JP4912742B2 - Hydrogen generator and fuel cell system - Google Patents

Hydrogen generator and fuel cell system Download PDF

Info

Publication number
JP4912742B2
JP4912742B2 JP2006138942A JP2006138942A JP4912742B2 JP 4912742 B2 JP4912742 B2 JP 4912742B2 JP 2006138942 A JP2006138942 A JP 2006138942A JP 2006138942 A JP2006138942 A JP 2006138942A JP 4912742 B2 JP4912742 B2 JP 4912742B2
Authority
JP
Japan
Prior art keywords
gas
catalyst body
hydrogen
temperature
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006138942A
Other languages
Japanese (ja)
Other versions
JP2007308332A (en
JP2007308332A5 (en
Inventor
晃 前西
裕二 向井
弘樹 藤岡
邦弘 鵜飼
誠二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006138942A priority Critical patent/JP4912742B2/en
Publication of JP2007308332A publication Critical patent/JP2007308332A/en
Publication of JP2007308332A5 publication Critical patent/JP2007308332A5/ja
Application granted granted Critical
Publication of JP4912742B2 publication Critical patent/JP4912742B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、水素生成装置および燃料電池システムに係り、更に詳しくは、水素生成装置のガス中の一酸化炭素ガス除去技術の改良に関する。   The present invention relates to a hydrogen generator and a fuel cell system, and more particularly to an improvement in a technique for removing carbon monoxide gas from a gas of a hydrogen generator.

従来の水素生成装置は、改質反応用の改質器と、変成反応用の変成器と、選択酸化反応用の選択酸化器と、を備えて構成され、これらの機器の協働により、一酸化炭素ガス(CO)を所定濃度以下にした水素リッチな水素含有ガスが生成されている。   A conventional hydrogen generator includes a reformer for a reforming reaction, a shifter for a shift reaction, and a selective oxidizer for a selective oxidation reaction. A hydrogen-rich hydrogen-containing gas in which carbon oxide gas (CO) is reduced to a predetermined concentration or less is generated.

改質器は、例えばルテニウム(Ru)、白金(Pt)またはRh(ロジウム)等の貴金属からなる改質触媒を充填した改質触媒体を有し、これにより、少なくとも炭素と水素とから構成される有機化合物を含む原料ガスと水蒸気から、改質触媒を用いた水蒸気改質反応により水素リッチな水素含有ガスが生成される。   The reformer has, for example, a reforming catalyst body filled with a reforming catalyst made of a noble metal such as ruthenium (Ru), platinum (Pt), or Rh (rhodium), and is composed of at least carbon and hydrogen. A hydrogen-rich hydrogen-containing gas is generated from a raw material gas containing an organic compound and steam by a steam reforming reaction using a reforming catalyst.

変成器は、Pt等の貴金属、銅(Cu)−亜鉛(Zn)系材料または鉄(Fe)−クロム(Cr)系材料からなる変成触媒を充填した変成触媒体を有し、これにより、水素含有ガス中のCOが、変成触媒を用いた変成反応により1%程度の濃度レベルまで除去される。   The shift device has a shift catalyst body filled with a shift catalyst made of a noble metal such as Pt, a copper (Cu) -zinc (Zn) -based material, or an iron (Fe) -chromium (Cr) -based material. CO in the contained gas is removed to a concentration level of about 1% by the shift reaction using the shift catalyst.

選択酸化器は、RuまたはPt等の貴金属からなる選択酸化触媒を充填した選択酸化触媒体を有し、これにより、変成器から排出される水素含有ガス(以下、「変成後ガス」という)中のCOが、予め空気と混合されたうえで、選択酸化触媒を用いた酸化反応により所定のCO濃度以下(例えば20ppm以下)のレベルまで除去される。   The selective oxidizer has a selective oxidation catalyst body filled with a selective oxidation catalyst made of a noble metal such as Ru or Pt, and thereby in a hydrogen-containing gas (hereinafter referred to as “post-transformation gas”) discharged from the shift converter. Is previously mixed with air and then removed to a level below a predetermined CO concentration (for example, 20 ppm or less) by an oxidation reaction using a selective oxidation catalyst.

このような水素生成装置により生成されるガス中のCOを、より適切に除去可能なように、水素生成装置内の触媒状態の検知手法や触媒劣化に対する対処法が既に提案されている。   A method for detecting a catalyst state in the hydrogen generator and a countermeasure for catalyst deterioration have already been proposed so that CO in the gas generated by such a hydrogen generator can be appropriately removed.

例えば、変成触媒体の温度に基づいて変成触媒の適宜の状態を検知する技術を導入した水素生成装置がある。より詳しくは、変成触媒体の温度に基づいて、変成後ガス中のCO濃度を把握するとともに、こうしたCO濃度と選択酸化触媒体の温度をもとにして、原料ガス流量の変化に際しての変成後ガス中のCO濃度の増加を見込むことにより、酸化反応用の空気を増やして選択酸化器により適切にCOを除去するように構成された水素生成装置がある(特許文献1参照)。また、変成触媒体の温度に基づいて変成触媒体の触媒活性低下が検知され、これに対する一対処法として変成触媒体に供給する水量を増やすことが挙げられている(特許文献2参照)。   For example, there is a hydrogen generator that introduces a technique for detecting an appropriate state of the shift catalyst based on the temperature of the shift catalyst body. More specifically, based on the temperature of the shift catalyst body, the CO concentration in the post-shift gas is grasped, and based on the CO concentration and the selective oxidation catalyst body temperature, There is a hydrogen generator configured to increase the air for oxidation reaction and appropriately remove CO by a selective oxidizer by expecting an increase in CO concentration in the gas (see Patent Document 1). Further, a decrease in the catalytic activity of the shift catalyst body is detected based on the temperature of the shift catalyst body, and as one countermeasure against this, increasing the amount of water supplied to the shift catalyst body is cited (see Patent Document 2).

また、選択酸化触媒体の温度に基づいて、選択酸化触媒体の温度が適温になるように選択酸化器に向けた冷却ファンによる空冷動作を調整可能な水素生成装置も既に提供されている(特許文献3参照)。
特開2003−277011号公報 特開2003−217636号公報 特開2003−212509号公報
Further, a hydrogen generation apparatus is already provided that can adjust the air cooling operation by a cooling fan toward the selective oxidizer so that the temperature of the selective oxidation catalyst body becomes an appropriate temperature based on the temperature of the selective oxidation catalyst body (patent). Reference 3).
JP 2003-277011 A JP 2003-217636 A JP 2003-212509 A

上記各特許文献1〜3に記載の水素生成装置においては、以下に述べるように、改質触媒体および変成触媒体の両者の触媒活性(反応性)の低下に対して適切な配慮に欠くと、本件発明者等は考えている。   In the hydrogen generators described in the above Patent Documents 1 to 3, as described below, there is a lack of appropriate consideration for a decrease in the catalytic activity (reactivity) of both the reforming catalyst body and the shift catalyst body. The present inventors are thinking.

例えば、水素生成装置の総稼動時間の長期化や水素生成装置の起動または停止の総運転回数増加に伴い、変成触媒体において高温となる主反応部(上流端部)のシンタリング(凝集)や、変成触媒体の上流端部の水濡れおよびヒートショック(例えば、変成触媒体の温度急変による熱損傷等)等の各種の要因により、変成触媒体の触媒活性の低下は、先ずは、変成触媒体の上流端部に偏倚して顕在化する。   For example, as the total operation time of the hydrogen generator is prolonged and the total number of operations for starting or stopping the hydrogen generator is increased, sintering (aggregation) of the main reaction part (upstream end part) that becomes high temperature in the shift catalyst body, First, the catalytic activity of the shift catalyst body is reduced by various factors such as water wetting at the upstream end of the shift catalyst body and heat shock (for example, thermal damage due to sudden change in temperature of the shift catalyst body). It becomes biased and manifests at the upstream end of the medium.

そうすると、変成触媒体の主反応部は、触媒活性低下領域の偏在により、時間の経過とともに、徐々に変成触媒体の上流部から下流部に遷移する可能性が高い。   As a result, the main reaction portion of the shift catalyst body is likely to gradually transition from the upstream portion to the downstream portion of the shift catalyst body with the passage of time due to the uneven distribution of the catalytic activity reduction region.

そして変成触媒体の主反応部が時間の経過とともに遷移するのであれば、変成触媒体の温度と変成後ガス中のCO量との間の相関も同じく、時間の経過とともに変化すると、考えられる。このため、斯かる変成触媒体の触媒活性の遷移を想定した場合に、変成触媒体の温度検知箇所が適切でなければ、変成後ガス中のCO量を予測し辛い状況に陥る可能性が高い。   And if the main reaction part of a shift catalyst body changes with progress of time, it is thought that the correlation between the temperature of a shift catalyst body and the amount of CO in gas after shift is also changing with progress of time. For this reason, when transition of the catalytic activity of such a shift catalyst body is assumed, if the temperature detection location of the shift catalyst body is not appropriate, there is a high possibility that the amount of CO in the gas after shift will be difficult to predict. .

更に、水素生成装置の総稼動時間の長期化や、総運転回数の増加により、変成触媒体の触媒活性低下の他、改質触媒体の触媒活性低下を招く可能性がある。   Furthermore, there is a possibility that a reduction in the catalytic activity of the reforming catalyst body and a reduction in the catalytic activity of the reforming catalyst body may be caused by prolonging the total operation time of the hydrogen generator and increasing the total number of operations.

改質触媒体の触媒活性が低下すれば、水素含有ガス中のCO量、つまり、変成触媒体に供給されるガス中のCO量が変移する。   If the catalytic activity of the reforming catalyst body decreases, the CO amount in the hydrogen-containing gas, that is, the CO amount in the gas supplied to the shift catalyst body changes.

そうすると、改質触媒体の触媒活性低下の状態に応じて、変成器の温度と変成後ガス中のCO量予測値との間の相関がずれて、これにより、変成後ガス中のCO量の予測が、より複雑かつ不確定になる。   Then, the correlation between the temperature of the shifter and the predicted amount of CO in the gas after the shift is shifted according to the state of the catalytic activity of the reforming catalyst body being lowered. The prediction becomes more complex and uncertain.

その一方で、改質触媒体や変成触媒体の触媒活性の低下を見越して、この低下により増えるであろうと予測される変成後ガス中のCOに対応可能なように、選択酸化器への空気量を事前に多めに供給するといった次善の策を取ることが想定される。   On the other hand, in anticipation of a decrease in the catalytic activity of the reforming catalyst body or the shift catalyst body, the air to the selective oxidizer can be used to cope with CO in the post-shift gas that is expected to increase due to this decrease. It is envisaged that the next best measure is to supply a large amount in advance.

しかし、もしこのような方策を採用すれば、水素生成装置の初期状態(改質触媒体および変成触媒体の触媒活性未低下段階)においては必然的に、変成後ガス中のCO量に対し必要量以上の空気を供給することになり、選択酸化器におけるCO酸化後の余剰の酸素ガスが、この酸素ガスと共存する水素ガスをも酸化しかねない。このため、改質器の改質反応により生成させた水素ガスは、水素生成装置の初期状態において余剰酸素ガスの酸化反応により消滅され、水素ガスの生成効率の低下を招くという不都合がある。   However, if such a measure is adopted, in the initial state of the hydrogen generator (the stage in which the catalytic activity of the reforming catalyst body and the shift catalyst body has not been lowered), it is inevitably necessary for the amount of CO in the gas after the shift. As a result, an excess amount of air is supplied, and excess oxygen gas after CO oxidation in the selective oxidizer may oxidize hydrogen gas coexisting with the oxygen gas. For this reason, the hydrogen gas generated by the reforming reaction of the reformer is extinguished by the oxidation reaction of the surplus oxygen gas in the initial state of the hydrogen generator, and there is a disadvantage that the generation efficiency of hydrogen gas is reduced.

本発明は、このような事情に鑑みてなされたものであり、変成触媒体および改質触媒体の触媒活性低下に際して、変成後ガス中のCO濃度推定値を精度良く演算可能な水素生成装置を提供することを目的とする。特に、本発明は、変成触媒体および改質触媒体の触媒活性低下に際して、選択酸化器に対し、変成後ガス中のCOを除去するためのCO選択酸化用空気を過不足なく供給可能な水素生成装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and a hydrogen generator capable of accurately calculating an estimated value of CO concentration in the gas after the shift when the catalytic activity of the shift catalyst and the reformed catalyst is lowered. The purpose is to provide. In particular, the present invention relates to hydrogen capable of supplying CO selective oxidation air for removing CO in the gas after the modification to the selective oxidizer without excess or deficiency when the catalytic activity of the modification catalyst and the reforming catalyst is lowered. An object is to provide a generation device.

上記課題を解決するため、本発明に係る水素生成装置は、少なくとも炭素および水素から構成される有機化合物を含む原料ガスを用いた改質反応により、水素含有ガスを生成する改質器と、前記水素含有ガスを変成触媒体に通流させて前記水素含有ガス中の一酸化炭素ガスを、変成反応により低減する変成器と、前記変成触媒体の、水素含有ガス流れ方向の上流部分の温度を検知する上流温度検知器と、前記変成触媒体の、水素含有ガス流れ方向の下流部分の温度を検知する下流温度検知器と、前記変成器から排出される前記水素含有ガスに対して空気を供給する空気供給器と、前記変成器から排出される前記水素含有ガス中の一酸化炭素ガスを、前記空気との酸化反応により低減する選択酸化器と、制御装置と、を備えて構成され、前記制御装置は、前記上流温度検知器により検知される温度の変化および前記下流温度検知器により検知される温度の変化を取得して、前記温の変化の各々に対応する、前記変成器から排出される前記水素含有ガス中の一酸化炭素ガス濃度増加寄与分を見積もり、前記一酸化炭素ガス濃度増加寄与分および前記原料ガスの流量に基づいて、前記空気供給器から供給される前記空気の流量を制御する装置である。 In order to solve the above problems, a hydrogen generator according to the present invention includes a reformer that generates a hydrogen-containing gas by a reforming reaction using a raw material gas containing an organic compound composed of at least carbon and hydrogen, A hydrogen-containing gas flowing through the shift catalyst body to reduce the carbon monoxide gas in the hydrogen-containing gas by a shift reaction; and the temperature of the upstream portion of the shift catalyst body in the hydrogen-containing gas flow direction. Air is supplied to the hydrogen-containing gas discharged from the upstream temperature detector for detecting, the downstream temperature detector for detecting the temperature of the downstream portion of the shift catalyst body in the flow direction of the hydrogen-containing gas. An air supply device, a selective oxidizer for reducing carbon monoxide gas in the hydrogen-containing gas discharged from the transformer by an oxidation reaction with the air, and a control device, System Device, the upstream temperature detector to obtain a change in a more sensed Ru temperature change and said downstream temperature sensor in the temperature detected by, corresponding to each of the previous SL temperature change, from the transformer The carbon monoxide gas concentration increase contribution in the discharged hydrogen-containing gas is estimated, and the amount of the air supplied from the air supply unit is calculated based on the carbon monoxide gas concentration increase contribution and the flow rate of the source gas. It is a device that controls the flow rate.

上流温度検知器により検知される温度は、例えば改質触媒体による触媒活性低下を反映した情報である。このため、上記構成によれば、改質触媒体および変成触媒体の各々について触媒活性低下による温度を分離して把握できることから、変成触媒体および改質触媒体の触媒活性低下に際して、変成後ガス中のCO濃度推定値がより精度良く見積れるようになると、期待される。   The temperature detected by the upstream temperature detector is information reflecting, for example, a decrease in catalyst activity due to the reforming catalyst body. For this reason, according to the above configuration, since the temperature due to the decrease in the catalytic activity can be separated and grasped for each of the reforming catalyst body and the shift catalyst body, the gas after the shift is reduced when the catalytic activity of the shift catalyst body and the reforming catalyst body is decreased. It is expected that the estimated CO concentration in the medium can be estimated more accurately.

これにより、変成触媒体および改質触媒体の触媒活性低下に際して、選択酸化器に対し、変成後ガス中のCOを除去するためのCO選択酸化用空気を過不足なく供給可能になる。   As a result, when the catalytic activity of the shift catalyst body and the reforming catalyst body is lowered, the CO selective oxidation air for removing CO in the gas after the shift can be supplied to the selective oxidizer without excess or deficiency.

なお、前記制御装置は、前記水素生成装置の総稼動時間情報および総運転回数情報のうちの少なくとも一つを取得して、前記総稼動時間情報および/または前記総運転回数情報に基づいて、前記空気の流量を制御しても良い。これにより、変成後ガス中のCO濃度推定値演算がより適切に行えるので、選択酸化器に対して、変成後ガス中のCOを除去するためのCO選択酸化用空気を過不足なく供給可能になるThe control device acquires at least one of the total operation time information and the total operation number information of the hydrogen generator, and based on the total operation time information and / or the total operation number information, It is used to control the flow rate of air not good. Thus, CO concentration estimated value calculating more appropriately performed Runode transformer after gas for selective oxidation device, the CO selective oxidation air to remove CO transformer after the gas just proportion can be supplied Become .

また、本発明に係る燃料電池システムは、上記記載の水素生成装置と、酸化剤ガス供給器と、前記水素生成装置により供給される還元剤ガスと前記酸化剤ガス供給器により供給される酸化剤ガスとを用いて発電する燃料電池と、を備えて構成されている。   The fuel cell system according to the present invention includes a hydrogen generator, an oxidant gas supplier, a reducing agent gas supplied by the hydrogen generator, and an oxidant supplied by the oxidant gas supplier. And a fuel cell that generates electricity using gas.

本発明によれば、変成触媒体および改質触媒体の触媒活性低下に際して、変成後ガス中のCO濃度推定値を精度良く演算可能な水素生成装置が得られ、特に、変成触媒体および改質触媒体の触媒活性低下に際して、選択酸化器に対し、変成後ガス中のCOを除去するためのCO選択酸化用空気を過不足なく供給可能な水素生成装置が得られる。   According to the present invention, when the catalytic activity of the shift catalyst body and the reforming catalyst body is lowered, a hydrogen generator capable of accurately calculating the estimated CO concentration in the gas after the shift can be obtained. When the catalytic activity of the catalyst body is lowered, a hydrogen generator capable of supplying CO selective oxidation air for removing CO in the gas after the transformation without excess or deficiency to the selective oxidizer is obtained.

以下、好ましい実施の形態を、図面を参照して述べる。   Hereinafter, preferred embodiments will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1に係る水素生成装置の概略構成を示したブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram showing a schematic configuration of a hydrogen generator according to Embodiment 1 of the present invention.

図1に示す如く、水素生成装置100は主に、改質反応用の改質触媒体(図示せず)を有する改質器11と、変成反応用の変成触媒体12を有する変成器13と、酸化反応用の選択酸化触媒体(図示せず)を有する選択酸化器14と、により構成されている。   As shown in FIG. 1, a hydrogen generator 100 mainly includes a reformer 11 having a reforming catalyst body (not shown) for reforming reaction, and a shifter 13 having a shift catalyst body 12 for shift reaction. And a selective oxidizer 14 having a selective oxidation catalyst body (not shown) for oxidation reaction.

改質器11には、少なくとも炭素及び水素から構成される有機系化合物を含む原料ガスの流量を調整してこれを改質器11に供給するための原料ガス供給器15と、改質水の流量を調整してこれを改質器11に供給するための改質水供給器16と、改質器11の内部の改質触媒体を適温に加熱するためのバーナ17と、が併設されている。   The reformer 11 includes a source gas supply unit 15 for adjusting the flow rate of a source gas containing an organic compound composed of at least carbon and hydrogen, and supplying the source gas to the reformer 11; A reforming water supplier 16 for adjusting the flow rate and supplying it to the reformer 11 and a burner 17 for heating the reforming catalyst body inside the reformer 11 to an appropriate temperature are provided. Yes.

上記の原料ガス供給器15および改質水供給器6は各々、供給物(原料ガスまたは水)の流量を調整可能に構成されていることから、これらの供給器15、16は、例えば供給物の吐出流量を変更可能な供給ポンプ(駆動手段)であっても良く、供給物の供給源とこれの下流側の流路に設けられた供給物の流量調整用バルブとを組み合わせた流体機構であっても良い。   Since the raw material gas supply device 15 and the reforming water supply device 6 are each configured to be able to adjust the flow rate of the supply (raw material gas or water), these supply devices 15 and 16 are, for example, the supply material It may be a supply pump (driving means) capable of changing the discharge flow rate, and is a fluid mechanism that combines a supply source of a supply and a supply flow rate adjusting valve provided in a flow path downstream of the supply source. There may be.

変成器13は、反応容器の内部に変成触媒体12と、この変成触媒体12に水素含有ガスを通流させるためのガス流路(図示せず)とを備えて構成されている。そして、変成触媒体12の上流端部(変成触媒体12の水素含有ガス入口部)に接してこの温度を直接に検知する上流温度検知器18(例えばサーミスタや熱電対)と、変成触媒体12の下流端部(変成触媒体12の変成後ガス出口部)に接してこの温度を直接に検知する下流温度検知器19(例えばサーミスタや熱電対)と、を備えている。   The shift converter 13 includes a shift catalyst body 12 and a gas flow path (not shown) for allowing the hydrogen-containing gas to flow through the shift catalyst body 12 inside the reaction vessel. An upstream temperature detector 18 (for example, a thermistor or a thermocouple) that directly contacts the upstream end of the shift catalyst body 12 (the hydrogen-containing gas inlet of the shift catalyst body 12) and directly detects the temperature, and the shift catalyst body 12 And a downstream temperature detector 19 (for example, a thermistor or a thermocouple) that directly detects this temperature in contact with the downstream end of the catalyst (gas outlet after the shift of the shift catalyst body 12).

このように変成触媒体12の上流端部および下流端部という変成触媒体12の一対部分の温度を得ることにより、後程詳しく述べるように、変成後ガス中のCO濃度推定値を精度良く演算可能になる。   Thus, by obtaining the temperatures of the paired portions of the shift catalyst body 12, that is, the upstream end portion and the downstream end portion of the shift catalyst body 12, the CO concentration estimated value in the shift gas can be accurately calculated as will be described in detail later. become.

選択酸化器14には、選択酸化器14に向けて流れる変成後ガスに対し、所定量の空気を調整して供給可能な選択酸化空気供給器22(例えば空気量を変更可能なブロアやこのブロアと空気量調整弁との組合せ流体機構)が併設され、これにより、変成後ガスと空気とが混合されたうえで、この混合ガスが選択酸化器14に送出される。 The selective oxidizer 14 includes a selective oxidant air supply device 22 (for example, a blower capable of changing the air amount or this blower capable of adjusting and supplying a predetermined amount of air to the transformed gas flowing toward the selective oxidizer 14. And a combined fluid mechanism of the air amount adjusting valve), and after this, the gas after the modification and the air are mixed, and then this mixed gas is sent to the selective oxidizer 14.

また、選択酸化器14の適所には、選択酸化触媒体を通過したガスを外部に排出するためのガス出口ポート21が、配設され、これにより、この水素生成装置100により生成され、CO濃度を所定レベル以下に低減した水素含有ガス(水素ガス)が、ガス出口ポート21を介して水素ガス利用機器(例えば燃料電池)に向けて排出可能になる。   Further, a gas outlet port 21 for discharging the gas that has passed through the selective oxidation catalyst body to the outside is disposed at an appropriate position of the selective oxidizer 14, and thereby generated by the hydrogen generator 100 and the CO concentration. The hydrogen-containing gas (hydrogen gas) reduced to a predetermined level or less can be discharged toward a hydrogen gas utilization device (for example, a fuel cell) via the gas outlet port 21.

制御装置20は、例えばマイクロプロセッサにより構成され、図1に示した点線の如く、水素生成装置100の原料ガス供給器15および改質水供給器16並びに選択酸化空気供給器22(以下「供給器」という)に電気接続され、これらの供給器15、16、22の動作を制御している。 The control device 20 is constituted by, for example, a microprocessor, and as shown by a dotted line in FIG. 1, the raw material gas supply device 15 and the reforming water supply device 16 and the selective oxidation air supply device 22 (hereinafter referred to as “supply device”) of the hydrogen generation device 100. ”) To control the operation of these feeders 15, 16, 22 .

例えば制御装置20は、変成触媒体12の温度検知用の上流温度検知器18と下流温度検知器19にも電気接続され、後程詳しく述べるように、これらの検知器18、19により得られた一対のデータ(一対の温度)に基づいて、制御装置20の制御対象としての選択酸化空気供給器22の動作制御(空気流量調整)を行っている。 For example, the control device 20 is also electrically connected to an upstream temperature detector 18 and a downstream temperature detector 19 for detecting the temperature of the shift catalyst body 12, and as will be described in detail later, a pair obtained by these detectors 18 and 19. Based on the data (a pair of temperatures), the operation control (air flow rate adjustment) of the selective oxidized air supply device 22 as the control target of the control device 20 is performed.

なお本明細書中の制御装置とは、複数の制御装置が協働して水素生成装置100の全体の動作を制御する制御装置群およびこれらの制御装置を統合した単一の制御装置の何れをも意味するものである。よって、この制御装置20が、水素生成装置100の全体の動作の制御を兼ねても良く、他の制御装置(不図示)により、水素生成装置100内の各機器(例えば改質器11等)の温度制御やガス流量調整が実行されても良い。   Note that the control device in this specification refers to any of a control device group in which a plurality of control devices cooperate to control the overall operation of the hydrogen generator 100 and a single control device in which these control devices are integrated. Also means. Therefore, this control device 20 may also serve as control of the overall operation of the hydrogen generation device 100, and each device (for example, the reformer 11) in the hydrogen generation device 100 is controlled by another control device (not shown). The temperature control and gas flow rate adjustment may be executed.

次に、水素生成装置100による一連の水素生成動作例を述べる。   Next, a series of hydrogen generation operation examples by the hydrogen generator 100 will be described.

但し、ここでのガス生成は、公知の反応に基づいたものであるため、簡単な説明に留める。   However, since the gas generation here is based on a known reaction, only a brief description will be given.

改質水供給部16から改質器11に供給された改質水は、バーナ17の加熱により蒸発されて水蒸気となる一方、この水蒸気は、原料ガス供給器15から供給された原料ガスと混合して改質器11の改質触媒体に供給される。   The reformed water supplied from the reformed water supply unit 16 to the reformer 11 is evaporated by heating of the burner 17 to become steam, and this steam is mixed with the source gas supplied from the source gas supplier 15. And supplied to the reforming catalyst body of the reformer 11.

改質触媒体は、バーナ17により改質反応に適した高温(ここでは600〜700℃)に加熱され、これにより、原料ガスと水蒸気から水素含有ガス(正確にはH2ガス、COおよびCO2ガス等の混合ガス)を生成するという改質反応が、改質触媒体の触媒作用により進行する。 The reforming catalyst body is heated to a high temperature suitable for the reforming reaction (here, 600 to 700 ° C.) by the burner 17, whereby hydrogen-containing gas (precisely, H 2 gas, CO and CO) is generated from the raw material gas and water vapor. The reforming reaction of generating a mixed gas such as two gases proceeds by the catalytic action of the reforming catalyst body.

また、変成器13の変成触媒体12の触媒作用に基づく変成反応により、水素含有ガス中のCOを水蒸気(H2O)と変成反応させることにより、水素含有ガス中のCOの除去が行われる。変成触媒体12によるCO除去後のガスが、変成後ガスとして選択酸化器14に向けて供給される。 Further, CO in the hydrogen-containing gas is removed by performing a shift reaction of CO in the hydrogen-containing gas with water vapor (H 2 O) by a shift reaction based on the catalytic action of the shift catalyst body 12 of the shift converter 13. . The gas after CO removal by the shift catalyst body 12 is supplied to the selective oxidizer 14 as the shift-after gas.

この変成後ガスは、選択酸化空気供給器22より供給された空気と混合されたうえで、選択酸化器14に供給され、選択酸化器14の選択酸化触媒体の触媒作用に基づく酸化反応により、変成後ガス中のCOが更に低濃度(例えば20ppm以下)にまで更に除去される。   This transformed gas is mixed with the air supplied from the selective oxidation air supplier 22 and then supplied to the selective oxidizer 14. By the oxidation reaction based on the catalytic action of the selective oxidation catalyst body of the selective oxidizer 14, After the modification, CO in the gas is further removed to a lower concentration (for example, 20 ppm or less).

こうして、水素生成装置100は、選択酸化器14に併設されたガス出口ポート21を介して、COを殆ど除去した、水素リッチな生成ガス(水素含有ガス)を外部に排出させる。   In this way, the hydrogen generator 100 discharges the hydrogen-rich product gas (hydrogen-containing gas) from which CO is almost removed through the gas outlet port 21 provided in the selective oxidizer 14 to the outside.

次に、本実施の形態を特徴付ける、変成触媒体12における一対の温度に基づく、変成後ガス中のCO濃度推定値演算動作について述べる。   Next, the operation for calculating the estimated CO concentration in the post-transform gas based on the pair of temperatures in the shift catalyst body 12 that characterizes this embodiment will be described.

先ずは、変成後ガス中のCO濃度推定値と、変成触媒体の温度との間の関連を、簡易的な実験および解析シミュレーションを使って検証した。   First, the relationship between the estimated value of the CO concentration in the post-transformation gas and the temperature of the shift catalyst body was verified using simple experiments and analysis simulations.

図2は、変成触媒体の水濡れ回数をパラメータとして、変成触媒体の温度(横軸)とCO濃度(縦軸)との相関関係を示した図であり、簡易実験により、変成触媒体の水濡れ回数による触媒活性(反応性)の依存性を検証した結果を示すものである。   FIG. 2 is a graph showing the correlation between the temperature of the shift catalyst body (horizontal axis) and the CO concentration (vertical axis) using the number of times the water of the shift catalyst body is wet as a parameter. The result of having verified the dependence of the catalyst activity (reactivity) by the frequency | count of water wetting is shown.

<簡易実験の概要>
約1インチ直径のステンレス製の円管(単管)に、銅(Cu)−亜鉛(Zn)系触媒が、円柱状(棒状)の変成触媒体として約6.5ml充填されている。
<Outline of simple experiment>
Approximately 6.5 ml of a copper (Cu) -zinc (Zn) -based catalyst as a cylindrical (rod-shaped) catalyst is packed in a stainless steel tube (single tube) having a diameter of about 1 inch.

そして、改質器11から排出される水素含有ガス相当のガス(より具体的にはCOを10%含有)が、変成触媒充填後の単管の一方端から送られる。また、単管の他方端に設置されたガスクロマトグラフにより、この単管を通過した後の、水分を排除したドライなガス中のCO濃度が検出される。   Then, a gas corresponding to the hydrogen-containing gas discharged from the reformer 11 (more specifically, containing 10% of CO) is sent from one end of the single tube after charging the shift catalyst. Further, the CO concentration in the dry gas from which moisture has been removed after passing through this single tube is detected by a gas chromatograph installed at the other end of the single tube.

ここでは、図2に示す如く、水に浸けない状態の変成触媒体を充填した単管(図2の「初期単管」を指す)、水に1回浸けた後の変成触媒体を充填した単管(図2の「水濡れ1回単管」を指す)、および水に2回浸けた後の変成触媒体を充填した単管(図2の「水濡れ2回単管」を指す)の各々が準備され、これらの単管内の変成触媒体の温度(約165℃〜245℃の範囲内の約10℃刻み毎の温度)と、ガスクロマトグラフにより検知されるCO濃度との間の相関が求められた。
<簡易実験の結果>
図2によれば、変成触媒体の触媒温度を約165℃〜245℃の範囲で適宜変更して、ガスクロマトグラフにより測定したCO濃度は、初期単管と比較して水濡れ回数を増す毎に増える傾向を示している。
Here, as shown in FIG. 2, a single tube filled with a shift catalyst body that is not immersed in water (referred to as “initial single tube” in FIG. 2), and a shift catalyst body that has been immersed once in water is charged. A single tube (refers to “single water once single tube” in FIG. 2) and a single tube filled with a modified catalyst body after being immersed twice in water (refers to “double water wet single tube” in FIG. 2) Between the temperature of the shift catalyst bodies in these single tubes (temperatures in steps of about 10 ° C. within the range of about 165 ° C. to 245 ° C.) and the CO concentration detected by the gas chromatograph Was requested.
<Results of simple experiment>
According to FIG. 2, the catalyst temperature of the shift catalyst body is appropriately changed in the range of about 165 ° C. to 245 ° C., and the CO concentration measured by gas chromatography is increased every time the number of times of water wetting is increased compared to the initial single tube. It shows an increasing trend.

例えば、変成触媒体の温度を200℃とした場合、初期単管を通したガス中のCO濃度は、約0.5%まで低減するのに比べて、水濡れ1回単管を通したガス中のCO濃度は約1.2%、水濡れ2回単管を通したガス中のCO濃度は約1.5%といった具合にCO濃度が増える。このようにして、変成触媒体の水濡れ回数を増加による変成触媒体の触媒活性低下が確認された。   For example, when the temperature of the shift catalyst body is set to 200 ° C., the CO concentration in the gas passing through the initial single pipe is reduced to about 0.5%, compared with the gas passing through the single pipe once wet. The CO concentration increases, for example, the CO concentration in the gas is about 1.2%, the CO concentration in the gas that has passed through the single tube twice wet is about 1.5%. In this way, it was confirmed that the catalytic activity of the shift catalyst body was reduced by increasing the number of times the shift catalyst body was wetted with water.

なおここでは、変成触媒体の水濡れにおける触媒活性低下の挙動を、簡易実験により検証したが、現実の水素生成装置では、水素生成装置の起動、運転および停止の各々の条件による局所的な温度上昇等により、各触媒体のシンタリング、ヒートショックおよび炭素析出等の各種の要因に依拠して、変成触媒体水濡れ時と同様に、変成触媒体の触媒活性の低下を招くものと、推定される。
<変成触媒体の触媒活性低下による変成触媒体の主反応部の遷移>
変成触媒体による変成反応は、下記(1)式に基づく発熱反応である。
Here, the behavior of the catalytic activity decrease due to the wetness of the shift catalyst body was verified by a simple experiment, but in an actual hydrogen generator, the local temperature depending on the conditions of starting, operating and stopping the hydrogen generator It is estimated that the catalyst activity of the shift catalyst body will decrease due to the rise, etc., depending on various factors such as sintering, heat shock and carbon deposition of each catalyst body, as well as when the shift catalyst body gets wet. Is done.
<Transition of the main reaction part of the shift catalyst body due to a decrease in the catalytic activity of the shift catalyst body>
The shift reaction by the shift catalyst body is an exothermic reaction based on the following formula (1).

CO + H2O → H2 + CO2 −41.2kJ/mol・・・(1)
ここで、何等かの要因により変成触媒体の一部の触媒活性が低下した場合とそうでない場合とにおいては、この部分を通過し下流に流れるガス中のCO濃度は、上記簡易実験結果から理解される如く変化するものと、考えられる。
CO + H 2 O → H 2 + CO 2 -41.2 kJ / mol (1)
Here, in the case where the catalytic activity of a part of the shift catalyst body is lowered due to some factor and the case where it is not, the CO concentration in the gas passing through this part and flowing downstream is understood from the result of the above simple experiment. It is thought to change as it is done.

例えば、変成触媒体のガス流れの上流端部が、水濡れ2回相当の触媒活性低下を招いたと仮定すれば、この上流端部を通過し下流に流れるガス中のCO濃度は、変成触媒体の温度を200℃に保った状態では、0.5%(触媒活性未低下)から1.5%にまで約1.0%分、増えると予測される。   For example, if it is assumed that the upstream end of the gas flow of the shift catalyst body has caused the catalytic activity to decrease by two times of water wetting, the CO concentration in the gas passing through the upstream end and flowing downstream is In the state where the temperature of the medium is kept at 200 ° C., it is expected to increase by about 1.0% from 0.5% (catalytic activity unreduced) to 1.5%.

そうすると、このように変成触媒体の上流端部の触媒活性が低下した場合には、両者間のCO濃度差分(1.0%)に相当するCOは、式(1)に基づく上流端部の発熱反応に寄与することなく、変成触媒体の上流端部をそのまま通過して下流側に流れ、その結果、変成触媒体の上流端部の温度は、触媒活性が低下しなかった場合に比べて低くなる。一方、変成触媒体の下流側温度は、COの高濃度化に起因する変成反応熱の増加により、触媒活性が低下しなかった場合に比べて高くなる。つまり、変成触媒体の上流端部の温度が下がる一方で、変成触媒体の下流側の温度が上がるといった傾向が現れると、推定される。   Then, when the catalytic activity of the upstream end portion of the shift catalyst body is reduced in this way, the CO corresponding to the CO concentration difference (1.0%) between the two is equal to the upstream end portion based on the formula (1). Without contributing to the exothermic reaction, it passes through the upstream end portion of the shift catalyst body as it is and flows downstream. As a result, the temperature of the upstream end portion of the shift catalyst body is lower than that when the catalytic activity does not decrease. Lower. On the other hand, the downstream temperature of the shift catalyst body becomes higher than the case where the catalytic activity does not decrease due to an increase in shift reaction heat resulting from the high concentration of CO. That is, it is estimated that the temperature at the upstream end portion of the shift catalyst body decreases while the temperature at the downstream side of the shift catalyst body increases.

このようにして、変成触媒体の主反応部が、変成触媒体の上流端部の触媒活性が低下した場合には、そうでない場合に比較してシフトすることになる。   In this way, the main reaction part of the shift catalyst body shifts when the catalytic activity at the upstream end of the shift catalyst body decreases compared to the case where it does not.

以上に述べた簡易実験による検討内容から、変成触媒体に供給されるガスの温度およびガス中のCO濃度が一定であるという前提条件(但し、このような前提は、図1の水素生成装置100に変成器13を組み込んだ状況の場合には、後記のとおり、成り立たない可能性が高い)の下では、例えば変成触媒体全体の触媒活性低下の影響を直接に評価可能な、変成触媒体のガス出口付近の温度を、熱電対やサーミスタ等の温度検知器により検知することにより、このような温度に基づいて変成触媒体の触媒活性低下が予測でき、その結果、変成後ガス中のCO濃度推定値を適正に演算できると、本件発明者等は考えている。   From the examination contents by the simple experiment described above, it is assumed that the temperature of the gas supplied to the shift catalyst body and the CO concentration in the gas are constant (however, this assumption is based on the hydrogen generator 100 of FIG. 1). In the situation where the converter 13 is incorporated into the converter catalyst, it is highly possible that the converter catalyst 13 does not hold as will be described later. By detecting the temperature in the vicinity of the gas outlet with a temperature detector such as a thermocouple or thermistor, a decrease in the catalytic activity of the shift catalyst body can be predicted based on such temperature, and as a result, the CO concentration in the gas after shift The inventors consider that the estimated value can be calculated appropriately.

次に、斯かる変成触媒体の温度に基づく変成後ガス中のCO濃度推定値演算の妥当性を見極める目的で、改質触媒体および変成触媒体の触媒活性低下の有無において、変成触媒体の温度分布の挙動およびCO濃度分布の挙動を解析シミュレーションにより求めた。
<解析モデルおよび解析モデルの入力条件>
円筒状空間(長さ:100mm)への、銅(Cu)−亜鉛(Zn)系材料(変成触媒)の充填を想定した、円筒状の変成触媒体用の解析対象(解析メッシュ領域)がコンピュータ上にモデリングされている。
Next, in order to ascertain the validity of the calculation of the estimated CO concentration in the post-transformation gas based on the temperature of the shift catalyst body, whether the shift catalyst body has a reduced catalytic activity or not. The behavior of the temperature distribution and the behavior of the CO concentration distribution were determined by analytical simulation.
<Analysis model and input conditions of analysis model>
An analysis target (analysis mesh area) for a cylindrical shift catalyst body, assuming that a cylindrical space (length: 100 mm) is filled with a copper (Cu) -zinc (Zn) -based material (change catalyst), is a computer. Modeled above.

ここで、変成触媒体の触媒活性が低下しない場合の解析モデル(以下、「変成触媒体正常モデル」という)として、銅(Cu)−亜鉛(Zn)系材料の存在を想定した全ての解析メッシュに、銅(Cu)−亜鉛(Zn)系材料の反応速度が入力されている。   Here, all analysis meshes assuming the presence of a copper (Cu) -zinc (Zn) -based material as an analysis model when the catalytic activity of the shift catalyst body does not decrease (hereinafter referred to as “normal shift catalyst body model”) In addition, the reaction rate of the copper (Cu) -zinc (Zn) -based material is input.

また、変成触媒体の触媒活性が低下した場合の解析モデル(以下、「変成触媒体劣化モデル」という)として、銅(Cu)−亜鉛(Zn)系材料の存在を想定した解析メッシュのうちの、上流側の半分の解析メッシュについては、銅(Cu)−亜鉛(Zn)系材料の反応性が1/3になるよう、化学反応の速度を予測するアレニウスの式の頻度因子が1/3に設定されている。これにより、触媒活性を意図的に低下させた解析モデルが得られる。   Further, as an analysis model when the catalytic activity of the shift catalyst body is reduced (hereinafter referred to as “change catalyst body deterioration model”), an analysis mesh that assumes the presence of a copper (Cu) -zinc (Zn) -based material is used. For the upstream analysis mesh, the frequency factor of the Arrhenius equation for predicting the chemical reaction rate is 1/3 so that the reactivity of the copper (Cu) -zinc (Zn) -based material becomes 1/3. Is set to Thereby, an analytical model in which the catalytic activity is intentionally reduced can be obtained.

但し本解析モデルは、現実の製品を可能な限りコンピュータ上に再現させる趣旨から、変成触媒体の上流側に、変成反応に寄与しないアルミナ層に対応する解析メッシュ領域(長さ:18mm)、さらに上流側に空間部を構成する領域(長さ:25mm)をモデリングして解析メッシュを形成し、その空間部の上流端部分を変成器13の基準端として境界条件を設定している。   However, this analysis model has an analysis mesh region (length: 18 mm) corresponding to an alumina layer that does not contribute to the shift reaction on the upstream side of the shift catalyst for the purpose of reproducing an actual product on a computer as much as possible. An analysis mesh is formed by modeling a region (length: 25 mm) constituting the space portion on the upstream side, and boundary conditions are set using the upstream end portion of the space portion as a reference end of the transformer 13.

なお、変成触媒体12と同じく改質器11に内包される改質触媒体による触媒活性は、水素生成装置100の総運転回数および/または総稼動時間の増加により低下する可能性がある。そして改質触媒体による触媒活性が低下すれば改質触媒体出口温度が下がり、改質後ガス中のCO濃度が低下する。つまり、変成触媒体12に供給される改質後ガスの条件が改質触媒体の状態によって変化する。したがって、改質触媒体の触媒活性が低下していない初期の場合(以下、「改質触媒劣化無」という)および、それが劣化した場合(以下、「改質触媒劣化有」という)の両方に対応する、改質後ガス成分と流量が、変成触媒体の基準端の境界条件として入力されている。ただし、変成触媒体の基準端におけるガス温度は、水素生成装置では温度制御手段により約250℃の一定値に制御されるので、当該基準端のガス温度境界条件を250℃一定値として解析を行った。   Note that the catalytic activity of the reforming catalyst body included in the reformer 11 as well as the shift catalyst body 12 may decrease due to an increase in the total number of operations and / or the total operation time of the hydrogen generator 100. If the catalytic activity of the reforming catalyst body decreases, the reforming catalyst body outlet temperature decreases, and the CO concentration in the reformed gas decreases. That is, the conditions of the reformed gas supplied to the shift catalyst body 12 vary depending on the state of the reformed catalyst body. Therefore, both in the initial stage where the catalytic activity of the reforming catalyst body has not decreased (hereinafter referred to as “no reforming catalyst deterioration”) and in the case where it has deteriorated (hereinafter referred to as “having reforming catalyst deterioration”). The reformed gas component and the flow rate corresponding to the above are input as boundary conditions at the reference end of the shift catalyst body. However, since the gas temperature at the reference end of the shift catalyst body is controlled to a constant value of about 250 ° C. by the temperature control means in the hydrogen generator, the gas temperature boundary condition at the reference end is analyzed to be a constant value of 250 ° C. It was.

更に、現実の水素生成装置の定格運転を想定したガス組成を再現可能なように、適宜のガス物性条件や上記以外の境界条件は入力されている。
<解析シミュレーション結果>
図3は、改質触媒劣化無と改質触媒劣化有に対する、変成触媒体正常モデルと変成触媒体劣化モデルの変成触媒体内部の温度(℃)の分布を示した図であり、変成器13の基準端からガス流れ方向に沿った距離を横軸にとり(アルミナ部は25mm〜43mm、変成触媒体部は43mm〜143mm)、変成触媒体の温度を縦軸にとって、各触媒体モデル組合せによる解析シミュレーション結果を示した図である。
Furthermore, appropriate gas property conditions and boundary conditions other than the above are input so that the gas composition assuming the rated operation of the actual hydrogen generator can be reproduced.
<Analysis simulation results>
FIG. 3 is a diagram showing the distribution of the temperature (° C.) inside the shift catalyst body of the shift catalyst body normal model and the shift catalyst body deterioration model with respect to no reforming catalyst deterioration and with reforming catalyst deterioration. The horizontal axis is the distance along the gas flow direction from the reference end of the gas (alumina part is 25 mm to 43 mm, the shift catalyst body part is 43 mm to 143 mm), and the temperature of the shift catalyst body is the vertical axis, and analysis by combination of each catalyst body model It is the figure which showed the simulation result.

図4は、図3の解析シミュレーションにおける生成ガス中のCOモル濃度(%)の分布を示した図である。変成器13の基準端からガス流れ方向に沿った距離を横軸にとり、COモル濃度を縦軸にとっている。   FIG. 4 is a diagram showing the distribution of CO molar concentration (%) in the product gas in the analysis simulation of FIG. The horizontal axis represents the distance along the gas flow direction from the reference end of the transformer 13, and the vertical axis represents the CO molar concentration.

すなわち、図3(または図4)では、改質触媒劣化無条件についての変成触媒体正常モデルの変成触媒体内部の温度分布(またはCOモル濃度分布)(太い実線で図示)と、改質触媒劣化無条件についての変成触媒体劣化モデルの変成触媒体内部の温度分布(またはCOモル濃度分布)(太い点線で図示)と、改質触媒劣化有条件についての変成触媒体正常モデルの変成触媒体内部の温度分布(またはCOモル濃度分布)(太い一点鎖線で図示)と、改質触媒劣化有条件についての変成触媒体劣化モデルの変成触媒体内部の温度分布(またはCOモル濃度分布)(太い二点鎖線で図示)と、が示されている。   That is, in FIG. 3 (or FIG. 4), the temperature distribution (or CO molar concentration distribution) (shown by a thick solid line) inside the shift catalyst body of the shift catalyst body normal model for the unconditional condition of the reforming catalyst, and the reforming catalyst The temperature distribution (or CO molar concentration distribution) inside the shift catalyst body of the shift catalyst body deterioration model for unconditional deterioration (shown by a thick dotted line), and the shift catalyst body of the shift catalyst normal model for the reforming catalyst deterioration condition Internal temperature distribution (or CO molar concentration distribution) (illustrated by a thick one-dot chain line) and internal temperature distribution (or CO molar concentration distribution) of the modified catalyst deterioration model of the reforming catalyst deterioration model for the condition of reforming catalyst deterioration (thick) (Illustrated by a two-dot chain line).

図3の改質触媒劣化無条件、あるいは改質触媒劣化有条件において、変成触媒体正常モデルと劣化モデルの温度分布を比べると、アルミナ層内部および変成触媒体内部の全域について、変成触媒体正常モデルの温度が、劣化モデルの温度よりも高めになっていることがわかる。これは、変成触媒体正常モデルでは主反応部が上流端部近傍に位置することから、この部分の触媒反応熱(発熱反応)による昇温の影響が、アルミナ層中にも熱伝導により影響を与えてアルミナ層中の温度降下を小さく抑えられること、および、正常モデルの変成触媒体温度に対する触媒の反応性が劣化モデルの触媒反応性より高く、その結果、正常モデルの変成触媒体各部分における触媒反応熱が劣化モデルのそれより多いこと、に起因している。   When the temperature distributions of the normal model of the shift catalyst and the deterioration model are compared under the condition that the reforming catalyst deterioration is unconditional or the condition of the reforming catalyst deterioration is shown in FIG. It can be seen that the temperature of the model is higher than the temperature of the deterioration model. This is because the main reaction part is located in the vicinity of the upstream end in the normal model of the metamorphic catalyst body, so the effect of the temperature rise due to the catalytic reaction heat (exothermic reaction) in this part is also affected by the heat conduction in the alumina layer. To reduce the temperature drop in the alumina layer, and the reactivity of the catalyst with respect to the temperature of the normal model shift catalyst body is higher than that of the deterioration model catalyst. This is due to the fact that the heat of catalytic reaction is higher than that of the degradation model.

図4のCO濃度分布によれば、まず、変成触媒体正常モデルおよび劣化モデルの何れも、改質触媒劣化無条件および劣化有条件により、変成器13の基準端でのCO濃度が異なる。これは、改質触媒が劣化するに連れて、触媒温度に対する反応性が悪くなり、改質触媒体の主反応位置が下流側に移動することに起因して起こる現象と考えられる。すなわち、改質反応は吸熱反応であるため、改質触媒体のより下流側に主反応位置が存在すると、改質触媒体出口の温度は低くなる。改質触媒体出口の改質後ガス組成は、改質触媒体出口の温度でほぼ決まるため、改質触媒体が劣化した方が改質後ガス中のCO濃度は低くなる。その結果、変成器13に供給される改質後ガス中CO濃度は、改質触媒体の劣化の有無により異なっている。そのため、変成触媒体が正常か劣化しているか否かに依存するだけでなく、改質触媒体が正常か劣化しているかという状況をも考慮して変成後ガス中のCO濃度は、図4のCO濃度分布の如く決定されると予測される。   According to the CO concentration distribution of FIG. 4, first, the CO concentration at the reference end of the transformer 13 varies depending on whether the reforming catalyst body normal model and the deterioration model are unconditional and deterioration conditions of the reforming catalyst. This is considered to be a phenomenon that occurs due to the deterioration of the reactivity with respect to the catalyst temperature as the reforming catalyst deteriorates and the main reaction position of the reforming catalyst body moving downstream. That is, since the reforming reaction is an endothermic reaction, the temperature at the outlet of the reforming catalyst body is lowered if the main reaction position exists on the downstream side of the reforming catalyst body. The post-reforming gas composition at the outlet of the reforming catalyst body is substantially determined by the temperature at the outlet of the reforming catalyst body. Therefore, the CO concentration in the post-reforming gas becomes lower as the reforming catalyst body deteriorates. As a result, the CO concentration in the reformed gas supplied to the transformer 13 differs depending on whether the reforming catalyst body has deteriorated. Therefore, not only depends on whether the shift catalyst body is normal or deteriorated, but the CO concentration in the shift gas in consideration of the situation whether the reforming catalyst body is normal or deteriorated is shown in FIG. It is predicted that it is determined as follows.

以上の解析シミュレーション結果によれば、変成触媒体の適所の温度は、改質触媒体の劣化状況をも反映し、変成触媒体から排出される変成後ガス中のCO濃度に相関する物理量であると、見做し得る。   According to the above analysis simulation results, the appropriate temperature of the shift catalyst body is a physical quantity that also reflects the deterioration state of the reforming catalyst body and correlates with the CO concentration in the post-shift gas discharged from the shift catalyst body. And can be considered.

このため、変成触媒体の上流端部近傍と下流端部近傍における変成触媒体の両方の温度を拾うことにより、変成後ガス中のCO濃度推定値がより適正に演算可能になる。   For this reason, the CO concentration estimated value in the gas after the shift can be calculated more appropriately by picking up the temperatures of both the shift catalyst near the upstream end and the downstream end of the shift catalyst.

要するに、図3に示した変成触媒体の下流部分(例えば、図3の横軸の数値が100〜143付近)の温度については、変成触媒体正常モデルの温度分布(太い実線と太い一点鎖線)と、変成触媒体劣化モデルの温度分布(太い点線と太い二点鎖線)との間には有意な温度差がある一方で、改質触媒劣化無条件の温度分布(例えば、変成触媒体劣化モデルであれば、太い点線で示した温度分布)および改質触媒劣化有条件の温度分布(例えば、変成触媒体劣化モデルであれば、太い二点鎖線に示した温度分布)同士の、当該下流端近傍の温度差は極めて小さく、ここの温度を拾っても両者を有意に区別できない可能性がある。そこで、図3に示した変成触媒体の上流部分(例えば、図3の横軸の数値が43〜70付近)の温度を用いれば、改質触媒劣化無条件の温度分布と改質触媒劣化有条件の温度分布との間に、有意な温度差が認められ、両者を適切に区別できる。   In short, regarding the temperature of the downstream portion of the shift catalyst body shown in FIG. 3 (for example, the value on the horizontal axis in FIG. 3 is around 100 to 143), the temperature distribution of the shift catalyst body normal model (thick solid line and thick dashed line) While there is a significant temperature difference between the temperature distribution of the shift catalyst deterioration model and the temperature distribution of the conversion catalyst deterioration model (thick dotted line and thick two-dot chain line), the unconditional temperature distribution of the reforming catalyst (for example, the conversion catalyst deterioration model) The temperature distribution indicated by the thick dotted line) and the temperature distribution of the reforming catalyst deterioration condition (for example, the temperature distribution indicated by the thick two-dot chain line in the case of the shift catalyst body deterioration model) The temperature difference in the vicinity is extremely small, and even if the temperature is picked up, there is a possibility that the two cannot be distinguished significantly. Therefore, if the temperature of the upstream portion of the shift catalyst body shown in FIG. 3 (for example, the numerical value on the horizontal axis in FIG. 3 is around 43 to 70) is used, the temperature distribution without reforming catalyst deterioration and the presence of reforming catalyst deterioration are present. A significant temperature difference is recognized between the temperature distribution of the conditions and the two can be appropriately distinguished.

ここで、変成触媒体の上流端部温度と下流端部温度に基づく変成後ガス中のCO濃度推定演算の具体的な一方法を例示する。   Here, a specific method for calculating the CO concentration in the post-transform gas based on the upstream end temperature and the downstream end temperature of the shift catalyst body will be exemplified.

図5は、上流温度検知器18により検知される上流端部温度Tsuの変化と、下流温度検知器19により検知される下流端部温度Tsdの変化と、の各々に対応付けられた、変成後ガス中のCO濃度分布の変化を示したイメージ図(以下、「温度−CO濃度図」という)である。なおここでは、変成触媒体12および改質触媒体の両者の触媒活性未低下状態『図中の黒丸の「Tsu=Tsu(0)、Tsd=Tsd(0);CO濃度:CO=0.5%」の地点』から、水素生成装置の総運転回数および/または総運転回数の増加に伴って一定時間経過後、変成触媒体12および改質触媒体の触媒活性低下をきたして状態『図中の白丸の「Tsu=Tsu(1)、Tsd=Tsd(1);CO濃度:1.0%の地点」に遷移した例が示されている。   FIG. 5 shows the post-transformation associated with each of the change in the upstream end temperature Tsu detected by the upstream temperature detector 18 and the change in the downstream end temperature Tsd detected by the downstream temperature detector 19. It is an image figure (henceforth a "temperature-CO density | concentration figure") which showed the change of CO density | concentration distribution in gas. In this case, the catalytic activity of both the shift catalyst body 12 and the reforming catalyst body is not lowered [“Tsu = Tsu (0), Tsd = Tsd (0) of black circles in the figure; CO concentration: CO = 0.5 % ”From the point of“% ”, after a certain period of time as the total number of operations of the hydrogen generator and / or the increase in the total number of operations, the catalytic activity of the shift catalyst body 12 and the reforming catalyst body decreases. The white circle of “Tsu = Tsu (1), Tsd = Tsd (1); CO concentration: 1.0% point” is shown.

勿論、水素生成装置100に本技術を適用する際には、解析シミュレーションや実機耐久試験により、計算乃至実測された、上下温度検知器18、19の変化と変成後ガス中のCO濃度変化との間の相関結果に基づき、当該温度−CO濃度図の完成図が予め準備される必要がある。   Of course, when the present technology is applied to the hydrogen generator 100, the change in the upper and lower temperature detectors 18 and 19 and the change in the CO concentration in the transformed gas, which are calculated or actually measured by an analysis simulation or an actual machine durability test. Based on the correlation result between them, a completed drawing of the temperature-CO concentration diagram needs to be prepared in advance.

図5に示した温度−CO濃度図の変成後ガス中のCO濃度の増加分中には、改質触媒体の触媒活性低下に起因する上流温度検知器18の温度変化『例えば、図中の「Tsu(1)−Tsu(0)」』対応のCO濃度増加寄与分と、変成触媒体12の触媒活性の低下に起因する下流温度検知器19の温度変化『例えば、図中の「Tsd(1)−Tsd(0)」』対応のCO濃度増加寄与分とが、不可分的に含まれているが、両者の温度変化に対応するCO濃度増加寄与分は、既に説明したようこれらの検知器18、19による変成触媒体12の一対の温度により分離可能であることから、各CO濃度増加寄与分が適切に見積もれ、これにより、当該温度−CO濃度図の精度改善を図れる。 In the temperature-CO concentration diagram shown in FIG. 5, during the increase in the CO concentration in the transformed gas, the temperature change of the upstream temperature detector 18 due to the decrease in the catalytic activity of the reforming catalyst body [for example, The CO concentration increase contribution corresponding to “Tsu (1) −Tsu (0)” and the temperature change of the downstream temperature detector 19 due to the decrease in the catalytic activity of the shift catalyst body 12 “For example,“ Tsd ( 1) -Tsd (0) "" and the corresponding CO concentration increases contribution is, although included in atomically, CO concentration increased contribution corresponding to the temperature change of the two is the detection of these as already described Since the separation by the pair of temperatures of the shift catalyst body 12 by the vessels 18 and 19 is possible, each CO concentration increase contribution can be estimated appropriately, thereby improving the accuracy of the temperature-CO concentration diagram.

なお、このような温度−CO濃度図のデータは、予め制御装置20の記憶部(不図示)に記憶され、制御装置20により、記憶部から適宜読み込めるようになっている。   Note that such data of the temperature-CO concentration chart is stored in advance in a storage unit (not shown) of the control device 20, and can be appropriately read from the storage unit by the control device 20.

よって本実施の形態によれば、制御装置20は、上流温度検知器18および下流温度検知器19の各々により検知された一対の温度を取得して、このような一対の温度に基づいて、変成器13から排出された変成後ガス中のCO濃度推定値を精度良く演算できる。   Therefore, according to the present embodiment, the control device 20 acquires a pair of temperatures detected by each of the upstream temperature detector 18 and the downstream temperature detector 19 and converts the temperature based on such a pair of temperatures. The CO concentration estimated value in the transformed gas discharged from the vessel 13 can be calculated with high accuracy.

次に、以上に述べたような改質触媒体および/または変成触媒体12の触媒活性低下によるCO濃度増加に対応可能な、選択酸化器14によるCO除去の動作例を述べる。   Next, an operation example of CO removal by the selective oxidizer 14 that can cope with an increase in CO concentration due to a decrease in the catalytic activity of the reforming catalyst body and / or the shift catalyst body 12 as described above will be described.

なおここでは、原料ガス13Aを使用した水素生成装置100の運転条件が定格であり(原料ガス13Aの流量:4.0L/min)、かつ変成後ガス中の触媒活性低下前後のCO濃度が、0.5%(触媒活性未低下)から1.0%(触媒活性低下)に変化するとして当該動作例を説明する。   Here, the operating conditions of the hydrogen generator 100 using the raw material gas 13A are rated (flow rate of the raw material gas 13A: 4.0 L / min), and the CO concentration before and after the catalytic activity decrease in the gas after the transformation is The operation example will be described on the assumption that the ratio is changed from 0.5% (catalytic activity unreduced) to 1.0% (catalytic activity decreased).

変成後ガス中のCOは、選択酸化器14(選択酸化触媒体)によりCO酸化反応(COを空気中の酸素で酸化してCO2に変える反応)で除去されることから、COを酸化するだけであれば、酸素の必要量はCOの半分(O2/CO=0.5)で足りるはずである。 Since the CO in the gas after the transformation is removed by a CO oxidation reaction (a reaction that oxidizes CO with oxygen in the air and converts it into CO 2 ) by the selective oxidizer 14 (selective oxidation catalyst body), the CO is oxidized. If so, the required amount of oxygen should be half of CO (O 2 /CO=0.5).

しかし変成後ガス中には、COの他、多量の水素が存在しており(水素は酸素と極めて反応し易い)、選択酸化器14によるCOの選択酸化性を充分に確保して、CO濃度を20ppm以下まで除去するという観点からは、O2/CO=1.5〜2(COに対して3倍乃至4倍の酸素原子)という過剰な酸素が選択酸化器14において必要になる。 However, in the gas after the transformation, a large amount of hydrogen is present in addition to CO (hydrogen is very easy to react with oxygen), and the CO concentration by the selective oxidizer 14 is sufficiently ensured. From the viewpoint of removing oxygen to 20 ppm or less, excess oxygen of O 2 /CO=1.5 to 2 (3 to 4 times oxygen atom with respect to CO) is required in the selective oxidizer 14.

ここで、触媒体の触媒活性低下していない場合には、変成後ガス中にCOが0.5%含まれ、この流量換算値は、水素生成装置100の定格運転時の原料ガス流量であればCO流量0.1L/minである。このため、O2/CO=2になるように選択酸化空気供給器22から選択酸化器14に供給させる空気流量は、約1.0L/minである。 Here, when the catalytic activity of the catalyst body has not decreased, 0.5% of CO is contained in the transformed gas, and this flow rate conversion value may be the raw material gas flow rate during the rated operation of the hydrogen generator 100. CO flow rate is 0.1 L / min. For this reason, the air flow rate supplied to the selective oxidizer 14 from the selective oxidizer air supply 22 so that O 2 / CO = 2 is about 1.0 L / min.

その一方、触媒体の触媒活性低下した場合には、変成後ガス中にCOが1.0%含まれ、この流量換算値は、水素生成装置100の定格運転時の原料ガス流量であればCO流量0.2L/minである。このため、O2/CO=2になるように選択酸化空気供給器22から選択酸化器14に供給させる空気流量は、約2.0L/minである。 On the other hand, when the catalytic activity of the catalyst body is reduced, 1.0% of CO is contained in the transformed gas, and this flow rate conversion value is CO 2 if the raw material gas flow rate during the rated operation of the hydrogen generator 100. The flow rate is 0.2 L / min. For this reason, the air flow rate supplied to the selective oxidizer 14 from the selective oxidizer air supply 22 so that O 2 / CO = 2 is about 2.0 L / min.

このようにして、制御装置20は、演算されたCO濃度推定値および原料ガス供給器15による原料ガス流量を逐次監視して、これらの値に基づいて、変成後ガス中のCOを除去するための選択酸化空気供給器22によるCO選択酸化用空気を、過不足無く供給できる。   In this way, the control device 20 sequentially monitors the calculated estimated CO concentration value and the raw material gas flow rate by the raw material gas supplier 15, and removes CO in the post-transformation gas based on these values. The selective oxidation air supplier 22 can supply the CO selective oxidation air without excess or deficiency.

〔変形例1〕
実施の形態1においては制御装置20が、温度−CO濃度図に基づき、変成後ガス中のCO濃度推定値を演算する例を述べたが、制御装置20が、このような温度に加えて、水素生成装置100の総稼動時間情報および総運転回数情報をも考慮して、変成後ガス中のCO濃度推定値を演算し、その推定値に基づいてCO選択酸化用空気の供給量を制御することで、より水素生成装置100の特性を安定させることが可能である。つまり、水素生成装置100の耐久試験や触媒単体での耐久試験の結果より、総稼働時間や総運転回数に対する変成後ガス中のCO濃度を予測し、その情報と前記変成器13の温度からの変成後ガス中のCO濃度予測値とを比較することで、CO値が高い方の結果を水素生成装置100のその時点での変成後ガス中のCO濃度と見なしてCO選択酸化用空気を供給する。そうすることで、水素生成装置100からの生成ガス中のCO濃度を極力小さく抑え、安定したCO状態の生成ガスを供給する水素生成装置を実現することができる。これは、水素生成装置100の供給するガス量や水量やセンシングしている温度値などが何らかの原因でずれた場合でも、安定した生成ガスを供給するためのものである。
[Modification 1]
In the first embodiment, an example in which the control device 20 calculates the estimated CO concentration value in the gas after the transformation based on the temperature-CO concentration diagram has been described. In consideration of the total operating time information and the total number of operation information of the hydrogen generator 100, an estimated CO concentration value in the transformed gas is calculated, and the supply amount of CO selective oxidation air is controlled based on the estimated value. As a result, the characteristics of the hydrogen generator 100 can be further stabilized. That is, from the results of the durability test of the hydrogen generator 100 and the durability test of the catalyst alone, the CO concentration in the post-transformation gas with respect to the total operation time and the total number of operations is predicted. Compared with the predicted CO concentration value in the gas after the transformation, the result of the higher CO value is regarded as the CO concentration in the gas after the transformation of the hydrogen generator 100 at that time, and CO selective oxidation air is supplied. To do. By doing so, it is possible to realize a hydrogen generating apparatus that suppresses the CO concentration in the generated gas from the hydrogen generating apparatus 100 as much as possible and supplies the generated gas in a stable CO state. This is for supplying a stable generated gas even when the amount of gas supplied by the hydrogen generator 100, the amount of water, the temperature value being sensed, etc. deviate for some reason.

そうすると、制御装置20は、温度−CO濃度図に加え、総稼動時間情報−水素含有ガス中CO濃度データや総運転回数情報−水素含有ガス中CO濃度データに基づいて、より正確に変成後ガス中のCO濃度推定値演算を行え、その結果、変成後ガス中のCOを除去するための選択酸化空気供給器22による空気流量を、より適切に制御できると期待される。   Then, in addition to the temperature-CO concentration chart, the control device 20 more accurately converts the post-transformation gas based on the total operating time information-the CO concentration data in the hydrogen-containing gas and the total operation frequency information-the CO concentration data in the hydrogen-containing gas. As a result, it is expected that the air flow rate by the selective oxidizing air supply device 22 for removing CO in the gas after the transformation can be controlled more appropriately.

〔変形例2〕
実施の形態1においては、変成触媒体12の上下流温度検知器18、19を、変成触媒体12の上流端部と下流端部の2箇所に設置して変成触媒体12の上流側および下流側の温度を直接に検知する例を説明したが、改質触媒体および/または変成触媒体12の触媒反応状況に応じて、このような温度検知器の場所や個数を変えて適宜補正しても良い。
[Modification 2]
In the first embodiment, upstream and downstream temperature detectors 18 and 19 of the shift catalyst body 12 are installed at two locations, an upstream end portion and a downstream end portion of the shift catalyst body 12, and upstream and downstream of the shift catalyst body 12. Although the example in which the temperature on the side is directly detected has been described, the location and number of such temperature detectors are changed and corrected appropriately according to the catalytic reaction status of the reforming catalyst body and / or the shift catalyst body 12. Also good.

例えば、変成触媒体12の温度検知部位は、必ずしも変成触媒体12の上流端部や下流端部のように変成触媒体の温度を直接的に検知する態様でなくても良く、以下に述べる如く、変成触媒体12の、水素含有ガス流れ方向の上流部分や下流部分の温度を間接的に検知可能な態様で、温度検知器を設置しても、本明細書で意図する温度が適切に得られる。例えば、変成触媒体12に流入出するガスの温度を検知するように変成器13の内部適所に温度検知器を設置しても良く、変成器13の容器の表面温度を検知するように変成器13の表面適所に温度検知器を設置しても良い。このようにして得られたデータを上記の直接に得られる温度との相関関係を利用して補正することによって、変成触媒体12の上流部分および下流部分の温度が間接的に得られる。   For example, the temperature detection portion of the shift catalyst body 12 does not necessarily have to be a mode in which the temperature of the shift catalyst body is directly detected like the upstream end portion or the downstream end portion of the shift catalyst body 12. Even if the temperature detector is installed in such a manner that the temperature of the upstream portion and the downstream portion of the shift catalyst body 12 in the flow direction of the hydrogen-containing gas can be indirectly detected, the temperature intended in this specification can be appropriately obtained. It is done. For example, a temperature detector may be installed at a suitable position inside the transformer 13 so as to detect the temperature of the gas flowing into and out of the shift catalyst body 12, and the transformer is detected so as to detect the surface temperature of the container of the transformer 13. You may install a temperature detector in the 13 surface suitable place. The temperature of the upstream portion and the downstream portion of the shift catalyst body 12 can be indirectly obtained by correcting the data obtained in this way by utilizing the correlation with the directly obtained temperature.

(実施の形態2)
実施の形態1で述べた水素生成装置100の応用例として、この水素生成装置100から供給される水素リッチな水素含有ガスを用いて発電および排熱する燃料電池30を備えた燃料電池システム110がある。
(Embodiment 2)
As an application example of the hydrogen generator 100 described in Embodiment 1, a fuel cell system 110 including a fuel cell 30 that generates and exhausts heat using a hydrogen-rich hydrogen-containing gas supplied from the hydrogen generator 100 is provided. is there.

図6は、本発明の実施の形態2に係る燃料電池システムの概略構成を示したブロック図である。   FIG. 6 is a block diagram showing a schematic configuration of the fuel cell system according to Embodiment 2 of the present invention.

この燃料電池システム110は主に、水素生成装置100と、燃料電池30と、熱回収装置32と、を備えて構成されている。   The fuel cell system 110 mainly includes a hydrogen generation device 100, a fuel cell 30, and a heat recovery device 32.

燃料電池30は、公知の固体高分子型の燃料電池であり、ここでは、この燃料電池30の内部構成の説明は省略する。また、水素生成装置100は、実施の形態1による装置であり、この水素生成装置100の説明も省く。   The fuel cell 30 is a known polymer electrolyte fuel cell, and the description of the internal configuration of the fuel cell 30 is omitted here. The hydrogen generator 100 is an apparatus according to the first embodiment, and the description of the hydrogen generator 100 is omitted.

燃料電池30のアノードは、水素生成装置100のガス出口ポート21を介して水素生成装置100と連通してなり、これにより、水素生成装置100から排出された水素含有ガス(燃料ガス)が、燃料電池30のアノードに供給される。また、燃料電池30のカソードは、空気供給用のブロア31と連通してなり、これにより、ブロア31から排出される空気(酸化剤ガス)が、燃料電池30のカソードに供給される。   The anode of the fuel cell 30 communicates with the hydrogen generator 100 via the gas outlet port 21 of the hydrogen generator 100, whereby the hydrogen-containing gas (fuel gas) discharged from the hydrogen generator 100 is converted into fuel. It is supplied to the anode of the battery 30. Further, the cathode of the fuel cell 30 communicates with the air supply blower 31, whereby air (oxidant gas) discharged from the blower 31 is supplied to the cathode of the fuel cell 30.

熱回収装置32は、例えば貯湯タンク(不図示)を備えた温水生成装置であり、貯湯タンク内の冷却水を燃料電池30の内部を通すように循環させて燃料電池30の内部を適温に保たせつつ、燃料電池30の発電時の排熱を、冷却水との熱交換により回収できる。また、貯湯タンク内の温水は、適宜の浄化処理をなされた後、改質水として水素生成装置100の改質水供給器16(図1参照)に送られる。   The heat recovery device 32 is, for example, a hot water generating device provided with a hot water storage tank (not shown), and circulates the cooling water in the hot water storage tank so as to pass through the inside of the fuel cell 30 to keep the inside of the fuel cell 30 at an appropriate temperature. In addition, the exhaust heat generated during power generation of the fuel cell 30 can be recovered by heat exchange with the cooling water. Further, the hot water in the hot water storage tank is subjected to an appropriate purification process and then sent as reforming water to the reforming water supplier 16 (see FIG. 1) of the hydrogen generator 100.

なお、燃料電池システム110は、燃料電池30の発電電力を適宜の電力負荷端末(不図示)に供給でき、熱回収装置32により回収した熱を適宜の熱負荷端末(不図示)に供給できるように構成されている。   The fuel cell system 110 can supply the power generated by the fuel cell 30 to an appropriate power load terminal (not shown), and can supply the heat recovered by the heat recovery device 32 to an appropriate heat load terminal (not shown). It is configured.

つまり、この燃料電池30では、アノードに供給された水素含有ガスとカソードに供給された空気とが反応(発電反応)され、発電電力を生成する発電動作が実行され、この発電動作に伴って熱が生成される。燃料電池30による発電電力は、電力負荷端末に供給され利用される。燃料電池30による排熱は、熱回収装置32により回収され、熱負荷端末に供給され種々の用途に利用される。発電反応に利用されずに燃料電池30のアノードから排出された水素含有ガス(燃料オフガス)は、水素生成装置100のバーナ17(図1参照)に導かれ、ここで、バーナ17の燃焼用燃料として利用される。   That is, in this fuel cell 30, the hydrogen-containing gas supplied to the anode and the air supplied to the cathode react (power generation reaction), and a power generation operation for generating generated power is executed. Is generated. The power generated by the fuel cell 30 is supplied to the power load terminal and used. The exhaust heat from the fuel cell 30 is recovered by the heat recovery device 32, supplied to the thermal load terminal, and used for various purposes. The hydrogen-containing gas (fuel offgas) discharged from the anode of the fuel cell 30 without being used for the power generation reaction is led to the burner 17 (see FIG. 1) of the hydrogen generator 100, where the combustion fuel of the burner 17 is burned. Used as

本実施の形態によれば、仮に水素生成装置100の長期間の稼働等により改質および/または変成の触媒体の一部に触媒活性低下をきたしたとしても、水素生成装置100から高品質(低濃度CO)の水素リッチな水素含有ガスを燃料電池30に供給でき、その結果として、燃料電池30において、高効率かつ安定な発電および排熱が長期間に亘り維持できる。   According to the present embodiment, even if the catalytic activity decreases in a part of the reformed and / or modified catalyst body due to long-term operation of the hydrogen generator 100 or the like, the high quality ( As a result, the fuel cell 30 can maintain highly efficient and stable power generation and exhaust heat for a long period of time.

なおここでは、実施の形態1による水素生成技術の一利用形態として燃料電池システム110を例示したが、このような技術は、燃料電池以外の水素利用技術(例えば、タービン用燃焼器やエンジン等)にも流用可能である。   Here, the fuel cell system 110 is illustrated as one usage form of the hydrogen generation technique according to the first embodiment, but such a technique is a hydrogen utilization technique other than the fuel cell (for example, a turbine combustor, an engine, or the like). Can also be diverted.

本発明の水素生成装置は、変成触媒体および改質触媒体の触媒活性低下に際して、変成後ガス中のCO濃度推定値を精度良く演算でき、例えば、家庭用の燃料電池システムへの水素ガスを供給する装置として有用である。   The hydrogen generator of the present invention can accurately calculate the estimated CO concentration in the gas after the conversion when the catalytic activity of the conversion catalyst body and the reforming catalyst body is reduced. For example, the hydrogen generation device for the home fuel cell system It is useful as a supply device.

本発明の実施の形態1に係る水素生成装置の概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the hydrogen generator which concerns on Embodiment 1 of this invention. 変成触媒体の水濡れ回数をパラメータとして、変成触媒温度とCO濃度との相関関係を示した図であり、It is a diagram showing the correlation between the shift catalyst temperature and the CO concentration, using the number of water wetting of the shift catalyst body as a parameter, 変成触媒体正常モデルと変成触媒体劣化モデルとにおいて、変成触媒体の上流端部を基準とした変成触媒体のガス流れ方向に沿った距離を横軸にとり、変成触媒体の温度を縦軸にとって、両者間の相関の解析シミュレーション結果を示した図である。In the normal shift catalyst body model and the shift catalyst deterioration model, the horizontal axis represents the distance along the gas flow direction of the shift catalyst body with respect to the upstream end of the shift catalyst body, and the vertical axis represents the shift catalyst temperature. It is the figure which showed the analysis simulation result of the correlation between both. 変成触媒体正常モデルと変成触媒体劣化モデルとにおいて、変成触媒体の上流端部を基準とした変成触媒体のガス流れ方向に沿った距離を横軸にとり、COモル濃度を縦軸にとって、両者間の相関の解析シミュレーション結果を示した図である。In the normal conversion catalyst body model and the deterioration catalyst body deterioration model, the horizontal axis indicates the distance along the gas flow direction of the shift catalyst body with respect to the upstream end of the shift catalyst body, and the vertical axis indicates the CO molar concentration. It is the figure which showed the analysis simulation result of the correlation between. 温度−CO濃度図である。It is a temperature-CO density | concentration figure. 本発明の実施の形態2に係る燃料電池システムの概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the fuel cell system which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

11 改質器
12 変成触媒体
13 変成器
14 選択酸化器
15 原料ガス供給器
16 改質水供給器
17 バーナ
18 上流温度検知器
19 下流温度検知器
20 制御装置
21 ガス出口ポート
22 選択酸化空気供給器
30 燃料電池
31 ブロア
32 熱回収装置
100 水素生成装置
110 燃料電池システム

DESCRIPTION OF SYMBOLS 11 Reformer 12 Transformation catalyst body 13 Transformer 14 Selective oxidizer 15 Raw material gas supply device 16 Reformed water supply device 17 Burner 18 Upstream temperature detector 19 Downstream temperature detector 20 Control device 21 Gas outlet port 22 Selective oxygen air supply 30 Fuel cell 31 Blower 32 Heat recovery device 100 Hydrogen generator 110 Fuel cell system

Claims (3)

少なくとも炭素および水素から構成される有機化合物を含む原料ガスを用いた改質反応により、水素含有ガスを生成する改質器と、
前記水素含有ガスを変成触媒体に通流させて前記水素含有ガス中の一酸化炭素ガスを、変成反応により低減する変成器と、
前記変成触媒体の、水素含有ガス流れ方向の上流部分の温度を検知する上流温度検知器と、
前記変成触媒体の、水素含有ガス流れ方向の下流部分の温度を検知する下流温度検知器と、
前記変成器から排出される前記水素含有ガスに対して空気を供給する空気供給器と、
前記変成器から排出される前記水素含有ガス中の一酸化炭素ガスを、前記空気との酸化反応により低減する選択酸化器と、
制御装置と、を備え、
前記制御装置は、前記上流温度検知器により検知される温度の変化および前記下流温度検知器により検知される温度の変化を取得して、前記温の変化の各々に対応する、前記変成器から排出される前記水素含有ガス中の一酸化炭素ガス濃度増加寄与分を見積もり、前記一酸化炭素ガス濃度増加寄与分および前記原料ガスの流量に基づいて、前記空気供給器から供給される前記空気の流量を制御する水素生成装置。
A reformer that generates a hydrogen-containing gas by a reforming reaction using a raw material gas containing an organic compound composed of at least carbon and hydrogen;
A shifter configured to reduce the carbon monoxide gas in the hydrogen-containing gas by a shift reaction by passing the hydrogen-containing gas through the shift catalyst body;
An upstream temperature detector for detecting the temperature of the upstream portion of the shift catalyst body in the flow direction of the hydrogen-containing gas;
A downstream temperature detector for detecting the temperature of the downstream portion of the shift catalyst body in the flow direction of the hydrogen-containing gas; and
An air supply for supplying air to the hydrogen-containing gas discharged from the transformer;
A selective oxidizer for reducing carbon monoxide gas in the hydrogen-containing gas discharged from the transformer by an oxidation reaction with the air;
A control device,
The control device, the upstream temperature detector to obtain a change in a more sensed Ru temperature change and said downstream temperature sensor in the temperature detected by, corresponding to each of the previous SL temperature changes, the modified The carbon monoxide gas concentration increasing contribution in the hydrogen-containing gas discharged from the vessel is estimated, and the carbon monoxide gas concentration increasing contribution and the flow rate of the source gas are used to supply the air supply device A hydrogen generator that controls the flow rate of air.
前記制御装置は、前記水素生成装置の総稼動時間情報および総運転回数情報のうちの少なくとも一つを取得して、前記総稼動時間情報および/または前記総運転回数情報に基づいて、前記空気の流量を制御する請求項1記載の水素生成装置。 Wherein the control unit obtains at least one of total operating time of the hydrogen generator information and total operating count information, on the basis of the total operating time information and / or the total operating count information, the air The hydrogen generator according to claim 1, wherein the flow rate is controlled . 請求項1または2に記載の水素生成装置と、
酸化剤ガス供給器と、
前記水素生成装置により供給される還元剤ガスと前記酸化剤ガス供給器により供給される酸化剤ガスとを用いて発電する燃料電池と、
を備えた燃料電池システム。
The hydrogen generator according to claim 1 or 2 ,
An oxidant gas supply,
A fuel cell that generates electricity using the reducing agent gas supplied by the hydrogen generator and the oxidizing gas supplied by the oxidizing gas supplier;
A fuel cell system comprising:
JP2006138942A 2006-05-18 2006-05-18 Hydrogen generator and fuel cell system Expired - Fee Related JP4912742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138942A JP4912742B2 (en) 2006-05-18 2006-05-18 Hydrogen generator and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138942A JP4912742B2 (en) 2006-05-18 2006-05-18 Hydrogen generator and fuel cell system

Publications (3)

Publication Number Publication Date
JP2007308332A JP2007308332A (en) 2007-11-29
JP2007308332A5 JP2007308332A5 (en) 2009-05-28
JP4912742B2 true JP4912742B2 (en) 2012-04-11

Family

ID=38841544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138942A Expired - Fee Related JP4912742B2 (en) 2006-05-18 2006-05-18 Hydrogen generator and fuel cell system

Country Status (1)

Country Link
JP (1) JP4912742B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167759B2 (en) 2008-10-14 2012-05-01 Fallbrook Technologies Inc. Continuously variable transmission
US8480529B2 (en) 2006-06-26 2013-07-09 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161359A (en) * 2007-12-28 2009-07-23 Honda Motor Co Ltd System and method for removing carbon monoxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194365A (en) * 1983-04-18 1984-11-05 Toshiba Corp Control device of fuel cell power generating plant
JP2004043206A (en) * 2002-07-09 2004-02-12 Hitachi Ltd Fuel reforming apparatus and fuel cell using the same
JP4204291B2 (en) * 2002-09-26 2009-01-07 アイシン精機株式会社 Reformer
JP4223852B2 (en) * 2003-04-02 2009-02-12 本田技研工業株式会社 Chemical reactor
JP2005008479A (en) * 2003-06-18 2005-01-13 Matsushita Electric Ind Co Ltd Hydrogen production apparatus, method of operating hydrogen production apparatus and fuel cell system
JP4713260B2 (en) * 2004-07-20 2011-06-29 パナソニック株式会社 Hydrogen generator, operating method thereof, and fuel cell system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US8480529B2 (en) 2006-06-26 2013-07-09 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US8167759B2 (en) 2008-10-14 2012-05-01 Fallbrook Technologies Inc. Continuously variable transmission
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11624432B2 (en) 2018-11-06 2023-04-11 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Also Published As

Publication number Publication date
JP2007308332A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4912742B2 (en) Hydrogen generator and fuel cell system
JP5604309B2 (en) Hydrogen generator, fuel cell system, and method for stopping hydrogen generator
JP4486353B2 (en) HYDROGEN GENERATOR, METHOD FOR STOPPING HYDROGEN GENERATOR AND FUEL CELL POWER GENERATOR
JP4105758B2 (en) Fuel cell system
JP5340657B2 (en) Hydrogen generator, fuel cell system, and operation method of hydrogen generator
JP6405211B2 (en) Fuel cell system
JP5230849B2 (en) Hydrogen generator, fuel cell system, and operation method thereof
JP5870269B2 (en) Hydrogen generator and fuel cell system
JP2007137719A (en) Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method
US20100183928A1 (en) Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
JP5469440B2 (en) Method for stopping indirect internal reforming solid oxide fuel cell
JP2005294207A (en) Fuel cell system
JP2003313007A (en) Fuel treatment apparatus and operation method for the same
JP2006206405A (en) Hydrogen producing apparatus
US7258704B2 (en) Hydrogen generator and fuel cell system having the same
JP2005206413A (en) Hydrogen generating apparatus and fuel cell system
JP5592760B2 (en) Fuel cell power generation system
JP7478987B2 (en) Method for operating fuel processor, computer program, recording medium, and fuel processor
JP4954443B2 (en) Starting method of fuel cell system
JP6197171B2 (en) Fuel cell system
JP6448266B2 (en) Fuel cell system
JP2011021938A (en) Degradation determination method for reforming device and reforming device
JP2009078938A (en) Desulfurizer and method for operating the same, and fuel cell system
JP2011256059A (en) Method for operating hydrogen generator and fuel cell system
JP2008137866A (en) Fuel processor and its operation control method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees