an aromatic group.

本発明の蛍光体含有組成物は、(B)シリコーン系化合物を硬化反応によって硬化させ、流動性を失った状態で発光装置の一部を構成する。(B)シリコーン系化合物を硬化の
メカニズムにより分類すると、通常付加重合硬化タイプ、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン系化合物を挙げることができる。これらの中では、付加硬化タイプ、縮合硬化タイプ、UV硬化タイプが好ましい。付加重合硬化タイプの具体的商品名としては信越化学工業社製「LPS−1400」「LPS−2410」「LPS−3400」等が挙げられる。
The phosphor-containing composition of the present invention forms part of the light emitting device in a state where (B) the silicone compound is cured by a curing reaction and fluidity is lost. (B) When silicone compounds are classified according to the curing mechanism, silicone compounds such as an addition polymerization curing type, a condensation polymerization curing type, an ultraviolet curing type, and a peroxide crosslinking type can be mentioned. Among these, addition curing type, condensation curing type, and UV curing type are preferable. Specific product names of the addition polymerization curing type include “LPS-1400”, “LPS-2410”, “LPS-3400” manufactured by Shin-Etsu Chemical Co., Ltd., and the like.

[1−3]その他の成分
本発明の蛍光体含有組成物は、上記成分の他に、色素、酸化防止剤、安定化剤(燐系加工安定化剤などの加工安定化剤、酸化安定化剤、熱安定化剤、紫外線吸収剤などの耐光性安定化剤など)、シランカップリング剤、光拡散材、フィラーなど、当該分野で公知の添加物のいずれをも用いることができる。
[1-3] Other components In addition to the above components, the phosphor-containing composition of the present invention includes dyes, antioxidants, stabilizers (processing stabilizers such as phosphorus processing stabilizers, oxidation stabilization) Any additive known in the art such as a light-resistant stabilizer such as an agent, a heat stabilizer, and an ultraviolet absorber), a silane coupling agent, a light diffusing material, and a filler can be used.

[1−4]蛍光体含有組成物の製造方法、特性
本発明の蛍光体含有組成物は、例えば後述する方法により製造される。また、製造された蛍光体組成物は、粘度、劣化度において、後述する各種特性を有することが好ましい。[1−4−1]製造方法
(B)シリコーン系化合物としてシリコーン樹脂を使用する場合は、例えばシリコーン樹脂、架橋剤、硬化触媒、(A)蛍光体及びシリカ微粒子、増量材、他の添加剤を配合し、ミキサー、高速ディスパー、ホモジナイザー、3本ロール、ニーダー等で混合する等、従来公知の方法で製造することができる。
この場合、(B)シリコーン樹脂、架橋剤、硬化触媒、(A)蛍光体及びシリカ微粒子、増量材並びに他の添加剤を全て混合して、1液の形態として液状シリコーン樹脂組成物を製造しても良いが、(i)シリコーン樹脂と(A)蛍光体及び増量材を主成分とするシリコーン樹脂液と、(ii)架橋剤と硬化触媒を主成分とする架橋剤液の2液を調製しておき、使用直前にシリコーン樹脂液と架橋剤液を混合して液状シリコーン樹脂組成物を製造しても良い。
[1-4] Production method and characteristics of phosphor-containing composition The phosphor-containing composition of the present invention is produced, for example, by the method described below. Moreover, it is preferable that the manufactured fluorescent substance composition has the various characteristics mentioned later in a viscosity and a deterioration degree. [1-4-1] Manufacturing method
(B) When a silicone resin is used as the silicone compound, for example, a silicone resin, a crosslinking agent, a curing catalyst, (A) a phosphor and silica fine particles, an extender, and other additives are blended, a mixer, a high-speed disper, It can manufacture by a conventionally well-known method, such as mixing with a homogenizer, 3 rolls, a kneader.
In this case, (B) a silicone resin, a crosslinking agent, a curing catalyst, (A) a phosphor and silica fine particles, an extender, and other additives are all mixed to produce a liquid silicone resin composition as one liquid form. However, two liquids are prepared: (i) a silicone resin, (A) a silicone resin liquid mainly composed of a phosphor and an extender, and (ii) a crosslinking agent liquid mainly composed of a crosslinking agent and a curing catalyst. In addition, a liquid silicone resin composition may be produced by mixing a silicone resin solution and a crosslinking agent solution immediately before use.

[1−4−2]蛍光体含有組成物の物性
[1−4−2−1]粘度
本発明の蛍光体含有組成物の粘度は、通常500mPa・s以上、好ましくは1000mPa・s以上、さらに好ましくは2000mPa・s以上であり、通常15000mPa・s以下、10000mPa・s以下、好ましくは8000mPa・s以下である。粘度が高すぎると注入時に配管の閉塞などトラブルの原因となりやすく、また気泡が抜けにくい、更には半導体素子のリードワイヤーの断線が起こりやすいなどの悪影響をもたらす。一方、粘度が低すぎると蛍光体粒子の沈降が起こるので好ましくない。
[1-4-2] Physical properties of phosphor-containing composition [1-4-2-1] Viscosity The viscosity of the phosphor-containing composition of the present invention is usually 500 mPa · s or more, preferably 1000 mPa · s or more, and Preferably it is 2000 mPa * s or more, Usually 15000 mPa * s or less, 10000 mPa * s or less, Preferably it is 8000 mPa * s or less. If the viscosity is too high, it may cause trouble such as blockage of pipes at the time of injection, and bubbles may be difficult to escape, and further, lead wires of semiconductor elements are likely to be disconnected. On the other hand, if the viscosity is too low, the phosphor particles settle, which is not preferable.

[2]発光装置
本発明の発光装置は、[1]に記載の蛍光体含有組成物を用いて、公知の方法により形成される。以下、本発明の発光装置について説明する。
[2−1]光源
本発明の発光装置における光源は、前記[1−1]の蛍光体や後述するその他の蛍光体を励起する光を発光するものである。光源の発光波長は、蛍光体の吸収波長と重複するものであれば、特に制限されず、幅広い発光波長領域の蛍光体を使用することができる。通常は、近紫外領域から青色領域までの発光波長を有する蛍光体が使用され、具体的数値としては、通常300nm以上、好ましくは330nm以上、また、通常500nm以下、好ましくは480nm以下のピーク発光波長を有する発光体が使用される。この光源としては、一般的には半導体発光素子が用いられ、具体的には発光ダイオード(LED)や半導体レーザーダイオード(LD)等が使用できる。
[2] Light Emitting Device The light emitting device of the present invention is formed by a known method using the phosphor-containing composition described in [1]. Hereinafter, the light emitting device of the present invention will be described.
[2-1] Light Source The light source in the light emitting device of the present invention emits light that excites the phosphor of [1-1] and other phosphors described later. The emission wavelength of the light source is not particularly limited as long as it overlaps with the absorption wavelength of the phosphor, and a phosphor having a wide emission wavelength region can be used. Usually, a phosphor having an emission wavelength from the near ultraviolet region to the blue region is used, and specific values are usually 300 nm or more, preferably 330 nm or more, and usually 500 nm or less, preferably 480 nm or less. A light emitter having the following is used. As this light source, a semiconductor light emitting element is generally used, and specifically, a light emitting diode (LED), a semiconductor laser diode (LD), or the like can be used.

中でも、光源としては、GaN系化合物半導体を使用したGaN系LEDやLDが好ま
しい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、同じ電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlxGayN発光層、GaN発光層、又はInxGayN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInxGayN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InxGayN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。
Among these, as the light source, a GaN LED or LD using a GaN compound semiconductor is preferable. This is because GaN-based LEDs and LDs have significantly larger light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for the same current load, a GaN-based LED or LD usually has a light emission intensity 100 times or more that of a SiC-based. A GaN-based LED or LD preferably has an Al x Gay N light emitting layer, a GaN light emitting layer, or an In x Gay N light emitting layer. Among GaN-based LEDs, those having an InxGayN light-emitting layer are particularly preferred because the emission intensity is very strong, and in GaN-based LDs, those having a multiple quantum well structure of an InxGayN layer and a GaN layer have an emission intensity. It is particularly preferred because it is very strong.

なお、上記においてx+yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。
GaN系LEDはこれら発光層、p層、n層、電極、及び基板を基本構成要素としたものであり、発光層をn型とp型のAlxGayN層、GaN層、又はInxGayN層などでサンドイッチにしたヘテロ構造を有しているものが、発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが、発光効率がさらに高く、より好ましい。
In the above, the value of x + y is usually in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.
A GaN-based LED has these light emitting layer, p layer, n layer, electrode, and substrate as basic components, and the light emitting layer is sandwiched between n-type and p-type AlxGayN layers, GaN layers, or InxGayN layers. Those having the heterostructure are preferably high in luminous efficiency, and those having a heterostructure in the quantum well structure are further preferable because of higher luminous efficiency.

[2−2]その他の蛍光体
本発明の発光装置に用いられる蛍光体は、上述した光源からの光の照射によって可視光を発する蛍光体であり、前記[1−1]の蛍光体を含有するとともに、その用途等に応じて適宜、後述するその他の蛍光体を含有する。
蛍光体の組成には特に制限はないが、結晶母体であるY、ZnSiO等に代表される金属酸化物、SrSi等に代表される金属窒化物、Ca(PO)Cl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化物に、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活元素又は共付活元素として組み合わせたものが好ましい。
[2-2] Other phosphors The phosphor used in the light-emitting device of the present invention is a phosphor that emits visible light when irradiated with light from the light source described above, and contains the phosphor of [1-1]. In addition, other phosphors which will be described later are appropriately contained according to the use and the like.
There is no particular limitation on the composition of the phosphor, Y 2 O 3 is a host crystal, Zn 2 metal oxide represented by SiO 4 and the like, a metal nitride typified by Sr 2 Si 5 N 8 such, Ca 5 (PO 4 ) 3 Cl etc. and phosphates such as ZnS, SrS, CaS etc., Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, A combination of rare earth metal ions such as Tm and Yb and metal ions such as Ag, Cu, Au, Al, Mn, and Sb as activators or coactivators is preferred.

結晶母体の好ましい例としては、例えば、(Zn,Cd)S、SrGa、SrS、ZnS等の硫化物、YS等の酸硫化物、(Y,Gd)Al12、YAlO、BaMgAl1017、(Ba,Sr)(Mg,Mn)Al1017、(Ba,Sr,C
a)(Mg,Zn,Mn)Al1017、BaAl1219、CeMgAl1119
、(Ba,Sr,Mg)O・Al、BaAlSi、SrAl、SrAl1425、YAl12等のアルミン酸塩、YSiO、ZnSiO等の珪酸塩、SnO、Y等の酸化物、GdMgB10、(Y,Gd)BO等の硼酸塩、Ca10(PO)(F,Cl)、(Sr,Ca,Ba,Mg)10(PO)Cl等のハロリン酸塩、Sr、(La,Ce)PO等のリン酸塩等を挙げることができる。
Preferred examples of the crystal matrix include sulfides such as (Zn, Cd) S, SrGa 2 S 4 , SrS, and ZnS, oxysulfides such as Y 2 O 2 S, and (Y, Gd) 3 Al 5 O. 12 , YAlO 3 , BaMgAl 10 O 17 , (Ba, Sr) (Mg, Mn) Al 10 O 17 , (Ba, Sr, C
a) (Mg, Zn, Mn) Al 10 O 17 , BaAl 12 O 19 , CeMgAl 11 O 19
, (Ba, Sr, Mg) O.Al 2 O 3 , BaAl 2 Si 2 O 8 , SrAl 2 O 4 , Sr 4 Al 14 O 25 , Y 3 Al 5 O 12, etc., aluminates such as Y 2 SiO 5 Silicate such as Zn 2 SiO 4 , oxide such as SnO 2 and Y 2 O 3 , borate such as GdMgB 5 O 10 and (Y, Gd) BO 3 , Ca 10 (PO 4 ) 6 (F, Cl ) 2 , halophosphates such as (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 , phosphates such as Sr 2 P 2 O 7 , (La, Ce) PO 4, etc. it can.

ただし、上記の結晶母体及び付活元素又は共付活元素は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。
具体的には、蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。なお、以下の例示では、構造の一部のみが異なる蛍光体を、適宜省略して示している。例えば、「YSiO:Ce3+」、「YSiO:Tb3+」及び「YSiO:Ce3+,Tb3+」を「YSiO:Ce3+,Tb3+」と、「LaS:Eu」、「YS:Eu」及び「(La,Y)S:Eu」を「(La,Y)S:Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。
However, the crystal matrix and the activator element or coactivator element are not particularly limited in element composition, and can be partially replaced with elements of the same family, and the obtained phosphor is light in the near ultraviolet to visible region. Any material that absorbs and emits visible light can be used.
Specifically, the following phosphors can be used, but these are merely examples, and phosphors that can be used in the present invention are not limited to these. In the following examples, phosphors that differ only in part of the structure are omitted as appropriate. For example, “Y 2 SiO 5 : Ce 3+ ”, “Y 2 SiO 5 : Tb 3+ ” and “Y 2 SiO 5 : Ce 3+ , Tb 3+ ” are changed to “Y 2 SiO 5 : Ce 3+ , Tb 3+ ”, “ “La 2 O 2 S: Eu”, “Y 2 O 2 S: Eu” and “(La, Y) 2 O 2 S: Eu” are collectively shown as “(La, Y) 2 O 2 S: Eu”. ing. Omitted parts are shown separated by commas (,).

[2−2−1]橙色ないし赤色蛍光体
本発明の発光装置における橙色ないし赤色の蛍光を発する蛍光体(以下適宜、「橙色な
いし赤色蛍光体」という。)として、前記[1−1]の蛍光体以外に、その他の一種又は
二種以上の橙色ないし赤色蛍光体を併用してもよい。
[2-2-1] Orange to red phosphor
As a phosphor emitting orange to red fluorescence (hereinafter referred to as “orange to red phosphor” as appropriate) in the light emitting device of the present invention, in addition to the phosphor of [1-1], one or more other types. These orange or red phosphors may be used in combination.

赤色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常570nm以上、好ましくは580nm以上、また、通常700nm以下、好ましくは680nm以下が望ましい。
本発明の蛍光体以外の橙色ないし赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)Si:Euで表わされるユウロピウム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)S:Euで表わされるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。
When the specific wavelength range of the fluorescence emitted by the red phosphor is exemplified, the peak wavelength is usually 570 nm or more, preferably 580 nm or more, and usually 700 nm or less, preferably 680 nm or less.
The orange or red phosphor other than the phosphor of the present invention is composed of, for example, fractured particles having a red fracture surface and emits light in a red region (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu Europium-activated alkaline earth silicon nitride phosphor expressed by the following formula: growth particles having a substantially spherical shape as a regular crystal growth shape, and emitting light in the red region (Y, La, Gd, Lu) 2 Examples include europium activated rare earth oxychalcogenide phosphors represented by O 2 S: Eu.

さらに、特開2004−300247号公報に記載された、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。   Furthermore, the oxynitride and / or acid containing at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo described in JP-A-2004-300247 A phosphor containing a sulfide and containing an oxynitride having an alpha sialon structure in which a part or all of the Al element is substituted with a Ga element can also be used in this embodiment. These are phosphors containing oxynitride and / or oxysulfide.

また、そのほか、赤色蛍光体としては、(La,Y)S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O:Eu、Y:Eu等のEu付活酸化物蛍光体、(Ba,
Sr,Ca,Mg)SiO:Eu,Mn、(Ba,Mg)SiO:Eu,Mn等の
Eu,Mn付活珪酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO:Eu等のEu付活アルミン酸塩蛍光体、LiY(SiO):Eu、Ca(SiO):Eu、(Sr,Ba,Ca)SiO:Eu、SrBaSiO:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)Al12:Ce、(Tb,Gd)Al12:Ce等のCe付活アルミン酸塩蛍光体、(Ca,Sr,Ba)Si:Eu、(Mg,Ca,Sr,Ba)SiN:Eu、(Mg,Ca,Sr,Ba)AlSiN:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO)Cl:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、(BaMg)Si:Eu,Mn、(Ba
,Sr,Ca,Mg)(Zn,Mg)Si:Eu,Mn等のEu,Mn付活珪酸塩
蛍光体、3.5MgO・0.5MgF・GeO:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La):Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP:Eu,Mn、(Sr,Ca,Ba,Mg,Zn):Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)WO:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)Si:Eu,Ce(但し、x、y、zは、1以上の整数)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO)(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1−xScCe)(Ca,Mg)1−r(Mg,Zn)2+rSiz−qGeqO12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。
In addition, examples of red phosphors include Eu-activated oxysulfide phosphors such as (La, Y) 2 O 2 S: Eu, Y (V, P) O 4 : Eu, Y 2 O 3 : Eu, and the like. Eu-activated oxide phosphors of (Ba,
Sr, Ca, Mg) 2 SiO 4 : Eu, Mn, (Ba, Mg) 2 SiO 4 : Eu, Mn-activated silicate phosphor such as Eu, Mn, (Ca, Sr) S: Eu attached such as Eu Active sulfide phosphor, Eu-activated aluminate phosphor such as YAlO 3 : Eu, LiY 9 (SiO 4 ) 6 O 2 : Eu, Ca 2 Y 8 (SiO 4 ) 6 O 2 : Eu, (Sr, Ba, Ca) 3 SiO 5 : Eu, Sr 2 BaSiO 5 : Eu-activated silicate phosphor such as Eu, (Y, Gd) 3 Al 5 O 12 : Ce, (Tb, Gd) 3 Al 5 O 12 : Ce-activated aluminate phosphors such as Ce, (Ca, Sr, Ba) 2 Si 5 N 8 : Eu, (Mg, Ca, Sr, Ba) SiN 2 : Eu, (Mg, Ca, Sr, Ba) AlSiN 3: Eu-activated nitride phosphor such as Eu, (Mg, Ca, Sr , Ba) AlSiN 3: Ce-activated nitride phosphor such as e, (Sr, Ca, Ba , Mg) 10 (PO 4) 6 Cl 2: Eu, Eu such as Mn, Mn-activated halophosphate phosphor, (Ba 3 Mg) Si 2 O 8 : Eu, Mn, (Ba
, Sr, Ca, Mg) 3 (Zn, Mg) Si 2 O 8 : Eu, Mn activated silicate phosphors such as Eu and Mn, 3.5MgO · 0.5MgF 2 · GeO 2 : with Mn such as Mn Active germanate phosphor, Eu-activated oxynitride phosphor such as Eu-activated α sialon, (Gd, Y, Lu, La) 2 O 3 : Eu, Bi-activated oxide phosphor such as Eu and Bi (Gd, Y, Lu, La) 2 O 2 S: Eu, Bi-activated oxysulfide phosphors such as Eu and Bi, (Gd, Y, Lu, La) VO 4 : Eu such as Eu and Bi, Bi-activated vanadate phosphors, Eu and Ce-activated sulfide phosphors such as SrY 2 S 4 : Eu, Ce, Ce-activated sulfide phosphors such as CaLa 2 S 4 : Ce, (Ba, Sr, Ca) MgP 2 O 7: Eu , Mn, (Sr, Ca, Ba, Mg, Zn) 2 P 2 O 7: Eu, Eu such as Mn, M n-activated phosphate phosphor, (Y, Lu) 2 WO 6 : Eu, Mo-activated tungstate phosphor such as Eu, Mo, (Ba, Sr, Ca) x Si y N z : Eu, Ce (However, x, y, z are integers of 1 or more) Eu, Ce activated nitride phosphor, (Ca, Sr, Ba, Mg) 10 (PO 4 ) 6 (F, Cl, Br, OH) ): Eu, Eu such as Mn, Mn-activated halophosphate phosphor, ((Y, Lu, Gd , Tb) 1-x Sc x Ce y) 2 (Ca, Mg) 1-r (Mg, Zn) It is also possible to use Ce-activated silicate phosphors such as 2 + r Si z-q GeqO 12 + δ .

赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフ
ェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)、アント
ラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。
As the red phosphor, β-diketonate, β-diketone, aromatic carboxylic acid, or a red organic phosphor composed of a rare earth element ion complex having an anion such as Bronsted acid as a ligand, a perylene pigment (for example, Dibenzo {[f, f ′]-4,4 ′, 7,7′-tetraphenyl} diindeno [1,2,3-cd: 1 ′, 2 ′, 3′-lm] perylene), anthraquinone pigment, Lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments, indophenol pigments, It is also possible to use a cyanine pigment or a dioxazine pigment.

また、赤色蛍光体のうち、ピーク波長が580nm以上、好ましくは590nm以上、また、620nm以下、好ましくは610nm以下の範囲内にあるものは、橙色蛍光体として好適に用いることができる。このような橙色蛍光体の例としては、(Sr,Ba)SiO:Eu、(Sr,Mg)(PO:Sn等が挙げられる。 Among the red phosphors, those having a peak wavelength in the range of 580 nm or more, preferably 590 nm or more, and 620 nm or less, preferably 610 nm or less can be suitably used as the orange phosphor. Examples of such orange phosphors include (Sr, Ba) 3 SiO 5 : Eu, (Sr, Mg) 3 (PO 4 ) 2 : Sn, and the like.

[2−2−2]緑色蛍光体
本発明の発光装置における緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」とい
う。)として、前記[1−1]の蛍光体以外に、その他の一種又は二種以上の緑色蛍光体を併用してもよい。
緑色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常490nm以上、好ましくは500nm以上、また、通常570nm以下、好ましくは550nm以下が望ましい。
このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)SiO:Euで表わされるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。
[2-2-2] Green phosphor In addition to the phosphor of [1-1], the phosphor that emits green fluorescence (hereinafter, referred to as “green phosphor” as appropriate) in the light emitting device of the present invention. One kind or two or more kinds of green phosphors may be used in combination.
When the specific wavelength range of the fluorescence emitted from the green phosphor is exemplified, the peak wavelength is usually 490 nm or more, preferably 500 nm or more, and usually 570 nm or less, preferably 550 nm or less.
As such a green phosphor, for example, a europium-activated alkali represented by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu that is composed of fractured particles having a fracture surface and emits light in the green region. Europium-activated alkaline earth silicate composed of an earth silicon oxynitride phosphor, broken particles having a fracture surface, and emitting in the green region (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu System phosphors and the like.

また、そのほか、緑色蛍光体としては、SrAl1425:Eu、(Ba,Sr,
Ca)Al:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)AlSi
:Eu、(Ba,Mg)SiO:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ba,Sr,Ca)(Mg,Zn)Si:Eu等のEu付活珪酸塩蛍光体、YSiO:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr−Sr:Eu等のEu付活硼酸リン酸塩蛍光体、SrSi−2SrCl:Eu等のEu付活ハロ珪酸塩蛍光体、ZnSiO:Mn等のMn付活珪酸塩蛍光体、CeMg
Al1119:Tb、YAl12:Tb等のTb付活アルミン酸塩蛍光体、Ca(SiO):Tb、LaGaSiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y(Al,Ga)12:Ce、(Y,Ga,Tb,La,Sm,Pr
,Lu)(Al,Ga)12:Ce等のCe付活アルミン酸塩蛍光体、CaSc
Si12:Ce、Ca(Sc,Mg,Na,Li)Si12:Ce等のCe付活珪酸塩蛍光体、CaSc:Ce等のCe付活酸化物蛍光体、SrSi:Eu、(Sr,Ba,Ca)Si:Eu、Eu付活βサイアロン、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)S:Tb等のTb付活酸硫化物蛍光体、LaPO:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO:Ce,Tb、NaGd:Ce,Tb、(Ba,Sr)(Ca,Mg,Zn)B:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、CaMg(SiO)Cl:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In):Eu等のEu
付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)(Mg,Zn)(Si
)Cl:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体等を用いることも可能
である。
In addition, as the green phosphor, Sr 4 Al 14 O 25 : Eu, (Ba, Sr,
Ca) Al 2 O 4 : Eu-activated aluminate phosphor such as Eu, (Sr, Ba) Al 2 Si 2 O
8 : Eu, (Ba, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu, etc. Eu-activated silicate phosphors, Y 2 SiO 5: Ce, Ce and Tb such, Tb-activated silicate phosphor, Sr 2 P 2 O 7 -Sr 2 B 2 O 5: Eu -activated borate such as Eu phosphate phosphor, Sr 2 Si 3 O 8 -2SrCl 2: Eu activated halo silicate phosphor such as Eu, Zn 2 SiO 4: Mn-activated silicate phosphors such as Mn, CeMg
Tb-activated aluminate phosphor such as Al 11 O 19 : Tb, Y 3 Al 5 O 12 : Tb, Ca 2 Y 8 (SiO 4 ) 6 O 2 : Tb, La 3 Ga 5 SiO 14 : Tb, etc. Tb-activated silicate phosphor, (Sr, Ba, Ca) Ga 2 S 4 : Eu, Tb, Sm-activated thiogallate phosphor such as Eu, Tb, Sm, Y 3 (Al, Ga) 5 O 12 : Ce , (Y, Ga, Tb, La, Sm, Pr
, Lu) 3 (Al, Ga) 5 O 12 : Ce-activated aluminate phosphor such as Ce, Ca 3 Sc 2
Si 3 O 12 : Ce, Ca 3 (Sc, Mg, Na, Li) 2 Si 3 O 12 : Ce-activated silicate phosphor such as Ce, and Ce-activated oxide phosphor such as CaSc 2 O 4 : Ce SrSi 2 O 2 N 2 : Eu, (Sr, Ba, Ca) Si 2 O 2 N 2 : Eu, Eu-activated β-sialon, Eu-activated α-sialon and other Eu-activated oxynitride phosphors, BaMgAl 10 O 17 : Eu, Mn activated aluminate phosphor such as Eu, Mn, SrAl 2 O 4 : Eu activated aluminate phosphor such as Eu, (La, Gd, Y) 2 O 2 S: Tb, etc. Tb-activated oxysulfide phosphor, LaPO 4 : Ce, Tb-activated phosphate phosphor such as Ce, Tb, sulfide phosphor such as ZnS: Cu, Al, ZnS: Cu, Au, Al, Y, Ga, Lu, Sc, La) BO 3: Ce, Tb, Na 2 Gd 2 2 O 7: Ce, Tb, (Ba, Sr) 2 (Ca, Mg, Zn) B 2 O 6: K, Ce, Ce and Tb such, Tb-activated borate phosphor, Ca 8 Mg (SiO 4) 4 Cl 2 : Eu, Mn activated halosilicate phosphors such as Eu and Mn, (Sr, Ca, Ba) (Al, Ga, In) 2 S 4 : Eu and other Eu
Activated thioaluminate phosphor and thiogallate phosphor, (Ca, Sr) 8 (Mg, Zn) (Si
It is also possible to use Eu, Mn activated halosilicate phosphors such as O 4 ) 4 Cl 2 : Eu, Mn.

また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体を用いることも可能である。   In addition, as the green phosphor, it is also possible to use a pyridine-phthalimide condensed derivative, a benzoxazinone-based, a quinazolinone-based, a coumarin-based, a quinophthalone-based, a naltalimide-based fluorescent pigment, or an organic phosphor such as a terbium complex. is there.

[2−2−3]青色蛍光体
本発明の発光装置における青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」とい
う。)として、前記[1−1]の蛍光体以外に、その他の一種又は二種以上の青色蛍光体を併用してもよい。
青色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常420nm以上、好ましくは440nm以上、また、通常480nm以下、好ましくは470nm以下が望ましい。
このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl1017:Euで表わされるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr
,Ba)(PO)Cl:Euで表わされるユウロピウム付活ハロリン酸カルシウム系
蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)Cl:Euで表わされるユウロピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al:Eu又は(Sr,Ca,Ba)Al1425:Euで表わされるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
[2-2-3] Blue phosphor As the phosphor emitting blue fluorescence in the light emitting device of the present invention (hereinafter referred to as “blue phosphor” as appropriate), in addition to the phosphor of [1-1], other One or two or more blue phosphors may be used in combination.
When the specific wavelength range of the fluorescence emitted from the blue phosphor is exemplified, the peak wavelength is usually 420 nm or more, preferably 440 nm or more, and usually 480 nm or less, preferably 470 nm or less.
As such a blue phosphor, a europium-activated barium magnesium aluminate system represented by BaMgAl 10 O 17 : Eu, which is composed of growing particles having a substantially hexagonal shape as a regular crystal growth shape and emits light in a blue region. The phosphor is composed of growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in a blue region (Ca, Sr).
, Ba) 5 (PO 4 ) 3 Cl: Europium-activated calcium halophosphate phosphor represented by Eu, which is composed of grown particles having a cubic shape as a regular crystal growth shape, and emits light in a blue region (Ca , Sr, Ba) 2 B 5 O 9 Cl: a europium-activated alkaline earth chloroborate phosphor represented by Eu, fractured particles having a fracture surface, and emitting light in the blue-green region (Sr, Ca, Examples include europium-activated alkaline earth aluminate-based phosphors represented by Ba) Al 2 O 4 : Eu or (Sr, Ca, Ba) 4 Al 14 O 25 : Eu.

また、そのほか、青色蛍光体としては、Sr:Sn等のSn付活リン酸塩蛍光体、SrAl1425:Eu、BaMgAl1017:Eu、BaAl13:Eu等のEu付活アルミン酸塩蛍光体、SrGa:Ce、CaGa:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr ,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO)Cl:Eu、(Ba,Sr,Ca)(PO)(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAl
Si:Eu、(Sr,Ba)MgSi:Eu等のEu付活珪酸塩蛍光体、Sr:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、YSiO:Ce等のCe付活珪酸塩蛍光体、CaWO等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO:Eu,Mn、(Sr,Ca)10(PO
)・nB:Eu、2SrO・0.84P・0.16B:Eu等の
Eu,Mn付活硼酸リン酸塩蛍光体、SrSi・2SrCl:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。
In addition, as the blue phosphor, Sn-activated phosphate phosphors such as Sr 2 P 2 O 7 : Sn, Sr 4 Al 14 O 25 : Eu, BaMgAl 10 O 17 : Eu, BaAl 8 O 13 : Eu-activated aluminate phosphors such as Eu, Ce-activated thiogallate phosphors such as SrGa 2 S 4 : Ce, CaGa 2 S 4 : Ce, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, BaMgAl 10 O 17 : Eu-activated aluminate phosphor such as Eu, Tb, Sm, (Ba, Sr, Ca) MgAl 10 O 17 : Eu, Mn-activated aluminate phosphor such as Eu, Mn, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, (Ba, Sr, Ca) 5 (PO 4 ) 3 (Cl, F, Br, OH): Eu activation such as Eu, Mn, Sb Halophosphate phosphor, BaAl 2
Si 2 O 8 : Eu, (Sr, Ba) 3 MgSi 2 O 8 : Eu-activated silicate phosphor such as Eu, Sr 2 P 2 O 7 : Eu-activated phosphate phosphor such as Eu, ZnS: Sulfide phosphors such as Ag, ZnS: Ag, Al, etc. Y 2 SiO 5 : Ce-activated silicate phosphors such as Ce, tungstate phosphors such as CaWO 4 , (Ba, Sr, Ca) BPO 5 : Eu, Mn, (Sr, Ca) 10 (PO
4 ) 6 · nB 2 O 3 : Eu, 2SrO · 0.84P 2 O 5 · 0.16B 2 O 3 : Eu, Mn-activated borate phosphor phosphor such as Eu, Sr 2 Si 3 O 8 · 2SrCl 2 : Eu-activated halosilicate phosphor such as Eu can also be used.

また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラリゾン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。
なお、上述のような蛍光体は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても良い。
In addition, as the blue phosphor, for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, pyralizone-based, triazole-based compound fluorescent dyes, thulium complexes and other organic phosphors can be used. .
In addition, the above-mentioned fluorescent substance may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.

[2−2−4]蛍光体の選択
本発明の発光装置において、以上説明したその他の蛍光体(赤色蛍光体、緑色蛍光体、青色蛍光体等)の使用の有無及びその種類は、発光装置の用途に応じて適宜選択すればよい。例えば、本発明の発光装置を前記[1−1]の蛍光体のみで構成する場合には、その他の蛍光体の使用は通常は不要である。
本発明の発光装置を白色発光の発光装置として構成する場合には、所望の白色光が得られるように、1種以上の蛍光体を適切に組み合わせればよい。具体的に、本発明の発光装置を白色発光の発光装置として構成する場合における、光源と、蛍光体との好ましい組み合わせの例としては、以下の(i)〜(iii)の組み合わせが挙げられる。
(i)第1の発光体として青色発光体(青色LED等)を使用し、蛍光体として赤色蛍光体および緑色蛍光体(うち、いずれかに前記[1−1]の蛍光体を含む。)を使用する。(ii)第1の発光体として近紫外発光体(近紫外LED等)を使用し、蛍光体として赤色蛍光体、緑色蛍光体及び青色蛍光体(うち、いずれかに前記[1−1]の蛍光体を含む。)を併用する。
(iii)第1の発光体として青色発光体(青色LED等)を使用し、橙色蛍光体および緑
色蛍光体(うち、いずれかに前記[1−1]の蛍光体を含む。)を使用する。
[2-2-4] Selection of phosphor In the light-emitting device of the present invention, whether or not the other phosphors described above (red phosphor, green phosphor, blue phosphor, etc.) are used and the type thereof are as follows. What is necessary is just to select suitably according to the use of. For example, when the light-emitting device of the present invention is composed only of the phosphor of [1-1], the use of other phosphors is usually unnecessary.
When the light emitting device of the present invention is configured as a white light emitting device, one or more phosphors may be appropriately combined so that desired white light is obtained. Specifically, when the light-emitting device of the present invention is configured as a white light-emitting device, examples of preferable combinations of the light source and the phosphor include the following combinations (i) to (iii).
(I) A blue light emitter (blue LED or the like) is used as the first light emitter, and a red phosphor and a green phosphor (including any of the phosphors of [1-1] above) as the phosphor. Is used. (Ii) A near-ultraviolet illuminant (near-ultraviolet LED or the like) is used as the first illuminant, and a red phosphor, a green phosphor, or a blue phosphor (including any of the above [1-1]) as the phosphor. (Including phosphors).
(Iii) A blue light emitter (blue LED or the like) is used as the first light emitter, and an orange phosphor and a green phosphor (one of which includes the phosphor of [1-1]). .

[2−2−5]その他の蛍光体の物性
本発明の発光装置に使用されるその他の蛍光体の中央粒径D50は、通常5μm以上、中でも10μm以上、また、通常30μm以下、中でも20μm以下の範囲であることが好ましい。中央粒径D50が小さすぎると、輝度が低下し、蛍光体粒子が凝集してしまう傾向があり好ましくない。一方、中央粒径D50が大きすぎると、塗布ムラやディスペンサー等の閉塞が生じる傾向があり好ましくない。
[2-2-5] Physical properties of other phosphors
The median particle diameter D 50 of the other phosphors used in the light emitting device of the present invention is preferably in the range of usually 5 μm or more, especially 10 μm or more, and usually 30 μm or less, especially 20 μm or less. When the median particle diameter D 50 is too small, and the luminance decreases tends to phosphor particles tend to aggregate undesirably. On the other hand, if the median particle diameter D 50 is too large, there is a tendency for blockage, such as coating unevenness and dispenser is not preferable.

[2−3]発光装置の構成
本発明の発光装置は、上述の光源および蛍光体を備えていればよく、そのほかの構成は特に制限されないが、通常は、適当なフレーム上に上述の光源および蛍光体を配置してなる。この際、光源の発光によって蛍光体が励起されて発光を生じ、且つ、この光源の発光および/または蛍光体の発光が、外部に取り出されるように配置されることになる。この場合、赤色蛍光体は、緑色蛍光体、青色蛍光体とは必ずしも同一の層中に混合されなくてもよく、例えば、赤色蛍光体を含有する層の上に青色蛍光体と緑色蛍光体を含有する層が積層されていてもよい。
[2-3] Configuration of Light-Emitting Device The light-emitting device of the present invention only needs to include the above-described light source and phosphor, and other configurations are not particularly limited. A phosphor is arranged. At this time, the phosphor is excited by the light emission of the light source to generate light emission, and the light emission of the light source and / or the light emission of the phosphor is arranged to be taken out to the outside. In this case, the red phosphor does not necessarily have to be mixed in the same layer as the green phosphor and the blue phosphor. For example, the blue phosphor and the green phosphor are placed on the layer containing the red phosphor. The layer to contain may be laminated | stacked.

上述の光源、蛍光体及びフレームに加えて、通常は封止材料が用いられる。具体的に、この封止材料は、上述の蛍光体を分散させて発光体を構成したり、光源、蛍光体およびフレーム間を接着したりする目的で採用される。
使用される封止材料としては、通常、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料を用いることができる。
なお、本発明の蛍光体組成物は、蛍光体をいわゆる封止材料に分散させて構成されるので、蛍光体組成物中の封止材料は[1−2](B)シリコーン系化合物を含有することが必須である。
In addition to the above-mentioned light source, phosphor and frame, a sealing material is usually used. Specifically, this sealing material is employed for the purpose of dispersing the above-described phosphor to form a light emitter, or bonding between the light source, the phosphor and the frame.
As a sealing material used, a thermoplastic resin, a thermosetting resin, a photocurable resin, etc. are mentioned normally. Specifically, methacrylic resin such as methyl polymethacrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; polycarbonate resin; polyester resin; phenoxy resin; butyral resin; polyvinyl alcohol; ethyl cellulose, cellulose acetate, cellulose Cellulose resins such as acetate butyrate; epoxy resins; phenol resins; silicone resins and the like. Further, an inorganic material such as a siloxane bond formed by solidifying a solution obtained by hydrolytic polymerization of a solution containing an inorganic material such as a metal alkoxide, ceramic precursor polymer or metal alkoxide by a sol-gel method, or a combination thereof. An inorganic material can be used.
In addition, since the phosphor composition of the present invention is configured by dispersing the phosphor in a so-called sealing material, the sealing material in the phosphor composition contains [1-2] (B) silicone compound. It is essential to do.

[2−4]発光装置の劣化度
本発明の発光装置は、前記[1−1]の耐湿性の低い蛍光体に前記[1−2]の特定の
シリコーン系化合物を組み合わせることにより、前記[1−1]の蛍光体由来の劣化を抑制することができる。そのため、下記半導体発光装置劣化度試験(II)による劣化度が、通常5%以下、好ましくは3%以下、更に好ましくは1%以下である。
半導体発光装置劣化度測定試験(II)
e)半導体発光素子を上記蛍光体含有組成物で封止して半導体発光装置を作製する。
f)e)で作製した半導体発光装置について、定格電流を通電したときの半導体発光装置の全光束をφとする。
g)f)で光束を測定した半導体発光装置を温度60℃、相対湿度90%の空気中に、未通電の状態で3日間放置する。
h)g)で得られた半導体発光装置に定格電流を通電したときの全光束をφとする。
i)劣化度(%)=(1−φ/φ)×100を求める。
[2-4] Degree of degradation of light emitting device The light emitting device of the present invention is obtained by combining the specific silicone compound of [1-2] with the phosphor of [1-1] having low moisture resistance. 1-1] deterioration derived from the phosphor can be suppressed. Therefore, the degree of deterioration according to the following semiconductor light emitting device deterioration degree test (II) is usually 5% or less, preferably 3% or less, more preferably 1% or less.
Semiconductor light emitting device degradation measurement test (II)
e) A semiconductor light emitting device is fabricated by sealing the semiconductor light emitting element with the phosphor-containing composition.
f) For the semiconductor light emitting device fabricated in e), let φ 1 be the total luminous flux of the semiconductor light emitting device when the rated current is applied.
g) The semiconductor light emitting device whose luminous flux has been measured in f) is left in an unpowered state for 3 days in air at a temperature of 60 ° C. and a relative humidity of 90%.
The total flux of when the rated current for the semiconductor light-emitting device obtained in h) g) and phi 2.
i) Deterioration degree (%) = (1−φ 2 / φ 1 ) × 100 is obtained.

前記f)、h)において、定格電流とは、上記半導体発光素子について指定された、実効値で表された使用電圧・電流をいう。即ち、半導体発光装置を定格電流値で通常に駆動した場合の半導体発光装置の全光束を測定することにより、半導体発光装置の劣化度を測定する。
前記f)、h)において、半導体光束は、分光器および解析ソフトウエアを用いて測定される。測定装置の具体例としては、例えばオーシャン オプティクス社製の色・照度測定ソフトウエア及びUSB2000シリーズ分光器(積分球仕様)などが挙げられる。
In the above f) and h), the rated current means a working voltage / current represented by an effective value specified for the semiconductor light emitting device. That is, the degree of deterioration of the semiconductor light emitting device is measured by measuring the total luminous flux of the semiconductor light emitting device when the semiconductor light emitting device is normally driven at the rated current value.
In f) and h), the semiconductor light beam is measured using a spectroscope and analysis software. Specific examples of the measuring apparatus include color / illuminance measurement software manufactured by Ocean Optics, USB2000 series spectrometer (integral sphere specification), and the like.

なお、発光装置の劣化の原因としては蛍光体の劣化以外に種々の原因が考えられるので水分による蛍光体の劣化が認められない蛍光体、例えばYAl12:Ceを本発明の蛍光体に代えて発光装置を作製し、経時劣化程度を測定し、半導体発光装置劣化度測定試験(II)の結果を補正するのが望ましい。 In addition, since various causes other than the deterioration of the phosphor are considered as the cause of the deterioration of the light emitting device, the phosphor in which the phosphor is not deteriorated by moisture, such as Y 3 Al 5 O 12 : Ce, is used for the fluorescence of the present invention. It is desirable to make a light emitting device instead of the body, measure the degree of deterioration with time, and correct the result of the semiconductor light emitting device deterioration degree measurement test (II).

[2−5]発光装置の実施形態
以下、本発明の発光装置について、具体的な実施の形態を挙げて、より詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。
図1は、本発明の一実施形態に係る発光装置の構成を模式的に示す図である。本実施形態の発光装置1は、フレーム2と、光源である青色LED3と、青色LED3から発せられる光の一部を吸収し、それとは異なる波長を有する光を発する蛍光体含有部4からなる。
フレーム2は、青色LED3、蛍光体含有部4を保持するための樹脂製の基部である。フレーム2の上面には、図1中上側に開口した断面台形状の凹部(窪み)2Aが形成されている。これにより、フレーム2はカップ形状となっているため、発光装置1から放出される光に指向性をもたせることができ、放出する光を有効に利用できるようになっている。更に、フレーム2の凹部2A内面は、銀などの金属メッキにより、可視光域全般の光の反射率を高められており、これにより、フレーム2の凹部2A内面に当たった光も、発光装置1から所定方向に向けて放出できるようになっている。
[2-5] Embodiments of Light Emitting Device Hereinafter, the light emitting device of the present invention will be described in more detail with reference to specific embodiments, but the present invention is not limited to the following embodiments. Any modifications can be made without departing from the scope of the present invention.
FIG. 1 is a diagram schematically showing a configuration of a light emitting device according to an embodiment of the present invention. The light emitting device 1 of the present embodiment includes a frame 2, a blue LED 3 that is a light source, and a phosphor-containing portion 4 that absorbs part of light emitted from the blue LED 3 and emits light having a wavelength different from that.
The frame 2 is a resin base for holding the blue LED 3 and the phosphor-containing portion 4. On the upper surface of the frame 2, a trapezoidal concave section (dent) 2A having an opening on the upper side in FIG. Thereby, since the frame 2 has a cup shape, the light emitted from the light emitting device 1 can have directivity, and the emitted light can be used effectively. Further, the inner surface of the concave portion 2A of the frame 2 is enhanced in the reflectance of light in the entire visible light region by metal plating such as silver, so that the light hitting the inner surface of the concave portion 2A of the frame 2 can also be emitted. Can be discharged in a predetermined direction.

フレーム2の凹部2Aの底部には、光源として青色LED3が設置されている。青色LED3は、電力を供給されることにより青色の光を発するLEDである。この青色LED3から発せられた青色光の一部は、蛍光体含有部4内の発光物質(蛍光体)に励起光として吸収され、また別の一部は、発光装置1から所定方向に向けて放出されるようになっている。   A blue LED 3 is installed as a light source at the bottom of the recess 2 </ b> A of the frame 2. The blue LED 3 is an LED that emits blue light when supplied with electric power. Part of the blue light emitted from the blue LED 3 is absorbed as excitation light by the luminescent material (phosphor) in the phosphor-containing portion 4, and another part is directed from the light emitting device 1 in a predetermined direction. To be released.

また、青色LED3は前記のようにフレーム2の凹部2Aの底部に設置されているが、ここではフレーム2と青色LED3との間は銀ペースト(接着剤に銀粒子を混合したもの)5によって接着され、これにより、青色LED3はフレーム2に設置されている。更に
、この銀ペースト5は、青色LED3で発生した熱をフレーム2に効率よく放熱する役割も果たしている。
The blue LED 3 is installed at the bottom of the recess 2A of the frame 2 as described above. Here, the frame 2 and the blue LED 3 are bonded by a silver paste (a mixture of silver particles in an adhesive) 5. Thus, the blue LED 3 is installed on the frame 2. Further, the silver paste 5 also plays a role of efficiently radiating heat generated in the blue LED 3 to the frame 2.

更に、フレーム2には、青色LED3に電力を供給するための金製のワイヤ6が取り付けられている。つまり、青色LED3の上面に設けられた電極(図示省略)とは、ワイヤ6を用いてワイヤボンディングによって結線されていて、このワイヤ6を通電することによって青色LED3に電力が供給され、青色LED3が青色光を発するようになっている。なお、ワイヤ6は青色LED3の構造にあわせて1本又は複数本が取り付けられる。   Further, a gold wire 6 for supplying power to the blue LED 3 is attached to the frame 2. That is, the electrode (not shown) provided on the upper surface of the blue LED 3 is connected by wire bonding using the wire 6, and when the wire 6 is energized, power is supplied to the blue LED 3. It emits blue light. One or a plurality of wires 6 are attached in accordance with the structure of the blue LED 3.

更に、フレーム2の凹部2Aには、青色LED3から発せられる光の一部を吸収し異なる波長を有する光を発する蛍光体含有部4が設けられている。蛍光体含有部4は、蛍光体と透明樹脂とで形成されている。蛍光体は、青色LED3が発する青色光により励起されて、青色光よりも長波長の光である光を発する物質である。蛍光体含有部4を構成する蛍光体は一種類であっても良いし、複数からなる混合物であってもよく、青色LED3の発する光と蛍光体発光部4の発する光の総和が所望の色になるように選べばよい。色は白色だけでなく、黄色、オレンジ、ピンク、紫、青緑等であっても良い。また、これらの色と白色との間の中間的な色であっても良い。また、透明樹脂は蛍光体含有部4の封止材料であり、ここでは、上述の封止材料を用いている。   Further, the concave portion 2A of the frame 2 is provided with a phosphor-containing portion 4 that absorbs part of the light emitted from the blue LED 3 and emits light having a different wavelength. The phosphor-containing part 4 is formed of a phosphor and a transparent resin. The phosphor is a substance that is excited by blue light emitted from the blue LED 3 and emits light having a wavelength longer than that of the blue light. The phosphor constituting the phosphor-containing portion 4 may be a single type or a mixture of a plurality, and the sum of the light emitted from the blue LED 3 and the light emitted from the phosphor light-emitting portion 4 is a desired color. Choose to be. The color is not limited to white, but may be yellow, orange, pink, purple, blue-green, or the like. Further, it may be an intermediate color between these colors and white. Further, the transparent resin is a sealing material for the phosphor-containing portion 4, and here, the above-described sealing material is used.

モールド部7は、青色LED3、蛍光体含有部4、ワイヤ6などを外部から保護するとともに、配光特性を制御するためのレンズとしての機能を持つ。モールド部7には主にエポキシ樹脂を用いることができる。
図2は、図1に示す発光装置1を組み込んだ面発光照明装置の一実施例を示す模式的断面図である。図2において、8は面発光照明装置、9は拡散板、10は保持ケースである。
The mold unit 7 functions as a lens for protecting the blue LED 3, the phosphor-containing unit 4, the wire 6 and the like from the outside and controlling the light distribution characteristics. An epoxy resin can be mainly used for the mold part 7.
FIG. 2 is a schematic cross-sectional view showing an embodiment of a surface emitting illumination device incorporating the light emitting device 1 shown in FIG. In FIG. 2, 8 is a surface emitting illumination device, 9 is a diffusion plate, and 10 is a holding case.

この面発光照明装置8は、内面を白色の平滑面等の光不透過性とした方形の保持ケース10の底面に、多数の発光装置1を、その外側に発光装置1の駆動のための電源及び回路等(図示せず。)を設けて配置したものである。発光の均一化のために、保持ケース10の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板9を固定している。
そして、面発光照明装置8を駆動して、発光装置1の青色LED3に電圧を印加することにより青色光等を発光させる。その発光の一部を、蛍光体含有部4において波長変換材料である本発明の蛍光体と必要に応じて添加した別の蛍光体が吸収し、より長波長の光に変換し、蛍光体に吸収されなかった青色光等との混色により、高輝度の発光が得られる。この光が拡散板9を透過して、図面上方に出射され、保持ケース10の拡散板9面内において均一な明るさの照明光が得られることとなる。
This surface-emitting illuminating device 8 has a large number of light-emitting devices 1 on the bottom surface of a rectangular holding case 10 whose inner surface is light-opaque such as a white smooth surface, and a power source for driving the light-emitting device 1 on the outside thereof. And a circuit or the like (not shown). In order to make the light emission uniform, a diffusion plate 9 such as an acrylic plate made of milky white is fixed to a portion corresponding to the lid portion of the holding case 10.
Then, the surface-emitting illumination device 8 is driven to apply blue voltage to the blue LED 3 of the light-emitting device 1 to emit blue light or the like. Part of the emitted light is absorbed in the phosphor-containing portion 4 by the phosphor of the present invention, which is a wavelength conversion material, and another phosphor added as necessary, and converted into light having a longer wavelength. Light emission with high luminance is obtained by mixing with blue light or the like that has not been absorbed. This light passes through the diffusion plate 9 and is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 9 of the holding case 10.

また、本発明の発光装置において、特に励起光源として面発光型のものを使用する場合、蛍光体含有部を膜状とするのが好ましい。即ち、面発光型の発光体からの光は断面積が十分大きいので、蛍光体含有部をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。   In the light-emitting device of the present invention, in particular, when a surface-emitting type is used as the excitation light source, it is preferable that the phosphor-containing portion is formed into a film. That is, since the cross-sectional area of the light from the surface-emitting type phosphor is sufficiently large, when the phosphor-containing portion is formed into a film shape in the direction of the cross-section, the irradiation cross-section area of the phosphor from the first phosphor is fluorescent. Since it becomes large per body unit quantity, the intensity | strength of light emission from fluorescent substance can be enlarged more.

また、光源として面発光型のものを使用し、蛍光体含有部として膜状のものを用いる場合、光源の発光面に、直接膜状の蛍光体含有部を接触させた形状とするのが好ましい。ここでいう接触とは、光源と蛍光体含有部とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、光源からの光が蛍光体含有部の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。   In addition, when a surface-emitting type light source is used as the light source and a film-like one is used as the phosphor-containing portion, it is preferable that the light-emitting surface of the light source is directly in contact with the film-like phosphor-containing portion. . Contact here means creating a state where the light source and the phosphor-containing portion are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the light source is reflected by the film surface of the phosphor-containing portion and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

図3は、このように、光源として面発光型のものを用い、蛍光体含有部として膜状のものを適用した発光装置の一例を示す模式的斜視図である。図3中、11は、前記蛍光体を有する膜状の蛍光体含有部、12は光源としての面発光型GaN系LD、13は基板を表す。相互に接触した状態をつくるために、光源12のLDと蛍光体含有部11とそれぞれ別個につくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、光源12の発光面上に蛍光体含有部11を製膜(成型)させても良い。これらの結果、光源12と第2の蛍光体含有部11とを接触した状態とすることができる。   FIG. 3 is a schematic perspective view showing an example of a light-emitting device using a surface-emitting type light source as the light source and applying a film-like one as the phosphor-containing portion. In FIG. 3, 11 is a film-like phosphor-containing portion having the phosphor, 12 is a surface-emitting GaN-based LD as a light source, and 13 is a substrate. In order to create a state where they are in contact with each other, the LD of the light source 12 and the phosphor-containing portion 11 may be formed separately, and their surfaces may be brought into contact with each other by an adhesive or other means. The phosphor-containing portion 11 may be formed (molded) on the light emitting surface. As a result, the light source 12 and the second phosphor-containing portion 11 can be brought into contact with each other.

[3]発光装置の用途
本発明の発光装置の用途は特に制限されず、通常の発光装置が用いられる各種の分野に使用することが可能であるが、高輝度であり、且つ、演色性も高いことから、中でも画像表示装置や照明装置の光源として、とりわけ好適に用いられる。なお、本発明の発光装置を画像表示装置の光源として用いる場合には、カラーフィルターとともに用いることが好ましい。
[3] Use of light-emitting device The use of the light-emitting device of the present invention is not particularly limited, and can be used in various fields in which ordinary light-emitting devices are used, but has high luminance and color rendering properties. Since it is expensive, it is particularly preferably used as a light source for an image display device or a lighting device. In addition, when using the light-emitting device of this invention as a light source of an image display apparatus, using with a color filter is preferable.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
[1]実施例1
東洋電波社製SMD LEDパッケージ「TY−SMD1202B」(2.8mm×3.5mm×1.9mm)の底部にCREE社製LEDチップ「C460−MB290」(発光波長=461nm)をボンディングした。
信越化学工業社製付加硬化型シリコーン樹脂(商品名:LPS−1400;主材)と硬化剤(商品名:C−1400)との混合物100重量部(主材:硬化剤=100:10)に
橙色蛍光体SrBaSiO:Eu(以下SBSと略称する。D50=21μm)6重量部を加え、シンキー社製攪拌装置(あわとり練太郎AR−100)で3分混練して蛍光体含有組成物とした。これを前記LEDチップ付きパッケージの最上面まで充填し、150℃、4時間の雰囲気下で硬化させた。十分冷却した後、25℃±1℃に保たれた室内において、半導体発光装置劣化度測定試験(II)を行った。なお、光束はオーシャン オプティクス社製の色・照度測定ソフトウエア及びUSB2000シリーズ分光器(積分球仕様)を用いて測定した。結果を表1に示す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[1] Example 1
The LED chip “C460-MB290” (emission wavelength = 461 nm) manufactured by CREE was bonded to the bottom of the SMD LED package “TY-SMD1202B” (2.8 mm × 3.5 mm × 1.9 mm) manufactured by Toyo Denpasha.
To 100 parts by weight (main material: curing agent = 100: 10) of a mixture of addition-curable silicone resin (trade name: LPS-1400; main material) and curing agent (trade name: C-1400) manufactured by Shin-Etsu Chemical Co., Ltd. 6 parts by weight of orange phosphor Sr 2 BaSiO 5 : Eu (hereinafter abbreviated as SBS; D50 = 21 μm) is added, and the mixture is kneaded for 3 minutes with a stirrer manufactured by Shinky Corporation (Awatori Kentaro AR-100). It was a thing. This was filled to the uppermost surface of the package with the LED chip and cured in an atmosphere at 150 ° C. for 4 hours. After sufficiently cooling, a semiconductor light emitting device deterioration degree measurement test (II) was performed in a room maintained at 25 ° C. ± 1 ° C. The luminous flux was measured using color / illuminance measurement software manufactured by Ocean Optics and USB2000 series spectrometer (integral sphere specification). The results are shown in Table 1.

なお、実施例1で使用した主材および硬化剤の赤外吸収スペクトルをThermoElectron社製「NEXUS670」および「Nic−Plan」により測定したところ、いずれも芳香族基は検出されなかった。
また、本実施例で使用した橙色蛍光体SBSは前記蛍光体劣化度試験(I)の結果、劣化度は60%であった。ここで、蛍光体の輝度測定には、トプコン社製「BM5」を用いた。
In addition, when the infrared absorption spectra of the main material and the curing agent used in Example 1 were measured by “NEXUS670” and “Nic-Plan” manufactured by ThermoElectron, no aromatic group was detected.
The orange phosphor SBS used in this example had a degradation degree of 60% as a result of the phosphor degradation test (I). Here, “BM5” manufactured by Topcon Corporation was used for measuring the luminance of the phosphor.

また、製造直後、温度60℃、相対湿度90%の空気中に1日間放置した前後でCuKα線によりX線回折を行なったX線回折の結果、炭酸ストロンチウムが検出された。
[2]実施例2
実施例1におけるシリコーン樹脂主材および硬化剤を、それぞれ信越化学工業製「LPS−2410」および「C−2410」とした以外は実施例1と同様に行った。結果を表1に示す。
Immediately after production, strontium carbonate was detected as a result of X-ray diffraction by X-ray diffraction using CuKα rays before and after being left in air at a temperature of 60 ° C. and a relative humidity of 90% for 1 day.
[2] Example 2
The same procedure as in Example 1 was performed except that the silicone resin main material and the curing agent in Example 1 were “LPS-2410” and “C-2410” manufactured by Shin-Etsu Chemical Co., Ltd., respectively. The results are shown in Table 1.

なお、実施例2で使用した上記主材および硬化剤の赤外吸収スペクトルを実施例1と同様の方法により測定したところ、いずれも芳香族基は検出されなかった。
[3]実施例3
実施例1におけるシリコーン樹脂主材及び硬化剤を、それぞれ信越化学工業製「LPS
−3400」および「C−3400」とした以外は実施例1と同様に行った。結果を表1に示す。
なお、実施例3で使用した上記主材及び硬化剤の赤外吸収スペクトルを実施例1と同様の方法により測定したところ、いずれも芳香族基は検出されなかった。
In addition, when the infrared absorption spectrum of the said main material and hardening | curing agent which were used in Example 2 was measured by the method similar to Example 1, neither aromatic group was detected.
[3] Example 3
The silicone resin main material and the curing agent in Example 1 were “LPS” manufactured by Shin-Etsu Chemical Co., Ltd.
-3400 "and" C-3400 ". The results are shown in Table 1.
In addition, when the infrared absorption spectrum of the said main material and hardening | curing agent which were used in Example 3 was measured by the method similar to Example 1, neither aromatic group was detected.

[4] 実施例4
実施例2における蛍光体を橙色蛍光体SBS(D50=21μm)6.3重量部および緑色蛍光体(Ba0.75Sr0.25SiO:Eu(以下BSSと略称する。D50=15μm)6.3重量部とし、さらにフィラーとして日本アエロジル社製RY200Sを0.5重量部添加した以外は実施例2と同様に行なった。結果を表1に示す。
また、本実施例で使用した緑色蛍光体BSSは前記蛍光体劣化度試験(I)の結果、劣化度は0%であった。ここで、蛍光体の輝度測定には、トプコン社製「BM5」を用いた。
また、製造直後、温度60℃、相対湿度90%の空気中に1日間放置した前後でCuKα線によりX線回折を行なったX線回折の結果、炭酸塩の検出は認められなかった。
[4] Example 4
Example phosphor orange phosphor SBS in 2 (D 50 = 21μm) 6.3 parts by weight of a green phosphor (Ba 0.75 Sr 0.25) 2 SiO 4: .D 50 be abbreviated as Eu (hereinafter BSS = 15 μm) The same procedure as in Example 2 except that 6.3 parts by weight and 0.5 parts by weight of RY200S manufactured by Nippon Aerosil Co., Ltd. were added as fillers. The results are shown in Table 1.
The green phosphor BSS used in this example was found to have a degradation level of 0% as a result of the phosphor degradation test (I). Here, “BM5” manufactured by Topcon Corporation was used for measuring the luminance of the phosphor.
In addition, as a result of X-ray diffraction performed by X-ray diffraction using CuKα rays immediately before and after being left in an air at a temperature of 60 ° C. and a relative humidity of 90% for 1 day, the detection of carbonate was not recognized.

[5]比較例1
実施例1のシリコーン樹脂主材及び硬化剤の代わりにジャパンエポキシレジン社製エポキシ樹脂(商品名:828EL)および硬化剤(商品名:YLH−1230)をそれぞれ100重量部及び90重量部混合し、該混合物100重量部に橙色蛍光体SBS(D50=21μm)6重量部を加えた以外は実施例1と同様にして蛍光体含有組成物とした。これを前記LEDチップ付きパッケージの最上面まで充填して100℃、3時間次いで140℃、3時間加熱硬化させた。十分冷却した後、25℃±1℃に保たれた室内において、実施例1と同様に半導体発光装置劣化度測定試験(II)を行った。結果を表1に示す。
[5] Comparative Example 1
In place of the silicone resin main material and the curing agent of Example 1, 100 parts by weight and 90 parts by weight of an epoxy resin (trade name: 828EL) and a curing agent (trade name: YLH-1230) manufactured by Japan Epoxy Resin Co., respectively. A phosphor-containing composition was prepared in the same manner as in Example 1 except that 6 parts by weight of the orange phosphor SBS (D 50 = 21 μm) was added to 100 parts by weight of the mixture. This was filled up to the top surface of the package with the LED chip and cured by heating at 100 ° C. for 3 hours and then at 140 ° C. for 3 hours. After sufficiently cooling, the semiconductor light emitting device deterioration degree measurement test (II) was conducted in the same manner as in Example 1 in a room maintained at 25 ° C. ± 1 ° C. The results are shown in Table 1.

[6]比較例2
比較例2のエポキシ樹脂主材及び硬化剤をそれぞれジャパンエポキシレジン社製エポキシ樹脂(商品名:YL−7301)および硬化剤(商品名:YLH−1230)を100重量部:80重量部の割合で混合し、該混合物100重量部に橙色蛍光体SBS(D50=21μm)6重量部を加えた以外は比較例1と同様にして、蛍光体含有組成物を製造し、半導体発光装置劣化度測定試験(II)を行った。結果を表1に示す。
[6] Comparative example 2
The epoxy resin main material and the curing agent of Comparative Example 2 were epoxy resin (trade name: YL-7301) and curing agent (trade name: YLH-1230) manufactured by Japan Epoxy Resin Co., Ltd. in a ratio of 100 parts by weight to 80 parts by weight, respectively. A phosphor-containing composition was produced in the same manner as in Comparative Example 1 except that 6 parts by weight of the orange phosphor SBS (D 50 = 21 μm) was added to 100 parts by weight of the mixture, and the degradation of the semiconductor light emitting device was measured. Test (II) was conducted. The results are shown in Table 1.

[7]比較例3
実施例1におけるシリコーン樹脂主材及び硬化剤を信越化学工業製「LPS−3500」および「C−3500」とした以外は実施例1と同様に行った。結果を表1に示す。
なお、比較例3で使用した主材および硬化剤の赤外吸収スペクトルを実施例1と同様の方法により測定したところ、芳香族基が確認された。
[7] Comparative Example 3
The same procedure as in Example 1 was performed except that the silicone resin main material and the curing agent in Example 1 were “LPS-3500” and “C-3500” manufactured by Shin-Etsu Chemical Co., Ltd. The results are shown in Table 1.
In addition, when the infrared absorption spectrum of the main material and hardening | curing agent which were used in the comparative example 3 was measured by the method similar to Example 1, the aromatic group was confirmed.

[8]比較例4
実施例1におけるシリコーン樹脂主材及び硬化剤を信越化学工業製「LPS−5500」および「C−5500」とし、両者の配合割合を100:10とした以外は実施例1と同
様に行った。結果を表1に示す。
なお、比較例4で使用した主材および硬化剤の赤外吸収スペクトルを実施例1と同様の方法により測定したところ、芳香族基が確認された。
[8] Comparative example 4
The silicone resin main material and curing agent in Example 1 were “LPS-5500” and “C-5500” manufactured by Shin-Etsu Chemical Co., Ltd., and the same procedure as in Example 1 was performed except that the blending ratio of both was 100: 10. The results are shown in Table 1.
In addition, when the infrared absorption spectrum of the main material and hardening | curing agent which were used in Comparative Example 4 was measured by the method similar to Example 1, the aromatic group was confirmed.

[9] 比較例5
実施例4におけるシリコーン樹脂主材及び硬化剤を信越化学工業製「LPS−5500」および「C−5500」とし、両者の配合割合を100:10とした以外は実施例4と同様に行った。結果を表1に示す。
[9] Comparative Example 5
The silicone resin main material and curing agent in Example 4 were “LPS-5500” and “C-5500” manufactured by Shin-Etsu Chemical Co., Ltd., and the same procedure as in Example 4 was performed except that the blending ratio of both was 100: 10. The results are shown in Table 1.

[10]参考例1
比較例1で使用した蛍光体SBSの代わりにYAl12:Ce(以下YAGと略
称する。D50=6μm)を使用した以外は比較例1と同様に行った。結果を表1に示す。
また、本実施例で使用した蛍光体YAGは前記蛍光体劣化度試験(I)の結果、劣化度は0%であった。ここで、蛍光体の輝度測定には、トプコン社製「BM5」を用いた。
また、製造直後、温度60℃、相対湿度90%の空気中に1日間放置した前後でCuKα線によりX線回折を行なったX線回折の結果、炭酸塩の検出は認められなかった。
[10] Reference example 1
The same procedure as in Comparative Example 1 was performed except that Y 3 Al 5 O 12 : Ce (hereinafter abbreviated as YAG; D 50 = 6 μm) was used instead of the phosphor SBS used in Comparative Example 1. The results are shown in Table 1.
In addition, as a result of the phosphor deterioration degree test (I), the deterioration degree of the phosphor YAG used in this example was 0%. Here, “BM5” manufactured by Topcon Corporation was used for measuring the luminance of the phosphor.
In addition, as a result of X-ray diffraction performed by X-ray diffraction using CuKα rays immediately before and after being left in an air at a temperature of 60 ° C. and a relative humidity of 90% for 1 day, the detection of carbonate was not recognized.

[11]参考例2
参考例1で使用したエポキシ樹脂主材及び硬化剤の代わりに信越化学工業製シリコーン樹脂(商品名:LPS−5500)および信越化学工業製硬化剤「C−5500」を用いた以外は参考例1と同様に行った。結果を表1に示す。
[11] Reference example 2
Reference Example 1 except that the epoxy resin main material and the curing agent used in Reference Example 1 were replaced by Shin-Etsu Chemical's silicone resin (trade name: LPS-5500) and Shin-Etsu Chemical's curing agent "C-5500". As well as. The results are shown in Table 1.

Figure 0004923728
Figure 0004923728

本発明の発光装置の一実施例を示す模式的断面図である。It is typical sectional drawing which shows one Example of the light-emitting device of this invention. 本発明の発光装置を用いた面発光照明装置の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the surface emitting illumination apparatus using the light-emitting device of this invention. 本発明の発光装置の他の実施の形態を示す模式的な斜視図である。It is a typical perspective view which shows other embodiment of the light-emitting device of this invention. SrBaSiO;Eu(SBS)の製造直後のX線回折を表す図である。Sr 2 BaSiO 5; is a graph showing an X-ray diffraction immediately after preparation of Eu (SBS). SrBaSiO;Eu(SBS)の)を温度60℃、相対湿度90%に1日間放置した後のX線回折を表す図である。Sr 2 BaSiO 5; Eu of (SBS)) the temperature 60 ° C., is a graph showing an X-ray diffraction after leaving for one day in a relative humidity of 90%. 本発明に使用することが好ましいシリコーン樹脂および好ましくないシリコーン樹脂の赤外吸収スペクトルの一例を表す図である。It is a figure showing an example of the infrared absorption spectrum of the silicone resin preferable to be used for this invention, and a preferable silicone resin.

符号の説明Explanation of symbols

1 発光装置
2 フレーム
2A フレームの凹部
3 青色LED(第1の発光体)
4 蛍光体含有部(第2の発光体)
5 銀ペースト
6 ワイヤ
7 モールド部
8 面発光照明装置
9 拡散板
10 保持ケース
11 蛍光体含有部
12 光源
13 基板
1 Light-emitting device
2 frames
2A Concave part of the frame
3 Blue LED (first light emitter)
4 Phosphor-containing part (second light emitter)
5 Silver paste
6 wires
7 Mold part
8 Surface emitting lighting device
9 Diffusion plate
10 Holding case
11 Phosphor content part
12 Light source
13 Substrate

Claims (7)

(A)蛍光体および(B)シリコーン系化合物を含有する蛍光体含有組成物であって、
前記(A)蛍光体は、下記蛍光体劣化度測定試験(I)による劣化度が1%以上であり、かつ、母体結晶としてM SiO 、MS、MGa 、MAlSiN 、M Si 、MSi からなる群(ただし、Mは、Ca,Sr,Baからなる群から選ばれる1種以上を表す)の少なくとも一つを含有し、さらに付活剤としてCr,Mn,Fe,Bi,Ce,Pr,Nd,Sm,Eu,Tb,Dy,Ho,Er,Tm,Ybの少なくとも一つを含有するものであり、
前記(B)シリコーン系化合物は、芳香族基を含有しない
ことを特徴とする蛍光体含有組成物。
蛍光体劣化度測定試験(I)
a)前記蛍光体の粉末の輝度を測定し、得られた測定値をxとする。
b)a)において輝度を測定した蛍光体粉末を温度60℃、相対湿度90%の空気中に1日放置する。
c) b)において得られた蛍光体粉末をa)と同様の方法にて輝度を測定し、得られた
測定値をyとする。
d)蛍光体劣化度(%)=(1−y/x)×100を求める。
A phosphor-containing composition comprising (A) a phosphor and (B) a silicone compound,
The phosphor (A) has a degradation degree of 1% or more according to the following phosphor degradation degree measurement test (I), and M 3 SiO 5 , MS, MGa 2 S 4 , MAlSiN 3 , M 2 as a base crystal. Contains at least one of the group consisting of Si 5 N 8 and MSi 2 N 2 O 2 (where M represents one or more selected from the group consisting of Ca, Sr, and Ba), and as an activator Containing at least one of Cr, Mn, Fe, Bi, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb,
(B) the silicone compound, a phosphor-containing composition characterized by having no free aromatic group.
Phosphor degradation test (I)
a) The brightness of the phosphor powder is measured, and the measured value is defined as x.
b) The phosphor powder whose luminance was measured in a) is left in air at a temperature of 60 ° C. and a relative humidity of 90% for one day.
c) The luminance of the phosphor powder obtained in b) is measured by the same method as in a), and the measured value obtained is y.
d) The phosphor deterioration degree (%) = (1−y / x) × 100 is obtained.
前記(A)蛍光体がアルカリ土類金属を含有し、かつ温度60℃、相対湿度90%の空気中に1日放置した場合にアルカリ土類金属炭酸塩を生成する蛍光体であ
ことを特徴とする請求項1に記載の蛍光体含有組成物。
Wherein (A) phosphor, an alkaline earth metal, and the temperature 60 ° C., Ru phosphor der to produce the alkaline earth metal carbonate when allowed to stand for 1 day in a 90% relative humidity of the air < The phosphor-containing composition according to claim 1, wherein:
前記(A)蛍光体が、(SrThe phosphor (A) is (Sr 1-a1-a BaBa a ) 3 SiOSiO 5 :Eu(aは0≦a≦1を満たす: Eu (a satisfies 0 ≦ a ≦ 1
。)である. )
ことを特徴とする請求項1または請求項2に記載の蛍光体含有組成物。The phosphor-containing composition according to claim 1 or 2, wherein:
請求項1〜3のいずれか1項に記載の蛍光体含有組成物を用いて形成された発光装置。 The light-emitting device formed using the fluorescent substance containing composition of any one of Claims 1-3. 半導体発光素子および請求項1〜3のいずれか1項に記載の蛍光体含有組成物を用いて形成された発光装置であって、
下記半導体発光装置劣化度試験(II)による劣化度が5%以下である
ことを特徴とする発光装置。
半導体発光装置劣化度測定試験(II)
e)半導体発光素子を上記蛍光体含有組成物で封止して半導体発光装置を作製する。
f)e)で作製した半導体発光装置について、前記半導体発光素子の定格電流を通電したときの半導体発光装置の全光束をφとする。
g)f)で光束を測定した半導体発光装置を温度60℃、相対湿度90%の空気中に、未通電の状態で3日間放置する。
h)g)で得られた半導体発光装置に定格電流を通電したときの全光束をφとする。
i)劣化度(%)=(1−φ/φ)×100を求める。
A light-emitting device formed using the semiconductor light-emitting element and the phosphor-containing composition according to any one of claims 1 to 3,
A light emitting device having a deterioration degree of 5% or less according to the following semiconductor light emitting device deterioration degree test (II).
Semiconductor light emitting device degradation measurement test (II)
e) A semiconductor light emitting device is fabricated by sealing the semiconductor light emitting element with the phosphor-containing composition.
f) For the semiconductor light emitting device fabricated in e), let φ 1 be the total luminous flux of the semiconductor light emitting device when the rated current of the semiconductor light emitting element is applied.
g) The semiconductor light emitting device whose luminous flux has been measured in f) is left in an unpowered state for 3 days in air at a temperature of 60 ° C. and a relative humidity of 90%.
The total flux of when the rated current for the semiconductor light-emitting device obtained in h) g) and phi 2.
i) Deterioration degree (%) = (1−φ 2 / φ 1 ) × 100 is obtained.
請求項4または5に記載の発光装置を用いて形成された照明装置。 An illumination device formed using the light-emitting device according to claim 4. 請求項4または5に記載の発光装置を用いて形成された画像表示装置。 An image display device formed using the light emitting device according to claim 4.
JP2006143896A 2006-05-24 2006-05-24 Phosphor-containing composition, light emitting device, lighting device, and image display device Expired - Fee Related JP4923728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143896A JP4923728B2 (en) 2006-05-24 2006-05-24 Phosphor-containing composition, light emitting device, lighting device, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143896A JP4923728B2 (en) 2006-05-24 2006-05-24 Phosphor-containing composition, light emitting device, lighting device, and image display device

Publications (2)

Publication Number Publication Date
JP2007314626A JP2007314626A (en) 2007-12-06
JP4923728B2 true JP4923728B2 (en) 2012-04-25

Family

ID=38848784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143896A Expired - Fee Related JP4923728B2 (en) 2006-05-24 2006-05-24 Phosphor-containing composition, light emitting device, lighting device, and image display device

Country Status (1)

Country Link
JP (1) JP4923728B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112864A (en) * 2006-10-30 2008-05-15 Matsushita Electric Works Ltd Light-emitting device
JP4756104B2 (en) * 2008-05-09 2011-08-24 三井金属鉱業株式会社 Green phosphor
JP2011029497A (en) * 2009-07-28 2011-02-10 Mitsubishi Chemicals Corp White light emitting device and illumination apparatus using the same
CN106098913B (en) * 2016-06-29 2019-04-02 深圳市源磊科技有限公司 A method of white light LEDs trial is improved than testing efficiency
WO2020100574A1 (en) * 2018-11-12 2020-05-22 デンカ株式会社 Package for accommodating fluorescent substance, and container box

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071639B2 (en) * 2003-01-15 2008-04-02 信越化学工業株式会社 Silicone resin composition for light emitting diode element
EP1611220A4 (en) * 2003-03-28 2007-10-03 Korea Res Inst Chem Tech Strontium silicate-based phosphor, fabrication method thereof, and led using the phosphor
WO2006006099A1 (en) * 2004-07-05 2006-01-19 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a fluorescent material
JP4524607B2 (en) * 2004-10-26 2010-08-18 豊田合成株式会社 Improved silicate phosphor and LED lamp using the same

Also Published As

Publication number Publication date
JP2007314626A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP5386800B2 (en) Phosphor-containing composition, light emitting device, lighting device, and image display device
KR100910140B1 (en) Light-emitting device, white light-emitting device, illuminator, and image display
US9777213B2 (en) Phosphor, phosphor-containing composition and light-emitting unit using phosphor, and image display device and lighting device using light-emitting unit
US6657379B2 (en) Illumination unit having at least one LED as light source
TWI403570B (en) Fluorescent material and method of manufacturing the same, fluorescent material containing composition, light emitting device and use thereof
JP5315616B2 (en) Light emitting device, white light emitter for backlight, and image display device
JP2008111080A (en) Method of surface-treating fluorescent substance, fluorescent substance, fluorescent substance-containing composition, light emitting device, image display device, and illuminating device
JP5245222B2 (en) Phosphor and light emitting device using the same
JP5029203B2 (en) Lighting device
JP2008285662A (en) Method for producing inorganic substance, phosphor, phosphor-including composition, emission device, illumination device, and image display device
EP2141215A1 (en) Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, image display device, and illuminating device
WO2011122576A1 (en) Light-emitting device
JP2013229593A (en) Semiconductor light emitting device and lighting device
JP5374857B2 (en) Method for producing phosphor-containing composition and method for producing semiconductor light-emitting device
JP2009013186A (en) Coated phosphor particles, method for producing coated phosphor particles, phosphor-containing composition, light emitting device, image display device and illuminating device
JP2008291203A (en) Phosphor and manufacturing method thereof, as well as phosphor-containing composition, light-emitting device, image display device and illuminating device
JP2008189811A (en) Fluorescent substance which uses nitride or oxynitride as base, its production method and composition containing fluorescent substance using the same, light emitting device, illuminating device, and image display
JP2008095091A (en) Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device
JP2009057554A (en) Method for producing fluorescent material, fluorescent material obtained by the same, fluorescent material-containing composition using the fluorescent material, light emitting device, lighting device and image display device
JP2011159809A (en) White light-emitting device
JP2009289957A (en) Semiconductor light-emitting device and imaging device
JP2008260930A (en) Composition containing fluorescent substance, light emitter, lighting apparatus and image display device
JP2009040918A (en) Fluorescent substance and its production method, composition containing fluorescent substance, light emitting device, and image display and illuminating device
JP4923728B2 (en) Phosphor-containing composition, light emitting device, lighting device, and image display device
JP2008038081A (en) Fluorophor and light-emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees